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Abstract: Chikungunya virus (CHIKV) is considered a priority pathogen and a major threat to global
health. While CHIKV infections may be asymptomatic, symptomatic patients can develop chikun-
gunya fever (CHIKF) characterized by severe arthralgia which often transitions into incapacitating
arthritis that could last for years and lead to significant loss in health-related quality of life. Yet,
Chikungunya fever (CHIKF) remains a neglected tropical disease due to its complex epidemiology
and the misrepresentation of its incidence and disease burden worldwide. Transmitted to humans by
infected Aedes mosquitoes, CHIKV has dramatically expanded its geographic distribution to over
100 countries, causing large-scale outbreaks around the world and putting more than half of the
population of the world at risk of infection. More than 50 years have passed since the first CHIKV
vaccine was reported to be in development. Despite this, there is no licensed vaccine or antiviral
treatments against CHIKV to date. In this review, we highlight the clinical relevance of developing
chikungunya vaccines by discussing the poor understanding of long-term disease burden in CHIKV
endemic countries, the complexity of CHIKV epidemiological surveillance, and emphasising the
impact of the global emergence of CHIKV infections. Additionally, our review focuses on the recent
progress of chikungunya vaccines in development, providing insight into the most advanced vaccine
candidates in the pipeline and the potential implications of their roll-out.

Keywords: Alphavirus; mosquitoes; Chikungunya virus (CHIKV); chikungunya vaccine; clinical
trial; epidemiology

1. Introduction

The rapid development of vaccines against SARS-CoV-2 in 2020 demonstrated that the
collaborative effort of the scientific community and funding institutions can circumvent the
traditional slow pace of vaccine development [1]. Being produced in record time, the first
SARS-CoV-2 vaccines only took 16 months to be licensed and be rolled-out in the general
population [1]. However, vaccine development is not always straightforward. Chikun-
gunya virus (CHIKV) is a mosquito-transmitted disease considered a priority pathogen
of major concern by governments and healthcare organisations around the globe due its
potential to cause incapacitating disease [2–4]. Furthermore, CHIKV has been reported to
emerge, disperse, and result in extensive outbreaks since the 1950s, and yet no licensed
vaccine is available [5–14]. More than 50 years have passed since the first vaccine candidates
against this virus were reported to be in development [15]. Notwithstanding the promis-
ing results of initial vaccine candidates, the development of CHIKV vaccines has been
truncated by the limited availability of funding, the unpredictability of its epidemiology,
and the fickle interest in this pathogen, which has gained and lost momentum as quickly
as the CHIKV outbreaks have emerged and waned [15]. This review aims to highlight
the importance of pursuing the development of a CHIKV vaccine until its licensure. In
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addition, this review emphasises the misrepresentation of the impact of CHIKV infections
on global health. Furthermore, this review provides a brief update on the progression
of those vaccine candidates advanced on the pipeline and the potential implications of
their roll-out.

2. Chikungunya Virus (CHIKV)
2.1. Chikungunya Fever: An Incapacitating Disease

CHIKV is an arthropod-borne alphavirus from the Togaviridae family transmitted to
humans by infected Aedes mosquitoes (Aedes aegyti and Aedes albopictus in urban cycles,
and Aedes furcifer and Aedes africanus in sylvatic cycles) [6,7,10,11,16–18]. CHIKV is a small
single-stranded positive-sense RNA virus with a genome consisting of 11.8Kb organised in
two open-reading frames (ORF), one encoding four non-structural proteins (nsP1, nsP2,
nsP3, and nsP4), and a second encoding five structural proteins including the capsid (C),
peptide 6K/TF, and three envelope proteins (E1, E2, and E3) [5,16,18–20]. Although CHIKV
is phylogenetically organised into four main lineages (West African, East/Central/South
African-ECSA, Asian, and Indian Ocean Lineage-IOL), all CHIKV have the potential to
cause chikungunya fever (CHIKF) in humans [8,10,15,20].

While CHIKV infections may be asymptomatic (up to 28%), they usually result in
non-fatal and self-limiting acute fever illness along with other common symptoms in-
cluding muscle pain, joint swelling, headache, nausea, rash, and fatigue [10–12,15,17].
Being the hallmark of CHIKF, symptomatic cases often report the development of severe
arthralgia, which often transitions into incapacitating arthritis that lasts from months to
years [11,15,17,20]. When CHIKF progresses to chronic CHIKF, convalescent individuals
develop persistent chronic polyarthralgia, a debilitating condition that not only severely
impacts the patient’s mobility but also their well-being, quality of life, and ability to per-
form day-to-day tasks [11,15,21–23]. Data from the extensive outbreak from la Reunion
in 2004 suggests that up to 60% of individuals infected with CHIKV develop chronic
Chikungunya [11]. Additionally, CHIKF has been reported to progress into severe acute
Chikungunya fever (SA-CHIKF), occasionally causing deaths [7,11]. Observed mainly in
infected children, elderly, immunosuppressed patients, or individuals with co-morbidities,
SA-CHIKF can cause myocarditis, hepatitis, renal failure, and neurological complica-
tions such as encephalitis, myelopathy, peripheral neuropathy, or Guillain-Barré Syn-
drome [6,7,11,21–23]. Furthermore, CHIKV infection during pregnancy has been reported
to cause congenital disease with teratogenic consequences, cause neonatal disease result-
ing in encephalitis, respiratory failure and delayed neurological development in infected
children, or pregnancy termination [12,21,22].

2.2. Still Neglected: Underreported and Undiagnosed

According to the Pan American Health Organisation (PAHO) the number of reported
CHIKV infections in the Americas decreased from over 2.5 million cases between 2013
and 2017 to under 800,000 cases between 2018 and 2022 [24]. However, this data must be
treated with caution for two main reasons: the complexity of CHIKF diagnosis and the
possible inaccuracy of the epidemiological data available. The epidemiological surveil-
lance of CHIKV infection has always faced important challenges [25–27]. For instance,
the difficulty of discriminating between CHIKF and other arbovirus-related illnesses
due to the similarity of their clinical manifestations or possible co-infections [25–29].
A study investigating the diagnosis of dengue virus (DENV), Zika virus (ZIKV), and
CHIKV in Nicaragua (2015–2016) reported that only 41.2% and 66.7% of patients with
CHIKV and DENV infections, respectively, were accurately diagnosed based on clinical
manifestations [30].

The co-circulation of CHIKV with other mosquito-borne viruses has been reported in
Africa, the Americas, and the Pacific islands [30–35]. In the Pacific islands, concurrent circu-
lation of DENV, ZIKV, and CHIKV has been extensively documented [33]. In fact, at least
twenty outbreaks (11 DENV, 6 CHIKV, and 3 ZIKV) were documented to overlap between
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2013 and 2014 [33]. Even though the emergence of their concurrent outbreaks poses an
additional challenge for their diagnosis and aggravates their burden on healthcare systems
worldwide, there is very little information about the prevalence of their co-circulation or
co-infection [31–33].

Accurate diagnosis of CHIKF can only be confirmed by using specific serological and
molecular tests that measure either the presence of anti-CHIKV antibodies in convalescent
patients’ serum or the presence of CHIKV’s viral RNA [26,27]. Nevertheless, despite the
known co-circulation of DENV, ZIKV, and CHIKV, individuals presenting “dengue fever-
like” symptoms are not often tested against all three arboviruses. The requirement of
specific testing for its diagnosis has led to the underreporting of CHIKF. In particular, the
limited availability of resources in lower middle-income countries (LMICs), where CHIKV
is more abundant, might prevent the confirmation of suspected cases of CHIKF. For instance,
patients displaying fever-like-illnesses in the disadvantaged regions of the north of India
have reportedly been tested only for dengue due to its higher incidence and mortality in
the region [28]. Therefore, this could have resulted in the underreporting of other arboviral
infections like CHIKV. A study investigating the prevalence of DENV, ZIKV, and CHIKV co-
circulation and co-infection in Colombia highlighted the critical epidemiological situation
of the Americas and the need to implement multiple-pathogen testing in regions were
several mosquito-borne viruses co-circulate [32]. This study reported that the attack rates
of DENV, ZIKV, and CHIKV were of 40.99, 58.38, and 29.72 cases per 100,000 inhabitants,
respectively, between December 2015 and February 2016 [32]. Additionally, this study
reported that co-infection of CHIKV with either DENV or ZIKV was observed in 7.64% and
5.10% of the confirmed cases, with an attack rate of 14.9 and 9.93 cases per 100,000 people,
respectively [32]. Although the proportion of co-infections in the Colombian study is
suggested to be low, other studies have indicated that the prevalence of co-infections might
be higher. For instance, Waggoner et al. reported that more than a quarter of the infected
patients in the study’s cohort suffered from co-infections with at least two or more of these
viruses, which highlights the need for accurate, multiplex diagnostic methods against all
three arboviruses for patient care and epidemiologic surveillance [30].

The underreporting of CHIKV infections is further highlighted by evidence indicating
that, out of all suspected cases of CHIKV infection in the Americas (2018–2022), only
45–50% of reported cases are confirmed [24]. A great variability in reporting between
countries further magnifies the misleading potential of some epidemiological data. For
example, the epidemiological data provided by the PAHO from 2013–2017 and 2018–2022
indicates an overall decrease in reported cases of CHIKF in the Americas [24]. Nevertheless,
the reported cases from 2013–2017 include the epidemiological data of all 52 countries
in the region [24]. In contrast, the datasets from 2018–2022 failed to report the cases of
CHIKV infection from almost half of the countries in the region [24]. Although the vast
variability of reporting might have been caused by the focus of healthcare institutions
around the world on the emergence and control of SARS-CoV-2 during this time period,
the missing data suggests a decline in CHIKV infections when in fact the evidence from the
same dataset indicates that CHIKV remains a cause of concern. Even when the number
of cases of CHIKF in the Americas showed an apparent decrease between 2013–2017 and
2018–2022, the PAHO reported that the rate of CHIKV infections for 2021 was 500% greater
than the one calculated for 2020, and alarmingly, 2021’s reported CHIKV infections had
almost doubled by the 18th epidemiological week of 2022 [24]. Similarly, the World Health
Organisation (WHO) reported an increase of cases of CHIKF in the West African countries
of Ethiopia, Kenya, and Sudan towards the end of 2022 [36], and health authorities of
India, Malaysia, Philippines, and Thailand reported an increase of CHIKV cases by the end
of last year [36]. This overall rise in CHIKV cases highlights the relevance of improving
the epidemiological surveillance of CHIKF. Given this continuous increase in CHIKV
infections in the last decade, more emphasis should be placed on the need to pursue the
development of intervention methods against CHIKV until their licensure for roll-out to
the most vulnerable populations.
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2.3. Chikungunya’s Burden: Significant but Poorly Documented

The global burden of CHIKV remains underestimated, and despite the evidence from
the 2014 outbreak in Latin America suggesting that CHIKV could result in a greater burden
than any other arthropod-borne virus [37], CHIKV is still considered a neglected tropical
disease. The development of chronic arthritis is the most known long-term complication
associated with CHIKV infection, and often the life-long chronic impairment caused by
persistent polyarthralgia observed in previously infected patients is considered the only
cause for decreasing an individual’s well-being and quality of life [38]. However, the
global burden caused by CHIKV infection encompasses more than debilitating arthritis,
and recently, other less-known clinical manifestations, complications, and long-term effects
associated with its infection have been identified to contribute to the burden of CHIKF [38].

The first study calculating the burden of CHIKV in Latin America suggested that
the outbreak in 2014 resulted in the loss of 151,031–167,950 disability-adjusted life-years
(DALYs) [37]. Despite the limitations of this pioneer study, this evidence suggested that
CHIKV’s burden was higher than that reported in previous epidemics [37]. Later, a study
evaluating the global burden caused by CHIKV between 2010 and 2019 confirmed the poten-
tial high burden of CHIKV infection indicated by Cardona and collaborators [38]. This study
also suggested that in average CHIKV causes a yearly loss of at least 158,000 DALYs, which
according to the WHO, is just under the burden caused by DENV (203,000 DALYs) [38].
Lastly, Puntasseca and collaborators estimated that the chronic sequalae associated with
CHIKV could result in between 401–7,977,910 years lived with disability (YLDs) [38].

In terms of economical loss, a study estimated that a CHIKV outbreak in the US Virgin
Islands from 2014 to 2015 resulted in the loss $14.8–$33.4 million dollars [39]. The estimated
loss considered both the direct and indirect costs of CHIKF. Whilst the direct cost of the
illness included patient care, laboratory testing, prescription medication, and possible
hospitalisation, the indirect costs considered losses after CHIKV infection including the
average cost of absenteeism due to acute or long-term illnesses [39]. Although the limited
availability of studies evaluating the burden of CHIKV infections is a huge limitation that
must be recognised, the compatibility of the calculations between independent studies
suggests possible plausibility. Overall, these studies provide substantial evidence showing
that CHIKV still represents a major source of morbidity in CHIKV-endemic countries
by contributing greatly to their long-term disease burden and resulting in substantial
economic losses.

2.4. Here, There, and Everywhere: CHIKV’s Expanding Distribution

Although it has been predicted that the increase of CHIKV infections in the next 20
years might be caused by the increase of human populations in CHIKV-endemic areas
rather than to the further expansion of its geographical distribution, the possibility of
CHIKV establishing in non-endemic regions remains a source of concern [26]. CHIKV has
expanded its geographical spread dramatically since it was identified for the first time in
Tanzania in 1952 [6,10,17,18]. Historically, CHIKV was contained in Africa, being main-
tained in enzootic reservoirs and only causing sporadic infections in humans [6,10,17,18].
Nevertheless, to date, more than 100 countries in the Americas, the Caribbean, North
America, Western Pacific, Southern Europe, South-East Asia, and Oceania have reported
the autochthonous transmission of CHIKV [5,6,10,12,17–19,40]. The early explosion of
CHIKV’s distribution has been attributed to a single mutation (A226V) in the region of
its genome encoding for the envelope protein 1 (E1) [7]. Occurring during the extensive
outbreak in La Reunion in 2005, it is suggested that this mutation resulted in the adaptation
of CHIKV to the Aedes albopictus mosquito, which enhanced its replication in this vector,
and therefore led to increased viral transmission [7]. Added to possible mutations im-
proving viral fitness and transmissibility, CHIKV’s geographical expansion may also have
been accelerated by climate change and changes in vector and host populations [23,40–42].
Furthermore, it is undeniable that the globalisation of CHIKV has been driven by anthro-
pogenic activity [10,23,43–47]. The explosion of human populations and changes in land
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use have contributed to the spill-over of CHIKV and have promoted the establishment
of urban infection cycles [10,23,43–46]. Moreover, increased global interconnectivity, the
increased trade of goods and animals, and increased human migration and tourism has
facilitated the dispersion of CHIKV globally [10,23,43–47]. The continuous expansion of
CHIKV’s geographical distribution, hand-in-hand with its vector’s increasing distribu-
tion, is a major concern (Figure 1) [25,27,48], particularly considering that, to date, Aedes
mosquitos have the widest distribution ever reported, putting at risk of infection more
than three billion people [27,48,49]. As climate change progresses and the temperatures in
temperate regions increase, Aedes mosquitos establish populations in regions where they
were not originally endemic [9,17,48,49]. Specifically, the distributions of A. aegypti and
A. albopictus have been predicted to expand as the environmental suitability for them to
thrive increases [9,17,48,49]. The possible expansion of the distribution of A. aegypti and A.
albopictus into more temperate regions of the globe has further highlighted the increasing
threat that CHIKV and other arboviruses pose to global health [26].
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Figure 1. Overlapping distribution of the Chikungunya virus and the probability of occurrence of
Aedes mosquitos (A. aegypti and A. albopictus). Originally identified in Tanzania in 1952 (red), CHIKV
has been reported in over 100 countries in Africa, Asia, the Pacific, Oceania, the Americas, and the
Caribbean (light green). The expansion of CHIKV’s geographical distribution across the globe has
been perpetuated by the presence of Aedes mosquitos in non-endemic regions. The widespread
distribution of CHIKV’s most common vectors (A. aegypti and A. albopictus) puts half of the world’s
population at risk of infection (dark green).

2.5. Chikungunya Vaccines on the Horizon

Epidemiological data suggesting that single CHIKV infection confers lifetime protec-
tion against all existing lineages suggests that vaccination may be sufficient to provide
lifelong protection [6,15,18,50,51]. Therefore, vaccination remains the best strategy to con-
trol extensive CHIKV epidemics [6,18]. At least 30 vaccine candidates have been tested
in preclinical settings [15,19,20,52–75], of which, five have progressed to Phase I clinical
trials [50,51,76–79], two to Phase II clinical trials [80,81], and two to Phase III (Table 1). Yet
no licensed vaccine is available against CHIKV to date [8,15,18–20].
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Table 1. General features of CHIKV vaccines that have entered clinical trials (Phase I/II/III).

Vaccine
Candidate Vaccine Platform Lineage Strategy Manufacturer Stage of

Development

CHIK Vaccine FIV
15562 Inactivated Asian Formalin virus

inactivation. US WRAIR Phase I

CHIK ECSA Inactivated Indian Ocean
Formalin or

beta-propiolactone
virus inactivation.

Bharat Biotech
International Limited Phase I

CHIK Vaccine FIV
15562 Inactivated Asian Formalin virus

inactivation. US WRAIR Phase I

CHIK IRES Live-attenuated Indian Ocean

Attenuation through
the addition of

EMCV’s internal
ribosome entre

sequence (IRES) to
encode CHIKV

structural proteins.

Takeda Phase I

mRNA-1388
(VAL-181288) mRNA - Encodes CHIKV

structural proteins Moderna Phase I

ChAdOx1 CHIKV Viral Vector Multi-
lineage

Mosaic consensus
sequences encoding
the whole structural
polyprotein (Capsid,
E1, E2, E3, and 6K).

Jenner Institute,
University of Oxford Phase Ib

CHIKV TSI-GSD-218 Live-attenuated Asian

Attenuation in green
monkey kidney cells

(GMKC) and in
human embryonic
lung MRC-5 cells.

US Army MRIID Phase II (no further
progression)

MV-CHIK Viral Vector Indian Ocean

Recombinant Measles
vector encoding

CHIKV’s structural
polyprotein (Capsid,
E1, E2, E3, and 6K).

Institut Pasteur &
Themis Bioscience

GmbH
Phase II

VRC-CHKVLP059-
00-VP

Virus-like-particle
(VLP) African

Expression of
structural proteins
(Capsid, E1, E2, E3,
and 6K) in vitro to

produce particles as
empty shells.

US NIH’s NIAID Phase II, progressed
as PXVX0317

PXVX0317 Virus-like-particle
(VLP) African

VRC-CHKVLP059-
00-VP mixed with

aluminium
hydroxide adjuvant.

US NIH’s NIAID Phase III

VLA1553-302 Live-attenuated ECSA Attenuation by
∆5NS3 gene deletion

Valneva &
Butantan Phase III

As the history of CHIKV vaccines has been reviewed recently [7,11,15], we will only
discuss the progress of those vaccines which are most advanced in the development pipeline.
Most recently, a CHIKV vaccine candidate based on the same chimpanzee replication-
deficient adenoviral vector used in the Oxford-AstraZeneca COVID-19 vaccine (AZD1222)
has showed promising results [50,53,61,69]. The ChAdOx1-CHIK encodes the CHIKV’s
structural genes (Capsid, E1, E2, E3 and peptide 6K/TF) of a mosaic consensus sequence de-
rived from multiple CHIKV lineages (Asian, ECSA, and West African) [61]. The safety and
immunogenicity of ChAdOx1-CHIK was evaluated in a dose-escalation Phase I clinical trial
(NCT03590392) in healthy adults, in which ChAdOx1-CHIK demonstrated the achievement
of complete seroconversion of vaccine recipients after a single unadjuvanted dose [50,82].
Additionally, ChAdOx1-CHIK induced broadly neutralising antibodies against four CHIKV
lineages (Indian Ocean, West African, Asian, and Asian-American) in all participants and
as early as 2 weeks after vaccination [50]. As ChAdOx1-CHIKV showed excellent safety,
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tolerability and 100% PRNT50 seroconversion after a single unadjuvanted dose in Phase I
clinical trial, ChAdOx1-CHIK soon entered a Phase 1b clinical trial (NCT04440774) in order
to evaluate its safety and immunogenicity when administered alone or in co-administration
with ChAdOx1-ZIKV in healthy adults in Mexico [19]. This study was completed in March
of 2022, and the outcome of this trial is yet to be published [19].

One of the three vaccine candidates that have reached Phase II clinical trials is MV-
CHIK, a recombinant Measles virus vector encoding the structural polyprotein genes
(Capsid, E3, E2, 6K/TF, and E1) of CHIKV’s Indian Ocean lineage [52]. When assessed
in a dose-escalation Phase I clinical trial (NCT03028441), MV-CHIK showed promising
results with a good safety profile [83]. Although total seroconversion was achieved only
after a homologous prime-boost, a single immunisation induced highly neutralising an-
tibodies with intermediate (7.5 × 104 TCID50) and high doses (3.0 × 105 TCID50) [79].
Similarly, a follow-up double-blind, randomised, placebo-controlled and active-controlled
trial (NCT02861586) evaluating the immunisation interval (28 or 168 days) between ho-
mologous MV-CHIK prime-boost demonstrated good tolerability whilst inducing robust
neutralising antibodies [81,84].

One step further in the pipeline, the VRC-CHKVLP059-00-VP is currently being evalu-
ated in Phase III clinical trials (NCT05072080 and NCT05349617) [85,86]. VRC-CHKVLP059-
00-VP is a vaccine based on the immunisation of CHIKV virus-like particles containing
all of the structural proteins (Capsid, E3, E2, 6K/TF, and E1) encoded by the structural
polyprotein genes of the West African lineage [51]. Evaluation of VRC-CHKVLP059-00-VP
in Phase I clinical trials demonstrated to be highly immunogenic after a single immunisation
whilst remaining well tolerated [87,88]. VRC-CHKVLP059-00-VP induced highly neutral-
ising antibodies in most vaccinees after a single dose and in all participants four weeks
after a homologous boost [88]. Having entered Phase II clinical trials in 2015, the VRC-
CHKVLP059-00-VP was evaluated amongst 400 healthy adults in multiple locations on
the globe (NCT02562482) [87,89]. Later known as PXVX0317, the VRC-CHKVLP059-00-VP
was evaluated in a Phase II clinical trial in order to investigate its safety and immunogenic-
ity in response to different doses, vaccination schedules, and formulations, including its
co-administration with aluminium hydroxide as adjuvant (NCT03483961) [89]. Overall,
PXVX0317 was well tolerated and induced robust long-lasting neutralising antibody re-
sponses in prime-boost regimens [90]. A homologous prime-boost regimen (20 µg/dose)
separated by 28 days induced the highest titre of neutralising antibodies with detectable
immune responses up to two years [90]. Interestingly, the other subject groups which
showed the longest durability of responses (up to two years) were those receiving sin-
gle unadjuvanted high doses (40 µL) or two unadjuvanted standard doses (20 µL) [90].
Ultimately, the induction of a rapid and robust immune response was prioritized [90].
As the use of aluminium hydroxide elicited neutralising antibody responses earlier than
unadjuvanted doses [85], PXVX0317 (adjuvanted with aluminium hydroxide) is being
evaluated in healthy adolescents, adults, and older adults (>65) in the ongoing Phase III
clinical trials (NCT05072080 and NCT05349617) [85,86].

Another CHIKV vaccine ongoing Phase III clinical trials is the VLA 1553 (Valneva), a
live-attenuated vaccine based on a genetically engineered strain of CHIKV of the ECSA
lineage with a deletion in the nsP3 gene, which induces attenuation [78]. In a dose-escalation
Phase I clinical trial (NCT03382964) completed in July 2009, a single immunisation with
VLA 1553 vaccine induced complete seroconversion of vaccine recipients and was well
tolerated in all dose groups [78,91]. Immune responses induced by VLA 1553 were also
demonstrated to be maintained for at least 12 months in all groups [78]. According to
Katrin Dubrischar, VP and Program Director of Valneva’s CHIKV vaccine, as a single dose
of VLA 1553 induced antibody levels that reached plateau in all dose groups, no Phase II
clinical trial was deemed necessary [92]. Therefore, in March 2020 Valneva announced the
progression of the VLA 1553 to Phase III [3]. Since then, VLA 1553 started a series of Phase
III clinical trials of which two are completed (NCT04786444 and NCT04546724) [93,94]. The
first Phase III trial involved a randomised, double-blinded study to investigate lot-to-lot
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manufacturing consistency in over 400 subjects [88]. Despite the study’s completion date
in January 2022, the quality control review process has not concluded [95]. The second
trial, which has been completed, evaluated the final dose of VLA 1553 (1 × 104 TCID50
per dose) with a placebo control in over 4000 adults [94]. This study confirmed the robust
immunogenicity of VLA 1553, which induced titres of neutralising antibodies with an
average of over 3200 units and resulted in an overall seroconversion rate of 98% among
participants 29 days after immunization [94]. Two more Phase III clinical trials for VLA
1553 are currently recruiting. The first one is a study to evaluate the final vaccine dose
in adolescents (NCT04650399), and the latter will comprise a Phase IIIb clinical study to
assess the long-lasting persistence of antibodies and long-term safety of vaccine recipients
(NCT04838444) [96,97]. The completion of both studies is expected by March 2024 and
December 2025, respectively [96,97].

The potency and safety of Valneva’s CHIKV vaccine might provide to the world an
invaluable tool to combat CHIKV epidemics. Furthermore, the licensure of one CHIKV
vaccine should encourage the progression of the others in order to minimise the burden of
CHIKV and its associated diseases to the furthest extent. Though promising, the possible
success of any of these CHIKV vaccines must take into account two major considera-
tions: first, the licensed vaccines must be able to provide protection against heterologous
lineages [15]. This is particularly relevant considering that most vaccine candidates in
advanced stages of development are based on sequences from different lineages [50].
Moreover, the efficacy of licensed vaccines will have to be monitored closely after their
approval, as novel strains of CHIKV have rapidly emerged during extensive outbreak
scenarios [13,14]. Second, a series of logistical considerations related to vaccine equity and
the overall expenses of vaccine roll-out must be contemplated in order to fully control
CHIKV epidemics; especially considering that CHIKV is most abundant in regions with
limited resources such as LMICs. In this regard, Valneva has reportedly made an agreement
with the Coalition for Epidemic Preparedness Innovations (CEPI) committing to provide
equitable access to the CHIKV vaccine to all LMICs [3]. Valneva has also agreed to maintain
a vaccine stockpile and to extend the equitable access to CHIKV vaccines to those countries
at risk or under extensive outbreak scenarios [3].

3. Concluding Remarks

CHIKV remains a major unmet medical need. Like most tropical diseases, CHIKV is
often underreported, undiagnosed, and underestimated, predominantly impacting regions
with limited resources. Therefore, the present review emphasises the potential threat
that CHIKV poses to global health by providing evidence of its estimated disease and
economic burden. This review also highlights the need to develop intervention methods
against neglected tropical diseases, such as CHIKV, whose clinical importance has been
depreciated by factors rooted in their epidemiological complexity, and the incidence of
which has been misrepresented due to the socio-economical limitations of the regions
where they are endemic. Furthermore, this review highlights the possible expansion of
CHIKV’s geographical distribution and its potential to rapidly disperse among naïve
populations. Lastly, this review provided an encouraging overview of the most advanced
CHIKV vaccines to date, which may be available sooner than we think.
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