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Abstract. Continual learningis the constant development of increasingly complex behaviors; the process of
building more complicated skills on top of those already developed. A continual-learning agent should therefore
learn incrementally and hierarchically. This paper describes CHILD, an agent cap&oletofual, Hierarchical,
Incremental LearningndDevelopment CHILD can quickly solve complicated non-Markovian reinforcement-
learning tasks and can then transfer its skills to similar but even more complicated tasks, learning these faster
still.

Keywords: Continual learning, transfer, reinforcement learning, sequence learning, hierarchical neural networks

1. Introduction

Supervised learning speeds the process of designing sophisticated software by allowing
developers to focus on what the system nulagtather than on how the system showlark.

This is done by specifying the system’s desired outputs for various representative inputs;
but even this simpler, abstracted task can be onerous and time consuming. Reinforcement
learning takes the abstraction a step further: the developer of a reinforcement-learning
system need not evapecifywhat the system must do, but ongcognizevhen the system
doesthe rightthing. The developer’s remaining challenge is to design an agent sophisticated
enough that it can learn its task using reinforcement-learning methods. Continual learning
is the next step in this progression, eliminating the task of building a sophisticated agent by
allowing the agent to b&rained with its necessary foundation instead. The agent can then
be kept and trained on even more complex tasks.

Continual learningis a continuaprocesswhere learning occurs over time, and time is
monotonic: A continual-learning agent’s experiences occur sequentially, and what it learns
at one time step while solving one task, it can use later, perhaps to solve a completely
different task.

A continual learner:

e Is an autonomous agent. It senses, takes actions, and responds to the rewards in its
environment.

e Can learn context-dependent tasks, where previous senses can affect future actions.
e Learns behaviors and skills while solving its tasks.

e Learnsincrementally. There is no fixed training set; learning occurs at every time step;
and the skills the agent learns now can be used later.

e Learns hierarchically. Skills it learns now can be built upon and modified later.



78 M.B. RING

e Isablackbox. The internals of the agent need not be understood or manipulated. All of
the agent’s behaviors are developed throtrgiming, not through direct manipulation.
Its only interface to the world is through its senses, actions, and rewards.

e Has no ultimate, final task. What the agent learns now may or may not be useful later,
depending on what tasks come next.

Humans are continual learners. During the course of our lives, we continually grasp ever
more complicated concepts and exhibit ever more intricate behaviors. Learning to play
the piano, for example, involves many stages of learning, each built on top of the previous
one: learning finger coordination and tone recognition, then learning to play individual
notes, then simple rhythms, then simple melodies, then simple harmonies, then learning to
understand clefs and written notes, and savithout end There is always more to learn;
one can always add to one’s skills.

Transfer in supervised learning involves reusing the features developed for one classi-
fication and prediction task as a bias for learning related tasks (Baxter, 1995, Caruana,
1993, Pratt 1993, Sharkey & Sharkey, 1993, Silver & Mercer, 1995, Thrun, 1996, Yu &
Simmons, 1990). Transfer in reinforcement learning involves reusing the information
gained while learning to achieve one goal to learn to achieve other goals more easily
(Dayan & Hinton, 1993, Kaelbling, 1993a, Kaelbling, 1993b, Ring, 1996, Singh, 1992,
Thrun & Schwartz, 1995). Continual learning, on the other hand, is the transfer of skills
developed so far towards the development of skills of greater complexity

Constructing an algorithm capable of continual learning spans many different dimensions.
Transfer across classification tasks is one of these. Anagent’s ability to maintain information
from previous time steps is another. The agent’s environment may be sophisticated in many
ways, and the continual-learning agent must eventually be capable of building up to these
complexities.

CHILD, capable ofContinual, Hierarchical, Incremental LearnirgndDevelopmentis
the agent presented here, but it is not a perfect continual learner; rather, it is a first step in
the development of a continual-learning agent. CHILD can only learn in a highly restricted
subset of possible environments, but it exhibits all of the properties described above.

1.1. AnExample

Figure 1 presents a series of mazes ranging from simple to more complex. In each maze,
the agent can occupy any of the numbered positions (states). The number in each position
uniquely represents the configuration of the walls surrounding that position. (Since there
are four walls, each of which can be present or absent, there are sixteen possible wall
configurations.) By perceiving this number, the agent can detect the walls immediately
surrounding it. The agent can move north, south, east, or west. (It may not enter the barrier
positions in black, nor may it move beyond the borders of the maze.) The agent'’s task is
to learn to move from any position to the goal (marked by the food dish), where it receives
positive reinforcement.

The series of mazes in Figure 1 is intended to demonstrate the notion of continual learning
in a very simple way through a series of very simple environments — though even such
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Figure 1. These nine mazes form a progression of reinforcement-learning environments from simple to more
complex. In a given maze, the agent may occupy any of the numbered positions (states) at each time step and
takes one of four actions: North, East, West, or South. Attempting to move into a wall or barrier (black regions)
will leave the agent in its current state. The digits in the maze represent the sensory inputs as described in the text.
The goal (a reward of 1.0) is denoted by the food dish in the lower left corner. Each maze is similar to but larger
than the last, and each introduces new state ambiguities — more states that share the same sensory input.
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seemingly simple tasks can be very challenging for current reinforcement-learning agents
to master, due to the large amount of ambiguous state information (i.e., the large number
of different states having identical labels). A continual-learning agent trained in one maze
should be able to transfer some of what it has learned to the task of learning the next
maze. Each maze preserves enough structure from the previous one that the skills learned
for one might still be helpful in the next; thus, the basic layout (a room, a doorway, and
two hallways) is preserved for all mazes. But each maze also makes new demands on the
agent, requiring it to extend its previous skills to adapt to the new environment, and each is
therefore larger than the previous one and introduces more state ambiguities.

In the first maze, the agent can learn to choose an action in each state based exclusively
upon its immediate sensory input such that it will reach the goal no matter where it begins.
To do this, it must learn to move south in all positions labeled “6” and to move west in all
positions labeled “12”. In the second maze, however, there is an ambiguity due to the two
occurrences of the input “9”. When the agent is transferred to this maze, it should continue
to move east when it senses “9” in the upper position, but it should move west upon sensing
“9” in the lower position. It must distinguish the two different positions though they are
labeled the same. It can make this distinction by using the preceding context: only in
the lower position has it just seen input “12”. When placed in the third maze, the agent’s
behavior would need to be extended again, so that it would move west upon seeing “9”
whenever its previous input was either a “I#"a “9”.

This progression of complexity continues in the remaining mazes in that each has more
states than the last and introduces new ambiguities. The continual-learning agent should
be able to transfer to the next maze in the sequence skills it developed while learning the
previous maze, coping with every new situation in a similar way: old responses should
be modified to incorporate new exceptions by making use of contextual information that
disambiguates the situations.

2. Temporal Transition Hierarchies

CHILD combines Q-learning (Watkins, 1989) with tiemporal Transition Hierarchies
(TTH) learning algorithm. The former is the most widely used reinforcement-learning
method and will not be described here. The Temporal Transition Hierarchies algorithm is a
constructive neural-network-based learning system that focuses on the most important but
least predictable events and creates new units that learn to predict these events.

As learning begins, the untrained TTH network assumes that event probabilities are
constants: “the probability that event A will lead to event Beisg.” (For example, the
probability that pressing button C2 on the vending machine will result in the appearance of
a box of doughnuts i8.8). The network’s initial task is to learn these probabilities. But this
is only the coarsest description of a set of events, and knowing the context (e.g., whether the
correct amount of change was deposited in the slot) may provide more precise probabilities.
The purpose of the new units introduced into the network is to search the preceding time
steps for contextual information that will allow an event to be predicted more accurately.
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In reinforcement-learning tasks, TTH’s can be used to find the broader context in which
an actionshouldbe taken when, in a more limited context, the action appears to be good
sometimes but bad other times. In Maze 2 of Figure 1 for example, when the agent senses
“9”, it cannot determine whether “move east” is the best action, so a new unit is constructed
to discover the context in which the agent’s response to input 9 should be to move east.

The units created by the TTH network resemble the “synthetic items” of Drescher (1991),
created to determine the causes of an event (the cause is determined through training, after
which the item represents that cause). However, the simple structure of the TTH network
allows it to be trained with a straightforward gradient descent procedure, which is derived
next.

2.1. Structure, Dynamics, and Learning

Transition hierarchies are implemented as a constructive, higher-order neural network. |
will first describe the structure, dynamics, and learning rule for a given network with a fixed
number of units, and then describe in Section 2.3 how new units are added.

Each unit ¢*) in the network is either: a sensory unit € S); an action unit¢’ € A); or
a high-level unit(jcy € L) that dynamically modifies ., the connection from sensory unit
y to action unitz. (Itis the high-level units which are added dynamically by the netwbrk.)
The action and high-level units can be referred to collectively as non-input uhits ).
The next several sections make use of the following definitions:

S % 40 < i< ns) )
A {u'|ns <i < ns+na} 2
L {u’|ns +na <i < nu} (3)
N {u"|ns <i < nu} 4)
wi(t) “ the value of theth unit at timet (5)
Ti(t) Y the target value for'(t), (6)

wherens is the number of sensory unitsq is the number of action units, and. is the
total number of units. When it is important to indicate that a unit is a sensory unit, it will be
denoted as’; similarly, action units will be denoted as$, high-level units will be denoted
asl?, and non-input units will be denoted when appropriate‘as
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The activation of the units is very much like that of a simple, single-layer (no hidden
units) network with a linear activation function,

n'(t) = Z i (1) (). (7

The activation of the!" action or higher-level unit is simply the sum of the sensory inputs
multiplied by their respective weights ;, that lead into:’. (Since these are higher-order
connections, they are capable of non-linear classifications.) The higher-order weights are
produced as follows:

iy () = { ZU +1;;(t—1) gttrj]r(::\,\lléééorwelghtwij exists 8)
1] .

If no ! unit exists for the connection frofo j, thenw;; is used as the weight. Ifthere is such
a unit, however, its previous activation value is added:{pto compute the higher-order
weight i, ;.2

2.2. Deriving the Learning Rule

A learning rule can be derived that performs gradient descent in the error space and is much
simpler than gradient descent in recurrent networks; so, though the derivation that follows is
a bit lengthy, the result at the end (Equation 29) is a simple learning rule, easy to understand
as well as to implement.

As is common with gradient-descent learning techniques, the network weights are mod-
ified so as to reduce the total sum-squared error:

E = > E(t)
5 S0 —ai (1), ©

E(1)

In order to allow incremental learning, it is also common to approximate strict gradient-
descent by modifying the weights at every time step. At each time step, the weights are
changed in the direction opposite their contribution to the ef¢t):

t

def 9E(t)
Awij(t) = Z 8wij(7) (10)
wij(t+1) = w;;(t) — nAwg;(t) , (11)

wheren is the learning rate. The weights;;, are time indexed in Equation 10 for notational
convenience only and are assumed for the purposes of the derivation to remain the same at
all time steps (as is done with all on-line neural-network training methods).
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It can be seen from Equations 7 and 8 that it takes a specific number of time steps for
a weight to have an effect on the network’s action units. Connections to the action units
affect the action units at the current time step. Connections to the first level of high-level
units — units that modify connections to the action units — affect the action units after one
time step. The “higher” in the hierarchy a unit is, the longer it takes for it (and therefore
its incoming connections) to affect the action units. With this in mind, Equation 10 can be
rewritten as:

t
def 8E(t) 8E(t)
J ;001111](7) awij(tfﬂ)
wherer is the constant value for each action or high-level uhithat specifies how many
time steps it takes for a change in utstactivation to affect the network’s output. Since this
value is directly related to how “high” in the hierarchy uhis, 7 is very easy to compute:
i [0 if n® is an action unita’ (13)
T T 147 if nis a higher-level unity;,.

The derivation of the gradient proceeds as follows. Defin® be the partial derivative
of the error with respect to non-input umnit:

i def  OE(t)
8'(t) = it —r7) (14)
What must be computed is the partial derivative of the error with respect to each weight in
the network:

OE(t) B OE(t) oni(t—T1%)
awij (t - Ti) - 6nl(t — Ti) 3wij (t — Ti)
o on'(t — 77
= 6'(t) Dy (E—7) " (15)
From Equations 7 and 8, the second factor can be derived simply as:
8ni(t - Ti) j P 81f)u (t — Ti)
_ 7 = ot VAN 1
8wij(t—74) 5 (t T)awij(t—ﬂ) ( 6)
, ) Oij(t="=1) w7 i
= si(t—1%) { L+ o= if {3 ex.|sts 17)
1 otherwise.
Becausev;;(t — 7*) does not contribute to the valuelpf(t — ¢ — 1),
on (t—T) :Sj(t—Ti). (]_8)

awij (t — Ti)
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Therefore, combining 12, 15 and 18,

OB (%)

Aw;;(t) = B (t — 1)

=6(t)s7 (t — 1) . (19)

Now, 6¢(t) can be derived as follows. First, there are two cases depending on whether node
1 is an action unit or a high-level unit:

OE(t)
dai(t—10)
DE(t)
alL,(t —70)

if n® is an action unitg’
8 (t) = (20)

if n is a higher-level unitl’,,,.

The first case is simply the immediate derivative of the error with respect to the action units
from Equation 9. Since’ is zero whem? is an action unit,

OE()  0E(1)
dat(t — %) 9ai(t)
= a'(t) - T (). (21)
The second case of Equation 20 is somewhat more complicated. From Equation 8,
OE(t) _ OE(t) Oy (t — 7"+ 1) 22)
ol (t — 1) Oy (t—TE+ 1) ol (t — 1)
__ 9BEW
Oy (t—TE+ 1) (23)
Using Equation 7, this can be factored as:
OE(t) OE(t) o (t—7"+1)
- , = . ~ ‘ . (24)
OWgy(t—Tt+1)  On®(t— 784+ 1) OWgy(t — 70 + 1)
Because' is a high-level unity? = 7 + 1 (Equation 13). Therefore,
OE(t) B OE(t)  On*(t—717%) (25)
ol (t — 1) o= (t — 7%) gy (t — %)
= §7(t)sY(t — 77), (26)
from Equations 7 and 14. Finally, from Equation 19,
OB nuy (1), 27)

alL, (t—70)

Returning now to Equations 19 and 20, and substituting in Equations 21 and 27: The
changeAw;; (t) to the weightw;; from sensory unit’ to action or high-level unit’ can
be written as:

Aw;j(t) = 8 (t)s/(t — 7% (28)

a'(t) — T(t) if n’ is an action unitg’

ot ; ’
= s(t—1") { Awgy(t) if n" is a higher-level uniti;,, . )
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Equation 29 is a particularly nice result, since it means that the only values needed to make
a weight change at any time step are (1) the error computable at that time step, (2) the input
recorded from a specific previous time step, and (3) other weight changes already calculated.
This third point is not necessarily obvious; however, each high-level unit is higher in the
hierarchy than the units on either side of the weight it affe¢ts> =) A (i > y), for all
l;y This means that the weights may be modified in a simple bottom-up fashion. Error
values are first computed for the action units, then weight changes are calculated from the
bottom of the hierarchy to the top so that the,,, (¢) in Equation 29 will already have been
computed befordw;;(t) is computed, for all high-level univgy and all sensory unitg.

The intuition behind the learning rule is that each high-level ufjtt), learns to utilize
the context at time stefto correct its connectionsrror, Aw,, (t + 1), at time steg + 1.
If the information is available, then the higher-order unit uses it to reduce the error. If the
needed information is not available at the previous time step, then new units may be built
to look for the information at still earlier time steps.

While testing the algorithm, it became apparent that changing the weights at the bottom of
a large hierarchy could have an explosive effect: the weights would oscillate to ever larger
values. This indicated that a much smaller learning rate was needed for these weights. Two
learning rates were therefore introduced: the normal learningsfater weights without
higher-level units (i.e.w,, where no unitl;y exists); and a fractionyy,, of n for those
weights whose valueare affected by higher-level units, (i.eu;,, where a unit’, does
exist).

2.3. Adding New Units

So as to allow transfer to new tasks, the net must be able to create new higher-level units
whenevethey might be useful. Whenever a transition varies, that is, when the connection
weight should be different in different circumstances, a new unit is required to dynamically
set the weight to its correct value. A unit is added whenever a weight is pulled strongly in
opposite directions (i.e., when learning forces the weight to increase and to decrease at the
same time). The unit is created to determine the contexts in which the weight is pulled in
each direction.

In order to decide when to add a new unit, two long-term averages are maintained for
every connection. The first of thes&jw; ;, is the average change made to the weight. The
second Aw;;, is the averagenagnitudeof the change. When the average change is small
but the average magnitude is large, this indicates that the learning algorithm is changing
the weight by large amounts but about equally in the positive as in the negative direction;
i.e., the connection is being simultaneously forced to increase and to decrease by a large
amount.

Two parametersy ande, are chosen, and when

Aw;; > O|Aw;j| + e, (30)

a new unit is constructed fas;;.
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Since new units need to be created when a connection is unreiiatdetain contexts
the long-term average is only updated when changes are actually made to the weight; that
is, whenAw;;(t) # 0. The long-term averages are computed as follows:

Aw;;(t) = { oAw;;(t) + (1 —o)Aw;;(t — 1) otherwise, (31)
and the long-term average magnitude of change is computed as:
~ o A’J]U(ﬁ - 1) if A’U)U(t) =0
Ay (t) = { o| Awi;|(£) + (1 — o) Adiy(t — 1) otherwise, (32)

where the parameter specifies the duration of the long-term average. A smaller value of

o means the averages are kept for a longer period of time and are therefore less sensitive
to momentary fluctuations. A small value feris therefore preferable if the algorithm’s
learning environment is highly noisy, since this will cause fewer units to be created due
strictly to environmental stochasticity. In more stable, less noisy environments, a higher
value ofe may be preferable so that units will be created as soon as unpredictable situations
are detected.

When a new unit is added, its incoming weights are initialized to zero. It has no output
weights: its only task is to anticipate and reduce the error of the weight it modifies. In order
to keep the number of new units low, whenever a Ufiis created, the statistics for all
connections into the destination unif’) are resetAw;;(t) « —1.0 andAw;;(t) < 0.0.

2.4. The Algorithm

Because of the simple learning rule and method of adding new units, the learning algorithm
is very straightforward. Before training begins, the network has no high-level units and all
weights (from every sensory unit to every action unit) are initialized to zero. The outline
of the procedure is as follows:

For (Ever)

1) Initialize values.

2) Getsenses.

3) Propagate Activations.

4) Get Targets.

5) Calculate Weight Changes;
Change Weights & Weight Statistics;
Create New Units.

The second and fourth of these are trivial and depend on the task being performed. The
first step is simply to make sure all unit values and all delta values are set to zero for the
next forward propagation. (The values of thanits at the last time step must, however, be
stored for use in step 3.)
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1) Initialize values

Line /* Reset all old unit and delta values to zero. */
1.1 For each unit, u(i)

1.2 u(i) « zero;

1.3 delta(i) <« zero;

The third step is nearly the same as the forward propagation in standard feed-forward
neural networks, except for the presence of higher-order units and the absence of hidden
layers.

3) Propagate Activations

Line /* Calculate new output values. */
3.1 For each Non-input unit, n(i)
3.2 For each Sensory unit, s(j)

I* UnitFor(i, j) returns the input of unit;; at thelasttime step. */

[* Zero is returned if the unit did not exist. (See Equation 8.) */
3.3 1 « UnitFor(i,j);

/* To n¥'s input, adds’’s value times the (possibly modified) */

/* weight from j toi. (See Equation 7.) */
3.4 n(i) <« n(d) + s(G)*(1 + Weight(i, j));

The fifth step is the heart of the algorithm. Since the units are arranged as though the
input, output, and higher-level units are concatenated into a single vectok (kej, < 7,
for all s*, a7, %), whenever a unit’,, is added to the network, it is appended to the end of
the vector; and thereforlg < i) A (k < ¢). This means that when updating the weights,
the 6*’'s and Aw;;'s of Equation 29 must be computed withn ascending order, so that
Awg, will be computed before angw;; for unit l;y is computed (line 5.3).

If a weight change is not zero (line 5.6), it is applied to the weight (line 5.9 or 5.19). If
the weight has no higher-level unit (line 5.8), the weight statistics are updated (lines 5.10
and 5.11) and checked to see whether a higher-level unit is warranted (line 5.12). If a unit
is warranted for the weight leading from upgitto units (line 5.12), a unit is built for it
(line 5.13), and the statistics are reset for all weights leading inta divies 5.14-5.16). If
a higher-level unit already exists (line 5.17), that unit's delta value is calculated (line 5.18)
and used (at line 5.5) in a following iteration (of the loop starting at line 5.3) vitsémput

weights are updated.
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5) Update Weights and Weight Statistics; Create New Units.
Line /* Calculates; for the action unitsq’. (See Equations 20 and 21). */
5.1 For each action unit, a(i)
5.2 delta(i) = a(i) - Target(i);
[* Calculate allAw;;’s, Aw;;'s, Awg;’s. *
/* For higher-order unitg’, calculate®’s. */
/* Change weights and create new units when needed. */
5.3 For each Non-input unit, n(i), with ¢ in ascending order
54 For each Sensory unit, s(j)
/* Compute weight change (Equations 28 and 29). */
[* Previous(j, i) retrieves? (t — 7). *
55 deltaw(i, j) « delta(i) * Previous(j, i);
*1f Aw;; # 0, update weight and statistics. (Egs. 31 and 32). */
5.6 if (deltaw(i,j) # 0O)
/* IndexOfUnitFor(i, j) returnsn for I};; or -1 if I}, doesn’t exist. *
57 n <« Index0fUnitFor(i, j);
[*1f I} doesn't exist: update statistics, learning rate.is *
5.8 if (n = -1)
I* Change weightw;;. (See Equation 11.) */
5.9 Weight (i, j) « Weight(i, j) - ETA * deltaw(i, j);
I* Update long-term averagé\w;;. (See Equation 31) */
5.10 1ta(i,j) < SIGMA * deltaw(i,j) + (1-SIGMA) * lta(i,j);
I* Update long-term mean absolute deviati; ;. (Eq. 32) */
511 ltmad(i,j) « SIGMA * abs(deltaw(i,j)) +
(1-SIGMA) * ltmad(i,j);
[* If Higher-Order unitlj; should be created (Equation 30) ... */
5.12 if (1tmad(i, j) > THETA * abs(lta(i, j)) + EPSILON)
[* ... create unitlfj (whereN is the current network size). */
5.13 BuildUnitFor(i, j);
[* Reset statistics for all incoming weights. */
5.14 For each Sensory unit, s(k)
5.15 lta(i, k) « -1.0;
5.16 ltmad(i, k) « 0.0;
I*1f I} does existf # —1), stores™ (Equation 20 and 27). */
* Changew;;, learning rate= n, * 1. */
5.17 else
5.18 delta(n) « deltaw(i, j);
5.19 Weight(i, j) ¢ Weight(i, j) - ETA_L*ETA * deltaw(i, j);
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3. Testing CHILD in Continual-Learning Environments

This section demonstrates CHILD’s ability to perform continual learning in reinforce-
ment environments. CHILD combines Temporal Transition Hierarchies with Q-learning
(Watkins, 1989). Upon arriving in a state, the agent’s sensory input from that state is given
to a transition hierarchy network as input. The output from the network’s action units
are Q-values (one Q-value for each action) which represent the agent’s estimate of its dis-
counted future reward for taking that action (Watkins, 1989). At each time step an action
unit, «“®, is chosen stochastically using a Gibbs distribution formed from these values
and atemperaturevalueT. The agent then executes the action associated with the chosen
action unita®®), The temperature is initially set to 1.0, but its value is decreased at the
beginning of each trial to be/(1 + nAT'), wheren is the number of trials so far anNT
is a user-specified parameter.
The network is updated like the networks of Lin (1992):
_ k £ i C(t—1)
Ti—1) = { r(t 1) +ymax(a* (1)) if a =a ( (33)
a'(t—1) otherwise,

whereT"(t — 1) is the target as specified in Equation 29 for action uhéit time steg — 1;
r(t — 1) is the reward the agent received after taking actiofi—'); and- is the discount
factor. Only action unit.“*~1) will propagate a non-zero error to its incoming weights.

The sequence of mazes introduced in Figure 1 are used as test environments. In these
environmentsthere are 15 sensory units—one for each of the 15 possible wall configurations
surrounding the agent; therefore exactly one sensory unit is on (has a valogiofeach
state. There are 4 action uni— N (move one step north), E (east), W (west), and S (south).

CHILD was tested in two ways: learning each maze from scratch (Section 3.1), and
using continual learning (Section 3.2). In both cases, learning works as follows. The agent
“begins” a maze under three possible conditions: (1) it is the agent’s first time through
the maze, (2) the agent has just reached the goal in the previous trial, or (3) the agent has
just “timed out”, i.e, the agent took all of its allotted number of actions for a trial without
reaching the goal. Whenever the agent begins a maze, the learning algorithm is first reset,
clearing its short-term memory (i.e., resetting all unit activations and erasing the record of
previous network inputs). A random state in the maze is then chosen and the agent begins
from there.

3.1. Learning from Scratch

100 agents were separately created, trained, and tested in each maze (i.e., adotal of
agents), all with different random seeds. Each agent was traind@@drials, up to1000

steps for each trial. The agent was thestedfor 100 trials; i.e., learning was turned off

and the most highly activated action unit was always chosen. If the agent did not reach the
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goal on every testing trial, training was considered to have failed, and the agent was trained
for 100 more trials and tested again. This process continued until testing succeeded or until
the agent was trained for a total 4¥00 trials.

Since CHILD is a combination of Q-learning and Temporal Transition Hierarchies, there
are seven modifiable parameters: two from Q-learning and five from TTH’s. The two
from Q-learning are?y — the discount factor from Equation 33, aid’, the temperature
decrement. The five from the TTH algorithm ate©, ande from Equations 30, 31 and 32,

n — the learning rate from Equation 11, angd — the fraction of for weights with high-

level units. Before training began, all seven parameters were (locally) optimized for each
maze independently to minimize the number of trials and units needed. The optimization
was done using a set of random seeds that were not later used during the tests reported
below.

3.2. The Continual-Learning Case

To measure its continual-learning ability, CHILD was allowed in a separate set of tests to
use what it had learned in one maze to help it learn the next. This is a very tricky learning
problem, since, besides the added state ambiguities, the distance from most states to the
goal changes as the series of mazes progresses, and the Q-values for most of the input labels
therefore need to be re-learned.

There were three differences from the learning-from-scratch case: (1) after learning one
maze, the agent was transferred to the next maze in the series; (2) the agent was tested in
the new mazéeforetraining — if testing was successful, it was moved immediately to the
following maze; and (3) the parameters (which were not optimized for this approach) were
the same for all mazes:

n. = 0.09 © = 0.56
v = 0.91 e = 0.11
AT = 2.1

T was reset td .0 when the agent was transferred to a new maze.

3.3. Comparisons

For both the learning-from-scratch case and the continual-learning case, the total number
of steps during training was averaged overlal agents in each maze. These results are
shown in Figure 2A. For the continual-learning approach, both the average number of steps
and the average accumulated number of steps are shown. The average number of units
created during training is given in Figure 2B. Figure 2C compares the average number of
test steps. Since it was possible for an agent to be tested several times in a given training
run before testing was successful, only the final round was used for computing the averages
(i.e., the last 100 testing trials for each agent in each maze).
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Figure 2. Graph (A) compares Learning from Scratch with Continual Learning on the nine Maze tasks. The middle
line shows the average cumulative number of steps used by the continual-learning algorithm in its progression from
the first to the ninth maze. Graph (B) compares the number of units created. The line for the continual-learning
case is, of course, cumulative. Graph (C) compares the performance of both methods during testing. The values
shown do not include cases where the agent failed to learn the maze. Graph (D) shows the number of states in
each maze (solid line, units shown at far left); the average distance from each state to the goal (dotted line, units
at left); and the “ambiguity” of each maze, i.e., the average number of states per state label (dashed line, units at
right).

There were five failures while learning from scratch — five cases in whioh training
trials were insufficient to get testing correct. There were two failures for the continual-
learning case. Allfailures occurred while learning the ninth maze. When afailure occurred,
the values for that agent were not averaged into the results shown in the graphs.
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4. Analysis

Dueto the large amount of state ambiguity, these tasks can be quite difficult for reinforcement-
learning agents. Even though a perfect agent could solve any of these mazes with a very
small amount of state informatiotgarningthe mazes is more challenging. Consider for
example the fact that when the agent attempts to move into a barrier, its position does not
change, and it again receives the same sensory input. It is not in any way informed that
its position is unchanged. Yet it must learn to avoid running into barriers nevertheless. On
the other hand, the bottom row in Maze 9 is exactly the opposite: the agent must continue
to move east, though it repeatedly perceives the same input. Also, once a maze has been
learned, the sequence of states that the agent will pass through on its path to the goal will be
the same from any given start state, thereby allowing the agent to identify its current state
using the context of recent previous states. However, vibidmingthe task, the agent’s
moves are inconsistent and erratic, and information from previous steps is unreliable. What
can the agent deduce, for example, in Maze 9 if its current input is 4 and its last several
inputs were also 47 If it has no knowledge of its previous actions and they are also not yet
predictable, it cannot even tell whether it is in the upper or lower part of the haze.

The progression of complexity over the mazes in Figure 1 is shown with three objective
measures in Figure 2D.The number of states per maze is one measure of complexity. Values
range from 12 to 60 and increase over the series of mazes at an accelerating pace. The
two other measures of complexity are the average distance from the goal and the average
ambiguity of each maze’s state labels (i.e., the average number of states sharing the same
label). The latter is perhaps the best indication of a maze’s complexity, since this is the part
of the task that most confuses the agent: distinguishing the different states that all produce
the same sensory input. Even in those cases where the agent should take the same action in
two states with the same label, these states will still have different Q-values and therefore
will need to be treated differently by the agent. All three measures increase monotonically
and roughly reflect the contour of graphs A—C for the learning-from-scratch agents.

The performance of the learning-from-scratch agents also serves as a measure of amaze’s
complexity because the parameters for these agents were optimized to learn each maze as
quickly as possible. Due to these optimized parameters, the learning-from-scratch agents
learned the first maze faster (by creating new units faster) than the continual-learning agents
did. After the first maze, however, the continual-learning agents always learned faster than
the learning-from-scratch agents. In fact, after the third maze, despite the disparity in
parameter optimality, even tlremulativenumber of steps taken by the continual-learning
agent was less than the number taken by the agent learning from scratch. By the ninth maze
the difference in training is drastic. The number of extra steps needed by the continual-
learning agent was tiny in comparison to the number needed without continual learning.
The cumulative total was about a third of that needed by the agent learning from scratch.
Furthermore, the trends shown in the graphs indicate that as the mazes get larger, as the size
and amount of ambiguity increases, the difference between continual learning and learning
from scratch increases drastically.

Testing also compares favorably for the continual learner: after the fourth maze, the
continual-learning agent found better solutions as well as finding them faster. This is
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perhaps attributable to the fact that, after the first maze, the continual-learning agent is
always in the process of making minor corrections to its existing Q-values, and hence to
its policy. The corrections it makes are due both to the new environment and to errors
still present in its Q-value estimates. The number of units needed for the continual learner
escalates quickly at first, indicating both that the parameters were not optimal and that
the skills learned for each maze did not transfer perfectly but needed to be extended and
modified for the following mazes. This number began to to level off after a while, however,
showing that the units created in the first eight tasks were mostly sufficient for learning the
ninth. The fact that the learning-from-scratch agent created about the same number shows
that these units were also necessary.

That CHILD should be able to transfer its skills so well is far from given. Its success at
continual learning in these environments is due to its ability to identify differences between
tasks and then to make individual modifications even though it has already learned firmly
established rules. Moving from Maze 4 to Maze 5, for example, involves learning that the
tried and true ruld — S (move south when the input is “4”), which was right for all of the
first four mazes, is now only right within a certagontext and that in a different context
a move in the opposite direction is now required. At each stage of continual learning, the
agent must widen the context in which its skills were valid to include new situations in
which different behaviors are indicated.

4.1. Hierarchy Construction in the Maze Environments

It is interesting to examine what CHILD learns: which new units are built and when. The
following progression occurred while training one of thi#) agents tested above. For the

first maze, only one unit was constructéy, ,. This was unit numbe20, which modifies

the connection from sensory uni2 to action unit W (move west). (Units 1-15 are the
sensory units; units 16—19 are the action units; and the high-level units begin at number
20). Unit20 resolved the ambiguity of the two maze positions labeled 12. With the unit

in place, the agent learned to move east in the position labeled 10. It then could move
north in position 12 when having seen a 10 in the previous step, but west when having seen
a 6. Thus, the weight frons® to I3 |, was positive, and the weight from° to I |, was
negative. The weight froms’ to 138712 was also negative, reflecting the fact that, though the
optimal route does not involve moving south from the position labeled 0, during training
this would happen nevertheless. For the same reason, there was also a negative weight
from 52 to [fp ,,. If the agent was placed in one of the two positions labeled 12 at the
beginning of the trial, it would move north, since it had no way of distinguishing its state.
(It would then move south if it saa 6 oreast if it saw a 0.)

The second maze contains two new ambiguities: the positions labeled 9. Two new units
were created:lj,, andi3?,,. The first, I3 ,, was needed to disambiguate the two 9
positions. It had a strong positive weight frai? so that the agent would move west from
a position labeled if it had just seen d2. The secondi?,,, complementedyy ,. It
was apparently needed during training to produce more accurate Q-values when the new 9
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position was introduced, and had a weak positive connection4fcand a weaker negative
connection froms!°.

The third maze introduces another position labeled 9. This caused a strong weight to
develop froms® to I7,. Only one new unit was constructed, howevés ;,. The
usefulness of this unit was minimal: it only had an effect if in a position labeled 12, the
agent moved south or east. As a consequence, the unit had a weak negative connection
from s'° and all other connections were zero.

The fourth maze introduces new ambiguities with the additional positions lataledi9
and two new labels, 1 and 8. No new units were constructed for this maze. Only the weights
were modified.

The fifth maze introduces the additional ambiguities labeled 0 and 4. The label 4 definitely
requires disambiguation, since the agent should choose different actions (N and S) in the two
positions with this label. Since the agent can still move to the goal optimally by moving east
in positions labeled 0, no unit to disambiguate this label is necessary. Five new units were
created:l3’,, 15 o, 138 o, 15¢ 9, @andiZ . The first disambiguates the positions labeled 4. It
has a positive weight fron;f’ and negative weights fron?, s, ands'2. The second, third,
and fourth new unitsi3} o, 138 5, andI3{ 4 all serve to predict the Q-values in the states
labeled 9 more accurately The last new u}ﬁg, also helps nail down these Q-values and
that of the upper position labeled 9.

Though the above example was one of the agent’s more fortunate, in which CHILD tested
perfectly in the remaining mazes without further training, similar unit construction occurred
in the remainder of the mazes for the agent’s slower-learning instantiations.

4.2. Non-Catastrophic Forgetting

Continual learning is a process of growth. Growth implies a large degree of change and
improvement of skills, but it also implies that skills are retained to a certain extent. There
are some skills that we undoubtedly lose as we develop abilities that replace them (how
to crawl efficiently, for example). Though it is not the case with standard neural networks
that forgotten abilities are regained with less effort than they had originally demanded, this
tends be the case with CHILD.

To test its ability to re-learn long-forgotten skills, CHILD was returned to the first maze
after successfully learning the ninth. The average number of training steps needed for the
100 cases was abo@b% of what were taken to learn the maze initially, and in two-thirds
of these cases, no retraining of any kind was required. (That is, the average over the cases
where additional learningvas required was aboui0% of the number needed the first
time.) The network built on average less than one new unit. However, the average testing
performance was 20% worse than when the maze was first learned.

4.3. Distributed Senses

One problem with TTH's is that they have no hidden units in the traditional sense, and their
activation functions are linear. Linear activation functions sometimes raise a red flag in
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the connectionist community due to their inability in traditional networks to compute non-
linear mappings. However, transition hierarchies use higher-order connections, involving
the multiplication of input units with each other (Equations 7 and 8). This means that the
network can in fact compute non-linear mappings. Nevertheless, these non-linearities are
constructed from inputs at previous time steps, not from the input at the current time step
alone. This is not a problem, however, if the current input is repeated for several time steps,
which can be accomplished in reinforcement environments by giving the agent a “stay”
action that leaves it in the same state. The agent can then stay in the same position for
several time steps until it has made the necessary non-linear discrimination of its input data
— simulating the temporgbrocessof perception more closely than traditional one-step,
feed-forward computations. Since the stay action is treated the same as other actions, it also
develops Q-values to reflect the advantage of staying and making a non-linear distinction
over taking one of the other, perhaps unreliable actions. Again, context from preceding
states can help it decide in which cases staying is worthwhile.

With the additional stay action, CHILD was able to learn the mazes ustistiébuted
sense vector consisting of five units: bias, WN (wall north), WW (wall west), WE (wall
east), and WS (wall south). The bias unit was always on (i.e., always had a valg. of
The other units were on only when there was a wall immediately to the corresponding
direction of the agent. For example, in positions labeled 12, the bias, WE, and WS units
were on; in positions labeled 7, the bias, WN, WW, and WE units were on, etc. The agent
was able to learn the first maze using distributed senses, but required much higher training
times than with local senses (averaging nearly 6000 steps).

It turned out, however, that the agent was still able to learn the mazes effectively even
without the stay action. In all positions except those labeled 0, the effect of the stay action
could be achieved simply by moving into a barrier. Furthermore, the agent could often
make the necessary discriminations simply by using the context of its previous senses.
Whenever it moved into a new state, information from the previous state could be used
for disambiguation (just as with the locally encoded sense labels above). In the distributed
case, however, previous sensory information could be used to distinguish states that were
in principle unambiguous, but which were in practice difficult to discriminate.

After the agent had learned the first maze, it was transferred to the second in the same
continual-learning process as described above. An interesting result was that CHILD was
able to generalize far better, and in some training episodes was able t@bdhemazes
after being trained on only the first/o. It did this by learning a modified right-hand rule,
where it would follow the border of the maze in a clockwise direction until it reached the
goal; or, if it first hit a state labeled 0, it would instead move directly east. In one case it did
this having created only six high-level units. In most training episodes, more direct routes
to the goal were discovered; but the cost was the creation of more units (usually 15-20).

4.4. Limitations

As was mentioned in the introduction, CHILD is not a perfect continual learner and can
only learn in a restricted subset of possible environments. Though the TTH algorithm is
very fast (exhibiting a speedup of more than two orders of magnitude over a variety of
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recurrent neural networks on supervised-learning benchmarks (Ring, 1993)), it can only
learn a subset of possible finite state automata. In particular, it can only learn Markov-
k sequences: sequences in which all the information needed to make a prediction at the
current time step occurred within the ldstime steps if it occurred at all. Though TTH's

can learnt and indefinitely increase it, they cannot keep track of a piece of information for
anarbitrary period of time. Removing this limitation would require adding some kind of
arbitrary-duration memory, such as high-level units with recurrent connections. Introducing
the ability to learn push-down automata (as opposed to arbitrary FSA) would even more
greatly relax CHILD's restrictions, but would be far more challenging.

Transition hierarchies also have a propensity for creating new units. In fact, if the pa-
rameters are set to allow it, the algorithm will continue building new units until all sources
of non-determinism are removed, under the assumption that ignorance is the sole cause of
all unpredictable events. When the parameters are properly set, only the needed units are
created. Since there is @opriori way of knowing when an unpredictable event is due to
ignorance or to true randomness, different kinds of environments will have different optimal
parameter settings. Unnecessary units may also result when tasks change and previously
learned skills are no longer useful. Finding a method for removing the extra units is non-
trivial because of the difficulty involved in identifying which units are useless. This is more
complicated than the problem of weight elimination in standard neural networks. A large
hierarchy may be very vital to the agent, and the lower-level units of the hierarchy may be
indispensable, but before the hierarchy is completed, the lower units may appear useless.

One problem that faced CHILD in the previous section was that the environments of Fig-
ure 1 kept changing. This resulted in constant modification of the reinforcement landscape,
and the agent had to re-learn most or all of its Q-values again and again. It might be better
and more realistic to use a single environment composeaudtfple layersof complexity
such that the agent, once it has learned some simple skills, can use them to achieve an ever
increasing density of reward by continually uncovering greater environmental complexities
and acquiring ever more sophisticated skills.

The mazes in Figure 1 were designed to give CHILD the opportunity to perform continual
learning. An ideal continual learner would be capable of learning in any environment and
transferring whatever skills were appropriate to any arbitrary new task. But, of course, it
will always be possible to design a series of tasks in which skills learned in one are not
in any way helpful for learning the next — for example, by rearranging the state labels
randomly or maliciously. There will always be a certain reliance of the agent on its trainer
to provide it with tasks appropriate to its current level of development. This is another
argument in favor of the “multiple layers” approach described in the previous paragraph,
which may allow the agent smoother transitions between levels of complexity in the skills
that it learns.

5. Related Work

Continual learning, CHILD, and Temporal Transition Hierarchies bring to mind a variety
of related work in the areas of transfer, recurrent networks, hierarchical adaptive systems,
and reinforcement-learning systems designed to deal with hidden state.
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5.1. Transfer

Sharkey and Sharkey (1993) discusansfer in its historical, psychological context in

which it has a broad definition. In the connectionist literature, the term has so far most
often referred to transfer acroslassification tasks non-temporal domains. But, as with

the other methods described in this volume, continual learning can also be seen as an aspect
of task transfer in which transfer across classification tasks is one important component.

There seem to be roughly two kinds of transfer in the connectionist literature. In one
case, the network is simultaneously trained on related classification tasks to improve gener-
alization in its current task (Caruana, 1993, Yu & Simmons, 1990). In the other case, feed-
forward networks trained on one classification task are modified and reused on a different
classification task (Baxter, 1995, Pratt, 1993, Sharkey & Sharkey, 1993, Silver & Mercer,
1995, Thrun, 1996). Sometimes the new tasks lie in contradiction to the old tasks, that is,
the old task and the new are inconsistent in that a classification made in one task would
necessarily be made differently in the other. The autoassociation and bit-displacement tasks
explored by Sharkey and Sharkey (1993), as one example, require different outputs for the
same input. In other cases there may not be any necessary inconsistency and the tasks
might be seen as separate parts of a larger task. For example, the two tasks of recognizing
American speech and recognizing British speech, as described by Pratt (1993), are each
sub-tasks of recognizing English speech. Continual learning and CHILD introduce into
this discussion the issue of context: In certain cases, one mapping may be correct, in others
the identical mapping may be incorrect. The issue is thus one of identifying the larger
context in which each is valid. Transfer across classification tasks is therefore one aspect
of continual learning, where temporal context, incremental development, and hierarchical
growth are some of the others.

Another kind of transfer that is not confined to classification tasks is the very general
“learning how to learn” approach of Schmidhuber (1994) , which not only attempts transfer
in reinforcement domains, but also attemptéetarn how to transfer (and to learn how to
learn to transfer, etc.).

5.2. Recurrent Networks

Transition hierarchies resemble recurrent neural networks such as those introduced by
Elman (1993), Jordan (1986), Robinson and Fallside (1987), Pollack (1991), etc., in that
they learn temporal tasks using connectionist methods. Most relevant here, EIman showed
that his network was capable of learning complex grammatical structures by “starting small”
— by imposing storage limitations on the recurrent hidden units and then gradually relaxing
them. Elman’s interest in learning complex sequences by first learning simpler sequences is
closely related to continual learning, though there are a few important differences between
his system and CHILD. The first is subtle but important: Elman discovered that his network
could only learn certain complex sequences if he imposed artificial constraints and then
gradually relaxed them; CHILD on the other hand was designed specifically for the purpose
of continual learning. As a result, the internals of EIman’s net must be externally altered
as learning progresses, whereas CHILD detects for itself when, how, and to what degree to
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increase its capacity. Also, EIman used a fixed-sized network and only two kinds of inputs:
simple and complex, whereas CHILD adds new units so thatit can grow indefinitely, learning
a never-ending spectrum of increasing complexity. Elman’s net is therefore limited to a
certain final level of development, whereas for CHILD, there is no final level of complexity.

It must be emphasized, however, that EIman’s intention was to shed light on certain aspects
of human cognition, not to develop a learning agent.

Recurrent networks are in general capable of representing a greater range of FSA than
are TTH's, but they tend to learn long time dependencies extremely slowly. They also
are not typically constructive learning methods, though RCC, Recurrent Cascade Corre-
lation (Fahlman, 1991), and the network introduced by Giles, et al.(1995) are exceptions
and introduce new hidden units one at a time during learning. Both these networks are
unsuitable for continual learning in that they must be trained with a fixed data set, instead
of incrementally as data is presented. In addition, these nets do not build new units into a
structure that takes advantage of what is already known about the learning task, whereas
TTH units are placed into exact positions to solve specific problems.

Wynne-Jones (1993), on the other hand, described a method that examines an existing
unit's incoming connections to see in which directions they are being pulled and then creates
a new unit to represent a specific area of this multidimensional space. In contrast, Sanger’s
network adds new units to reduce only a single weight’s error (Sanger, 1991), which is also
what the TTH algorithm does. However, Both Wynne-Jones’ and Sanger’s network must
be trained over a fixed training set, and neither network can be used for tasks with temporal
dependencies.

5.3. Hierarchical Adaptive Systems

The importance of hierarchy in adaptive systems that perform temporal tasks has been
noted often, and many systems have been proposed in which hierarchical architectures
are developed by hand top down as an efficient method for modularizing large tempo-
ral tasks (Albus, 1979, Dayan & Hinton, 1993, Jameson, 1992, Lin, 1993, Roitblat, 1988,
Roitblat, 1991, Schmidhuber & Wahnsiedler, 1993, Singh, 1992, Wixson, 1991). In the
systems of Wixson (1991), Lin (1993), and Dayan and Hinton (1995), each high-level task
is divided into sequences of lower-level tasks where any task at any level may have a termi-
nation condition specifying when the task is complete. Jameson’s system (Jameson, 1992)
is somewhat different in that higher levels “steer” lower levels by adjusting their goals
dynamically. The system proposed by Singh (1992), when given a task defined as a specific
sequence of subtasks, automatically learns to decompose it into its constituent sequences.
In all these systems, hierarchy is enlisted for task modularization, allowing higher levels
to represent behaviors that span broad periods of time. Though Wixson suggests some
possible guidelines for creating new hierarchical nodes, none of these systems develop
hierarchies bottom-up as a method for learning more and more complicated tasks.

Wilson (1989) proposed a hierarchical classifier system that implied but did notimplement
the possibility of automatic hierarchy construction by a genetic algorithm. The schema
system proposed by Drescher (1991) supports two hierarchical constructs: “composite
actions” (sequences of actions that lead to specific goals) and “synthetic items” (concepts
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used to define the pre-conditions and results of actions). Drescher’s goal — simulating early
stages of Piagetian development — is most congruous with the philosophy of continual
learning, though the complexity of his mechanism makes learning more cumbersome.

Another constructive bottom-up approach is Dawkins’ “hierarchy of decisions”
(Dawkins, 1976), similar to Schmidhuber’s “history compression” (Schmidhuber, 1992),
where an item in a sequence that reliably predicts the next several items is used to represent
the predicted items in a reduced description of the entire sequence. The procedure can be
applied repeatedly to produce a many-leveled hierarchy. This is not an incremental method,
however — all data must be specified in advance — and it is also not clear how an agent
could use this method for choosing actions.

Macro-operators in STRIPS (see Barr & Feigenbaum, 1981)chuakingin SOAR
(Laird et al., 1986) also construct temporal hierarchies. Macro-operators are constructed
automatically to memorize frequently occurring sequences. SOAR memorizes solutions
to subproblems and then reuses these when the subproblem reappears. Both methods
require the results of actions to be specified in advance, which makes learning in stochastic
environments difficult. For real-world tasks in general, both seem to be less suitable than
methods based on closed-loop control, such as reinforcement learning.

5.4. Reinforcement Learning with Hidden State

Chrisman’s Perceptual Distinctions Approach (PDA) (Chrisman, 1992) and McCallum'’s
Utile Distinction Memory (UDM) (McCallum, 1993) are two methods for reinforcement
learning in environments with hidden state. Both combine traditional hidden Markov model
(HMM) training methods with Q-learning; and both build new units that represent states
explicitly. UDM is an improvement over PDA in that it creates fewer new units. In an
environment introduced by McCallum (1993), CHILD learned about five times faster than
UDM (Ring, 1994) and created about one third the number of units. In larger state spaces,
such as Maze 9 above, transition hierarchies can get by with a small number of units — just
enough to disambiguate which action to take in each state — whereas the HMM approaches
need to represent most or all of the actual states. Also, both UDM and PDA must label
every combination of sensory inputs uniquely (i.e., senses must be locally encoded), and
the number of labels scales exponentially with the dimensionality of the input. Distributed
representations are therefore often preferable and can also lead to enhanced generalization
(as was shown in Section 4.3).

CHILD learns to navigate hidden-state environments without trying to identify individual
states. Ittakes a completely action-oriented perspective and only needs to distinguish states
well enough to generate a reasonable Q-value. If the same state label always indicates that
a particular action needs to be taken, then none of the states with that label need to be distin-
guished. Very recently, McCallum has introduced the U-Tree algorithm (McCallum, 1996),
which also takes an action-oriented approach. Like Temporal Transition Hierarchies, U-tree
is limited to learning Markowve domains. Also like TTH’s, U-tree learns to solve tasks by
incrementally extending a search backwards in time for sensory information that helps it
disambiguate current Q-values. Itthen (like TTH's) keeps track of this information and uses
it while moving forward in time to choose actions and update Q-values. But unlike TTH’s,
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this method stores its information in an explicit tree structure that reflects the dependencies
of the Q-values on the previous sensory information. It also makes assumptions about the
environment’'s Markov properties that the TTH algorithm does not. In particular, it assumes
that all Markov dependencies manifest themselves within a fixed number of time steps. As

a result, it can miss dependencies that span more than a few steps. This apparent weakness,
however, enables the algorithm to perform statistical tests so that it only builds new units
when needed (i.e., only when a dependency within this fixed period actually does exist).
The algorithm can thereby create fewer units than the TTH algorithm, which is inclined
(depending on parameter settings) to continue building new units indefinitely in the search
for the cause of its incorrect predictions.

6. Discussion and Conclusions

Given an appropriate underlying algorithm and a well-developed sequence of environments,
the effort spent on early training can more than pay for itself later on. An explanation for
this is that skills can be acquired quickly while learning easy tasks that can then speed the
learning of more difficult tasks. One such skill that CHILD developed was a small dance
that it always performed upon beginning a maze in certain ambiguous positions. The dance
is necessary since in these ambiguous states, neither the current state nor the correct actions
can be determinetiOnce an agent had performed the dance, it would move directly to the
goal. Often the dance was very general, and it worked just as well in the later mazes as in
the earlier ones. Sometimes the skills did not generalize as well, and the agent had to be
trained in each of the later environments. However, before training began it would have
been extremely difficult for the trainer to know many (if any) of the skills that would be
needed. In real-world tasks it is even more difficult to know beforehand which skills an
agent will need. This is precisely why continual learning is necessary — to remove the
burden of such decisions from the concerns of the programmer/designer/trainer.

The problems that CHILD solves are difficult and it solves them quickly, but it solves
them even more quickly with continual learning. The more complicated the reinforcement-
learning tasks in Section 3 became, the more CHILD benefited from continual learning.
By the ninth maze, the agent showed markedly better performance. (It also showed no
sign of catastrophic interference from earlier training, and was in fact able to return to the
first maze of the series and solve the task again with only minimal retraining.) Taking a
fast algorithm and greatly improving its performance through continual learning shows two
things. It shows the usefulness of continual learning in general, and it demonstrates that
the algorithm is capable of taking advantage of and building onto earlier training.

CHILD is a particularly good system for continual learning because it exhibits the seven
properties of continual learning listed in the introduction.

e Itis an autonomous agent. It senses, takes actions, and responds to the rewards in its
environment. It handles reinforcement-learning problems well, since it is based on the
Temporal Transition Hierarchy algorithm, which can predict continuous values in noisy
domains (learning supervised learning tasks more than two orders of magnitude faster
than recurrent networks (Ring, 1993)).
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e It learns context-dependent tasks where previous senses affect future actions. It does
this by adding new units to examine the temporal context of its actions for clues that help
predict their correct Q-values. The information the agent uses to improve its predictions
can eventually extend into the past for any arbitrary duration, creating behaviors that
can also last for any arbitrary duration.

e Itlearns behaviors and skills while solving its tasks. The “dance” mentioned above, for
example, is a behavior that it learned in one maze that it then was able to use in later
mazes. In some cases the dance was sufficient for later tasks; in other cases it needed
to be modified as appropriate for the new environment.

e Learning is incremental. The agent can learn from the environment continuously in
whatever order data is encountered. It acquires new skills as they are needed. New
units are added only for strongly oscillating weights, representing large differences in
Q-value predictions and therefore large differences in potential reward. Predictions vary
the most where prediction improvements will lead to the largest performance gains, and
this is exactly where new units will be built first.

e Learning is hierarchical. New behaviors are composed from variations on old ones.
When new units are added to the network hierarchy, they are built on top of existing
hierarchies to modify existing transitions. Furthermore, there is no distinction between
learning complex behaviors and learning simple ones, or between learning a new be-
havior and subtly amending an existing one.

e ltis ablack box. Its internals need not be understood or manipulated. New units, new
behaviors, and modifications to existing behaviors are developed automatically by the
agent as training progresses, not through direct manipulation. Its only interface to its
environment is through its senses, actions, and rewards.

e Ithas no ultimate, final task. What the agent learns now may or may not be useful later,
depending on what tasks come next. If an agent has been trained for a particular task,
its abilities afterwards may someday need to be extended to include further details and
nuances. The agent might have been trained only up to maze number eight in Figure 1
for example (its training thought to be complete), but later the trainer might have needed
an agent that could solve the ninth maze as well. Perhaps there will continue to be more
difficult tasks after the ninth one too.

In the long term, continual learning is the learning methodology that makes the most
sense. In contrast to other methods, continual learning emphasizes the transfer of skills
developed so far towards the development of séills of ever greater complexityit is
motivation for training an intelligent agent when there is no final goal or task to be learned.
We do not begin our education by working on our dissertations. It takes (too) many years of
training before even beginning a dissertation seems feasible. It seems equally unreasonable
for our learning algorithms to learn the largest, most monumental tasks from scratch, rather
than building up to them slowly.

Our very acts of producing technology, building mechanisms, writing software, is to
make automatic those things that we can do ourselves only slowly and with the agony of
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constant attention. The process of making our behaviors reflexive is onerous. We build our
technology as extensions of ourselves. Just as we develop skills, stop thinking about their
details, and then use them as the foundation for new skills, we develop software, forget
about how it works, and use it for building newer software. We design robots to do our
manual work, but we cannot continue to design specific solutions to every complicated, tiny
problem. As efficient as programming may be in comparison with doing a task ourselves, it
is nevertheless a difficult, tedious, and time-consuming process —and program modification
is evenworse. We need robots that learn tasks without specially designed software solutions.
We need agentsthatlearn and don’tforget, keep learning, and continually modify themselves
with newly discovered exceptions to old rules.
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Notes

1. A connection may be modified by at most dnenit. Thereforel?, l;y, andl;, are identical but used as
appropriate for notational convenience.

2. With a bit of mathematical substitution, it can be seen that these connections, though additive, are indeed
higher-order connections in the usual sense. If one substitutes the right-hand side of Equatiéy) hfor
Equation 8 (assuming a unit = lfj exists) and then replaces;; in Equation 7 with the result, then

ni(t)

J

D s Owis(t) + D 7 (1) et = 1))
j/

D I Owig(®) + 717 (= 1) et~ 1)].
4’

J

As a consequencépnits introduce higher orders while preserving lower orders.

3. For this reason, it is sometimes helpful to provide the agent with the proprioceptive ability to sense the actions
it chooses. Though this entails the cost of a larger input space, it can sometimes help reduce the amount of
ambiguity the agent must face (Ring, 1994).

4. The dance is similar to the notion oflestinguishing sequende automata theory (which allows any state of a
finite state machine to be uniquely identified) except that CHILD does not need to identify every state; it only
needs to differentiate those that have significantly different Q-values.
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