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I. Introduction 

Women in developing countries fare worse than men in many dimensions: they obtain 

less schooling, have lower labor force participation, earn lower salaries, are more likely to be 

poor and often lack fundamental rights, such as voting rights or the right to earn property (Duflo 

2005). One often cited extreme manifestation of this phenomenon is that mortality rates are 

substantially higher for girls than for boys in many developing countries (Chen, Huq and 

D'Souza 1981; Arnold, Choe and Roy 1998, Sen 1990), although this is not true in the Western 

World (United Nations Secretariat 1988). These patterns are particularly marked in countries 

with “son preferences” such as India, where families have explicit preferences for having sons 

over daughters (Pande and Astone 2007).  

Surprisingly, though, the previous literature does not always support the hypothesis that 

these differences in outcomes are due to explicitly different treatment of boys and girls. 

Although many papers find that boys receive more healthcare (Basu 1989, Ganatra and Hirve, 

1994), are breastfed for longer (Kuziemko and Jayachandra 2010), and are more likely to be 

vaccinated (Borooah 2004) than girls, others find no evidence of differential investments. For 

example, Hariss (1995) finds that girls in India receive just as much nutrition as boys, and 

Deaton (2003) reports that vaccination rates are identical for boys and girls in India. Most 

notably, Deaton (1997) reviews studies that use the “adult goods method” and finds that there is 

no evidence of parents spending more on boys than girls.1 Duflo (2005) concludes that“[e]ven in 

the countries where the preference for boys is strongest, it is hard to find evidence that girls 

receive less care than boys under normal circumstances.”2 

However, previous work has assumed that boys and girls live in families with similar 

characteristics, in terms of both observables and unobservables. Yet this assumption is incorrect 

if families have a preference for sons and follow male-biased stopping rules of childbearing, 

(Yamaguchi 1989, Jensen 2005) which appears to be the case in India.3 As a consequence, these 

empirical estimates of differential treatment are biased. In particular, if couples’ fertility is driven 

by their desire to have a certain number of boys, then girls will end up in larger families on 

average. If in turn children in larger families have fewer per capita resources, as hypothesized by 
                                                 

1 In more recent work, Kingdon (2005) finds parents spend more on boys than girls. 
2 Households do favor boys in bad times (Bherman 1988, Rose 2000, Miguel 2005, Maccini and Yang 2009). 
3 For example, families with fewer boys have shorter birth intervals, are more likely to want more children and to 
continue having children, and are less likely to use contraception (see Clark 2000 for a review).  
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Jensen (2005), then estimates of differential treatment will be biased upwards: it will appear as if 

girls get less on average but in fact this is due to the larger family size (and thus lower per capita 

resources), not to parental behavior. On the other hand if there are returns to scale, then estimates 

of differential treatment will be biased downwards.  

We propose a novel empirical strategy that addresses this issue. It relies on the 

observation that—in the absence of sex-selective abortion—a child’s sex at birth is randomly 

determined. If that is the case, then families who just had a boy are identical to families who just 

had a girl. So any differences we observe in terms of parental inputs can be attributed to the sex 

of the newborn. However, a correlation will develop over time between the youngest child’s 

gender and the family characteristics, because families with a newborn daughter are less likely to 

stop having children. To overcome this problem, we restrict our sample to families with children 

who are still “young enough” whose mothers haven’t had the opportunity to have other children. 

Our data suggest that families with boys and girls between zero to 15 months of age (and 

possibly a bit older) look identical in terms of observables—we use them to study whether boys 

receive more inputs than girls.  

Our analysis allows us to rule out that observed differences in investments are driven by 

family size; this is important because it affects how one would design policies to improve the lot 

of girls. If girls get less because they live in poorer larger families, then transfers to those 

families would help girls; so would policies to reduce family size. If on the other hand parents 

would like to devote more resources to boys no matter what, then transfers to the same families 

might not help girls. In that case female-focused interventions might be needed.  

The second contribution of this paper is to use our identification strategy to investigate 

whether boys and girls are treated differently in terms of an important but not frequently studied 

type of investment in children: childcare time. Beginning with Becker (1965), economists have 

recognized that, in addition to money, time is a key input into the “child production function.” 

Time is particularly important to the extent that it is complementary to many other inputs. For 

example, feeding children requires both food and the time to cook it and feed the children. 

However no estimates of gender differences in parental time allocation based on dedicated time-
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use surveys exist for developing countries.4 Using data from the Indian Time Use Survey, we are 

able to investigate whether families spend more time on childcare after the birth of a son rather 

than a daughter. We also study gender differences in other frequently used measures of parental 

investments such as vaccinations, using data from the Indian Demographic and Health Survey 

(hereafter DHS). Following the literature suggesting that gender differences in India are present 

mostly in rural areas, our main results focus on rural households. However we also present 

results for urban areas.  

Our results indicate that families treat boys and girls differently. Rural households with 

an infant boy under the age of one spend roughly 30 minutes more per day—or 14% more 

time—on childcare than households with an infant girl. The quality of the childcare also appears 

to be higher for baby boys. This gender difference exists for different types of childcare, 

including both supervision and physical care.   The effect is larger for households with only one 

child under the age of six: they spend more than 60 minutes more per day (about 30% more) on 

childcare when their youngest is a boy. Our results also show that boys are more likely to be 

vaccinated, to be breastfed longer, and to be given vitamin supplements. In general we find these 

inputs to be at least 10% higher for boys than for girls in rural areas. We do not find evidence 

that boys fare better than girls in terms of anthropometric measures, but anthropometrics measure 

outcomes rather than inputs. We discuss various explanations for this one anomalous result. 

Overall, our results suggest that the bias associated with family size depends on the 

timing of the parental investments. The evidence is consistent with a large bias for investments 

that occur throughout life such as time inputs: we observe that the gender difference in parental 

time inputs disappears as children age. On the other hand, the bias is small for investments that 

only occur early in life, such as vaccinations: for these inputs our results are very similar for 

young and older children. This is what we would expect because these investments are done once 

early in life and do not change much as children age.  

The main limitation of our identification strategy is that it does not explicitly deal with 

the possibility that anticipated family size is responsible for the effects we observe: children in 

families who just had a girl may receive fewer parental investments if parents anticipate that they 

will have another child. We address this issue in various ways. Although no approach is perfect, 
                                                 

4 Yeung et al (2001), Lundberg et al (2007), and Mammen (2009) report that fathers spend more time with boys in 
the US. Rose (2000) reports that in rural India women work fewer days after the birth of a boy than a girl.  
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the data suggest that breastfeeding is the only input for which anticipated family size is a 

plausible explanation. This is consistent with Jayachandran and Kuziemko (2010). 

Our approach has other limitations. As in previous work, we cannot fully address the 

issues of sex-selective abortion and differential mortality. These behaviors most likely will bias 

our estimates of boy-girl differences towards zero, so our effects can be taken to be lower 

bounds. To limit the potential bias from sex-selective abortion we limit our study to the 1992 

DHS, the most recent DHS survey conducted before ultrasound technology became widely 

available (Bhalotra and Cochrane 2010). We show that for the 1992 survey, child gender is 

uncorrelated with prenatal characteristics (e.g., prenatal care). This provides further evidence that 

families did not know the sex of the child and were not able to discriminate before birth, neither 

in terms of prenatal investments nor through sex-selective abortion.5 Our results also suggest that 

the bias associated with sex-selective abortion in our sample is small. This is consistent with 

Anderson and Ray (2010), who report that prenatal factors account for only 10% of missing 

women in India.  

To assess the bias caused by postnatal mortality, we compute bounds for our estimates 

and find that mortality potentially generates large biases: differences between boys and girls 

could be as much as 50% larger than our baseline estimates. Another limitation of our results is 

that we can only study children who are under the age of two. This is an important subset of the 

population, because at this age investments have large returns in the short and long run: lower 

investments in childhood are associated with worse health and economic outcomes in adulthood, 

and for future generations (Almond and Currie, forthcoming). But we cannot study older 

children.  

Finally we investigate some possibilities for why parents give girls fewer resources. 

Parents might prefer boys to girls. Investments in boys might yield larger returns (e.g., men have 

higher wage rates than women). And boys might be seen as needing more resources, though it is 

not clear why parents would perceive that boys need greater inputs than girls, given that girls 

have higher mortality than boys from age 6 month onwards. We provide suggestive evidence that 

boys do not in fact “need” more than girls: if we look at South Africa, a developing country with 
                                                 

5 Bharadwaj and Nelson (2011) use later waves of the Indian DHS (1998-9 and 2005-6) and show that mothers visit 
antenatal clinics and receive tetanus shots more frequently when pregnant with a boy. They also present evidence 
that there are no gender differences in prenatal care in the 1992 DHS data, which suggests that ultrasound use was 
not prevalent at this time period.  
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data on investments and no evidence of a son preference, we find that there are no systematic 

gender differences in most inputs. We also find that boy-girl differences in the north of India are 

larger than in the south. Unless boys need more in the north than in the south, this again does not 

support differential needs as the single explanation for our findings. Although the evidence is not 

conclusive, it does suggest that higher returns, or preference for boys, drive the differential 

investments. 

 

II-Identification issues in the presence of son-biased stopping rules  

In this section, we present a simple model of a son-biased fertility stopping rule and 

extend the previous results by Yamaguchi (1989) and Jensen (2005) to show that, if families 

follow this rule, then estimates in the boy-girl discrimination literature that assume that boys and 

girls live in families with similar characteristics are biased. We then propose a method for 

overcoming the problems that arise in this context.  

We begin by presenting suggestive evidence that families in rural India do follow son-

biased stopping rules. This is the case if ceteris paribus the probability of a family having no 

more children after a boy is born is higher than after a girl is born. One implication of this 

behavior is that the probability of a family’s youngest child being a boy is an increasing function 

of the age of the youngest child. At birth, the sex ratio is determined by biological odds. But as 

the youngest child ages, the sex ratio is increasingly skewed towards boys since families are 

more likely to stop having children after a boy is born. This prediction is in fact consistent with 

the data.  

In Figure 1, we plot the fraction of boys by age using data from the 1992 DHS (described 

in greater detail below) . The figure shows that the fraction of boys among all living children is 

somewhat constant across ages. But among the youngest child in the family, the fraction of boys 

increases from 51% for children 0-5 months old to 58% for the children 54-to-59 months old. In 

other words, if a child is still the youngest at age 4, then the probability that the child is a boy is 

58%. This is a large deviation from the natural sex ratio at birth. This evidence suggests that in 

rural India families indeed follow son-biased stopping rules.6  

                                                 
6 This pattern also could be driven by excess girl mortality. To gauge its importance, we compute the fraction of 
boys among all youngest children (including those who died according to the mother) and compare it to the fraction 
of boys among those alive.  The graph suggests that there is excess girl mortality, since the fraction of boys is higher 
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We use the framework from Yamaguchi (1989) to illustrate how these stopping rules can 

bias estimates of differential treatment. There is a continuum of families and they all follow the 

same stopping rule: families continue to have children until they reach their desired number of 

sons. Families differ in how many sons they wish to have but they have no preference as to 

family size. The probability of a newborn being a boy is assumed to be constant across families.   

In this stylized model, one can show that boys and girls live on average in families with 

different characteristics. As shown by Yamaguchi (1989)—and by Jensen (2005), who extends 

the results to a finite fertility set-up—girls will have more siblings than boys on average. A 

simple example provides the intuition for this result. Consider a family that wants one boy.  If 

the first-born is a boy, then the family stops having children; if the first-born is a girl, the family 

continues having children.  If all families behave this way, then all girls have siblings, but not all 

boys do. The simulations in Jensen (2005) suggest that the resulting differences in number of 

siblings can be quite large. 

One can also show (see Appendix 1) that if we compare children in families of the same 

size, girls are on average in families that desire fewer sons than does the family of the average 

child. The intuition for this result is as follows: suppose that we observe two families who 

stopped having children after their second child. Family A has a girl and a boy; family B has two 

boys. Family A stopped having children despite the fact that they have only one boy; family B 

stopped because they had two boys, but otherwise would have continued. This example 

illustrates that for families with two children, girls live in families that desire fewer sons than 

does the average family. As a consequence, within families of the same size, those with a larger 

number (share) of boys have a larger desired number of sons than those with many girls.  

In Yamaguchi’s stylized model, families always obtain their desired number of sons, so 

we would learn their preferences simply by observing the number of sons they have. In reality, 

because families have finite fertility and imperfect fertility control, the desired number of sons is 

unobservable. So even if we control for observed differences in family size and gender 

composition, there will be unobserved differences in the families into which the average girl and 

average boy are born. If families that desire a larger number of sons invest less in girls (or more 

                                                                                                                                                             
among the survivors. However, the extent of the bias is small relative to the effect of stopping rules. This is 
confirmed by the pattern that we observe among all children (rather than the youngest): the fraction of boys rises for 
this group but the increase is small, much smaller than what is observed among the youngest child.  
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on boys) than other families, then these stopping rules imply that the previous estimates of 

discrimination are biased, as we now discuss. 

Suppose that we estimate boy-girl differences by regressing some measure of child 

investment on a constant and a boy dummy (as in Sen and Sengupta 1983; Das Gupta 1987; 

Sommerfelt and Piani 1997): 

Zih = 0 + *1 Bih + uih, 

where Zih is investment in child i in household h, Bih is a dummy that is equal to one if child i in 

household h is a boy, and uih is an error term. Son-biased stopping rules imply that Bih is 

correlated with family size. Therefore, Bih will also be correlated with the error term, and α1 will 

be biased if child investment depends on the number of children in the family. The sign of the 

bias may be different for different measures of child investment. On the one hand, children in 

large families may have to share resources with more siblings (e.g., food)—this is the issue that 

Jensen (2005) investigates. On the other hand, children in large families may ceteris paribus 

receive more investments if there are large returns to scale for the child’s investment (e.g., 

vaccination in public campaigns, or supervision and teaching).  

Given that girls tend to be part of larger families than boys, it may seem reasonable to 

control for family size. Suppose then that we estimate the following model (Oster 2009): 

Zih = 0 + *1 Bih + Xihρ + uih, 

where we are now controlling for Xih, a vector that includes the number of siblings or dummies 

for the sex-composition of siblings. This strategy essentially compares outcomes of boys and 

girls in families of the same size. However son-biased stopping rules imply that, conditional on 

family size, girls tend to be in families that want girls more than other families do. In other 

words, the child's sex is not exogenous; it is correlated with parental preferences for the gender 

composition of children. A similar argument applies to studies that use the adult goods method 

championed by Deaton (1989). In general, the sign of the bias is unknown and depends on the 

relationship between preferences for the gender composition of children and the treatment of 

boys and girls (see Appendix 2). For example, if all families invest the same amount in boys but 

families who want boys invest less in girls, then OLS estimates of 1 are biased downwards 

because the average girl is in a family that wants fewer boys; thus she receives more child 

investments than she would have had she been “assigned” to a random family. Controlling for 



9 

 

family size also poses other challenges, because it is related to many unobserved determinants of 

parental inputs (such as income) and therefore is potentially correlated with the error term.  

This discussion raises the question of why we are interested in knowing how girls would 

be treated if they were randomly assigned to families: the fact is, they are not. Controlling for 

family size, they are disproportionately in families that want them relative to the average family. 

But knowing the extent to which families want to treat girls differently is important because it 

informs policy. Suppose for instance that, as suggested by Jensen, all of the differences we 

observe are driven by family size. Then policies that transfer income to large and/or poor 

families will benefits girls. However, if this is not the case and parents want to devote more 

resource to boys, then transfers to these families will not necessarily benefit girls. There are 

similar implications for family planning policies. For instance, policies that ban sex-selective 

abortion might in fact inadvertently hurt girls—this is precisely what Lin, Liu and Qiang (2010) 

find for Taiwan where female infant mortality increased after abortion was banned.  

 

III. Empirical Strategy 

Our empirical strategy relies on the observation that in the absence of sex-selective 

abortion the child’s sex is randomly determined at birth. If that is true, then families who just had 

a boy are identical to families who just had a girl. Therefore, any differences we observe in terms 

of parental inputs can be attributed to the sex of the newborn. However over time this is no 

longer true: families that follow a son-biased stopping rule are more likely to stop having 

children after a boy. In time a correlation will develop between the youngest child’s sex and 

preferences: families with N children that stop after the birth of a girl tend to like girls more than 

families with N children that stop after the birth of a boy. To overcome this problem, we restrict 

our sample to families in which the youngest child is “young enough” as determined by our data: 

we select our sample such that baby-boy and baby-girl families look identical in terms of their 

observable characteristics. Formally, we estimate whether boys and girls are treated differently 

using the following equation: 

Zih = 0  + *1 Bih + Xih ρ + uih. 

The OLS estimate of 1  is an unbiased estimator of the parameter of interest if the 

child’s sex is exogenous (conditional on X) —i.e., Cov(Bih,uih|X)=0. Our identifying assumption 
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is that the child's sex is exogenous at birth for children who are young enough. In the next 

section, we provide evidence that predetermined characteristics (in particular number and gender 

of siblings) are not correlated with gender for very young children. We also show that, as the 

model above predicts, this no longer holds true as the family’s youngest child gets older. Notice 

that, if gender is indeed random, then we do not need to condition on any variables.7 

Conditioning on predetermined variables should have no impact on our point estimates and 

should reduce the standard errors (if these variables predict parental investments). 

Our assumption may fail if there is sex-selective abortion against girls or excess girl 

mortality. We test this directly in the data by comparing the characteristics of families with a 

baby girl and a baby boy. Still it is possible that families differ in terms of unobservables. Sex-

selective abortion and excess female mortality most likely bias our estimator against finding boy-

girl differences: because the surviving girls are expected to be in families that like girls more 

than the average family, they should receive more care than they otherwise would have.8 Thus, 

our estimates can be taken as lower bounds of the effect of gender in child investments.  

 

IV- Testing Random Assignment and Selecting the Estimation Sample 

To test whether the gender of the youngest child is uncorrelated with predetermined 

family characteristics, we restrict the sample to children who are the youngest in their families 

and estimate the following linear equation 

,)1( iaaiia XboyI    

where the dependent variable is an indicator of whether child i in age category a is a boy, and X 

is a set of predetermined characteristics. Independence implies that a = 0, namely that the Xs do 

not jointly predict the gender of the child. The prediction is that we will not reject the null for 

very young children, but that we will always reject it for children that are “old enough.”  

We use India’s 1992 DHS (also known as the National Family Health Survey), a large 

representative survey that contains several variables determined before birth. The DHS surveyed 

                                                 
7 There is evidence suggesting that the sex ratio at birth may be correlated with birth order, parental age, mother’s 
education and marital status (Almond and Edlund 2007 and Chahnazarian 1988). But these effects are very small 
and can only be detected using very large samples of births (Yamaguchi 1989, Almond and Edlund 2007).  
8 The estimator also could be biased upwards.  Girls that survive might be healthier than boys and thus need less 
care than boys. But this seems unlikely, because the mortality rates for girls remain higher than the mortality rates 
for boys for the entire postnatal period.   
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ever-married women of reproductive ages, each of whom was interviewed separately and asked 

questions about her characteristics and reproductive history. The DHS files contain full birth 

histories: there is a record for every child born, including date of birth and gender, whether the 

child has died, and whether s/he continues to live at home. For every child born we know the 

characteristics of the mother, and we can compute the number of siblings by gender and age 

(including the number of those who have died). We use only the 1992 survey to minimize the 

bias attributable to sex-selective abortion: the previous literature suggests that ultrasound 

technology became widespread in India only in the mid 1990s, particularly after 1995 (Bhalotra 

and Cochrane 2010). We also focus on rural households, as the previous literature has done.9 The 

final data set contains one observation per family and includes children (excluding twins10) born 

to women ages 15 to 49 living in rural areas in 25 states.  

Next we pool children into 12-month age-groups and run a joint test for each age-group.11 

We use these results to determine at which age the test starts to systematically reject the null. 

Table 1 shows all of the predetermined characteristics of the child and the mother that we can 

include, 20 in all. We selected variables that were most likely to be predetermined before birth 

for all children, regardless of their age. Therefore, we do not include location, household 

composition, marital status, spouse characteristics, or number of living siblings, because some of 

these characteristics may be affected by the gender of one’s children (in fact we later document 

that household composition is affected by the gender of the youngest). However we do look at 

family size and composition at birth, maternal characteristics, and use of prenatal care. Prenatal 

care use allows us to investigate whether ultrasound technology was important in 1992: access to 

and use of prenatal care should predict the gender of the baby only if individuals know that 

before birth and if they differentially treat boys and girls in terms of prenatal variables. If this is 

not the case, then sex-selective abortion—a more radical type of differential treatment—should 

be less of a concern.  However prenatal care variables are not available for older children (only 

for those under age four).  

                                                 
9 Most papers looking at gender discrimination  also concentrate on rural populations, e.g. Sen and Sengupta (1981), 
Rosenzweig and Schultz (1982), Behrman and Deolikar (1989), Subramaniam and Deaton (1991), Ganatra and 
Hirve (1994), Subramaniam (1996), Rose (2000), Pande (2003), Pande and Astone (2007),  Oster (2009) 
10 We exclude twins so that we can define the family’s youngest child’s sex. 
11 We pool children into age groups in order to minimize the likelihood that we do not reject the null because of 
small sample sizes.  
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Figures 2a and 2b display the results of our test graphically. They plot the p-value of the 

joint test that the Xs do not predict the gender of the youngest child. Figure 2a includes all 

children up to age five. For this full sample, we include all predetermined characteristics except 

prenatal care, which is not available for the older children. Figure 2b repeats the exercise 

including prenatal care use, and considers children up to age four only. The first point in either 

figure corresponds to children 0-to-11 months old. Starting with Figure 2a, we observe that for 

the youngest group (the first p-value reported), we cannot reject the null that families whose 

youngest is female look the same in terms of observable characteristics as families whose 

youngest is a boy. For living children, we can reject the null at the 5% level for the first time for 

the age group 19-30 months. Thereafter, we reject the null often. When we include prenatal care 

(Figure 2b) we reject the null at the 10% level for the first time for children ages 17-28 months. 

Based on these results, and to be conservative, we keep children all ages 0-15 months for our 

analysis.  

Table 1 shows the results of our tests in more detail, for both our final estimation sample 

and older children. For each predetermined characteristic, we test whether the means are the 

same for families whose youngest is a boy versus those whose youngest is a girl. At the bottom 

of the table we report the p-value from the joint test that all characteristics predict gender. For the 

sample of the youngest children, no coefficient is significant at the 5% or 10% level, and the 

joint test cannot reject the null that all characteristics do not predict gender. This is true whether 

we perform the test for the subset of prenatal care variables or include the other characteristics as 

well. For comparison, we report in the last two columns the result of the tests for the youngest 

children who are ages 16-47 and 48-59 months. For the 16-47 group we have all the same 

covariates as your our sample, for the 48-59 group we have fewer predetermined characteristics. 

For the children 16-47 months, two of the variables we examine are statistically different at the 

5% level, even though the joint p-test does not reject the null. Interestingly, we now observe that 

if the youngest is male, he is more likely to have more sisters. This is consistent with son-biased 

stopping rules. He is also more likely to have a mother who speaks Hindi, a characteristic that 

predicts son preferences (Pande and Astone 2007). Finally, for the oldest children (for whom we 

do not observe prenatal care), we see that four out of 14 of the predetermined family and mother 

characteristics are statistically significant predictors of gender. The joint test rejects the null, 

despite the fact that this sample is substantially smaller. 
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Note that if the bias from sex-selective abortion were large enough, even our youngest 

sample would not appear to be balanced between boys and girls.12 Also given that prenatal care 

use does not predict gender, we conclude that there is not enough use of ultrasound technology 

and sex-selective abortion in our data to matter. This is consistent with Bharadwaj and Nelson 

(2011) who find no gender differences in prenatal care in the 1992 DHS but do find that boys 

receive more prenatal investments than girls in the 1998-9 and 2005-6 waves of the Indian DHS.   

To assess the effect of excess mortality of girls on our results, we also plot in Figure 2 the 

p-value of the test for the sample of ever-born children (including children whose mothers 

reported them to have died by the time of the survey). Our results are basically the same, 

implying that the observed differences are mainly the result of stopping rules. However, as 

expected we would reject the null at the 10% level for living children for the first time at ages 17 

months, but if we looked at all children we would reject the null starting at 19 months. Therefore 

excess mortality matters, but only among the oldest group. 

Two caveats remain. First, as in other tests of random assignment, our test is imperfect 

because we can only observe that the samples are identical based on observables—it is possible 

that they are different based on unobservables. Second, although our samples are large, they are 

not large enough to precisely identify the age at which the covariates become unbalanced. In 

summary, the data support the assumption that gender is as good as “randomly assigned” among 

the youngest children, 15 months and younger. We use this sample to estimate whether girls 

receive fewer resources than boys, beginning with parental time. 

 

V-Results from the Time Use Survey 

We begin by investigating whether families spend more time taking care of children if 

their youngest child is a boy. We use data from the Indian Time Use Survey (hereafter TUS) 

conducted from July 1998 to June 1999 by the Social Statistics Division of the Central Statistical 

Organization of India. The TUS asked about the time use of all household members over five 

years of age during the previous 24 hours. The diary section was open-ended in terms of both 

describing the activities and giving beginning and ending times, with each activity identified as 

                                                 
12 We performed another test of sex-selective abortion: we looked at whether the preceding birth interval was shorter 
for boys than for girls, but again we found small and statistically insignificant differences. 
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multiple (simultaneous) or not.13 The survey collected data in six states chosen to be 

representative of the different regions of the country (Gujarat, Haryana, Madhya Pradesh, 

Meghalaya, Orissa and Tamil Nadu). There were 12,750 rural and 5,841 urban households 

interviewed, totaling roughly 75,000 respondents. Following the existing literature, we focus on 

rural households. We also analyze time-use data corresponding to “normal” days only (excluding 

holidays, etc).14 The main variable of interest is the amount of time spent on childcare by 

household members over age five. We follow Guryan et al. (2008) as closely as possible, and 

classify the following activities as childcare: physical care of children (washing, dressing, 

feeding); teaching, training and instruction of own children; accompanying children to places; 

travel related to care of children; and supervising children.  

These data have some limitations for our analyses. Aside from containing information on 

only six states, there is very little information about the participants. That effectively prevents us 

from reproducing our test that the predetermined covariates do not predict gender.15 Also, 

families cannot be identified, only households. And we can only identify the youngest child in 

the household (not in the family): for this reason, we restrict the sample to those who are the 

children or grandchildren of the household head.16  

The most important limitation of the TUS is that we do not know the identity of the child 

who was being cared for, we only know that individuals reported being occupied with 

childcare.17 However this feature has one advantage: because the questions on childcare do not 

refer to a particular child, respondents are less likely to systematically bias their responses based 

on the gender of their youngest child.  

Age in months is not available in the TUS. We look at children under age one for our 

main results; this group is closest to the experimental sample in the DHS. Because the TUS is 

small, and because there is substantial age-heaping at age one (which appears to differ by gender, 

                                                 
13 The activities were coded into 176 different types. For simultaneous activities, field workers determined the main 
activity and distributed the total time spent according to the relative importance of activities.  
14 This excludes “abnormal” days when there are guests, someone is sick, or there is a festival, as well as “weekly 
variants”, but most days are included. All households are interviewed for at least one normal day. 
15 We cannot reject the null in this sample either but we only have a few covariates. Results available upon request. 
16 Children who do not live with their biological parents receive less care on average, and it is possible that this 
differs by gender—for example, families are much more likely to adopt girls than boys. We restrict the sample to 
avoid these complications. We also exclude households with more than one child at the youngest age so we can 
define the sex of the youngest (if a boy and a girl are both aged three, we cannot tell who is the youngest). 
17 The survey did not ask the respondent who was present when an activity was performed. 
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according to Coale and Demeny 1967, and Bhat 1990), we also report results for children under 

age two. For comparison and to assess the bias among older children, we also report the results 

for children ages two-to-five years of age.  

Table 2 presents summary statistics. Households with children under two on average 

spent more than three hours on childcare per day, while households with older children spent a 

little less than two hours.18 Women provided more than 80% of the total time spent on childcare 

by the household. About 70% of childcare consisted of the physical care of children. During 

roughly half of the time devoted to childcare, the caregiver reported no simultaneous activity: we 

use this as a measure of the quality of childcare.  

Preliminary evidence of differential treatment by gender is presented in Figure 3, which 

shows the cumulative distribution of childcare by gender of the youngest child under age one.19 

The baby-boy distribution appears to first-order stochastically dominate that of baby girls, 

suggesting that boys receive more childcare than girls. To obtain estimates of the effect of gender 

on childcare time, we estimate  

Zh = 0  + *1 Bh + Xhρ + uh, 

where Zh is the total amount of time that all members in the household spent on childcare, and Bh 

is a dummy for whether the household’s youngest child is a boy. We present the results with and 

without controlling for predetermined household-level covariates, Xh. The standard errors are 

estimated using White’s correction for heteroskedascity, and we use the survey weights.20 

The main results in Table 3 indicate that families spend more time on childcare when the 

youngest is a boy than when the youngest is a girl. The first column estimates a simple OLS 

model where the dependent variable is the total number of minutes spent on childcare, including 

zeroes. It shows that households where the youngest child is a boy spend roughly 32 minutes 

                                                 
18 Although these numbers seem small, they are comparable to those from other countries. For example, Guryan et 
al. (2008) in Table 4 report that the average weekly childcare time for an adult with children ranges from four hours 
(South Africa) to about nine hours (US). Assuming that there are three adults per household on average this 
translates into roughly two (South Africa) to four (US) hours per day at the household level. The most likely reason 
why the numbers are so low is that individuals only report childcare when it is performed as a primary activity 
(exclusively)—previous research (Fedick et al. 2005) suggests that estimates of total childcare time are about three 
to four times larger when time spent with children (though not reported as childcare) is included.  
19 About 7% of households report spending no time (collectively) on childcare, even though they have an infant. 
20 We also estimated standard errors taking the survey design into account and found similar results (available upon 
request). The TUS had a sophisticated sampling scheme with three levels of stratification and clustering, and 
consequently there were many strata with one sampling unit. To account for all these features many assumptions 
have to be made, thus we opted for showing the OLS standards errors in the main tables. 
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more per day taking care of children than households whose youngest child is a girl, or about 

14% more relative to the mean. Column 2 shows that this estimate is robust to controlling for 

religion, ethnicity, and the area of land that the household owns. In Column 3, we estimate a 

logit of whether the household spends any time on childcare. Although the estimates are positive, 

they are not statistically significant, and they are somewhat small (about 4%). If we estimate an 

OLS model instead for those that report some care, we find that households whose youngest 

child is a boy spend roughly 24 minutes more (about 10% more) per day on childcare than 

households whose youngest child is a girl. Column 5 estimates a Tobit model, which accounts 

for censoring at zero. Again, we find a statistically significant increase in childcare of about 

15%.   

Panels B and C investigate how these effects vary with age. The effects are similar, 

though smaller, for children under two (Panel B). Panel C presents the results for households 

whose youngest is between two and five years of age. Regardless of the specification, we do not 

find any statistically significant effect of gender. In fact, all of the coefficients have the “wrong” 

sign. Thus, we fail to find evidence of differential treatment among this older group. This 

suggests that either the estimates for the older children are biased because of changes in family 

size, or that the nature of parental time inputs is different among older children.  

Table 4 looks at whether the effects of gender differ based on observable household 

characteristics and on the type of care. For reference purposes Column 1 reproduces our main 

estimates from Table 3. In Column 2, we interact gender of the youngest with the number of 

other children in the household under the age of six, which is also added as a control. The 

coefficient on gender is larger now, and the interaction with number of children is negative. If 

the youngest is the only child under six and a boy, then the household spends 44 minutes more 

on childcare. However there is no difference if there are four or more other children under the 

age of six. It would appear that when there are many small children, there is simply “no room” to 

provide differential treatment.  

We observe the same pattern for the older sample (Panel B), for which all coefficients are 

significant. Column 3 restricts attention to families with no other children under age six: for 

these families, all childcare is directed towards the youngest (for our main results, we do not 

know who in the household is receiving the childcare). We find that infant boys receive 60 more 

minutes of care than infant girls (about 30% more).  
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In Columns 4-7, we show that households spend more time in both private and public 

childcare if the baby is a boy than if it is a girl (Columns 4 and 6). The amount of childcare time 

per child is increasing with the number of children for public care, but not for private (Columns 5 

and 7). Most interestingly, gender differences in physical care do not decrease with the number 

of other siblings, whereas the effect of gender disappears for supervising if there are two 

additional children under age six. Again, we observe similar results for children under age two. 

These patterns can be explained by the private-versus-public nature of childcare activities. 

Because supervising is a public type of care, it makes sense that as the number of young children 

in the household increases, members will spend disproportionally more time in this type of care, 

and this time will not be closely related to the sex of the youngest child. In contrast, physical care 

is private, so there is room for differential treatment even when other young children are present.  

Column 8 shows estimates of the effect of gender on “exclusive childcare time”—our 

proxy for quality care—defined as the number of minutes that adults spent caring for children 

and not doing anything else. Households whose youngest child is a boy provide more exclusive 

childcare than households whose youngest child is a girl: roughly 60 minutes more per day if 

there are no other children under age six. In Column 9, we repeat the estimation for urban 

households. The effect of gender is actually negative, but the sample is small, and the standard 

errors are large. We also investigate who in the household provides the care. All members report 

spending substantially more time on childcare if the youngest is a male, even though in general 

the estimates are significant only for adult women (Appendix Table 1). 

Overall, we find that more time is spent on childcare in households whose youngest is a 

boy, and the quality of this time is higher.  

 

VI-Gender differences in other inputs: additional results from the DHS. 

 

VI.a. Effect of gender on inputs: main results 

We now investigate whether there are boy-girl differences in other child investments, 

using the DHS data on breastfeeding, vitamin A supplementation and vaccinations. The results 

are reported in Table 5. All estimations use survey weights and correct the standard errors for 

survey design.  
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First we look at breastfeeding, which is deemed to be the ideal source of nutrition for 

infants, particularly in developing countries where food is in limited supply, and water and 

sanitation are poor.21 We do not find that boys are more likely to have ever been breastfed 

(defined as ever breastfed, or breastfed for less than one month). This is true in both the linear 

and non-linear specifications, and regardless of whether we add controls. The effect sizes are 

precisely estimated zeroes. Most likely this is because more than 95% of children are ever 

breastfed.  

In the next set of columns, we look at the duration of breastfeeding. We estimate 

censored linear regressions, because many children are still being breastfed at the time of the 

interview. Alternatively, we estimate a censored log-linear model and an accelerated-failure time 

model. We find a positive and statistically significant effect of gender on the duration of 

breastfeeding. If we estimate a proportional hazard model, we find that the odds of stopping 

breastfeeding are lower for males. The magnitudes suggest that breastfeeding duration increases 

as much as 40% when the child is a boy, which is consistent with Jayachandran and Kuziemko 

(2009).  

Next we look at whether children are given Vitamin A, which protects against night 

blindness, measles and diarrhea.22 Using either a linear or non-linear model, we find that boys 

are about 13% more likely to receive vitamin A.  

Finally, we look at whether mothers have a vaccination card on hand at the time of the 

interview. Only about 28% of mothers have a vaccination card, but they are 4% more likely to 

have the vaccination cards of boys. For all outcomes, the results are not sensitive to the inclusion 

of covariates—the point estimates are almost identical, as one would expect if these 

characteristics are orthogonal to gender.  

We also investigate whether boys are more likely to be vaccinated for specific diseases.23 

At the interview, mothers were asked first for the vaccination cards. If the mother had it, then all 

of the vaccination history was taken directly from the card. If the card was not available, then 

                                                 
21 See Jayachandran and Kuziemko (2009) for a more detailed discussion of the benefits of breastfeeding in the 
context of developing countries. 
22 Children between six months and five years of age are supposed to take Vitamin A supplements every six months. 
The first two doses can be given at the same time that required vaccinations are given. 
23 The recommended vaccination schedule for children in India is as follows: BCG at birth; polio at birth, six weeks, 
10 weeks, and 14 weeks; DPT at six weeks, 10 weeks, and 14 weeks; and measles at nine months. BCG protects 
against tuberculosis and DPT protects against diphteria, pertussis and tetanus. 
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mothers were asked to provide information on each type of vaccination. We use the information 

from either source. These results are shown in Table 6. The magnitudes vary depending on the 

vaccination but we find that boys are about 8 to 12% more likely to be vaccinated than girls. The 

results are not sensitive to the inclusion of covariates, the use of a non-linear model (Panel B), or 

whether we restrict the sample to those who are old enough in principle to have received all 

vaccinations already (Panel C). Oster (2009) and Jayachandran and Kuziemko (2009) find 

similar results.  

However if we restrict the sample to children with vaccination cards (Panel D), then most 

estimates are small, some are negative, and all are statistically insignificant. However, these 

results are suspect for two reasons. First, the sample itself is substantially smaller (less than 30% 

of the original) and it is selected on the basis of gender—we already documented that mothers 

are more likely to have a card for boys. Moreover, the only study that we are aware of that 

looked at the quality of vaccination reports found that parental reports were in fact more accurate 

than vaccination cards (Babu et al. 2011). These results suggest why some previous research has 

not found large gender differences in vaccinations: some of it was based on vaccination cards 

(Borooah 2004) and other studies used surveys based entirely on mothers reports, which could be 

more (or less) reliable than the DHS data. This might be the case in the NSS, which Deaton 

(2003) uses to draw his conclusions.  

 

VI.b. Does anticipated family size explain our findings? 

The main threat to our identification strategy is the possibility that families change their 

expectations once the gender of the baby is revealed at birth. In particular, parents who desire 

boys but have a girl might anticipate the need to have more births in the future: they might start 

saving, or go back to work earlier (Rose 2000), which could explain why girls receive fewer 

investments. Unfortunately, there is no data on anticipated family size. Therefore we assess its 

importance in two ways. First, we use a proxy for anticipated family size to see how it affects our 

results. Alternatively, we estimate the effect of family size itself on inputs in order to assess how 

omitting anticipated family size might affect our results.  

We start by using the question “would you like to have another child or would you prefer 

not to have any more children?” as a proxy for anticipated family size. Table 7 Panel A shows 

that if the youngest child is a boy then mothers are less likely to want more children—this 
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suggests that anticipated family size indeed responds to the gender of the last born. In fact the 

effect is in fact quite large: about 41% of women want more children, but this falls by 13 

percentage points (a 30% decrease) if the youngest is a boy. The effects are the same if we add 

controls. In Panel B, we reproduce our results controlling for this variable. We find that 

including this variable as a control has virtually no effect on our coefficients of interest. The 

point estimates are identical to those in Panel C (which report the baseline results for the 

estimation sample in this table, which includes only those with older sibs for comparison with 

the next exercise) with one exception: the coefficients for gender on breastfeeding duration 

increase (although given the standard errors we would not reject equality).  

However wanting more children is not random; it is jointly determined with investments. 

To obtain unbiased estimates, we follow the previous literature (see Schultz 2008) and 

instrument for wanting more children using the gender of the first born: in families with son-

preference, a first born girl should increase the desire for more children. These families are less 

likely at any point in time to have achieved their optimal number of boys relative to those 

families whose first born is a boy. The gender of the first born is indeed a good predictor of the 

desire to have more children: if the first born is a male, then mothers are less likely to want more 

children: the coefficient (reported in Panel D) is negative and statistically significant—the point 

estimate is 0.082 (standard error 0.013). When we instrument for wanting more children, we find 

our results are essentially unchanged for most inputs (panel C). For having a vaccination card, 

breastfeeding, 24 and for all of the vaccinations, the coefficients on youngest is male remains the 

same.  The coefficients on Vitamin A fall a bit, but the standard errors are large.  

An alternative way to gauge the bias created by the (unobserved) anticipated family size 

is to estimate the effects of family size directly and to assume that the effects of an anticipated 

increase in family size are similar to the effects of an increase in actual family size.  The results 

are shown in Appendix Table 2.  A simple OLS regression of inputs on family size shows that 

children in larger families receive fewer inputs. However these results are difficult to interpret 

because these families also might be poorer. To obtain better estimates, we again instrument for 

family size using the gender of the first born. We find that the gender of the first born is a good 

                                                 
24 We cannot estimate 2SLS models for duration of breastfeeding, so the Table reports the reduced-form effect of 
youngest gender and the gender of the first born.  
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predictor of family size: if the first born is a boy, then family size decreases by about 4% (.13 

fewer children).  

The 2SLS estimates of the effects of family size on inputs reveal a different picture from 

the OLS estimates.25 We find that family size significantly lowers both the incidence and 

duration of breastfeeding.26 But all of our other estimates are statistically insignificant. 

Noticeably, the effect of family size is positive for most vaccinations, probably because there are 

returns to scale. Therefore we infer that anticipated family size might explain the effects of 

gender on breastfeeding, but not the effects we observe for other inputs.27 Thus overall we find 

very little support for the idea that anticipated family size explains our results. 

 

VI.c. Additional robustness checks 

In Appendix Tables 3 and 4, we perform a number of additional robustness checks. The 

first columns reproduce our main results for reference.  

In Appendix Table 3, we report estimates limiting the sample to first-born children— 

previous literature suggests that sex-selective abortion is less important among first-born 

(Retherford and Roy 2003). On the other hand, previous literature also suggests that 

discrimination against girls increases with birth order (Das Gupta 1987), so it is not entirely clear 

a priori what to expect in this sample. Nevertheless, we find that even among first born, boys 

appear to receive more inputs, although the magnitudes are smaller and not always significant 

(however this sample is substantially smaller).  

Next we investigate the effect of mortality on our estimates. One advantage of the 1992 

DHS data (unlike later waves) is that mothers were asked to report on investments even for 

children who had died before the interview. Assuming that maternal reports aren’t gender biased, 

we can gauge the effect of mortality on our estimates by simply including these deceased 

children in our estimation sample. The results do not differ from our main results. Alternatively, 

we can compute bounds by imputing the missing information under best and worst case 

                                                 
25 We also used twins as an instrument and found similar results, but these were more sensitive to the addition of 
covariates (results available upon request). 
26 We report reduced forms (instead of 2SLS) for breastfeeding duration because of censoring. 
27 Unfortunately, we cannot assess these effects for childcare time because the survey identifies only households—
we have no information on the gender of the first born. 
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scenarios for children who died before the investment was possible28 or for whom the maternal 

report was missing.29 Our bounds are not very tight as many include zero. However if one 

assumes that only the upper bounds are likely (deceased girls were treated worse than deceased 

boys) then our upper bounds imply that our estimates could be substantially underestimated.  

Appendix Table 4 shows the results for all children ages 16-47 months (regardless of 

whether they are the youngest). This sheds light on the extent to which using older children 

generates bias.30  For this older sample, the coefficients are similar and still statistically 

significant, but they are a bit smaller relative to the sample mean than our main estimates. 

Comparing the magnitudes to those in the first columns (our main results), we can conclude that 

the bias due to son-biased stopping rules and family size appears to be small for vaccinations, but 

it is much larger for breastfeeding and for childcare. These results are consistent with our theory: 

vaccinations are acquired while children are still very young and are still the youngest in the 

family, whereas other inputs are received at older ages when households will have had a chance 

to respond with additional children.  

Next we report the results for urban areas. Just as in the TUS, these results are smaller 

and generally insignificant, although most of the times still positive. Overall, our findings 

support the hypothesis that differential gender treatment is greater in rural areas.  

In summary, for all of the measures we looked at, we find that boys are given more inputs 

than girls. In general, girls receive at least 10% less than boys. To assess the magnitude of these 

differences, we estimate how much gender differences in investments can explain the higher 

mortality rates among girls. We use estimates from the literature of the effects of breastfeeding, 

vitamin A supplementation and vaccinations on mortality.31 Mortality rates among children 12 to 

                                                 
28 We impute the information for polio/DPT 1st dose if the child died before two months, for polio/DPT 2nd dose 
before three months, for polio/DPT 3rd dose before four months, for vitamin A before six months and for measles 
before nine months. 
29 The upper bounds assume that all dead girls would have not received inputs (for dummy variables) or would have 
been given the 25th percentile of the girls' outcomes distribution. For boys, we assume that had they lived they 
would all have been given inputs (for dummy variables) or be given the 75th percentile of boys' outcome 
distribution. For upper bounds, we assume the opposite. 
30 We use all children, not just the youngest to reproduce the exercises that are typically done in the literature.  
31 For each investment, we first calculate the (gender neutral) probability of death conditional on not receiving the 
investment (p0) and the (gender neutral) probability of death conditional on receiving it (p1) using the relative risks 
estimated in the literature [vitamin A (Rahmathullah et al 2003); breastfeeding (Briend, Wojtyniak, and Rowland, 
1988 and WHO 2000); measles (Koenig et al 1990); Polio, BCG and DPT (Moulton et al 2005)], the mortality rate 
for children 12 to 36 months old (20.3 per 1,000 children) and the fraction of children in this age group receiving the 
investment (see Jayachandran and Kuziemko 2009 for a more detailed discussion). Let өb be the fraction of boys and 
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36 months of age are 16.7 per 1,000 for boys and 24.2 per 1,000 for girls. A back-of-the 

envelope calculation suggests that the observed differences in investments (excluding time 

inputs) explain about 27% of excess girl mortality among children in this age group (or, about 

two additional girl deaths per 1,000 children).32 

 

VII-Investigating reasons for differential investments 

 

We begin by investigating whether boys appear to need more inputs from their parents—this 

could be the case if boys are more active, or if they get sicker more frequently. The mortality 

data from India is inconsistent with the view that boys in India need more, because girls have 

larger mortality rates than boys from about 6 months of age to well into adulthood.  

We look at the medical literature to assess whether any of the inputs we study are known 

to provide greater benefits to boys than girls. The meta-analysis of RCTs performed by Beaton et 

al. (1994) shows that vitamin A supplementation has the identical proportional effect on 

mortality for boys and girls. Not much is known about other inputs from randomized trials. But 

the benefits of breastfeeding also appear not to vary by gender, or if anything females appear to 

benefit more.33 BCG vaccines appear to benefit girls more (Roth et al. 2006), and so do measles 

vaccines (Koenig 1990). This evidence, though scant, does not support the idea of greater 

benefits for boys. Nevertheless, parents could still perceive greater benefits to providing 

particular inputs to boys. So we empirically investigate this hypothesis. 

We perform two data exercises to assess how much of the observed differences in inputs 

could be driven by boys’ greater needs.  First we look at South Africa, the only developing 

country we are aware of with a dedicated time-use survey,34 a DHS survey, and for which 

                                                                                                                                                             
өb be the fraction of girls (in the age group) who receive the investment. The difference in the mortality rates of girls 
versus boys associated to gender differences in the investment is equal to (өb- өg)*(p0- p1). We sum these differences 
over all investments and divide the total by the difference in mortality rates of girls and boys. 
32 We know of no good estimates of how parental time affects mortality. Assuming that one additional hour of 
childcare reduces the probability of death (in absolute terms) by 0.0003, the boy-girl difference in time use of 
roughly 51 minutes translates into a boy-girl difference in mortality of 0.000255. Thus we would further explain 
3.4% of excess female mortality. 
33 Klein et al (2011) report that most studies of breastfeeding have not investigated whether the benefits differ by 
gender, but they find breastfed girls have greater protection against respiratory infections than boys.  
34 We use data from the South African Time Use Survey, conducted in 2000 by Statistics South Africa. Information 
on time use was collected for persons aged 10 years and above, with two respondents randomly chosen per 
household (or only one if there was only one household member aged 10 years or more). Data were collected for 
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fertility patterns suggest no son preference (Gangadharan and Maitra 2003). Second we use the 

South of India as a baseline for establishing needs: previous research has suggested that in the 

South preferences for boys are smaller than in the North, but there is no ex-ante reason to believe 

that needs of children are different in the South.  

Beginning with the South African case, Figure 4 plots the cumulative distribution of 

household childcare time by gender of the youngest among children under the age of one. There 

is a small difference between the genders: households in which the youngest is a girl are more 

likely to report no care. Compared to the Indian TUS, South African mean childcare time is 

lower and a larger fraction of households report spending no time at all on childcare. These 

differences are easily explained: the Indian TUS collects diaries for all household members aged 

six and above, whereas the South African TUS only collects time use for one or two 

eligible members (above age 10).  

In Table 8 we report the point estimates for the gender differences: we find that boys are 

more likely to get any care (the implied marginal effect is about 12%), but that conditional on 

getting care, girls appear to get more care than boys. This evidence does not strongly support the 

idea that boys need more childcare time. Table 8 also reports whether boys are given more of all 

other inputs. Most of the coefficients on the male dummy are statistically insignificant; 

furthermore, most coefficients are negative and small for most inputs, which suggests that there 

is no greater need among boys. Of course, this evidence is only suggestive, since it is not clear 

that South Africa provides a good counterfactual for India. 

We look at the needs question in another way by comparing the effects of gender in the 

North and South of India. If we assume that children in the North and South have the same 

needs, then needs cannot explain any existing any north-south differences in the data. The South 

provides a closer counterfactual for needs than does South Africa. However since the time use 

data only includes six states, this exercise is not very informative for time inputs (there is only 

one state in that survey, Tamil Nadu, that falls in the traditional definition of South (results 

available upon request). These results are in Table 8. Interestingly, we do find positive and often 

significant effects of gender in the South, particularly for breastfeeding. But we also find that the 

interaction between gender and north is positive for all of our DHS outcomes (except 
                                                                                                                                                             

8,564 households (14,553 respondents). We use data from 521 households whose youngest member is under one 
year old.  
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breastfeeding), in spite of the fact that sex-selective abortion in the North most likely biases these 

estimates downward. Only a few of these interactions are statistically significant, but they are all 

positive, suggesting greater investments in the North for DPT, Polio and Vitamin A. Therefore, 

with the possible exception of breastfeeding, needs alone cannot account for the larger 

investments observed for boys. 

Our results suggest that needs and anticipated family size cannot explain all of the effects 

of gender that we observe. We do not have enough information to assess whether parents invest 

less in girls because of lower returns, the other main reason for differential investments. 

However, there is growing evidence that this is indeed part of the explanation, as suggested in 

the seminal paper by Rosenzweig and Schultz (1982). Jensen (2010) and Oster and Millet (2011) 

document that in India, when the returns to schooling for women increase (as a result of the 

availability of higher paying jobs in female oriented call-centers), girls stay in school longer. 

Also Jayachandran and Lleras-Muney (2010) show in a different context that when female adult 

mortality declines, schooling of girls increases. Relatedly, Qian (2008) shows that in China girls’ 

mortality and education improve when the price of female-intensive crops (and thus female 

income) rises. Overall, our findings point to either differences in returns or differences in 

preferences as the main reasons for lower investments in girls. Still is possible that households 

invest more in girls in dimensions that we cannot observe, such as dowries. 

 

VIII-Other results from the DHS: anthropometric measures and living arrangements 

 

We now look at the effect of gender on height-for-age, weight-for-age, and weight-for-height Z-

scores. These are computed by subtracting the median of the reference population and dividing 

by the standard deviation of the standard population.35 It is important to normalize outcomes 

because boys are known to be taller and heavier than girls. We further examine whether gender 

determines the likelihood of a child being stunted, underweight, or wasted.36 Importantly, these 

measures are not ideal for investigating differential treatment. Anthropometric measures are 

                                                 
35 About 15% of children were not measured but this did not differ by gender. 
36 A child is stunted if the height-for-age is two s.d. below the median of reference population (measures chronic 
under-nutrition); a child is underweight if the weight-for-age is two s.d. below the median (measures both chronic 
and acute under-nutrition); a child is wasted if the weight-for-height is two s.d. below (measures acute under-
nutrition). 
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outcomes, not inputs, and parental control over them is limited. Height and weight are the result 

of caloric inputs, but also of other factors such as the incidence of disease and caloric 

expenditure, which may differ by gender for biological or other reasons.  

Table 9 shows that boys fare worse than girls for all of the anthropometric measures we 

use if we rely on the Z-scores provided by the DHS (this is also what Mahajan and Tarozzi 2007 

find). These results are hard to reconcile with the previous evidence presented here, that inputs 

are higher for boys. However, Sommerfelt and Arnold (1998) also find that girls under the age of 

two have better anthropometric measures than boys in almost all developing countries for which 

DHS data is available (41 surveys were used).  

There are two possible explanations for these patterns. First, the results may be driven by 

the standardization method, as first pointed out by Thomas (1990). Indeed, when we use 

alternative standards (the 1990 British Standards for height-for-age, and weight-for-age and the 

2000 CDC standards for weight-for-height37), the coefficients on male are substantially smaller, 

statistically insignificant, and sometimes they switch signs. It is possible that the standards affect 

the results because baseline differences in height and weight between boys and girls depend on 

the nutrition patterns of each country. Moestue (2009) also finds that boy-girl differences for 

Bangladesh depend on the standard used; Tarozzi (2008) also documents that the choice of 

standard significantly affects the results on anthropometrics by gender. Another possibility is that 

the effect of lower inputs for girls appears with a lag: girls are sturdier than boys at birth and this 

initial advantage is larger than the immediate effects of low parental inputs. Over time though, 

the effects of lower inputs eventually benefit boys. Indeed, if we look at older children (above 

age two) we find that boys have better anthropometrics than girls. We cannot resolve this puzzle 

here, but we note that anthropometric measures yield substantially different results from inputs. 

Finally, we investigate whether living arrangements are affected by the gender of the 

youngest boy. Studies in the United States report that having a son reduces the probability of 

parents getting divorced (Katzev, Warner and Acock 1994; Morgan, Lye and Condran 1988; 

Mott 1994), and that daughters are less likely to live with their fathers (Dahl and Moretti 2004). 

However, there is little research for developing countries, where boy-girl discrimination is 

thought to be a greater concern. Table 10 reports our results. Panel A uses the DHS and asks 
                                                 

37 There are no British standards available for weight-for-height. The 2000 CDC standards for height are not 
available for children under age two. 
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whether gender of the youngest affects the likelihood that different family members live 

together. We do not look at marital status as an outcome because all mothers are married in our 

samples. We do look at whether women report that their husbands live at home. We find that if 

the youngest is a boy, the husband is more likely to live at home. The effect is insignificant and 

very small, less than 1% though. There is no evidence that the gender of the youngest affects the 

likelihood of the mother being the household head’s wife. That might occur if, for example, 

families move in with their parents after a boy is born. There is also no discernable effect of the 

gender of the youngest on the number of siblings living at home. Sisters are slightly more likely 

to live at home (though this is not significant) whereas brothers are less likely to live at home if 

the youngest is a boy (about 5% less, and this is statistically significant). 

 In Panel B we look at household composition in the TUS. Although the unit of 

observation is now the household, we find similar results. If the youngest is a boy, then there are 

more men over age 15 in the household (about 15% more) and this is statistically significant. 

There are also more women over age 15 (about 11%), and this effect is also statistically 

significant. Again there is no apparent effect on the number of total children under age 14, but 

they are more likely to be girls and significantly less likely to be boys (about 20%). Together, 

these results suggest that when the youngest is a boy, the family is more likely to retain 

daughters for caregiving, or to have another female adult move in to provide childcare and 

household help.  In addition, the household is more likely to have adult males and is less likely to 

have male children. 

 

VII-Conclusion 

This study asks whether parents treat girls and boys differently in India. Although women in 

India lag behind men in many domains, there is equivocal evidence on whether these lower 

outcomes are the result of lower parental investments in girls, particularly because boys and girls 

live in household with different observed and unobserved characteristics as a result of son-biased 

stopping rules. We develop a novel empirical strategy to address this problem by looking at 

children while they are still very young, whose parents have not had a chance to respond to the 

gender of the last child. We then used our identification strategy to look at differential treatment 

along measures previously used in the literature. In addition, we examine whether families spend 
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more time with childcare when the baby is a boy than when the baby is a girl. Time investments 

have not been studied previously in the context of developing countries.  

We find evidence that boys receive more investments than girls in rural India. 

Households with an infant boy under the age of one spend roughly 30 minutes more per day 

(about 15% more time) on childcare than households with an infant girl. This difference is even 

larger for one-child households: households with one boy under age six spend roughly 60 

minutes more (30%) per day on childcare than households with one girl under age six. We also 

find suggestive evidence that the quality of childcare given to boys is higher. Moreover, we find 

that boys are more likely to be vaccinated, to be breastfed longer and to be given vitamin 

supplementation. In general we find these inputs to be at least 10% higher for boys.  

We also investigate why parents may choose to invest less in girls. We find no evidence 

of greater needs among boys for all measures except possibly for breastfeeding and childcare 

time for which the evidence is mixed. We also look at whether girls receive less because families 

of recently-born girls anticipate that they will have to continue having more children. We find 

some evidence to suggest this is true for breastfeeding, but not for other outcomes. Thus, in 

general, we find that these explanations cannot account for the patterns we observe across all 

outcomes.  We conclude that parents invest less in girls because these investments have lower 

returns (for which there is some evidence in the literature), or because they have a preference for 

sons.  
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FIGURE 2a: Do characteristics of the mother and the family predict gender? 

 
Figure 2b: Predicting gender using mother, family and prenatal care use. 

 

0
.2

.4
.6

.8
1

P
-v

al
ue

0 20 40 60
Age in Months

All Children Living Children
10% Significance Level 5% Significance Level

12 Months Window Size
Moving joint F-test

0
.2

.4
.6

.8
P

-v
al

ue

0 10 20 30 40
Age in Months

All Children Living Children
10% Significance Level 5% Significance Level

12 Months Window Size
Moving joint F-test



36 

 

 

 

FIGURE 3: Childcare Time by gender, Indian Time Use Survey 1998 -1999  

 
FIGURE 4 Childcare Time by gender, South Africa Time Use Survey 2000 
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Appendix 1 

Proposition. Let E[S|N] be the desired number of sons of the family of the average child 

in a family with N children and E[S|N,G] the desired number of sons of the family of the average 

girl in a family with N children (G is an indicator variable for whether the child is a girl). If 

families continue to have children until they achieve their desired number of sons S, then 

E[S|N]≥E[S|N,G]. 

Proof: It is sufficient to show that p(S≤s|N) first-order stochastically dominates 

p(S≤s|N,G).  By definition, we have: 

p(S=s|N)=p(S=s,G|N) + p(S=s,B|N), 

 p(S=s|N)=p(S=s|N,G) p(G|N)+p(B|S,N) p(S=s|N), 

which can be rewriten as: 

p(S=s|N) [1- p(B| S,N)] = p(S=s|N,G)p(G|N), 

 p(S=s|N)=p(S=s|N,G)*[p(G|N)/p(G|S,N)]. 

Finally, notice that the term between brackets is increasing in S since p(G|S,N) is decreasing in 

S. Because p(S=s|N) and p(S=s|N,G) must be equal to one when summed over s, it must be that 

the term between brackets [p(G|N)/p(G|S,N)] is lower than 1 for low values of S and greater than 

1 for high values of S, and that p(S≤s|N) first-order stochastically dominates p(S≤s|N,G).  QED. 

 



Appendix 2

We consider a model in which there is heterogeneity in the way that households treat boys and girls.
Formally, the model can be written as:

Zih = δ0,h (1−Bih) + δ1,hBih + ξih, (1)

where Zih is the investment in child i in household h, δ0,h (δ1,h) is the average investment made by household
h in girls (boys), Bih is a dummy that is equal to 1 if child i in household h is a boy and νih is an error term.

Unconditional

Suppose we run a regression of Zih on a constant and Bih. In this case, the OLS bias is given by:

Cov (ξih, Bih)

V ar (Bih)

because the average boy and the average girl are in families with identical preferences for children – i.e.,
E [δ0,h|Bih] = E [δ0,h] and E [δ1,h|Bih] = E [δ1,h]. However, because girls are on average in larger families
than boys, the OLS estimate is biased if Nh is part of the error term ξih.

Conditional on Family Size

We can rewrite (1) as:

Zih = E [δ0,h|Nh] + (E [δ1,h|Nh]− E [δ0,h|Nh])Bih + νih + ξih, (2)

where
νih = δ0,h − E [δ0,h|Nh] + [(δ1,h − E [δ1,h|Nh])− (δ0,h − E [δ0,h|Nh])]Bih. (3)

Suppose we run a regression of Zih on a constant and Bih, controlling for family size Nh. In this case,
the OLS bias is given by:

Cov (νih, Bih|Nh)

V ar (Bih|Nh)
+
Cov (ξih, Bih|Nh)

V ar (Bih|Nh)
.

Here we are interested in the bias that may arise from how families with different preferences treat boys and
girls so we will concentrate in the first term. Let us write:

Cov (νih, Bih|Nh)

V ar (Bih|Nh)
=
E [(νih − E [νih])Bih|Nh]

V ar (Bih|Nh)

and the law of iterated expectations implies:

Cov (νih, Bih|Nh)

V ar (Bih|Nh)
=

E [E [(νih − E [νih])Bih|Bih, Nh]]

V ar (Bih|Nh)
=

=
pr (Bih = 1|Nh)

V ar (Bih|Nh)
E [(νih − E [νih]) |Bih = 1, Nh] . (4)

Furthermore, notice that we can rewrite E [νih|Nh] as:

E [νih|Nh] = pr (Bih = 1|Nh)E [νih|Bih = 1, Nh] +

+pr (Bih = 0|Nh)E [νih|Bih = 0, Nh] . (5)



Substituting (5) into (4) yields:

Cov (νih, Bih|Nh)

V ar (Bih|Nh)
= κ {E [νih|Bih = 1, Nh]− E [δ0,h|Bih = 0, Nh] + E [δ0,h|, Nh]} =

= κ {(E [δ1,h|Bih = 1, Nh]− E [δ1,h|Nh])− (E [δ0,h|Bih = 0, Nh]− E [δ0,h|Nh])} ,(6)

where

κ =
pr (Bih = 1|Nh) [1− pr (Bih = 1|Nh)]

V ar (Bih|Nh)
. (7)

Therefore, the sign of the bias is determined by the expression between curly brackets in (6):

(E [δ1,h|Bih = 1, Nh]− E [δ1,h|Nh])− (E [δ0,h|Bih = 0, Nh]− E [δ0,h|Nh]) .

Notice that the same formula applies if one conditions on a vector Xih that contains family size Nh.



Sample:

const. 
(mean for 
females) s.e.

coefficient 
on male s.e

const. 
(mean for 
females) s.e.

coefficient 
on male s.e

const. 
(mean for 
females) s.e.

coefficient 
on male s.e

Child characteristics
# of siblings ever born 2.088 [0.032]*** 0.009 [0.046] 2.185 [0.032]*** 0.062 [0.041] 2.69 [0.079]*** -0.02 [0.101]
# of brothers ever born 1.011 [0.020]*** -0.037 [0.027] 1.079 [0.018]*** 0.003 [0.024] 1.432 [0.048]*** -0.103 [0.062]*
# of sisters ever born 1.076 [0.020]*** 0.046 [0.029] 1.106 [0.021]*** 0.058 [0.028]** 1.259 [0.050]*** 0.083 [0.062]
Birth month 6.866 [0.055]*** -0.109 [0.077] 6.723 [0.049]*** 0.024 [0.069] 6.762 [0.125]*** -0.17 [0.164]
Mother's characteristics
Mother's age 24.716 [0.089]*** 0.028 [0.125] 26.669 [0.091]*** 0.147 [0.124] 30.1 [0.226]*** -0.208 [0.276]
Mother's ethnicity 
(scheduled caste omitted)
  Scheduled tribe 0.114 [0.005]*** -0.005 [0.007] 0.114 [0.006]*** -0.001 [0.007] 0.086 [0.010]*** 0.01 [0.013]
  Other 0.744 [0.007]*** 0.005 [0.009] 0.753 [0.008]*** -0.003 [0.009] 0.773 [0.016]*** 0.003 [0.019]
Mother's religion (other 
omitted)
  Hindu 0.818 [0.006]*** -0.002 [0.008] 0.832 [0.008]*** 0 [0.007] 0.817 [0.015]*** 0.031 [0.018]*
  Muslim 0.132 [0.005]*** 0.003 [0.008] 0.126 [0.008]*** -0.003 [0.006] 0.126 [0.014]*** -0.037 [0.015]**
  Christian 0.021 [0.002]*** 0 [0.002] 0.018 [0.002]*** -0.002 [0.002] 0.025 [0.005]*** -0.006 [0.006]
Mother's years of education 1.954 [0.053]*** -0.042 [0.074] 1.929 [0.059]*** -0.023 [0.065] 2.154 [0.131]*** -0.088 [0.176]
Mother born in urban area 0.063 [0.004]*** -0.005 [0.005] 0.063 [0.004]*** -0.002 [0.005] 0.072 [0.010]*** 0.001 [0.012]
Mother's age first married 16.36 [0.043]*** 0.041 [0.062] 16.223 [0.046]*** -0.02 [0.056] 16.092 [0.108]*** 0.005 [0.137]
Mother's age at first birth 18.551 [0.045]*** 0.054 [0.066] 18.459 [0.047]*** -0.032 [0.061] 18.534 [0.121]*** -0.288 [0.150]*
Mother speaks Hindi 0.483 [0.008]*** -0.016 [0.011] 0.422 [0.009]*** 0.018 [0.011]* 0.361 [0.018]*** 0.038 [0.025]
Pvalue of test that mother and family charateristic 0.2803 0.6013 0.005
Prenatal characteristics+

Any prenatal care? 0.607 [0.008]*** -0.004 [0.011] 0.582 [0.009]*** 0.007 [0.010]
# prenatal visits 2.245 [0.041]*** -0.033 [0.058] 2.304 [0.047]*** 0.007 [0.055]
Any tetanus shots? 0.587 [0.008]*** 0.009 [0.011] 0.564 [0.009]*** 0.006 [0.011]
# tetanus shots 1.28 [0.019]*** 0.026 [0.027] 1.3 [0.022]*** -0.002 [0.026]
non-home delivery 0.157 [0.006]*** 0.01 [0.008] 0.174 [0.006]*** -0.005 [0.008]
Pvalue of test that prenatal predict gender 0.1937 0.6283
Test results from regressions that include all charateristics
(3) Pvalue prenatal only (Joint Test) 0.135 0.5104

(4) Pvalue excl. prenatal (Joint Test) 0.2268 0.5405
(5) Pvalue all (Joint Test) 0.1435 0.661 0.005

Age 48-59 months (N=2,501)

TABLE 1: TESTING RANDOM ASSIGMENT (DHS 1992). MEAN DIFFERENCES BY GENDER.

Standard errors (in brackets) are computed taking survey design into account. Coefficients reported from separate linear regressions, where each characteristic is regressed on a 
dummy for male and a constant. The p-value for the joint test comes from regressing the youngest child's gender on all the charateristics (except number of all siblings, since that 
is collinear to the number of borthers and number of sisters) and testing whether they are jointly significant. + Prenatal characteristics only available for children 0-47 months old. 
In the 16-59 age group the number of observations for these variables is 13,690.   ** p<0.05, * p<0.1

NA

NA

Age 16-47 months (N=13,690)Age 0-15 months   (N=11,595)
Youngest live child



Mean S.D. Mean S.D. Mean S.D.
Percentage of all households 0.04 0.15 0.30
Time Use:
Time spent on child care (minutes per day) 236.62 159.28 196.90 152.19 107.19 129.05
Time spent on child care by female members 192.15 134.80 166.23 132.76 88.87 108.79
Time spent on child care by male members 44.47 82.20 30.67 64.70 18.31 51.21
Time spent on physical care 165.22 125.96 137.89 121.83 73.06 94.29
Time spent supervising  children 55.50 114.87 48.96 105.50 24.26 76.10
Time spent instructing children 5.25 27.37 4.10 23.10 5.24 26.62
Time spent taking children to places 10.65 67.78 5.94 42.81 4.62 39.92
Time spent on exclusive child care 132.44 153.63 95.55 137.45 57.43 105.52
Household characteristics:
Household size 4.68 1.87 4.54 1.83 3.95 1.54
Male youngest 0.46 0.50 0.51 0.50 0.55 0.50
Scheduled tribe 0.24 0.43 0.23 0.42 0.21 0.41
Scheduled caste 0.14 0.35 0.18 0.38 0.20 0.40
Hindu 0.91 0.28 0.91 0.29 0.92 0.28
Per capita expenditure 393.31 175.58 393.83 188.92 408.61 196.36
Land owned and possessed 4.85 7.97 4.51 8.25 3.89 9.13
Observations
Notes: Weighted statistics for households in each sample. The statistics in the first two columns are for households where the youngest child is under 1, 
columns (3) and (4) for households where the youngest child is under 1, and the last two columns for households where the youngest is between 2 and 
5 years of age.

HHs with youngest below age 1

TABLE 2. DESCRIPTIVE STATISTICS, TIME USE SURVEY (1998-1999). RURAL AREAS.

HHs with youngest ages 0-1 HHs with youngest ages 2-5

562 1,947 3,815



Model: OLS OLS Logit OLS Tobit
Dependent 
variable:

Number of minutes per 
day, including 0s

Number of minutes per 
day, including 0s

Any care? (Beta 
reported)

Number of minutes 
per day>0

Number of minutes 
per day 

(1) (2) (3) (4) (5)

Male=1 32.772 30.018 0.613 24.226 36.309
[17.669]* [17.511]* [0.397] [17.344] [18.855]*

Controls? no yes no no no 
Obs 562 562 562 516 562
Mean Y 236.62 236.62 0.93 255.51 236.62

Male=1 18.689 16.602 -0.052 21.951 18.647
[8.643]** [8.593]* [0.182] [8.629]** [9.509]**

Controls? no yes no no no
Obs 1947 1947 1947 1747 1947
Mean Y 196.90 196.90 0.90 219.17 196.90

Male=1 -1.745 -2.056 -0.013 -1.888 -2.205
[5.086] [5.094] [0.089] [5.991] [6.905]

Controls? no yes no no no
Obs 3815 3815 3815 2765 3815
Mean Y 107.19 107.19 0.72 149.79 107.19
Robust standard errors in brackets. The dependent variable in all columns except (3)  is the number of minutes per day spent with child 
care by all household members. The dependent variable in column (3)  is an indicator variable for positive childcare time. Panel A 
reports results for households whose youngest child is under 1 year old, panel B for those whose youngest is under 2 and panel C for 
those whose youngest is between 2 and 5 years old. The controls include dummies for household caste (2 dummies), a dummy for 
whether the household was Hindu and the area of the land owned and possessed by the household. Survey weights are used in 
estimation. *** p<0.01, ** p<0.05, * p<0.1

TABLE 3. EFFECT OF CHILD GENDER ON HOUSEHOLD CHILD CARE TIME, TIME USE SURVEY (1998-1999) 

Panel A: Youngest kids under 1 year old

Panel B: Youngest kids under 2 years old

Panel C: Youngest kids  2-5 years old



(1) (2) (3) (4) (5) (6) (7) (8) (9)
OLS

Male = 1 32.772 44.224 59.855 30.139 5.4 20.217 55.231 59.261 -5.709
[17.669]* [27.700] [30.143]** [13.444]** [23.359] [12.220]* [16.674]*** [24.936]** [34.546]

Male* (# other children 
under 6) -9.082 20.59 -28.721 -27.47

[17.920] [14.671] [11.020]*** [15.135]*
# Other children under 6 8.627 -10.209 18.098 -3.689

[11.917] [8.372] [7.163]** [9.636]
Constant 210.49 204.183 151.245 164.184 46.131 23.193 123.841 265.737

[20.368]*** [21.463]*** [8.622]*** [15.016]*** [8.397]*** [7.541]*** [16.318]*** [27.939]***

Observations 562 562 151 562 562 562 562 562 204

Male = 1 18.689 49.654 50.777 14.673 20.442 10.643 35.414 37.278 -15.867
[8.643]** [14.179]*** [15.969]*** [6.597]** [11.150]* [6.077]* [9.874]*** [12.577]*** [16.173]

Male* (# other children 
under 6) -25.206 -4.725 -20.231 -23.943

[9.042]*** [7.181] [6.003]*** [7.496]***
# Other children under 6 12.439 1.606 8.315 -3.696

[5.904]** [4.471] [4.061]** [5.001]
Constant 187.332 171.739 168.946 130.381 128.368 43.516 33.092 95.753 235.373

[6.143]*** [9.715]*** [10.742]*** [4.346]*** [7.393]*** [3.723]*** [5.369]*** [8.097]*** [11.733]***

Observations 1947 1947 481 1947 1947 1947 1947 1947 677

TABLE 4. HETEROGENEITY IN CHILDCARE TIME, TIME USE SURVEY (1998-1999). 

Urban 
Households, 

childcare

Robust standard errors in brackets. Panel A reports results for households whose youngest child is under 1 year old, panel B for those whose youngest is under 
2. The dependent variable in columns (1) and (2) is the number of minutes per day spent with child care. In column (3), the dependent variable is childcare time 
and the sample is further restricted to households with only one child under 6. The dependent variable in columns (4) and (5) is the amount of time spent taking 
physical care of children (e.g., washing, dressing and feeding). The dependent variable in columns (6) and (7) is the amount of time spent supervising children. 
The dependent variable in column (8) is the amount of time spent exclusively on childcare -- i.e., the caretaker was not multi-tasking. The dependent variable in 
column (9) is the amount of time spent on childcare, as in columns (1) and (2). The variable "# Other children under 6" excludes the youngest child. Its mean is 
equal to 1.23 children. All columns are estimated using OLS. Survey weights are used for estimation. *** p<0.01, ** p<0.05, * p<0.1

Exclusive 

Care

Households w/ 
ONLY 1 child 

under 6Childcare
Physical Care Supervising

Panel A: Youngest kids under 1 year old

Panel B: Youngest kids under 2 years old



Dependen
t variable:

# months 
breastfed

log(# 
months 

breastfed)

Model: 
controls

? OLS
Logit (beta 
reported)

censored 
regression  

censored 
regression

Accelerated 
Failure Time 

model

Proportional 
Hazard 
Model OLS

Logit 
(beta 

reported) OLS
Logit (beta 
reported)

Male = 1 no 0.006 0.134 1.802 0.289 0.412 -0.41 0.014 0.133 0.043 0.215
[0.004] [0.100] [0.574]*** [0.092]*** [0.129]*** [0.129]*** [0.007]** [0.063]** [0.009]*** [0.046]***

Male = 1 yes 0.006 0.138 1.937 0.313 0.438 -0.434 0.013 0.139 0.041 0.225
[0.004] [0.100] [0.564]*** [0.092]*** [0.130]*** [0.131]*** [0.006]* [0.069]** [0.009]*** [0.049]***

Obs 11609 11073 11073 11248 11616
Mean of Y 0.953 7.677 1.803 0.117 0.275

# months breastfed

TABLE 5: EFFECT OF CHILD GENDER ON PARENTAL INPUTS, CHILDREN 0-15 MONTHS OLD. DHS (1992) 

Standard errors [in brackets] are computed taking survey design into account. Child ever breastfed is equal to zero if mother reports that child 
was not breastfed or if breastfeeding duration was less than a month. Each coefficient corresponds to a separate estimation, and survey weights 
are used. The number of observations for each age group varies from outcome to outcome because there are a few missing values. Controls 
include all variables in Table 1: # of brothers, # of sisters, birth month, mother's age, mother's caste (2 dummies), mother's religion (3 dummies), 
mother's years of education, whether mother was born in rural area, mother's age at first marriage, mother's age at first birth,  mother speaks 
Hindi, prental care use, number fo prental care visits, tetanus shot, number of tetanus shots, and home delivery. *** p<0.01, ** p<0.05, * p<0.1

(# censored obs: 10,689)

Was child ever 
breastfed?

Vitamin A 
supplement?

Did mother have 
vaccination card at 

interview?



controls? BCG
DPT 1st 

dose
DPT 2nd 

dose
DPT 3rd 

dose
Polio 1st 

dose
Polio 2nd 

dose
Polio 3rd 

dose Measles
Panel A: Youngest kids 0-15 months old. OLS
Male = 1 no 0.036 0.048 0.035 0.031 0.049 0.037 0.032 0.02

[0.011]*** [0.011]*** [0.010]*** [0.009]*** [0.011]*** [0.010]*** [0.009]*** [0.008]***
Male = 1 yes 0.033 0.047 0.033 0.03 0.047 0.036 0.031 0.019

[0.010]*** [0.010]*** [0.009]*** [0.009]*** [0.010]*** [0.009]*** [0.009]*** [0.007]***
Panel B: Youngest kids 0-15 months old. LOGIT (beta reported)
Male = 1 no 0.144 0.195 0.152 0.162 0.198 0.159 0.164 0.161

[0.043]*** [0.042]*** [0.044]*** [0.048]*** [0.042]*** [0.043]*** [0.047]*** [0.060]***
Male = 1 yes 0.17 0.23 0.175 0.182 0.232 0.185 0.184 0.165

[0.051]*** [0.050]*** [0.050]*** [0.053]*** [0.051]*** [0.049]*** [0.052]*** [0.064]***
Obs 11591 11591 11587 11587 11609 11605 11605 11520
Mean of Y 0.448 0.47 0.354 0.262 0.472 0.368 0.271 0.147

Panel C: Youngest kids 9-15 months old. OLS
Male = 1 no 0.036 0.058 0.055 0.052 0.058 0.051 0.054 0.038

[0.017]** [0.017]*** [0.017]*** [0.016]*** [0.017]*** [0.017]*** [0.016]*** [0.015]**
Obs 4815 4808 4806 4806 4822 4818 4818 4759
Mean of Y 0.573 0.613 0.525 0.434 0.617 0.545 0.453 0.313

Panel D: Youngest kids 0-15 months old with vaccination card OLS
Male = 1 no -0.017 0.005 -0.004 0.023 0.006 -0.005 0.027 0.016

[0.014] [0.009] [0.019] [0.021] [0.010] [0.019] [0.021] [0.019]
Obs 3338 3338 3338 3338 3338 3338 3338 3338
Mean of Y 0.869 0.947 0.747 0.574 0.94 0.75 0.574 0.271

TABLE 6: EFFECT OF CHILD GENDER ON VACCINATIONS, DHS 1992

Standard errors [in brackets] are computed taking survey design into account. Each coefficient corresponds to a separate 
estimation, and survey weights are used. The number of observations for each age group varies from outcome to outcome 
because there are a few missing values. Controls include all variables in Table 1: # of brothers, # of sisters, birth month, 
mother's age, mother's caste (2 dummies), mother's religion (3 dummies), mother's years of education, whether mother was 
born in rural area, mother's age at first marriage, mother's age at first birth,  mother speaks Hindi, prental care use, number fo 
prental care visits, tetanus shot, number of tetanus shots, and home delivery. *** p<0.01, ** p<0.05, * p<0.1



want more 
children?

Ever 
breastfed?

Vitamin A 
supplement

Vaccination 
card?

BCG
DPT 1st 

dose
DPT 2nd 

dose
DPT 3rd 

dose
Polio 1st 

dose
Polio 2nd 

dose
Polio 3rd 

dose
Measles

# months 
breastfed

log(# 
months 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (14) (15)

Panel A: Predicting desire for more children

Male = 1 -0.134
[0.012]***

First Stage:
First born is male -0.082

[0.013]***
Panel B: OLS controlling for anticipated family size 
Male = 1 0.006 0.012 0.034 0.037 0.049 0.044 0.039 0.050 0.042 0.035 0.018 2.974 0.486

[0.005] [0.007] [0.010]*** [0.013]*** [0.013]*** [0.012]*** [0.011]*** [0.013]*** [0.012]*** [0.011]*** [0.009]** [0.715]*** [0.119]***
More kids = 1 0.007 -0.010 -0.005 -0.016 -0.012 -0.003 -0.006 -0.022 -0.013 -0.013 -0.015 2.737 0.454

[0.006] [0.008] [0.012] [0.014] [0.014] [0.013] [0.011] [0.014] [0.013] [0.011] [0.009]* [0.844]*** [0.140]***

Male = 1 0.005 0.013 0.034 0.039 0.051 0.044 0.040 0.053 0.043 0.037 0.020 2.680 0.437
[0.005] [0.007]* [0.010]*** [0.012]*** [0.013]*** [0.012]*** [0.011]*** [0.013]*** [0.012]*** [0.011]*** [0.008]** [0.711]*** [0.117]***

Panel C: IV  controlling for anticipated family size

Male = 1 -0.015 0.007 0.038 0.043 0.057 0.036 0.045 0.076 0.052 0.047 0.029 2.704 0.440
[0.011] [0.015] [0.021]* [0.023]* [0.024]** [0.022]* [0.019]** [0.024]*** [0.022]** [0.019]** [0.016]* [0.710]*** [0.117]***

More kids = 1 -0.149 -0.042 0.024 0.031 0.045 -0.058 0.041 0.177 0.068 0.075 0.070 1.780 0.285
[0.072]** [0.097] [0.134] [0.147] [0.151] [0.140] [0.120] [0.155] [0.143] [0.126] [0.102] [0.773]** [0.126]**

Obs 8499 8484 8214 8490 8468 8474 8473 8473 8486 8483 8483 8421 8092 8092
Mean of Y 0.409 0.954 0.106 0.251 0.417 0.440 0.324 0.234 0.442 0.338 0.245 0.130 7.631 1.795

TABLE 7: ANTICIPATED FAMILY SIZE, YOUNGEST CHILDREN 0-15 MONTHS OLD WITH OLDER SIBLINGS. DHS 1992

Notes: Robust standard errors [in brackets]. Each sub-panel (separated by horizontal lines) corresponds to a separate linear regression of the dependent variable listed in the column on the independent 
variables listed in the rows. The sample is restricted to children who had (alive or dead) older siblings. Survey weights are used for estimation. In Panel A: 1-we regress wanting more children on  youngest 
gender (coefficien -0.134), and 2-we regress wanting more children on the gender of the first born (coefficient -0.82). ^^ this column reports the OLS regression of breastfeeding duration regressed on gender 
of the youngest and gender of the first born (we do not include wanting more children). *** p<0.01, ** p<0.05, * p<0.1

Reduced Form^^IV (First born male is the instrument)

Panel C: Benchmark for sample of children with older siblings



Dependent variable: Model: 
Coefficient 

on I(male=1) s.e. N
Mean 

Y % effect
Coefficient on 

I(male=1) s.e.
Coefficient on 

I(male=1)*I(north=1) s.e. N
Mean 

Y
% effect (North 

vs. South)

Ever breastfed? OLS 0.024 [0.033] 723 0.875 3% 0.004 [0.010] -0.001 [0.012] 7329 0.951 0%
# months breastfed cens. reg.     -0.409 [1.218] 632 6.941 -6% 2.345 [0.997]** -0.688 [1.267] 6979 7.649 -9%
log(# months breastfed) cens. reg. -0.085 [0.234] 632 1.663 -5% 0.362 [0.153]** -0.118 [0.192] 6979 1.794 -7%
Vaccination card? OLS -0.05 [0.035] 732 0.835 -6% 0.035 [0.020]* 0.017 [0.024] 7326 0.284 6%
BCG OLS 0.001 [0.011] 729 0.978 0% 0.009 [0.020] 0.04 [0.025] 7310 0.494 8%
DPT 1st dose OLS 0.017 [0.029] 723 0.864 2% 0.024 [0.020] 0.029 [0.025] 7309 0.508 6%
DPT 2nd dose OLS -0.038 [0.037] 715 0.722 -5% -0.002 [0.023] 0.052 [0.027]* 7305 0.384 14%
DPT 3rd dose OLS -0.071 [0.040]* 715 0.577 -12% -0.006 [0.023] 0.059 [0.026]** 7305 0.288 20%
Polio 1st dose OLS 0.002 [0.032] 720 0.849 0% 0.035 [0.020]* 0.015 [0.025] 7319 0.511 3%
Polio 2nd dose OLS -0.043 [0.039] 716 0.705 -6% 0.021 [0.022] 0.027 [0.026] 7315 0.4 7%
Polio 3rd dose OLS -0.05 [0.040] 716 0.554 -9% 0.004 [0.023] 0.047 [0.026]* 7315 0.3 16%
Measles OLS 0.098 [0.040]** 718 0.348 28% 0.008 [0.020] 0.016 [0.022] 7261 0.168 10%
Vitamin A OLS na na na na na -0.015 [0.017] 0.045 [0.019]** 7096 0.133 34%

Childcare, mins. per day >= 0 OLS

Childcare, mins. per day >= 0 Tobit
Childcare, mins. per day > 0 OLS

Any care?
Logit (Beta 
reported)

% effect

1%

10%
-11%

13%

Mean Y

99.6

99.6
136.0

0.733

N

521

521
386

521

Standard errors [in brackets] are computed taking survey design into account. Vitamin A supplementation information is not available for South African DHS. Indian results only include Northern 
(Gujarat, Rajasthan, Uttar Pradesh, Madhya Pradesh, Punjab, Haryana) and Southern states (Kerala, Tamil Nadu, Andhra Pradesh, Karnataka, Maharashtra). Definition of North and Sounth India follows 
Dyson and Moore 1983. Results reported do not include demographic controls. All the Indian regressions include a dummy for northern states *** p<0.01, ** p<0.05, * p<0.1

TABLE 8. DO BOYS NEED MORE? MEAN GENDER DIFFERENCES IN PARENTAL INPUTS 

DHS CHILDREN AGES 0-15 MONTHS
1998 SOUTH AFRICAN DHS 1992 INDIAN DHS  (NORTH VERSUS SOUTH COMPARISON)

2000 SOUTH AFRICA TIME USE SURVEY (TUS) CHILDREN UNDER 1

Coefficient on I(male=1)

1.184

9.874
-15.233

0.471

s.e.

[12.055]

[16.353]
[13.303]

[0.265]*



Dependent 
variable:

controls? DHS UK DHS UK DHS UK DHS UK DHS CDC DHS CDC

Male = 1 no -0.218 -0.074 0.057 0.017 -0.162 0.013 0.04 -0.005 -0.063 0.028 0.036 0.001
[0.043]*** [0.049] [0.015]*** [0.015] [0.033]*** [0.039] [0.012]*** [0.013] [0.038]* [0.050] [0.011]*** [0.014]

Male = 1 yes -0.225 -0.085 0.059 0.02 -0.165 0.008 0.041 -0.004 -0.067 0.02 0.036 0.002
[0.043]*** [0.048]* [0.015]*** [0.015] [0.032]*** [0.038] [0.012]*** [0.013] [0.037]* [0.050] [0.011]*** [0.014]

Obs 6396 6396 6396 6396 8550 8550 8550 8550 6411 6411 6411 6411
Mean of Y -1.3 -1.353 0.323 0.361 -1.51 -2.026 0.381 0.525 -0.727 -1.253 0.137 0.309

Wasted=1          
(Weight-for-height Z 
score< 2 s.d. below 
reference median)

Standard errors [in brackets] are computed taking survey design into account. Each coefficient corresponds to a separate estimation. Controls include all variables in Table 3: 
# of brothers, # of sisters, birth month, mother's age, mother's caste (2 dummies), mother's religion (3 dummies), mother's years of education, whether mother was born in 
rural area, mother's age at first marriage, mother's age at first birth, and whether mother speaks Hindi.  The other measures are standardized using the UK (1990) standards or 
the 2000 CDC standards. The UK standards are not available for height for age. CDC standards for height are not available for children under 2. Survey weights are used in 
estimation. For children under 2 the standards use length rather than height, which is measured while lying instead of standing. *** p<0.01, ** p<0.05, * p<0.1

Weight-for-age Z score

TABLE 9: EFFECT OF CHILD GENDER ON ANTHROPROMETRIC MEASURES, AGES 0-15 MONTHS, DHS 1992

Height-for-age Z score

Stunted = 1          
(height-for-age Z 

score< 2 s.d. below 
reference median )

Underweight=1        
(weight-for-age Z 

score< 2 s.d. below 
reference median)

Weight-for-height Z 

score



Dependent 
variable:

OLS

Logit 
(beta 

reported) OLS
Logit (beta 
reported) OLS

Negative 
binomial 

(IRR 
reported) OLS

Negative 
binomial 

(IRR 
reported) OLS

Negative 
binomial 

(IRR 
reported)

Male=1 0.008 0.084 -0.009 -0.038 -0.004 0.998 0.034 1.04 -0.037 0.953
[0.007] [0.075] [0.011] [0.043] [0.034] [0.021] [0.024] [0.029] [0.021]* [0.026]*

Obs 11517 11517 11624 11624 11627 11627 11627 11627 11627 11627
Mean of Y 0.89 0.89 0.461 0.461 1.644 1.644 0.86 0.86 0.784 0.784

Dependent 
variable:

OLS

Poisson 
(IRR 

reported) OLS

Poisson 
(IRR 

reported) OLS

Poisson 
(IRR 

reported) OLS

Poisson 
(IRR 

reported) OLS

Poisson 
(IRR 

reported)

Male=1 0.209 1.153 0.158 1.111 -0.149 0.917 0.046 1.054 -0.196 0.793
[0.082]** [0.063]*** [0.072]** [0.053]** [0.137] [0.073] [0.101] [0.121] [0.102]* [0.098]*

Obs 562 562 562 562 562 562 562 562 562 562
Mean of Y 1.46 1.46 1.49 1.49 1.73 1.73 0.88 0.88 0.86 0.86

# Girls 14 and 
younger

# Boys 14 and 
younger

The standard errors [in brackets] are computed taking survey design into account in the DHS and in the TUS they allow for 
heteroskedasticity. Each coefficient corresponds to a separate estimation, where the dummy for the youngest child's gender is the
only covariate.  In the TUS (Panel B) we estimated Poisson rather than negative binomial models because some of the negative 
binomial models in the TUS did not converge. Survey weights are used in estimation. *** p<0.01, ** p<0.05, * p<0.1

# Men 15 and older # Women 15 and older
# Children 14 and 

younger

Panel B: Effect of gender on household composition TUS (1998-1999). Youngest children under 1 year old

TABLE 10: EFFECT OF CHILD'S GENDER ON LIVING ARRANGEMENTS, YOUNGEST CHILDREN 15 
MONTHS AND YOUNGER. RURAL HOUSEHOLDS.

Husband lives home?
Is mother the wife of 
the household head?

# of other sibs 
living at home

# of sisters living at 
home

# of brothers living 
at home

Panel A: Effect of gender on family living arrangements in the DHS 1992. Youngest children 0-15 months old



Dependent variable:

Any 
care?

Any 
care?

minutes of 
care≥0

minutes of 
care≥0

Any 
care?

Any 
care?

minutes of 
care≥0

minutes of 
care≥0

Any 
care?

Any 
care?

minutes of 
care≥0

minutes of 
care≥0

Model: Probit Probit OLS OLS Probit Probit OLS OLS Probit Probit OLS OLS

Male = 1 0.036 0.073 39.949 42.586 0.04 0.031 6.798 5.581 0.032 0.106 -3.184 67.028
[0.029] [0.051] [12.833]*** [22.277]* [0.052] [0.082] [6.405] [8.416] [0.126] [0.196] [26.099] [40.359]*

Male * (# other children under 6) -0.033 -2.312 0.011 1.42 -0.058 -55.313
[0.032] [14.883] [0.052] [4.941] [0.107] [28.478]*

# other children under 6 0.019 0.047 0.027 3.077 0.046 37.022
[0.022] [9.071] [0.035] [3.259] [0.070] [19.390]*

Constant 160.771 160.711 33.938 30.042 68.769 20.052
[8.843]*** [15.049]*** [3.980]*** [5.441]*** [20.923]*** [19.749]

Observations 560 560 560 560 555 555 555 555 117 117 117 117

Male = 1 -0.002 0.062 14.507 33.564 0.02 0.075 4.208 10.104 0.086 0.2 15.334 67.198
[0.017] [0.032]** [6.696]** [11.627]*** [0.026] [0.042]* [2.887] [4.486]** [0.066] [0.113]* [14.516] [27.503]**

Male * (# other children under 6) -0.051 -15.668 -0.045 -4.752 -0.082 -36.441
[0.020]** [7.515]** [0.028] [2.876]* [0.062] [14.866]**

# other children under 6 0.022 3.253 0.022 3.327 0.027 18.503
[0.014] [4.999] [0.020] [2.035] [0.044] [9.141]**

Constant 148.327 144.247 24.458 20.281 48.055 22.041
[4.600]*** [7.984]*** [1.871]*** [2.840]*** [8.148]*** [10.417]**

Observations 1936 1936 1936 1936 1907 1907 1907 1907 408 408 408 408

Robust standard errors in brackets. The dependent variable in columns under (1), (3) and (5) is an indicator for whether household members of a given demographic group 
reported spending time taking care of children. The dependent variable in columns under (2), (4) and (6) is the number of minutes per day spent with child care by all 
household members of a given demographic group. Panel A reports results for households whose youngest child is under 1 year old, panel B for those whose youngest is 
under 2. Columns under (1) to (6)  show results for rural households. The variable "# Other children under 6" excludes the youngest child. Its mean is equal to 1.23 
children. Survey weights are used for estimation. *** p<0.01, ** p<0.05, * p<0.1

APPENDIX TABLE 1: EFFECT OF CHILD GENDER ON HOUSEHOLD CHILDCARE TIME BY DEMOGRAPHIC GROUP, TIME USE SURVEY (1998-
1999)                                 

Childcare by females 15 and older Childcare by males 15 and older Childcare by females 14 and younger

Panel A: Youngest kids under 1 year old

Panel B: Youngest kids under 2 years old

(5) (6)(1) (2) (3) (4)



Ever 
breastfed?

Vitamin A 
supplement

Vaccination 
card?

BCG
DPT 1st 

dose
DPT 2nd 

dose
DPT 3rd 

dose
Polio 1st 

dose
Polio 2nd 

dose
Polio 3rd 

dose
Measles

# months 
breastfed

log(# 
months 

Panel A OLS
Family Size -0.001 -0.012 -0.035 -0.049 -0.047 -0.043 -0.035 -0.045 -0.042 -0.033 -0.022 0.193 0.028

[0.002] [0.002]*** [0.003]*** [0.004]*** [0.004]*** [0.003]*** [0.003]*** [0.004]*** [0.003]*** [0.003]*** [0.002]*** [0.240] [0.038]

Panel B: IV 
esimates 
using first-
born male as 
an 
instrument

1st Stage: 
effect of 

first born 
being male 
on family 

size
Family Size -0.132 -0.089 -0.022 0.016 0.023 0.037 -0.031 0.034 0.119 0.048 0.055 0.058 1.717 0.240

[0.039]*** [0.048]* [0.057] [0.086] [0.092] [0.097] [0.087] [0.077] [0.106] [0.093] [0.082] [0.067] [0.776]** [0.125]*
F-test 11.44
Obs 8574 8558 8284 8564 8543 8549 8548 8548 8561 8558 8558 8496 8163 8163
Mean of Y 3.283 0.954 0.106 0.251 0.416 0.440 0.325 0.235 0.442 0.339 0.245 0.130 7.641 1.797

APPENDIX TABLE 2: EFFECT OF FAMILY SIZE ON PARENTAL INPUTS, YOUNGEST CHILDREN 0-15 MONTHS OLD WITH OLDER SIBLINGS. DHS 1992

Robust standard errors [in brackets]. Each coefficient corresponds to a separate linear regression of the dependent variable listed in the column on the independent variable listed in the rows. The sample is 
restricted to children who had (alive or dead) older siblings. the regressions include no controls. Survey weights are used for estimation. *** p<0.01, ** p<0.05, * p<0.1

Reduced FormIV (First born male is the instrument)



Dependent 
variable: Model: 

Mean 
Y

% 
effect

Mean 
Y

effec
t

Mean 
Y

% 
effect

Lower 
Bound

Upper 
Bound

Ever breastfed? OLS 0.006 [0.004] 0.954 1% 0.008 [0.010] 0.95 1% -0.004 [0.005] 0.915 0% -0.007 -0.002
# months breastfed cens. reg. 1.33 [0.448]*** 7.626 17% 0.514 [0.911] 7.78 7% 1.104 [0.405]*** 7.555 15% -0.954 1.283
log(# months 
breastfed) cens. reg. 0.199 [0.069]*** 1.797 11% 0.077 [0.139] 1.82 4% 0.176 [0.068]*** 1.784 10% -0.13 0.176
Vitamin A? OLS 0.016 [0.006]** 0.133 12% 0.018 [0.014] 0.15 12% 0.016 [0.006]** 0.126 13% -0.039 0.077
Vaccination card? OLS 0.043 [0.008]*** 0.287 15% 0.066 [0.021]*** 0.34 19% 0.037 [0.008]*** 0.271 14% 0.036 0.039
BCG OLS 0.037 [0.009]*** 0.457 8% 0.025 [0.022] 0.54 5% 0.03 [0.009]*** 0.432 7% 0.03 0.03
DPT 1st dose OLS 0.048 [0.009]*** 0.476 10% 0.043 [0.022]** 0.56 8% 0.047 [0.009]*** 0.45 10% 0 0.091
DPT 2nd dose OLS 0.034 [0.009]*** 0.364 9% 0.008 [0.021] 0.44 2% 0.034 [0.009]*** 0.343 10% -0.015 0.083
DPT 3rd dose OLS 0.028 [0.008]*** 0.27 10% 0.007 [0.020] 0.34 2% 0.028 [0.008]*** 0.254 11% -0.023 0.082
Polio 1st dose OLS 0.051 [0.009]*** 0.477 11% 0.04 [0.022]* 0.56 7% 0.051 [0.009]*** 0.451 11% 0.003 0.094
Polio 2nd dose OLS 0.038 [0.009]*** 0.374 10% 0.018 [0.021] 0.45 4% 0.038 [0.009]*** 0.353 11% -0.011 0.086
Polio 3rd dose OLS 0.031 [0.008]*** 0.277 11% 0.018 [0.020] 0.35 5% 0.031 [0.008]*** 0.26 12% -0.02 0.085
Measles OLS 0.018 [0.007]*** 0.149 12% 0.02 [0.017] 0.20 10% 0.018 [0.007]*** 0.14 13% -0.04 0.081

APPENDIX TABLE 3: ADDITIONAL RESULTS ON EFFECT OF GENDER ON PARENTAL INVESTMENTS. CHILDREN AGES 0-15 MONTHS

Live and dead children 
(would be ages 0-15 

months at the time of the 
survey)

Coefficient on 
I(male=1), [s.e]

Each coefficient corresponds to a separate estimation, and survey weights are not used. No controls are included. The number of observations for each age group varies from outcome 
to outcome because there are a few missing values. Cens. reg. is a censored regression. Upper bounds assume that all dead girls would have not received inputs (for dummy variables) 
or would have been given the 25th percentile of the girls' outcomes distribution. For boys we assume that had they lived they would all have been given inputs (for dummye variables) 
or given the 75th percentile of boys' outcome distribution. For upper bounds we assume the opposite. We use this rule to imput investments for dead children for whom the information 
from mothers' reports are missing or for children who died too young to have receive the investment (before 2 months for polio/DPT 1st dose, before 3 momths for polio/DPT 2nd 
dose, before 4 momths for polio/DPT 3rd dose, before 6 months for vitamin A and before 9 months for measles ). The urban sample was constructed using the same restrictions as our 
main estimation sample--we dropped twins and individuals with missing predetermined covariates.

Coefficient on 
I(male=1), [s.e]

Coefficient on 
I(male=1), [s.e]

First born only (among youngest 
live children ages 0-15)Youngest live children ages 0-15

Bounds to account for 
mortality (information 

imputed for kids who died too 
young to receive the 

investment)



Dependent 
variable: Model: 

Mean 
Y

% 
effect

Mean 
Y

% 
effect

Mean 
Y

effec
t

Ever breastfed? OLS 0.006 [0.004] 0.954 1% 0 [0.002] 0.983 0% 0 [0.009] 0.951 0%
# months breastfed cens. reg. 1.33 [0.448]*** 7.626 17% 1.567 [0.291]*** 21.81 7% 0.301 [0.665] 7.431 4%
log(# months 
breastfed) cens. reg. 0.199 [0.069]*** 1.797 11% 0.073 [0.016]*** 2.965 2% 0.017 [0.110] 1.78 1%
Vitamin A? OLS 0.016 [0.006]** 0.133 12% 0.02 [0.007]*** 0.217 9% 0.023 [0.015] 0.191 12%
Vaccination card? OLS 0.043 [0.008]*** 0.287 15% 0.03 [0.007]*** 0.19 16% -0.003 [0.019] 0.402 -1%
BCG OLS 0.037 [0.009]*** 0.457 8% 0.045 [0.008]*** 0.555 8% -0.001 [0.019] 0.663 0%
DPT 1st dose OLS 0.048 [0.009]*** 0.476 10% 0.053 [0.008]*** 0.602 9% -0.005 [0.018] 0.636 -1%
DPT 2nd dose OLS 0.034 [0.009]*** 0.364 9% 0.046 [0.008]*** 0.536 9% 0.006 [0.020] 0.536 1%
DPT 3rd dose OLS 0.028 [0.008]*** 0.27 10% 0.037 [0.008]*** 0.464 8% 0.021 [0.021] 0.426 5%
Polio 1st dose OLS 0.051 [0.009]*** 0.477 11% 0.055 [0.008]*** 0.606 9% 0.009 [0.019] 0.641 1%
Polio 2nd dose OLS 0.038 [0.009]*** 0.374 10% 0.047 [0.008]*** 0.555 8% 0.006 [0.020] 0.548 1%
Polio 3rd dose OLS 0.031 [0.008]*** 0.277 11% 0.034 [0.008]*** 0.482 7% 0.02 [0.020] 0.438 5%
Measles OLS 0.018 [0.007]*** 0.149 12% 0.039 [0.008]*** 0.401 10% -0.004 [0.018] 0.217 -2%

APPENDIX TABLE 4: ADDITIONAL RESULTS ON EFFECT OF GENDER ON PARENTAL INVESTMENTS. CHILDREN 
AGES 0-15 MONTHS

Each coefficient corresponds to a separate estimation, and survey weights are not used. No controls are included. The number of observations 
for each age group varies from outcome to outcome because there are a few missing values. Cens. reg. is a censored regression. Upper bounds 
assume that all dead girls would have not received inputs (for dummy variables) or would have been given the 25th percentile of the girls' 
outcomes distribution. For boys we assume that had they lived they would all have been given inputs (for dummye variables) or given the 75th 
percentile of boys' outcome distribution. For upper bounds we assume the opposite. We use this rule to imput investments for dead children for 
whom the information from mothers' reports are missing or for children who died too young to have receive the investment (before 2 months 
for polio/DPT 1st dose, before 3 momths for polio/DPT 2nd dose, before 4 momths for polio/DPT 3rd dose, before 6 months for vitamin A and 
before 9 months for measles ). The urban sample was constructed using the same restrictions as our main estimation sample--we dropped twins 
and individuals with missing predetermined covariates.

Youngest live children ages 0-15
Coefficient on 

I(male=1), [s.e]

All live children ages 16-47 months
Urban areas (youngest live 

children ages 0-15)
Coefficient on 

I(male=1), [s.e]
Coefficient on 

I(male=1), [s.e]


