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CHILD LABOR AND THE
EDUCATION OF A SOCIETY

CLIVE BELL

Südasien-Institut der Universität Heidelberg

HANS GERSBACH

Eidgenössische Technische Hochschule Zürich

This paper analyzes policies by means of which a whole society in an initial state of

illiteracy and low productivity can raise itself into a condition of continuous growth.

Using an overlapping generations model in which human capital is formed through child

rearing and formal education, we show that an escape from a poverty trap, in which

children work full time and no human capital accumulation takes place, is possible

through compulsory education or programs of taxes and transfers. If school attendance is

unenforceable, temporary inequality is unavoidable if the society is to escape in finite

time, but long-run inequalities are avoidable provided sufficiently heavy, but temporary,

taxes can be imposed on the better off. Programs that aim simply at high attendance rates

in the present can be strongly nonoptimal.

Keywords: Dynamic Redistribution Policies, Poverty Trap, Human Capital Formation,

Temporary Inequality, Attendance Rates

1. INTRODUCTION

Parental care and abilities exert a powerful influence upon a child’s linguistic

and intellectual development. The process of child-rearing thus involves an in-

tergenerational transfer that creates a certain potential in the child, which, if

fully realized through the instilling of existing social knowledge, can lead to the

continuous growth of human capital construed in the broad sense and hence of

individual productivity.1 Without formal education, however, children will almost

surely attain only a small part of this potential, modest though it might be if their

parents happen to be unlettered and poor. If children can work to supplement the

family’s income and parents cannot borrow against their children’s future income

[Baland and Robinson (2000), Hazan and Berdugo (2002)], parents may decide

to deny their children any schooling at all. This perpetuates their own condition of

We thank François Bourguignon, Ramona Bruhns, Shanta Devarajan, Noemi Hummel, Bernhard Pachl, Martin

Ravallion, Lars Siemers, and Nicholas Stern, as well as participants at the Development Economics Conference

(NEUDC) 2000 and seminars at Memphis, Regensburg, and the World Bank, for helpful comments on earlier drafts.

We are also indebted to two referees of this journal for valuable and constructive suggestions. The responsibility for

all errors is ours alone. Address correspondence to: Hans Gersbach, CER-ETH—Center of Economic Research at
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CHILD LABOR AND THE EDUCATION OF A SOCIETY 221

ignorance and low productivity into the next generation, whereupon the process

continues. From a long-term perspective, the ensuing failure to build human capital

must be counted as the main social cost of child labor.

The purpose of this paper is to analyze policies by means of which a whole

society that is initially mired in a state of illiteracy and low productivity can raise

itself into a condition of literacy and continuous growth.2 Our main innovation is

the analysis of sequences of tax-and-transfer programs—as opposed to compulsory

education.3 In view of the patchy enforcement of compulsory education in many

poor countries, these programs offer a potentially more practicable way of escaping

from the poverty trap.

We consider a model economy populated by overlapping generations with a

continuum of agents who possess some altruism and choose their children’s level of

formal education. The formation of human capital occurs through a combination of

child-rearing and formal schooling. Adults cannot borrow against their offspring’s

future income. All have the same preferences and the first generation start with

identical endowments. Hence, any ensuing economic inequality, short-run or long-

run alike, is caused by redistributive policies. The production technology is of the

AK type.

The model yields the following results. First, an escape from the poverty trap

can always be accomplished through a program of compulsory education, though

lump-sum redistributive taxes may be necessary if the educational “technology”

is not convex. Such a policy is effectively first-best in the setting considered

here, because the allocation of current full income between current consumption

and investment in human capital through education is directly determined. This

benchmark optimum is also attainable through equivalent nonlinear subsidies and

taxes.

If any of these instruments is not available, the situation takes on a second-

best character. The intervention we analyze can be described as income support

for some sections of the population, financed by lump-sum taxes on the rest. An

escape from the poverty trap may still be possible, albeit with an important draw-

back: temporary inequality in post-tax incomes and human capital is a necessary

condition to escape from poverty in finite time, though long-term inequalities can

be avoided provided the government enjoys enough freedom in choosing taxes

on incomes. An inability to tax the well-to-do sufficiently heavily during the

transition can result in, not only a delay in attaining full, universal education, but

also persistent long-run inequality.

Programs that minimize the time needed to attain this educational goal do not

maximize school attendance rates in any particular period. Rather, they reflect

the connection between the schooling received by succeeding members of the

lineages of children who are educated today and the expansion of taxable capacity

and the avoidance of subsidies in the future. Indeed, maximization of the school

attendance rate in a particular period can induce a slide back into the poverty trap.

There is now a substantial literature on the economics of child labor.4 The possi-

bility of multiple equilibria in a one-period setting, with a high-wage equilibrium
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222 CLIVE BELL AND HANS GERSBACH

in which the children do not work, and a low-wage one in which they do, was

first established by Basu and Van (1998) and discussed by Swinnerton and Rogers

(1999). Some theoretical contributions employ a two-period structure. In Baland

and Robinson (2000), parents expect to receive support from their children in

old age, and their decisions concerning education can fall prey to time inconsis-

tency. Ranjan (1999) implicitly rules out this particular problem, and concentrates

instead on the case where parents would send their children to school if they

had access to credit but are unable to borrow against the increase in income that

schooling would generate. Jafarey and Lahiri (2000) examine to what extent credit

opportunities such as “food for education” or “investment in education quality”

can lower the incidence of child labor and increase the effectiveness of educational

investments.

The possible connection between child labor and fertility is only touched on

here. Dessy (2000) considers an infinitely lived “dynasty” with preferences over

the sequences of consumption levels and family sizes. A poverty trap is possible,

with an unstable equilibrium separating a low-productivity, high-fertility steady

state from a high-productivity, low-fertility one. A poverty trap can also occur

in Hazan and Berdugo’s (2002) OLG (overlapping generations) framework, in

which educated labor is employed in an advanced sector, but children can only

find traditional employment. Sustained growth in output per head is eventually

triggered, and then maintained, by the accumulation of human capital, first through

mere natural increase and then through the education of more slowly growing

numbers, there being some critical level of aggregate human capital at which the

investment in upgrading the technology needed to launch the advanced sector

becomes profitable. Intervention in the form of compulsory education, with lump-

sum taxation of the children on reaching adulthood to compensate their parents

in old age, hastens this process and is Pareto-improving. Strulik (2004) highlights

the role of child mortality in such processes of development.

Our normative analysis complements recent papers that provide full-fledged

positive analyses of policies to combat child labor. Doepke and Zilibotti (2005)

develop a model in which adults compete with children in the labor market and

so may support a ban on child labor, unless their own working children provide

a large fraction of family income. In this setting, a ban can be triggered by skill-

biased technological change. This induces parents to choose smaller families.

The model replicates features of the history of the United Kingdom in the 19th

century. Krueger and Tjornhom (2005) examine a heterogeneous-agent general

equilibrium model with a human capital externality. They show how the welfare

consequences for individual households of a transition to policies that restrict child

labor or provide tax-financed free education depend crucially on whether house-

holds have financial assets, or earn high or low wages. Finally, Galor and Moav

(2006) show that increasing returns to human capital and the complementarity

between physical and human capital in production create incentives for capitalists

to design a tax policy that would generate universal schooling, and thus a reduction

in child labor.5
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CHILD LABOR AND THE EDUCATION OF A SOCIETY 223

Turning to empirical work on child labor and schooling, Grootaert and

Kanbur (1995) and Maitra and Ray (2002) are comparative, cross-country studies.

Edmonds (2000) points to a close relationship between child labor and home

production, which can affect the policy recommendations drawn from models of

child labor with parental preferences or credit constraints. Emerson and Souza

(2003) provide evidence concerning the nature and persistence of child labor.

There is also a substantial empirical literature on how child labor is connected

with low income and lack of human capital accumulation; see, e.g., Grootaert

and Kanbur (1995), Patrinos and Psacharopoulos (1997), Psacharopoulos (1997),

Rosenzweig (1990), and Rosenzweig and Evenson (1977).

The plan of the paper is as follows. Section 2 lays out the basic model, which

draws on Uzawa (1965) and is of the OLG variety. It starts with the technology

for producing human capital and output, analyzes the household’s behavior, and

then derives the system’s dynamics. Section 3 addresses the policy problem.

The first-best solution can be attained by means of compulsory schooling, the

precise schedule of which is derived for the case where the education technology

is convex. The difficulties of implementing it are briefly discussed. All of the

second-best solutions involve finding a program of taxes and income subsidies

that will minimize the time needed for all households to attain a level of human

capital such that either all children attend school full time or sustainable growth is

ensured, subject to certain constraints on how much inequality can be tolerated. In

Section 4, we analyze in detail the second-best, minimum-time program to educate

the whole society when there is no limit on the degree of temporary inequality.

The political economy of its implementation is taken up in Section 5. The paper

concludes with a discussion of some aspects of development policy in the light of

our findings and identifies a number of open issues.

2. THE BASIC MODEL

Consider an OLG model in which individuals live for two periods, which will be

labeled childhood and adulthood, respectively. Each generation is the same size

and consists of a continuum of households represented by [0, 1].6 A household is

indexed by i or j , where i, j ∈ [0, 1]. In the basic model, all households are alike

and we drop indices.

In the absence of premature mortality, and assuming assortative mating, each

household, or “family”, may be taken to comprise one adult and one child (hence-

forth, mother and daughter). Let the proportion of childhood devoted to education

in period t (t = 0, 1, . . .) be denoted by et ∈ [0, 1], the residual being allocated

to work. An adult is endowed with 1 + q units of time, of which the proportion

q/(1+q) is devoted to child-rearing and the remainder to work. For simplicity, it is

assumed that these proportions are fixed. Given that one unit of time is devoted to

work, let an adult in period t supply λt efficiency units of labor, where λt ∈ [1,∞)

is a natural measure of her human capital, and the condition λ = 1 for the society

as a whole can be thought of as a state of economic backwardness.
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224 CLIVE BELL AND HANS GERSBACH

2.1. The Technology

Human capital is assumed to be formed through a process in which child-rearing

is combined with formal education in the following way. In the course of rearing

her daughter, the adult gives the child a certain capacity to build human capital for

adulthood, the size of which is assumed to be related to the adult’s own human

capital. The adult’s gift will be unavailing to preserve the child from the state of

λ = 1 as an adult, however, unless it is complemented by some formal education.

Hence, let the child’s endowment of efficiency units of labor on reaching adulthood

at time t + 1 be given by

λt+1 = h(et ) · (zλt ) + 1, (1)

where z can be thought of as a transmission factor and the educational “technology”

h(.) is assumed to be a continuous, strictly increasing, and differentiable function

on [0, 1), with h(0) = 0. Equation (1) implies that the gift of rearing and formal

education are both necessary if human capital is to exceed the basic level λ = 1

in the next generation.7

For any sequence of formal education {et }
∞
t=0, the intergenerational growth rate

of the adult’s human capital in a given household in period t , gt , is given by

1 + gt = λt+1/λt = zh(et ) + (1/λt ). (2)

The level of λ is momentarily stationary; i.e., λt+1 = λt , for all pairs (λt , et )

satisfying

[1 − zh(et )]λt = 1. (3)

One such pair is (λt = 1, et = 0), namely, backwardness. In order to describe the

evolution of human capital, which will be needed later, suppose that et takes the

value of unity for all λt ≥ λa . It is then seen from (2) that if the system starts from

some value of λ ≥ λa , and if the “technology” for (re)producing human capital is

sufficiently productive, in the sense that it satisfies the condition zh(1) ≥ 1, then

λt will tend asymptotically to steady growth at the rate [zh(1) − 1]. In the special

case zh(1) = 1, λt grows without limit, but its growth rate tends asymptotically

to zero. If zh(1) < 1, however, then unbounded growth is impossible.

Having established these pregnant possibilities, we turn to the technology for

producing output, which takes the form of an aggregate consumption good. With

our sights on growth, and in view of the fact that human capital in the above

account is a produced factor of production, let there be a proportional relationship

between output and inputs of labor measured in efficiency units. All output will

then accrue to the household as income.

The child’s contribution to the household’s income is given as follows: Without

any education, the child will supply at most one efficiency unit of labor, because

of the complementarity between the gift received during child-rearing and formal

education. Indeed, it is plausible that the child’s efficiency will be somewhat lower,

ceteris paribus, on grounds of age alone. To reflect these considerations, let the
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CHILD LABOR AND THE EDUCATION OF A SOCIETY 225

child be able to supply γ (1 − et ) efficiency units of labor when the child works

1 − et units of time. It is plausible to assume that γ ∈ (0, 1]; i.e., a child working

full time is at most as productive as an uneducated adult. The household therefore

supplies a total of [λt + (1 − et )γ ] efficiency units of labor to the production of

the aggregate good. Under the above assumption on the technology, the level of

output produced by a household that has endowment λt and chooses et is

yt = α[λt + (1 − et )γ ], (4)

where α ∈ (0,∞) is the (constant) productivity of an efficiency unit of labor. Thus,

we have a so-called AK model, the form of which has a certain affinity to Uzawa’s

(1965) learn-or-do model. Recalling the conditions for λ to grow (asymptotically)

at a steady rate, it is seen at once that, should they hold, output per family will

grow in the same manner if et = 1 ∀t ≥ t ′ for some t ′.

2.2. The Household’s Behavior

Following Basu and Van (1998), it is assumed that all allocative decisions lie

in the adult’s hands. We rule out any bequests at death, so that the whole of

current income, as given by (4), is consumed. The gift of the factor zλt through

rearing is one form of inter vivos transfer. According to (1), however, the second

form, namely, sending the child to school at least part of the time (et > 0), is also

necessary if the child is to enjoy λt+1 > 1 as an adult. Because current consumption

is maximized by choosing et = 0, it follows that the adult’s altruism toward her

child must be sufficiently strong if she does choose et > 0.8

For simplicity, let the child’s consumption be a fixed fraction β ∈ (0, 1] of the

adult’s consumption ct . From (4), we then obtain the family’s budget line in the

space of (ct , et ):

(1 + β)ct + αγ et = α(λt + γ ). (5)

Note that we assume that it is impossible for an adult to borrow against the child’s

future income, which has been justified extensively in the literature (see, e.g.,

Baland and Robinson [2000]). It will also be useful to define

c(λt ) ≡
α(λt + γ )

1 + β
(6)

and

c(λt) ≡
αλt

1 + β
, (7)

which correspond to the consumption levels of the adult choosing et = 0 and

et = 1, respectively. Given the endowment λt , her feasible set in the space of

(ct , λt+1) is the set S(λt ), defined as

S(λt ) = {(ct , λt+1) : (1 + β)ct + αγh−1[(λt+1 − 1)/zλt ] ≤ α(λt + γ ),

0 ≤ ct ≤ c(λt ), 1 ≤ λt+1 ≤ (zλt ) · h(1) + 1 }. (8)
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226 CLIVE BELL AND HANS GERSBACH

FIGURE 1. The household’s feasible set.

The set S(λt ) is depicted in Figure 1 as ABCD, whose outer frontier BC is the

locus generated by

λt+1 = (zλt) · h[(α(λt + γ ) − (1 + β)ct )/αγ ] + 1, ct ∈ [c(λt ), c(λt )] (9)

and, purely for the purposes of illustration, h(et ) is assumed to be strictly concave.

It is clear from (6), (7), and (9) that an increase in λt enlarges the feasible set in

such a way that it strictly dominates the set associated with the starting level of λt .

There is also a substitution effect, for BC becomes steeper as λt increases. At any

interior solution, it follows that λt+1 is increasing in λt if λt+1 is a normal good.

Let the adult’s preference ordering be representable by the continuous, strictly

increasing, differentiable, strictly quasi-concave function u(ct , λt+1),
9 and con-

sider the problem

max
(ct ,et )

{u(ct , λt+1)} (10)

s.t. [ct , λt+1(et )] ∈ S(λt )

et ∈ [0, 1]
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CHILD LABOR AND THE EDUCATION OF A SOCIETY 227

If h(et ) is a concave function, this problem will have a unique solution, denoted

by [c0(λt ), e
0(λt )], which is continuous in λt .

10 In what follows, we often use the

notation (c0
t , e

0
t ) as a convenient abbreviation for [c0(λt), e

0(λt )].

We make the following assumptions regarding the optimal choices (c0
t , e

0
t ).

First, if λt is very small, the family’s existence will be so precarious that there

may be no option but to put the child to work full time. At sufficiently high

values, altruism will be operative, in the sense that the parent will choose et > 0.

Therefore, we assume that there exists a critical value λS > 1 such that

[c0(λt ), e
0(λt )] = [c(λt ), 0] ∀ λt ≤ λS

e0(λt ) > 0 ∀ λt > λS .
(11)

The critical value λS is a limit that must be exceeded if altruism is to be operative.11

Associated with λS is the level of consumption:

c(λS) =
α(λS + γ )

1 + β
. (12)

Second, there exists a threshold value λa > λS such that

[c0(λt ), e
0(λt)] = [c(λt ), 1] ∀ λt ≥ λa. (13)

The value λa can be thought of as marking the beginning of such affluence that

the whole of childhood is spent at the school desk.

Third, it is assumed that the optimal choice e0
t is monotonically increasing in

λt for all λt ∈ (λS, λa).12

Before the difference equation (1) is analyzed, a remark should be made about

the choice of the domain of the adult’s preferences. An alternative would involve

preferences over current consumption and the child’s utility. In this case, the

adult cares directly about the well-being of the child, though she knows that her

daughter, as an adult, will care about her own child, and so forth. As in Barro

(1974), therefore, all generations are effectively connected. In such a setting,

by increasing the time devoted to schooling, the adult in period t enlarges her

daughter’s feasible set in such a way that the latter is always better off as a

result, given that the daughter, too, will be confronted with the same problem of

balancing current consumption in period t + 1 against her own daughter’s well-

being in period t + 2. Thus, each adult’s utility depends upon the whole sequence

of utilities achieved by her descendants. We expect that this alternative formulation

would yield results qualitatively similar to those obtained here. Our formulation

of preferences appears to be equally plausible and is much easier to handle in a

technical sense.
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228 CLIVE BELL AND HANS GERSBACH

2.3. Dynamics

Returning to (1) in the light of (11) and (13), we obtain

λi
t+1 =

⎧

⎪

⎨

⎪

⎩

1 ∀ λi
t ≤ λS

zh
[

e0
(

λi
t

)]

λi
t + 1 ∀ λi

t ∈ (λS, λa)

zh(1)λi
t + 1 ∀ λi

t ≥ λa,

(14)

which yields the following results:

PROPOSITION 1.
(i) λ = 1 is a locally stable equilibrium.

(ii) If zh(1) ≥ 1, then starting from any λ ≥ λa, λi
t will grow without bound.

(iii) If zh(1)λa + 1 ≥ λa , there exists at least one stationary value of λ, denoted by λ∗,

in (λS, λa]. Otherwise, there need be no such value.

(iv) If zh(1) < 1 and zh(1)λa + 1 > λa , there exists a steady-state value of λ, λ∗∗ =

1/[1 − zh(1)] > λa , such that λ∗∗ is a stable, stationary equilibrium ∀λi
t ≥ λa .

The proof of Proposition 1 is given in the Appendix.

Henceforth, the cases zh(1) ≥ 1 and zh(1) < 1 will be called the growth and

nongrowth cases, respectively.

The number of stationary values in the interval (λS, λa), and hence the char-

acter of the system’s dynamical behavior, depends on the shape of the function

h(e0(λt ))λt . Although there is no space here to attempt a full characterization, a

brief sketch will convey the flavor of the possibilities. Define

f (λ) ≡ h[e0(λ)]λ, λ ∈ (λS, λa),

where it is clear that f (·) is increasing in λ in the interval (λS, λa). Differentiating

twice, we have

f ′′ = 2h′e′ + h′′(e′)2λ + h′e′′λ.

If h′′ ≥ 0 and e′′ ≥ 0, then f is convex everywhere on (λS, λa). If, however, h(·)

and e0(·) are strictly concave, then f ′′ < 0 cannot be ruled out over the interval

(λS, λa). One possibility is that f (·) is first strictly concave and then strictly

convex on (λS, λa), so that there will be an odd number of stationary values in

that interval in the growth case.

In order to see what all this portends for the behavior of λt , we illustrate the

trajectory of λt for the growth case when there is a single stationary value of λ in

the interval (λS, λa) (see Figure 2). The 45◦ line through the origin is labeled a; the

line g represents λt+1 = zh(1)λt + 1, where g’s slope is zh(1)≥ 1. The horizontal

segment BC reflects the fact that λt+1 = 1 for all λt ∈ [1, λS]. The rising segment

that passes through D and then meets g at λa arises from λt+1 = zh[e0(λt )]λt + 1

for all λt ∈ (λS, λa). The instability of the stationary state corresponding to λt = λ∗

is evident from the trajectories drawn to the left and right of D, respectively.13
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FIGURE 2. Growth case with two steady states.

3. THE POLICY PROBLEM

In this section, we formulate the policy problem associated with an initial state of

backwardness, where the broad objective of policy is to liberate all lineages from

this condition for good. The case for intervention in the present setting rests on the

externalities that arise when the improvements in all future generations’ welfare

that would stem from better education of today’s children are not fully reflected in

the preferences of today’s parents. This holds in our model because parents care

about their children’s human capital, but not about what happens subsequently. If,

as is arguable, the government has a longer horizon than individual households,

then the case for intervention to promote schooling at the expense of child labor

is, in principle, established.14

The instruments available to the government for this purpose are assumed to

be compulsory schooling and taxes and subsidies. The government is assumed

to be able both to identify each household (or lineage), an ability that is vital to

the payment of subsidies in an efficient way, and to assess its current level of full

income. Because an adult’s income is fixed in a particular period, a tax thereon is

effectively lump-sum in nature, so that given the government’s general objective,

first-best allocations are, in principle, attainable. If compulsory schooling cannot
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be enforced, or providing a program of sufficiently generous subsidies to attend

school lies beyond the government’s administrative and fiscal capacities, then one

is driven to second-best solutions based on a combination of taxes and general

income support. The effects of imposing further restrictions on the tax schedule

will be briefly discussed after the main results have been derived.

In view of the emphasis on growth, we concentrate in what follows on the case

where zh(1) > 1 and, for simplicity, there is a single stationary value of λ in the

interval (λS, λa), as depicted in Figure 2.

3.1. First-Best Policy

As a benchmark, consider the case where the government is able to determine

directly how much each family consumes and the schooling its child receives,

subject only to the requirement that each family obtain at least the subsistence

minimum, which is defined to be csub for the consumption of adults and βcsub for

children. This minimum imposes an upper limit on the family’s taxable capac-

ity. We formulate the policy objective as minimizing the number of generations

(periods) needed for the economy to attain a condition of self-sustaining growth

in which compliance with full-time schooling occurs voluntarily. Formally, we

define the policy problem P0 as

P0 : min
{(ci

t ,e
i
t )}t=0,1,...

{T }

s.t. ci
t ≥ csub, ei

t ∈ [0, 1], and λi
T ≥ λa ∀i, t.

We assume that the government can impose schooling and redistribute consump-

tion goods subject to the aggregate resource constraint and ci
t ≥ csub. For the

problem to be interesting, a family must have some taxable capacity, denoted by

τ ba , when λi = 1:

τ ba ≡ α(1 + γ ) − (1 + β)csub > 0, (15)

where it is plausible that τ ba is small, because households with λt = 1 may already

be close to the subsistence level.

PROPOSITION 2. If h(et ) is strictly concave, then starting from a condition of

backwardness, the policy problem (P0) is solved by a monotonic program in which

all children in each generation receive the same schooling, that is, ei
t = e

j
t ∀i, j

and ∀t ∈ {0, · · · , T }, with ei
t+1 > ei

t if ei
t < 1.

The proof of Proposition 2 is given in the Appendix.

It is natural to ask whether the above program can be implemented by means of a

suitable combination of taxes and subsidies. In view of the externality generated by

education, let the government subsidize attendance at school and levy lump-sum

taxes to finance the resulting outlays. Because all families remain identical under
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the program, the index i may be dropped, and the budget line of any household in

period t may be written as

(1 + β)ct + (αγ − σt )et = α(λt + γ ) − τt ,

where σt is the subsidy paid on each unit of schooling and τt is a poll tax. By

setting σt = αγ ∀t , the government will induce the family to choose e0
t = 1, for

the net opportunity cost of education is then zero. The program must, however, be

financially feasible without violating ct ≥ csub. In period 0, therefore, the subsidy

rate σ = αγ is offered, up to a maximum payment of τ0 = τ ba . In such a situation,

the family will choose exactly the optimum bundle derived in Proposition 2. The

process is then continued for as many periods as needed, with τt being updated as

λt grows.15

We now briefly discuss the character of the optimal program when h(·) is

convex. If h(·) is linear, it is clear that the proof of Proposition 2 will still go

through. If h(·) is strictly convex, however, then considerations of inequality may

become relevant if (P0) is not soluble within one generation. For suppose h′ is

close to zero until e nears unity and then rises sharply: that is, education pays off

handsomely only after a substantial threshold has been reached. In this case, it

may well be better to educate some children fully in period 0 and then tax them

heavily as adults in order to finance the education in period 1 of the offspring of

those whose education was neglected in period 0. As we will see in the sections

that follow, such schemes of redistribution across lineages are an essential feature

of second-best programs based on general income support.

We close this analysis of the first-best with a discussion of the practical difficul-

ties of implementing it. Many developing countries lack the central institutions and

bureaucratic morale to ensure the truthful reporting of school attendance or to call

the parents to book when the truants are reported. Large-scale “truancy” among

teachers is also a problem, as the evidence in the World Development Report

on the provision of public services [World Bank (2003)] vividly demonstrates.

When compulsion is actually needed, there are correspondingly strong incentives

for collusion between parents and teachers to exaggerate school attendance. The

problems of enforcing compulsory schooling may also appear in connection with

school attendance subsidies. The claims put in by numerous parents have to be

verified frequently, and the incentives for teachers to report the children’s atten-

dance truthfully are weak; but the strong incentives for collusion remain.16 In view

of these difficulties, the remainder of the paper will be concerned with settings in

which the first-best solution is not attainable, so that the government must resort

to blunter instruments to achieve the goal set out above.

3.2. Second-Best Taxes and Subsidies

Observe from (8) and Figure 1 that a lump-sum subsidy will induce a parallel shift

of BC to the right. The normality of λt+1 implies that, for a given level of λt , such
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a shift will result in an increase in e0
t for all λt ∈ (λS, λa) and, if the subsidy is

large enough, also for all λt ∈ [1, λS]. Hence the obvious next-best alternative is

to provide families with what can be termed income support. This may take the

form not only of direct transfers, if such are possible, but also of projects such

as local infrastructure or the introduction of improved varieties of certain crops,

whose benefits are reaped by particular groups or communities. As will become

clear, second-best interventions lead to two characteristic results: first, the problem

cannot be solved in one generation; and second, a solution, if one exists, always

involves some inequality, if only temporarily.

For simplicity, we assume that taxes are solely a function of the income or

human capital of adults.17 Let τ i
t = τt (λ

i
t) denote the tax levied in period t on

household i, where τ i
t ≥ 0 ∀i, t . Some fraction of the population will be subsidized

out of the ensuing revenues. We denote by si
t = si

t (λ
i
t ) the subsidy household i

will receive in period t if the adult has λi
t , where it should be noted that the subsidy

depends on the index i directly, as well as indirectly through λi
t . The net income

of household i in period t is

wi
t = αλi

t + α
(

1 − ei
t

)

γ + si
t

(

λi
t

)

− τt

(

λi
t

)

≡ wia
t + α

(

1 − ei
t

)

γ, (16)

where wia
t denotes the net disposable income accruing to the adult in question.

The household’s net tax burden is defined by

υ i
t

(

λi
t

)

≡ τt

(

λi
t

)

− si
t

(

λi
t

)

.

Throughout the remainder of the paper, households are either taxed or subsidized,

and therefore τt (λ
i
t ) and si

t (λ
i
t ) are net transfers. The evolution of human capital

accumulation then follows the same logic as in Section 2.2. Recalling that an in-

crease in λt both enlarges the set S(λt ) and makes its outer frontier BC everywhere

steeper, the adult’s choice of ei
t is written as a function of both λi

t and υ i
t :

ei0
t = e0

(

λi
t , υ

i
t

)

.

Note that taxation need not differ across households that have the same taxable

income. Subsidization, however, can and must be made dependent on income and

the particular type of household. Although, in the end, only the net tax υ i
t (λ

i
t )

matters for household i, the distinction between taxation and subsidization will be

useful in illustrating the working of different policies.

The maximum tax that can be obtained from any household is the difference

between its full income and (1+β)csub. The tax burden of household i is therefore

assumed to be constrained by

αλi
t − τt

(

λi
t

)

+ αγ ≥ (1 + β)csub ∀ i. (17)

There may, of course, be further restrictions on the governments’ ability to tax; for

example, that post-tax income be everywhere strictly increasing in pretax income.
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We assume that in drawing up programs, the society has to rely fully on its own

fiscal resources.18 To formulate the budget constraints of the society as a whole,

we reinterpret the indexation of households as a real-valued function on [0, 1] that

assigns every household its human capital in a particular period. Then denoting

total government revenues in period t by Bt , the budget constraint is given by

Bt =

∫ 1

0

τt

(

λi
t

)

di ≥

∫ 1

0

si
t

(

λi
t

)

di. (18)

3.3. Policy Programs

A program of taxation and subsidization is to be chosen to bring the society out

of backwardness in a sustainable way. There are several ways to formulate such a

policy. Starting in period 0, let T denote the number of periods needed to bring all

adults to at least the efficiency level λa .19 Because an increase in λt yields a strictly

preferred set S(λt ), we work with a simple measure of inequality, namely20

�t = max
i,j

(

wia
t − w

ja
t

)

. (19)

All the formulations of the policy problem considered here involve minimizing T

subject to some upper bound on the degree of inequality a society is prepared to

tolerate. They can therefore be regarded as “turnpike” programs. The first is

P1 : min
{(τt (λ

i
t ),s

i
t (λ

i
t ))}t=0,1,...

{T }

s.t. λt ≤ �, (17), (18), and λi
T ≥ λa ∀i, t,

where � is the said upper bound on �t . A special case of the policy problem (P1)

is that where � = ∞, which seeks the fastest path unconstrained by inequality

to the state in which all adults have at least the efficiency level λa . Observe that

when all adults attain λa and none is subject to taxation, then all of their offspring

will enjoy full-time schooling, and so attain at least λa .

Whereas policy problem (P1) focuses on inequality during the course of the

program, others can be formulated that focus on the degree of long-run inequality

that prevails after the program has been completed. Such an alternative policy

problem can be stated as follows:

P2 : min
{(τt (λ

i
t ),s

i
t (λ

i
t ))}t=0,1,...

{T }

s.t. �T ≤ �, (17), (18) and λi
T ≥ λa, ∀i, t.

Policy problem (P2) seeks the optimal speed program such that inequality is at

most � at the moment when the society becomes fully educated. An important

special case of (P2) is � = 0, where no long-run inequality is allowed.
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Other formulations are possible. In particular, we think that the following prob-

lem is relevant:

P3 : min
{(τt (λ

i
t ),s

i
t (λ

i
t ))}t=0,1,...

{T }

s.t. �t ≤ �, (17), (18), λi
T ≥ λa and ei

t+1 ≥ ei
t , ∀i, t.

In (P3) we impose the additional constraint on (P1) that the time spent in school

by members of a particular lineage does not decline over time. On economic and

on political economy grounds, this appears to be a sensible implicit restriction on

the tax schedule. Imposing such a restriction can increase the time a society needs

to escape backwardness.

3.4. The Inequality–Speed Dilemma

The above formulation of the policy problem involves a potential inequality–speed

dilemma, which we now investigate. We assume that each household, viewed as

a lineage, receives a positive subsidy only once.21 To simplify the exposition,

we also assume that the tax levied on those households that are in a state of

backwardness and are taxed is τ ba .22 That being so, our first observation is obvious:

Fact 1. In an initial state of backwardness, equal treatment of citizens with

respect to taxes and subsidies leaves the whole society in that state.

Equal treatment in period 0 would imply that each household would have a

disposable income of α(1 + γ ), which leads to ei0
0 = 0 and hence to λi

1 = 1 ∀i.

No household can escape from backwardness at any time under such a policy.

Having observed that creating inequality, if only temporarily, is a necessary

condition to increase human capital, we now discuss how much inequality is

needed if the whole society is to be educated. Because λi
t remains at unity until

household i receives a subsidy and must reach at least λ∗ in the period immediately

afterward if it is not to revert to λi = 1, it follows that an escape from the poverty

trap is possible only if there exists an si
t such that

zh
[

e0
(

1,−si
t

)]

+ 1 ≥ λ∗. (20)

Let the smallest value of si
t that satisfies (20) be denoted by s̃, where it should

be noted that s̃ is independent of both i and t .

In period t = 0, the government’s total revenue is τ ba(1 − δ0), where δ0 is the

share of households that receive subsidies. The share of households that can be

given the subsidy s̃ is therefore

δ̃0 ≡
τ ba

s̃ + τ ba
. (21)

It follows that

wia
0 =

{

α + s̃ i ∈ [0, δ̃0]

α − τ ba i ∈ (δ̃0, 1].
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FIGURE 3. The optimum when λ = λ∗.

Hence, when the subsidy is s̃, �0 = s̃ + τ ba , which yields the following

result:

PROPOSITION 3. If � < s̃ +τ ba and λi
0 = 1 ∀i, then the policy problem (P1)

yields T = ∞.

We now examine whether this result holds in the case where � ≥ s̃ + τ ba . In

view of the above argument, the first step is to establish how large s̃ is in relation

to λ∗, where

λ∗ = zh[e0(λ∗, 0)]λ∗ + 1. (22)

This is depicted in Figure 3 as the point E on the frontier BC corresponding to

λ = λ∗. Because c(λ∗) = α(λ∗ + γ )/(1 + β), it follows that the effect of giving a

net transfer in the amount of α(λ∗ − 1) to a household whose adult human capital

is unity is to shift the outer frontier of its feasible set in such a way that point B is

just feasible. The remainder of the said frontier, BF , lies below BC by virtue of

λ∗ > 1, which at once yields the result that the net transfer α(λ∗ − 1) is too small
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to induce λi
t+1 = λ∗ when λi

t = 1. Hence,

s̃ > α(λ∗ − 1).

The special case where � = s̃ +τ ba turns out to be of considerable importance;

for it permits λ∗ to be attained in the next generation, but no more than that level.

PROPOSITION 4. If � = s̃ + τ ba and λi
0 = 1 ∀i, then the policy problem (P1)

yields T = ∞.

The proof of Proposition 4 is given in the Appendix.

Propositions 3 and 4 have profound implications for the tradeoff between speed

and income inequality. The society must be prepared to tolerate a greater degree

of inequality in incomes than � = s̃ + τ ba; and at some stage, some households

must possess human capital in excess of λ∗ while others are still in the state λ = 1,

if all are eventually to escape from backwardness in finite time. Propositions 3

and 4 are in the nature of “impossibility” results. They evidently remain valid if

the government’s ability to raise taxes is restricted beyond the basic requirement

that all lineages can at least survive, as expressed by condition (17).

To complete this section, we need to say something about the case where

�̄ > s̃ + τ ba . This easing of the restriction on inequality permits si
0 > s̃, and

hence λi
1 > λ∗ for some i. Household i can now pay some taxes in period 1,

while still choosing ei0
1 such that λi

2 > λ∗ and without violating �1 ≤ �̄. The

taxable capacity so generated in period 1 undermines the argument in the proof of

Proposition 4, and so opens up the possibility of a “bootstrap” operation, in which

those lineages that receive a subsidy early on later pay the taxes needed to draw

up the rest behind them. This possibility will now be explored in detail.

4. NO LIMITS ON TEMPORARY INEQUALITY

To focus on essentials, we begin by examining the special case of policy problem

(P1) when no upper limit on temporary inequality is imposed (� = ∞). That

is, we seek a policy yielding the swiftest possible attainment of a fully educated

society. We assume that

zh(1) + 1 ≥ λa. (23)

Condition (23) states that if an adult in a state of backwardness were to educate her

child fully, the child would choose full-time education for her own child, provided

she herself were not taxed as an adult. This condition simplifies the analysis, but

is not essential to our argument. It ensures that (P1) could, in principle, be solved

in two periods: if those households singled out in period 0 for promotion from

backwardness receive a subsidy sufficiently large to induce them to choose e0 = 1,

then their offspring will attain at least λa , and so provide a new tax base in period 1.

If this tax base is large enough to subsidize all other households to the point where

the latter choose e1 = 1 in period 1, then (P1) will have been solved in two

periods.
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The tax–subsidy problem is complex and no closed-form solution exists that

covers all possible periods T for which (P1) has a solution. Therefore, we proceed

by considering the optimal policy for a given number of periods within which the

entire society can be educated, ascending from T = 1. We establish conditions

and optimal policies under the assumption that a particular period, say T , is the

outcome under (P1). If the solution does not yield T , we move to T + 1 and look

once more. Starting from T = 1 and using this method of induction, we will be

able to characterize sequentially the solution under (P1). In the next section, we

explore the case where all lineages can escape from backwardness within two

generations. The extension to the case where the process takes three or more

generations is set out in a technical appendix to Bell and Gersbach (2001). The

consequences of the restrictions on the tax function τ i
t (·) implied by (P3) are taken

up in Section 4.3.

4.1. Minimum Time: Two Periods

We first note that T = 1 can never be the outcome under (P1), because in t = 0

only a fraction of the society can receive positive net transfers such that the adults

in t = 1 will have achieved λa . The first possibility, then, is to escape from

backwardness in two periods. In t = 0, suppose that the share of households with

i ∈ [0, δ0] will be subsidized. The total subsidy to this group of families is given

by

si
0 =

1 − δ0

δ0

τ ba ≡ s0, (24)

which implies the following pattern of human capital formation:

λi
1 =

{

zh[e0(1,−s0)] + 1 if i ∈ [0, δ0]

1 if i ∈ (δ0, 1].
(25)

To solve the problem in two periods, the tax–subsidy scheme in t = 1 must fulfill

λi
2 =

{

zh
{

e0
[

λi
1, τ1

(

λi
1

)]}

λi
1 + 1 ≥ λa if i ∈ [0, δ0]

zh
[

e0
(

1,−si
1

)]

+ 1 ≥ λa if i ∈ (δ0, 1]
(26)

and the financing constraint

δ0τ1 ≥ (1 − δ0)s1, (27)

where the superscript i may be dropped without ambiguity in (27) by virtue of

the fact that both groups are homogeneous. For each value of λi
1 (i ∈ [0, δ0]), let

τ̂1(λ
i
1) denote the maximum tax that household i can pay without violating the

upper branch of (26). Because λi
1 is uniquely determined by δ0 through s0, it follows

that for each choice of δ0 ∈ [0, 1], we obtain a unique λi
1 (i ∈ [0, δ0]) and a unique

τ̂1(λ
i
1). For each s1 that satisfies the lower branch of (26), {δ0τ̂1[λi

1(δ0)]−(1−δ0)s1}
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is also a continuous function. Consider, therefore, the following problem:

max
0≤δ0≤1

((

δ0τ̂1

{

λi
1[s0(δ0)]

}

− (1 − δ0)s1

))

i ∈ [0, δ0]. (28)

Because the objective function is continuous and δ0 ∈ [0, 1], a solution exists and

is denoted by δ̂0. We obtain

PROPOSITION 5. If δ̂0τ̂1(λ
i
1(s0(δ̂0))) − (1 − δ̂0)s1 ≥ 0, then T = 2 is the

outcome of policy problem (P1) with � = ∞. In particular, the subsidy ŝ0 =

(1 − δ̂0)τ
ba/δ̂0 to the households i ∈ [0, δ̂0] in period zero ensures that T = 2.

The preceding analysis highlights the point that two considerations enter into the

determination of δ̂0 or, equivalently, of ŝ0. First, how large is the taxable capacity

in the next period yielded by subsidizing a fraction of households in the present

period, a capacity expressed by δ0τ1{λ
i
1[s0(δ0)]}? Second, how large is the burden

of future subsidies needed to promote the rest, as expressed by (1 − δ0)s1?

Proposition 5 carries a number of further implications. First, if T = 2 under

(P1), there will not, in general, be a unique optimal tax and subsidy policy. For

suppose that the budget surplus in the second period is positive, δ̂0 τ1

{

λi
1 [s0(δ̂0)]

}

−

(1− δ̂0)s1 > 0, and denote by δ0 one value of the share of subsidized persons in the

first period for which the above financing constraint, (27), holds as an equality.23

Then there exists a continuum of solutions for δ0 and s0(δ0) with δ0 ∈ [δ0, δ̂0] and

s0 given by (24).

Second, to resolve this nonuniqueness, additional considerations can be brought

into the reckoning. An obvious choice is to minimize inequality. Let attention be

confined, to start with, to the first period (t = 0). Because �0 = s0 + τ ba , the

problem is as follows:

min
δ0∈[0,1]

s0 s.t. (24)–(27). (29)

Observe from (25) that minimizing s0 entails minimizing λi
1 (i ∈ [0, δ0]) and

hence also τ1. It is seen from (24) that minimizing s0 is also equivalent to maxi-

mizing δ0. It follows that if problem (29) possesses a solution, it will be unique.

Denote the solution by δ0
0 , so that

s0
0 =

1 − δ0
0

δ0
0

τ ba .

Now recall from the lower branch of (26) that when the subsidy s1 is the

minimum net transfer needed to yield λ2 = λa for the group supported in period 1,

it imposes the smallest fiscal burden in period 1 if the number of families to be

promoted is also a minimum, from which it also follows that the tax in period 1

on each family promoted in period 0, τ i
1 (i ∈ [0, δ0]), is a minimum, too. That

the solution to (29) entails minimizing the number of families to be promoted in

period 1 therefore motivates
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PROPOSITION 6. If the solution of policy problem (P1) with � = ∞ yields

T = 2, then the solution of problem (29), δ0
0 , yields minimum inequality in both

periods, with no inequality (λi
2 = λa ∀ i) in the second.

The proof of Proposition 6 is given in the Appendix.

It should be remarked that the argument will go through perfectly well even

if the upper frontiers are not concave everywhere, provided the optimum bundle

(c0
1, λ

0
2) is always unique.

The third implication of Proposition 5 is that although income inequality is

temporarily created in order to escape from the state of low productivity, there

need be no inequality in human capital, and hence no inequality in future income,

at the end of the two-period program. A subset of the programs in Proposition 5 and

the program in Proposition 6 therefore have the desirable feature that although

initially identical households are treated differently with respect to taxes and

subsidies in the first period, their offspring become identical once more in the next

period, and enter the stage of continuous growth as such. Hence, the apparently

highly restrictive constraint �T = 0 is not binding for (P2) if T = 2 is the outcome

of (P1). This observation can easily be generalized to the case where T ≥ 3, as

we now show.

4.2. An Equivalence between (P1) and (P2)

We claim that if (17) is the only restriction placed on taxes, then second-best,

maximal-speed programs can always avoid long-run inequality, in the sense that

all lineages attain the same level of human capital at the conclusion of such

programs. The following corollary is proved in the Appendix.

COROLLARY 1. Suppose that {τ ∗
t (λi

t ), s
∗i
t (λi

t )} is a solution of (P1) for

� = ∞, with minimum time T . Then T is also the minimum time of (P2) with

�T = 0.

4.3. Persistent Inequality

The preceding corollary shows that long-run inequalities can be avoided, but it

implies that the schooling of children of educated adults in period T − 1 must

be so limited that their human capital as adults will be exactly λa in period T .

Yet this might be politically implausible or even impossible, because the implied

range of income over which the marginal tax rate is 100% could be very large.

Policy problem (P3) addresses this difficulty by imposing the constraint that

et be nondecreasing within each lineage. This is equivalent to imposing certain

restrictions on the tax function τ i
t (·). It will now be shown by means of an example

that the optimal program for policy problem (P3) can require more time to attain

the goal of λa for the whole population than problem (P2), and may result in

income inequalities that persist beyond the program’s horizon.
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Consider the case of symmetric Stone–Geary preferences in the form

u =

⎧

⎪

⎨

⎪

⎩

(c − g) (zλ · h(e) + 1) + (g − csub) if c ≥ g

c − csub if g ≥ c ≥ csub

−∞ otherwise.

Consumption must be at least csub for “survival,” and full income per equivalent

adult must exceed the amount g if any schooling is to occur. Let the educational

technology take the form h(e) = b · e, and consider the following constellation

of parameter values: α = 0.16, β = 1, γ = 0.7, csub = 0.1, g = 0.14, z = 0.7

and b = 5.05. As established in Bell and Gersbach (2001), this example yields

the claimed result.

4.4. An Algorithm for Maximal Speed

We complete this section by generalizing the procedure for finding programs that

will bring about a fully educated society in the least possible time.

The previous sections indicate how maximal speed programs have to be de-

signed. Ascending from T = 1, one can establish necessary and sufficient condi-

tions that the least time be a particular period, say T . We summarize the procedure

as follows:

CHARACTERIZATION OF MAXIMAL SPEED PROGRAMS

A least-time optimal program starting from t = 0 spans T periods if and only if

there exists a sequence of tax-and-transfer schemes such that

(i) all households attain at least λa in period T ;

(ii) there is no budget deficit in period T −1 and there are balanced budgets in all previous

periods;

(iii) no such program exists for T − 1 periods.

A formal description of the algorithm is given in Bell and Gersbach (2001).

Although the principle underlying the procedure for deriving speed programs is

outlined above, there are further considerations when we move to longer time-

horizons.

An important feature of maximal speed programs is that school attendance

rates in all but the last period are not maximized. Indeed, the preceding results

imply that distributing subsidies more broadly to increase the number of children

at school in any particular period can lead to a return to poverty in the future,

because the succeeding cohorts of these lineages will not attend school to the

same extent, if at all. A second feature of such programs is that the indeterminacy

of tax-and-transfer schemes increases as T increases, which opens the door to the

use of additional criteria for judging inequality.
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4.5. Endogenous Fertility

As demonstrated by Raut and Srinivasan (1994), endogenous fertility can sig-

nificantly affect the dynamics of OLG models. Allowing households to choose

fertility (nt ) in our framework, with preferences represented by a utility func-

tion u(ct , nt , λt+1), would introduce the familiar quantity–quality tradeoff. Our

sequences of tax–subsidy schemes can be adapted to this case, but at the cost of

a tremendously expanded technical apparatus. The main consequences of such an

extension for our results can be summarized as follows.

Suppose fertility increases with the adult’s income, so that the dependency

ratio rises, too.24 Then the required subsidy to promote the escape from the

poverty trap becomes larger and, initially at least, fewer households can receive

subsidies, which reduces the speed toward a fully educated society. However, the

fact that such households have more children implies a larger future tax base, so it

increases the speed with which the remaining poor households will be pulled up.

The acceleration will continue over the following generations. Exactly the opposite

effects occur when fertility declines with rising income. Thus, introducing fertility

decisions does not affect the basic logic of our dynamic tax/subsidy schemes, but

it does introduce further static and dynamic feedback effects that impinge on the

speed with which optimal programs achieve full education.

5. POLITICAL IMPLEMENTATION

In this section, we briefly address the positive question of whether second-best

policies are likely to be implemented. Whether overcoming poverty can and will

occur under democracy will depend crucially on the specific constitutional rules

for setting the agenda and taking decisions. When, as in this paper, the level of

an adult’s human capital is fixed by past decisions, a democracy with simple

majority rule and equal agenda-setting rights will not achieve universal literacy

and growth. To establish this claim, suppose a subset of households start to educate

their children. If they form a minority, these families will be taxed at very high rates

in the next voting round, when uneducated individuals will form a majority. As

a consequence, although an initial education-enhancing redistribution may occur

(the winners might be chosen by lottery), its effect will be destroyed through time.

If, conversely, the said subset form a majority, then they will be able to block any

redistributive measures in favor of the minority left in illiteracy and poverty in the

first round.

There are, however, democratic constitutions with specific sets of rules that

do enable a democracy to produce an educated society. A constitution involving

the simple-majority rule, a tax-protection rule, and a rotating agenda-setting rule

may achieve this objective.25 The tax-protection rule, if it limits marginal tax

rates sufficiently, ensures that educated households do not fall back into poverty.

Rotating agenda-setting ensures that all uneducated individuals will have the power

to determine the agenda at some point in time. As agenda setters can channel
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subsidies to themselves, such a rule guarantees that all individuals eventually will

be educated. Of course, the speed of human capital accumulation will be lower

under a democracy than under a benevolent dictatorship, as a majority must always

be better off in every voting round, which constrains the set of education-enhancing

proposals.

It should be noted that the tax-protection rule may arise as the outcome of a

cooperative game. If adults can effectively destroy some or all of their endowments,

by emigrating or not working, for example, then there are limits on how punitive

taxation can be. This threat is an essential element in Aumann and Kurz’s (1977)

analysis of taxation under simple majority voting. One of their salient results is

that net income is an increasing function of gross income, with the poor receiving

some income support. Another is that the marginal tax rate will be at least 50%, but

will never reach 100%. Such an endogenous limitation has something in common

with our policy program (P3). Although all members of society will eventually

enjoy a full education, initial inequalities will not necessarily disappear, even in

the long run.

6. CONCLUSIONS

This investigation of the nexus of child labor, economic growth, and inequality

rests largely on the assumption that parents decide on their children’s schooling,

an assumption that can be justified by the enormous difficulties of monitoring and

enforcing school attendance and labor standards [see, for example, Basu and Van

(1998) and Basu (1999)]. Our analysis has yielded several findings, while leaving

a number of issues unsettled.

The main conclusions are, first, that a whole society or group can be mired

in a stable state of ignorance and low productivity, wherein all children work

full-time to supplement their families’ income and, in missing out on schooling,

thereby perpetuate as adults the condition into which they themselves were born.

Second, an escape from this poverty trap into a state of universal literacy and

continuous economic growth is possible through various second-best programs

of redistributive taxes and income support, even without outside aid. Third, the

catch here is that in the absence of outside aid on a sufficiently large scale, such

programs necessarily involve some temporary inequality, and they may result in

long-run inequality if the government is unable to tax the better-off sufficiently

heavily. For the very limited taxable capacity of the economy in its original

state demands that the subsidies thus financed, which are designed to induce

voluntary schooling, must be chosen in such a way as to create additional taxable

capacity in the future. This implies that the beneficiaries’ offspring must attain

a level of education such that their lineages do not slide back into the poverty

trap. Fourth, the necessity of temporary inequality speaks against policies aimed

at bringing about high attendance rates in the short term without giving due

consideration to the long-term perspective within which the problem is to be

solved.

terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1365100508080036
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 21:17:26, subject to the Cambridge Core

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1365100508080036
https:/www.cambridge.org/core


CHILD LABOR AND THE EDUCATION OF A SOCIETY 243

The possibility of compulsory schooling as a complement to taxes and subsidies

raises some interesting issues where the optimal package of measures is concerned.

Suppose, for example, that child labor can be limited to the point where the family

can just afford the subsistence level of consumption in the absence of any taxation

of income. If the educational technology is convex, a sequence of partial bans

will yield an escape from the trap in minimum time without resort to taxes and

subsidies. If the educational technology is not convex, however, it is not clear

that, when the goal is to bring about a fully educated society in minimum time,

universal compulsory schooling would eliminate the necessity of some degree of

temporary inequality. For inequality can increase taxable capacity, and taxes and

subsidies are also needed to attain the optimum in this case. These matters will

be important in situations where some monitoring and enforcement are possible

under governmental or international standards.

The list of open issues does not end with those arising from compulsory ed-

ucation. First, what other concepts of inequality, both within and across genera-

tions, commend themselves in the evaluation of alternative paths to full literacy?

Second, how should foreign aid be allocated in such a setting? Third, how do

the necessity of employing distortionary taxes and the possibility of tax evasion

affect the complexion, or even the feasibility, of an optimal program? Fourth,

how can credit opportunities for individual households or for the country as a

whole help to decrease the time needed to educate a society? These and other

pressing issues in the area of child labor and education are left as topics for further

research.

NOTES

1. Becker et al. (1990) and Ehrlich and Lui (1991) pioneered this approach based on the direct

transmission of potential productivity from parent to child.

2. The paper is therefore related to some recent literature on economic growth in which the transition

through different regimes is endogenously generated. The initial contributions are those of Galor and

Weil (1999, 2000), who describe, within a unified framework, long-run development processes from

an epoch of Malthusian stagnation to a state of sustained economic growth in modern times.

3. There is a large literature on growth and inequality, surveyed in Aghion and Williamson (1998).

This does not, however, deal with the problems of finding a path from one steady state to another, as we

do here. The work of Galor and Zeira (1993) shows that the distribution of wealth matters for economic

growth. At this fundamental level, our paper deals with a similar question to that in the growth and

inequality literature: do short-term or long-run tradeoffs exist between growth and inequality?

4. For an early survey, see Basu (1999).

5. In our model, output is produced by means of human capital alone, so there are no capitalists.

6. We comment on the robustness of our results to endogenous fertility in Section 4.5.

7. The evolution of human capital described in equation (1) is the simplest formulation, be-

cause it does not involve any persistence. Persistence can be introduced by extending equation (1)

to λt+1 = h(et )(zλt ) + 1 + ρλt . For ρ sufficiently small, our analysis should still hold. In future

research, we hope to say more about the case where persistence is large.

8. An alternative possibility is that children are expected to support their parents in old age, with

the contributions becoming more generous with the rising level of the children’s income as adults. To

pursue this possibility, three overlapping generations would be needed.

9. Note that the utility function is defined on the set {(ct , λt+1) : ct ≥ 0, λt+1 ≥ 1}.
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10. If, however, h(·) is strictly convex on some interval—for example, when e is small and the

payoff to additional schooling has yet to become large—the solution need not be unique and the locus

(c0(λt ), e
0(λt )) may exhibit a discontinuity at one or more values of λt . This possibility is a distraction

from the main theme of the paper and is ruled out by assumption, whereby it should be remarked that

it is not necessary that h(·) be concave for the solution to be unique.

11. This is equivalent to assuming that, for all λt ≤ λS , the indifference curves are sufficiently

steep where they intersect the horizontal line through λt+1 = 1.

12. The assumption holds if λt+1 is a sufficiently strong luxury good for all λt > λs , and if h(et )

is not too strongly concave. A detailed discussion and justification of the assumption is contained in

our working paper [Bell and Gersbach (2001)].

13. There are further possibilities associated with the non-growth case, which are discussed in Bell

and Gersbach (2001).

14. A detailed discussion of the case for intervention is contained in Bell and Gersbach (2001).

15. Given that the authorities can both observe and condition taxes on et , it is also possible to

devise a nonlinear income tax schedule that will induce families to choose e0
t = min [ξt/2, 1] without

any taxes actually being paid.

16. Some decentralized schemes for poor communities, such as Progresa in Mexico, appear to have

overcome the worst of these problems, though at considerable cost to the central fisc. Whether they

can be replicated in other, poorer countries is open to question.

17. This may be justified by the ease of tax evasion for child income. It is unlikely that allowing

household income to be taxable would change the main results that follow.

18. The case where a fixed amount of outside aid is available is discussed in Bell and Gersbach

(2001).

19. As will become clear, the policy problems are formulated in such a way that this level is also

indefinitely sustainable after completion of the programs in question. The requirement to bring the

whole society to (λ∗ + ǫ) for some ǫ > 0 would yield the same qualitative result.

20. Inequality will arise only from differences across groups, so that taking the range of the

distribution as a measure of inequality is defensible. The qualitative nature of our results appears to be

robust with respect to more sophisticated measures of inequality.

21. The proofs of the propositions rely crucially on this assumption. Although the overall con-

clusions are robust if we drop it, the proofs become extremely tedious, and the boundaries for the

inequality measure need to be slightly altered.

22. This assumption permits one to avoid considering the case where poor adults are taxed by an

arbitrarily small amount. Without it, the formulation of Propositions 3 and 4 becomes a bit more more

cumbersome.

23. There may be other solutions. In that case, we take one for which the budget surplus is positive

in the interval [δ0, δ̂0].

24. It is straightforward to give examples in which fertility can increase or decrease when income

rises from very low levels.

25. Such rules are discussed in Gersbach and Siemers (2005).

26. Equivalent is the case where the population is divided into two and each half is treated

symmetrically.

27. This claim follows from the first-order conditions for the said expression to attain a maximum,

whereby ψ1
1 = ψ2

1 , which will hold only by choosing equal treatment in period 0.
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APPENDIX

PROOF OF PROPOSITION 1

Part (i) follows immediately from the assumption that λS > 1. Part (ii) follows at once from

the third part of (14). To prove part (iii), observe that because zh(e0(λi
t ))λ

i
t is a continuous

function, it follows from λi
t+1 = 1 ∀λi

t ≤ λS and λi
t+1(λ

a) = zh(1)λa + 1 ≥ λa that λt

possesses at least one stationary value in the interval (λS, λa]. If, however, zh(1)λa+1 < λa ,

there need be no such value. In the case where zh(1)λa +1 > λa and zh(1) < 1, the largest

stationary value of λt is 1/[1 − zh(1)] > λa , which is clearly stable ∀λi
t ≥ λa . �

PROOF OF PROPOSITION 2

Given the nature of the claim, it clearly suffices to consider just two households (i = 1, 2),

whose level of human capital may differ after period 0.26 Define �t ≡ λ1
t + λ2

t , namely,

their aggregate human capital at time t . Because their aggregate consumption must be at

least 2(1 + β)csub, the aggregate time their children spend at school must satisfy

e1
t + e2

t ≤ [�t + 2γ − 2(1 + β)csub/α]/γ ≡ ξt .

In period 0, λ1
0 = λ2

0 = 1. If ξ0 = 2[(1 + γ ) − (1 + β)csub/α]/γ ≥ 2 and zh(1) + 1 ≥ λa ,

then by choosing e1
0 = e2

0 = 1, the problem will have been solved in one generation. If,

however, zh(1) + 1 < λa , both �1 and ξ1 will have been maximized in this case, with

λ1
1 = λ2

1 = zh(1) + 1 in period 1.

The other, more plausible, alternative in the state of backwardness is ξ0 < 2, so that uni-

versal, full-time, compulsory schooling is not feasible in period 0. Note that the assumption

α(1 + γ ) > (1 + β)csup ensures that ξ0 > 0. In this case,

�1 = z
[

h
(

e1
0

)

+ h
(

e2
0

)]

+ 2 = z
[

h
(

e1
0

)

+ h
(

ξ0 − e1
0

)]

+ 2,

which is maximized by choosing e1
0 = e2

0 = ξ0/2 by virtue of the strict concavity of h(·).

If zh(ξ0/2) + 1 ≥ λa , the problem will have been solved in one generation. Otherwise, we

proceed to period 1.

Suppose the policy of equal treatment is continued in period 1. If the policy program

e1
t = e2

t (t = 0, 1) yields the maximal value of �2 and the latter is at least 2λa , then the

problem will have been solved in two generations. Whatever the policy chosen in period 0,

however, we have

�2 =

⎧

⎪

⎨

⎪

⎩

z
[

h
(

e1
1

)

λ1
1 + h

(

ξ1 − e1
1

)

λ2
1

]

+ 2 if ξ1 < 2

z
[

h(1)λ1
1 + h(1)λ2

1

]

+ 2 if ξ1 ≥ 2.
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Define ψ i
t ≡ λi

t/�t . Then �2 may be rewritten as the product of two functions:

�2 =

⎧

⎪

⎨

⎪

⎩

z�1

[

h
(

e1
1

)

ψ1
1 + h

(

ξ1 − e1
1

)

ψ2
1

]

+ 2 if ξ1 < 2

z�1

[

h(1)ψ1
1 + h(1)ψ2

1

]

+ 2 if ξ1 ≥ 2.

Consider the upper branch first. Because identical treatment of children in period 0 max-

imizes �1, to prove that �2 is maximized by a policy of equal treatment in both periods,

it suffices to show that the expression [h(e1
1)ψ

1
1 + h(ξ1 − e1

1)ψ
2
1 ] is maximized by such

a policy. Because identical treatment in period 0 also maximizes ξ1, it follows from the

strict concavity of h(·) that the expression [h(e1
1)ψ

1
1 + h(ξ1 − e1

1)ψ
2
1 ] is maximized by

choosing identical treatment in period 1 and ψ1
1 = ψ2

1 .27 Following inspection of the lower

branch, we conclude that identical treatment of children within each period maximizes �2.

If, moreover, the said value of �2 is at least 2λa , then the problem will have been solved in

two generations.

By writing �t as

�t =

⎧

⎪

⎨

⎪

⎩

z�t−1

[

h
(

e1
t−1

)

ψ1
t−1 + h

(

ξt−1 − e1
t−1

)

ψ2
t−1

]

+ 2 if ξt−1 < 2

z�t−1

[

h(1)ψ1
t−1 + h(1)ψ2

t−1

]

+ 2 if ξt−1 ≥ 2,

it is clear that exactly the same argument will hold over as many periods as necessary to

yield λi
T ≥ λa (i = 1, 2). �

PROOF OF PROPOSITION 4

In period 0, � = s̃ + τ ba implies si
0 = s̃ and δ̃0 = τ ba/(s̃ + τ ba). Now consider the

economy in t = 1. The fraction δ̃0 of the adult population has human capital λ∗. If they are

to choose a level of education such that their children attain at least λ∗, then they cannot

be taxed. It is clear from Figure 2 and (22) that any net transfer from these households to

the state would yield λ < λ∗ in the next generation. Therefore, to move a fraction of the

remaining households, denoted by δ̃1, to the knowledge level λ∗ in the next period (t = 2),

the government’s budget constraint implies that

δ̃1(1 − δ̃0)s̃ = (1 − δ̃0)(1 − δ̃1)τ
ba, (A.1)

and from (21) we obtain δ̃0 = δ̃1. Repeating our argument for every period yields

δ̃t = δ̃t−1 = ... δ̃0 ≡ δ̃. (A.2)

Therefore, after any finite number of periods, say n, a positive measure (1−δ̃)n of households

in the population remains in the state of backwardness, which in turn implies T = ∞. �

PROOF OF PROPOSITION 6

Consider Figure 4, in which the upper frontier of the feasible set of a family promoted by a

subsidy s1 in period 1 is drawn as B ′C ′, to which an indifference curve is tangential at C ′.

(In the absence of the subsidy, the said frontier is BC, of which B ′C ′ is a parallel shift.) A

family promoted in period 0 attains λ1
1 in period 1 and pays the tax τ 1

1 . Its frontier is drawn
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′ ′ 

′ ′ 

FIGURE 4. Minimum time for T = 2.

as E′F ′; by virtue of the upper branch of (26), an indifference curve is tangential to it at F ′.

Because λi
2 is a normal good, the indifference curves become flatter as one proceeds along

the horizontal line λ2 = λa . Hence, if the group promoted in period 0 is to attain exactly

λ2 = λa , it follows that E′F ′ must lie to the left of B ′C ′, where it will be recalled that, for

each λ2, E′F ′ is steeper than B ′C ′ by virtue of λ1
1 > 1. It then follows that

�1 = |α{zh[e0(1, −s0)] + 1} − τ 1
1 (s0) − (α + s1) |

= s1 + τ 1
1 (s0) − αzh[e0(1, −s0)].

Hence, to minimize �1, we must minimize {τ1(s0) − αzh[e0(1, −s0)]}. It is seen from

Figure 4 that this is equivalent to minimizing E′B ′, whereby B ′ is fixed by s1. Now, an

increase in s0 will increase λ1
1 and hence make E′F ′ steeper, thereby requiring that E′ be

pushed to the left in order to maintain λ1
2 = λa . A reduction in s0 is not feasible, for the

financing constraint must be satisfied in period 1. �

PROOF OF COROLLARY 1

Because T is feasible under (P1) with � = ∞, all households will have attained at least

λa at the end of T periods. Suppose household i attains λi
T > λa after T periods, having
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reached λi
T −1 in period T − 1. Because zh(et )λt is continuous and monotonic in et and λt ,

and zh(0)λ + 1 = 1 < λa , there exists a tax τ T −1(λ
i
T −1) > τ ∗

T −1(λ
i
T −1) such that λi

T = λa .

Because additional taxation of this kind increases the funds available to subsidize the

poor without jeopardizing the condition λi
T ≥ λa , the solution of (P1) with the modified tax

scheme still yields T . Because these considerations apply to any household that attains more

human capital than λa in period T , the tax scheme τ T −1(λ
i
T −1) can be made independent of

a particular household i. Therefore, by appropriate taxation in period T − 1, all households

will reach λa in period T , which proves the corollary. �
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