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Abstract: Following the Great East Japan Earthquake, vertical evacuation shelters (VES) were con-
structed to reduce tsunami risk. Childcare centers (CCs) in the inundation area are required to
evacuate to the nearest VES in the event of a tsunami. The study aim was to identify CCs and
VES predicted to be inundated by a Nankai Trough earthquake-generated tsunami, and to clarify
CC inundation risk. We identified 52 (45.6%) CCs in the tsunami inundation area and found that
14 (25.9%) would evacuate toward the tsunami. If the walking speed was 2.24 km/h and a 0.3 m
tsunami arrived in 10 min, nine (17.3%) CCs would be late to safe evacuation. If the tsunami arrival
time was 20 min, four (7.7%) CCs would have late evacuation. At a walking speed of 1.00 km/h,
38 (73.1%) and 20 (38.5%) CCs would have late evacuation, with tsunami arrival times of 10 min and
20 min, respectively. Evacuation direction is important in avoiding tsunami damage. An evacuation
strategy is needed that evacuates people away from the tsunami, and takes into account children’s
age, walking speed, and evacuation method. The evaluation of tsunami risk in this study may support
the development of tsunami countermeasures in other coastal areas with latent tsunami risks.

Keywords: childcare center; vertical evacuation shelter; tsunami; Nankai Trough earthquake;
geographic information system

1. Introduction

In 2011, a tsunami generated by the Great East Japan Earthquake led to more than
23,000 human casualties in Japan [1]. Hori et al. predicted that a Nankai Trough earthquake
will occur in the 2030s and will be as large as the 1845 Ansei Nankai earthquake [2]. The
Japanese government is asking local governments to develop measures against a possible
tsunami generated by a Nankai Trough earthquake. Tsunami disaster countermeasures are
an important issue for cities on the Pacific coast that are expected to experience damage
from a Nankai Trough earthquake in the near future. Kochi City faces the Pacific Ocean
and has a population of approximately 323,000. Approximately 47% of the population of
Kochi Prefecture is concentrated in Kochi City [3]. If a Nankai Trough earthquake occurs,
the tsunami may reach a height of 16 m and is expected to cause long-term flooding of
approximately 2800 hectares [4]. Since the Great East Japan Earthquake in 2011, some
buildings have been designated as emergency evacuation sites in the event of a tsunami,
in case it is not possible to evacuate to outside the flooded area [5]. On the coast, local
governments are building tsunami evacuation towers (TETs) as refuges for individuals
unable to quickly escape the flooded area [6].

In Japan, childcare centers (CCs) care for children aged 0–6 years. The Child Welfare
Act requires CCs in Japan to conduct evacuation drills once a month [7]. A study of
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evacuation behaviors during the Great East Japan Earthquake found that children aged
3–5 years were instructed to walk side by side under the guidance of a teacher, and children
aged 0–2 years were carried piggyback or in strollers for multiple passengers. Local
support for evacuation was also provided [8]. Analysis by Akizuki et al. of evacuation
behaviors during the Great East Japan Earthquake suggested that during tsunamis, it is
impossible to prevent local residents from trying to save children in CCs, even though
residents know they are at risk from the tsunami. Therefore, CCs should be located higher
than the tsunami flood levels [9]. In the areas affected by the tsunami caused by the
Great East Japan Earthquake, construction work is being carried out to raise the land and
residents are moving to higher ground. However, there are many residents and CCs in
areas that were not affected by the Great East Japan Earthquake but that are predicted to be
affected by tsunamis.

Iwate, Miyagi, and Fukushima were severely damaged by the Great East Japan Earth-
quake. There were 15,876 victims in total one year after the disaster, of whom 466 were
0–9 years old. In this disaster, most of the children affected were in schools and childcare
facilities [10]. It is speculated that it was particularly difficult to evacuate toddlers, who
walk slowly. The impact on children who survived the tsunami is also serious. Many had
post-traumatic stress disorder and depressive symptoms after the tsunami [11,12], and
felt guilty that they had survived [13]. The effect of the tsunami disaster on children was
therefore complex.

To enable children in CCs to quickly evacuate in the event of an earthquake-generated
tsunami, it is necessary to identify the nearest non-flooded area and the shortest route to
that location, and to formulate a carefully considered evacuation strategy. Above all, it is
important that CCs near the coast have tsunami evacuation strategies to save children’s lives
and avoid damage to the CC. There have been reports of tsunamis caused by earthquakes
around the world. When a tsunami occurs, the epicenter is important, but tsunami damage
is not limited to the immediate location or by the size of the earthquake. The rise in sea
level due to global warming and urban development in low-lying coastal areas both have
effects [14,15]. Tsunami evacuation strategies for CCs, where children spend long hours
during the day, should be considered in all coastal areas of the world.

To develop evacuation measures for a Nankai Trough earthquake-generated tsunami,
several researchers have conducted agent-based modeling and simulation of tsunami
evacuation. In 2020, Muhammad et al. evaluated the evacuation plan for Saga City, Kochi
Prefecture, and highlighted the necessity of vertical evacuation shelters (VES) and the
importance of evacuation speed [16]. Assuming that vulnerable people will evacuate by
car, Takabatake et al. conducted a simulation of pedestrian and car evacuation. They
found that shelter location and route selection are important for successful evacuation [17].
Kondo has estimated that approximately 46,000 people would be killed even if TETs and
tsunami evacuation buildings (TEBs) were constructed, and suggested that in the event of
a Nankai Trough earthquake, residents should relocate to higher ground [18]. Geographic
information system (GIS) network analysis tools help to determine the reachable range of
optimal evacuation sites, evacuation routes, and walking speeds.

There is considerable research on tsunami damage assessment and evacuation using
GIS, including traffic flow simulations from a tsunami hazard zone by Wood et al. [19].
According to Kubisch et al., in the event of a tsunami, approximately 40% of the population
of Talcahuano, Chile, would not be able to reach the evacuation range even if their walking
speed increased [20]. Therefore, walking speed is an important evacuation factor because
of delays owing to traffic jams and the destruction of infrastructure. In one study of the
Cilacap coastal area of Indonesia, ArcGIS network analysis was used to locate the nearest
evacuation shelter buildings, taking into account road conditions and walking speed [21].
In addition, GIS network analysis has been used to search for optimal tsunami evacuation
routes and service areas. For example, Sutikno et al. used GIS network analysis to identify
appropriate evacuation routes and shelter allocation during a possible earthquake in Pacitan
City, Indonesia [22], and Sutikno and Murakami evaluated access to shelters in Indonesia
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to identify shelters that could not be reached in the event of a tsunami [23]. Kumagai et al.
calculated the walking distance from evacuation centers based on lessons learned from the
Great Hanshin-Awaji earthquake, and estimated the number of evacuees in each area [24].
We previously assessed the effectiveness of the installation of guide signs to evacuate
hearing-impaired people from a tsunami [25]. A previous study on risk assessment for
hurricanes examined the suitability of existing shelters and the construction of a model to
determine the placement of shelters [26]. Bagewadi et al. used GIS to evaluate and visualize
the vulnerabilities in each district in Mumbai, India [27], and Ye et al. used GIS to analyze
evacuation demand, access, and optimal evacuation destinations in Shanghai, China, in
preparation for an earthquake [28]. In a 2016 study, a tsunami risk map was generated
that combined a vulnerability map and an evacuation resilience map to identify important
tsunami resources [29].

The walking speed of evacuees is important in timely tsunami evacuation [30]. CCs care
for children aged 0–6 years, and the speed of evacuation varies according to the age of
evacuees. However, no studies have examined the route to the nearest VES in the event of a
tsunami caused by a Nankai Trough earthquake, taking into account the walking speed of
children. In this study, we identified the CCs and TEBs/TETs (TETs are VES) in Kochi City
that are predicted to be flooded by a tsunami caused by a Nankai Trough earthquake.
VES capacity, hierarchy, evacuation environment, CC capacity, and inundation depth were
determined. Furthermore, taking into account walking speed and tsunami arrival time,
we estimated the number of people who would be late in evacuating to the nearest VES.
In recent years, attempts have been made to estimate mortality risks from tsunamis on a
global scale [31]. The evaluation of tsunami risk in areas likely to be affected by tsunamis
from Nankai Trough earthquakes may help in developing tsunami countermeasures in
other coastal areas with latent tsunami risks.

2. Materials and Methods
2.1. Terms Used in This Study

Tsunami Evacuation Buildings (TEBs)

These are buildings used for temporary evacuation in the event of a tsunami. For ex-
ample, condominiums and office buildings are designated as TEBs by the local government
in normal times and published on a website [24].

Tsunami Evacuation Towers (TETs)

These buildings are located in coastal areas where tsunami evacuation is difficult. The
towers are used for temporary evacuation from the tsunami [25].

Vertical Evacuation Shelters (VES)

Taking into account the ground subsidence caused by the earthquake and the height
of the tsunami, four-story TEBs and TETs or above are defined as VES.

Inundation Depth

In this study, we use the term inundation depth, also termed flow depth in some
studies, to refer to the depth at which the (usually dry) ground is covered with water by the
tsunami. The flow and approach direction of tsunamis are not considered [32]. In Japan,
local governments use hazard maps to indicate the depth of inundation caused by tsunamis
and call on residents to evacuate early [33].

Late Evacuation

We use the term “late evacuation” to refer to instances when our model indicates that
CCs would not be able to reach safety in the estimated time available to them.

2.2. Types and Sources of Data Used for Analysis

Types and Sources of Data Used for Analysis are shown in Table 1.
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Table 1. The types and sources of data used for analysis.

No. Data Type Source Use

1 Childcare center list
(point) Kochi City website We created a list by collecting information on the name, address, and capacity of childcare

centers. We converted the addresses to coordinate values and plotted the centers on a map.

2 Tsunami evacuation
building list (point) Kochi City website

We created a list by collecting information on the name, address, capacity, and building
hierarchy of tsunami evacuation buildings. We converted the addresses to coordinate
values and plotted the buildings on a map.

3 Tsunami evacuation
tower list (point) Kochi City website

From the list of evacuation sites in Kochi City, we extracted the names and addresses of
tsunami evacuation towers and created a list. We converted the addresses to coordinate
values and plotted the towers on a map.

4 Tsunami inundation
area (polygon)

Ministry of Land,
Infrastructure,
Transport, and Tourism

From the download service of the Ministry of Land, Infrastructure, Transport, and
Tourism, we obtained a polygon of the tsunami inundation area with information about
the inundation depth. We added this to the map.

2.3. Data Collection

We obtained a TEB list, a TET list, and a CC list from the Kochi City website [5,34,35].
To identify the CCs in the tsunami inundation area of Kochi City, we obtained polygon data
of the tsunami inundation area from the website of the Ministry of Land, Infrastructure,
Transport, and Tourism [36].

2.4. Target Area

The target city is Kochi City, Kochi Prefecture, in the Shikoku region of Japan. Kochi
City is located on the Pacific coast and has a population of 324,191 (Figure 1) [37]. A Nankai
Trough earthquake may have a seismic intensity of 7 in the area between Shizuoka Prefec-
ture and Miyazaki Prefecture, and will likely cause a large tsunami of 10 m or more [38,39].
The Nankai Trough has an average depth of 4000 m and a depth of 150–200 km off the
coast of Kochi Prefecture, and has caused several earthquakes of magnitude of 8 or more
at intervals of approximately 100 years [38]. If a Nankai Trough earthquake occurred,
it is estimated that the ground in Kochi City would subside 1.5 m and approximately
2800 hectares of land would be inundated for a long time [4].
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Figure 1. Location of Kochi City, Japan, the epicenter area of the Nankai Trough, and the projected
region of a Nankai Trough earthquake. Gray areas represent the sea, white areas represent the land,
and the gray boundary lines indicate prefectural borders. The Nankai Trough epicenter area was
determined using ocean plate data [40] 2003, Hugo Ahlenius, Nordpil, Peter Bird from GitHub with
reference to a paper by Bird (2003) [41]. The Nankai Trough earthquake source zone was determined
by referring to Nankai Trough earthquake source data from the Japan Meteorological Agency [39].
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2.5. Location of Vertical Evacuation Shelters (VES) and CCs in Tsunami Inundation Area

We counted the number of TEBs and TETs in Kochi City. For TEBs, we calculated the
building hierarchy, the evacuee capacity, and the distribution of locations in flooded areas.
We used GIS to plot CCs, TEBs, and TETs on the map to depict the tsunami inundation area.
We used the Intersect tool to identify CCs in the tsunami inundation area. We calculated
the inundation depth, total capacity, and median of CCs in the tsunami inundation area.
Figure 2 shows the CCs and VES in the tsunami inundation area of Kochi City.
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2.6. Analysis of Disaster Risk Taking into Account Walking Speed and Tsunami Arrival Time

Using the Find Closest Facilities tool in Arc GIS Pro, we identified pedestrian routes
from each CC to the nearest VES. Assuming that the tsunami flows from the coast to the
mountains, we visually confirmed the movement path of each CC and the direction of the
tsunami inflow from the coastal area, and simply counted the CCs moving toward the
tsunami. It should be noted that the direction of evacuation is determined based on visual
observation and the results are approximate. For this search, bridges over bays, rivers,
and ponds were set to be closed (specifically, Urado Bay, Niyodo River, Shinkawa River,
Kagami River, Enokuchi River, Kokubu River, Kuma River, Funairi River, Shimoda River,
and Tarumi pond). Walking speed was set as the average speed when evacuating from the
Great East Japan Earthquake tsunami toward a hill on foot. The speed of individuals with
a companion who had difficulty walking was 1.88 km, and the speed of those accompanied
by elderly people and infants was 1.66 km. The baseline travel speed was set as an
average value of 2.24 km, assuming that the pedestrian had a stroller and was walking
on flat ground [42]. However, there are some limitations to setting a baseline value for
travel speed. Walking speed varies according to the child’s age and physical strength,
and the number of strollers available. Walking speed also varies according to the person
carrying the child.

We calculated the distance from each CC to the nearest VES, the median (range)
walking time, and the number and percentage of CCs that would evacuate toward the
tsunami. With reference to the Kochi Prefecture Disaster Prevention Map [43], we calculated
the number and percentage of CCs that are not expected to evacuate within the time it takes
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for a 0.3 m tsunami to reach them. Kochi Prefecture has published a map of the arrival
time of a 0.3 m tsunami, which states that it will be impossible for residents to evacuate
on foot and asks residents to evacuate quickly [33]. However, setting the arrival time of
a 0.3 m tsunami has important limitations. It does not consider the damage risk until the
tsunami reaches 0.3 m. Therefore, it should be noted that there is a risk of disaster before
reaching 0.3 m of inundation, and a tsunami may go on to have flow depths that greatly
exceed 0.3 m. For GIS analysis, ArcGIS Pro 2.8.0 from Esri (California, CA, USA) was used.

2.7. Estimated Number of CCs Expected to Have Late Evacuation Times for Each Walking Speed

We estimated the number of CCs expected to have late evacuation times at each
walking speed. The baseline walking speed was set at 2.24 km/h, a slow walking speed
scenario was set at 1.00 km/h or 2.00 km/h, and a fast walking speed scenario was set at
3.00 km/h, 4.00 km/h, or 5.00 km/h.

The analysis flow is shown in Figure 3.
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3. Results
3.1. VES Breakdown and Capacity, Building Hierarchy, and Evacuation Site Environment

The median TEB capacity is 302, with a range of 8 to 71,645. The median number of
building stories is five (range: 1–22 stories). Table 2 shows a breakdown of VES building
hierarchy and evacuation site environment.

Table 2. Breakdown of VES building hierarchy and evacuation site environment (n = 341).

Items n (%)

VES building hierarchy
TEB 332 (97.3)

1-story or 2-story 49 (14.4)
3-story to 10-story 256 (75.1)
11-story to 22-story 27 (7.9)

TET 9 (2.6)

Evacuation site environment
indoors 184 (54.0)
partially outdoors 93 (27.3)
outdoors 64 (18.8)

VES, vertical evacuation shelters; TEBs, tsunami evacuation buildings; TETs, tsunami evacuation towers.

3.2. CCs in Tsunami Inundation Area (n = 114)

Kochi City has 114 CCs, with a total capacity of 5531 people, a median of 101 people,
and a capacity range of 20 to 265 people. Of CCs, 52 (45.6%) are in areas where tsunami
inundation is expected. Figure 4 shows the number of CCs for each inundation depth.
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3.3. Route Analysis from CCs in the Inundation Area to Nearest VES Using the Find Closest
Facilities Tool

In the event of a tsunami, if a person walked at 2.24 km/h and evacuated to the nearest
VES, the median evacuation distance would be 0.24 km and the range would be 0 to 3.47 km.
The median walking time would be 6.32 min and the range would be 0 to 93.08 min. If the
CCs moved toward the nearest VES, 14 CCs (25.9%) would evacuate toward the tsunami
inflow and two CCs (3.8%) would not reach the VES by the time a 0.3 m tsunami arrived.
If the walking time is subtracted from the tsunami arrival time, two CCs would have late
evacuations (shown by negative values): ID1 (−73.08 min) and ID6 (−12.04 min). ID1
and ID6 would be able to evacuate quickly from the flooded area by moving toward the
inflow direction of the tsunami instead of moving to the nearest VES (Figure 5). If they
evacuated toward the nearest VES, the following CCs would move toward the coast (their
Euclidean distances from the coast are shown in parentheses): ID2 (approximately 527 m),
ID3 (approximately 131 m), and ID7 (approximately 835 m) (Figure 6).
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Figure 6. Routes to the nearest vertical evacuation shelter of childcare centers (CCs) ID2, ID3, and ID7,
directions of rapid tsunami evacuation, and distances from CCs to the coast. The direction required
for rapid tsunami evacuation is indicated by a black arrow with a red border.

3.4. Estimation of CCs That Could Not Evacuate Using Walking Speed and Tsunami Arrival Time

Figure 7 shows the estimated number of late evacuations for each tsunami arrival time
according to differences in walking speed. If a 0.3 m tsunami arrived in 10 min, assuming
a base walking speed of 2.24 km/h, 17 CCs (32.7%) would have late evacuations. The
number of late evacuations for speeds faster than the base walking speed would be 14 CCs
(26.9%) at 3.0 km/h, 11 CCs (21.2%) at 4.0 km/h, and 9 CCs (17.3%) at 5.0 km/h. The
number of late evacuations for speeds slower than base walking speed would be 20 CCs
(38.5%) at 2.0 km/h and 38 CCs (73.1%) at 1.0 km/h.
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4. Discussion

In the event of a tsunami caused by a Nankai Trough earthquake, approximately 14%
of VES may be damaged from land subsidence because of insufficient building height.
Findings from the 2011 Great East Japan Earthquake emphasize the need for VES that
are high enough to withstand the estimated tsunami height [44]. Land subsidence has
occurred in Kochi Prefecture as a result of a previous Nankai Trough earthquake [45].
During the Nankai Trough earthquake of 1946, land subsidence of approximately 1 m
occurred, and it took approximately a month for the seawater to completely disappear [38].
The designation of three-story buildings and below as VES should be carefully considered
because of land subsidence. We recommend that policy makers review VES designation
taking into account land subsidence caused by a Nankai Trough earthquake.

A tsunami often causes long-term inundation of low-lying land [46]. There are con-
cerns about long-term inundation of the plains in Kochi Prefecture in the event of a Nankai
Trough earthquake and tsunami [47]. During the tsunami caused by the Great East Japan
Earthquake, some people evacuated to the roofs of school buildings; they had to wait until
the next morning for helicopters to arrive [48]. Data from Kochi Prefecture estimate that
approximately 130,000 people will be left behind in VES if a tsunami occurs [47]. People
who evacuate to VES must expect to wait tens of hours for helicopter rescue. Because 18.8%
of VES evacuation sites are outdoors, some evacuees may become ill from exposure to
heat or cold. Policy makers need to develop policies that take into account VES capacity,
rescue time, and the effect of climate on evacuees’ physical condition. Specifically, it is
recommended that outdoor VES be insulated from the heat and cold and be equipped with
drinking water and an emergency battery, because people may have to remain outdoors
for some time after evacuation.

It has been noted that the use of TETs in areas near the coast of Japan may increase
casualties by directing evacuees living on higher land to evacuate to TETs on lower land
that are at higher risk of flooding [49]. The route analysis using the Find Closest Facilities
tool showed that if people evacuate from CCs to the nearest VES, 25.9% will move toward
the tsunami. Simply instructing people in CCs to evacuate to the nearest VES is not enough
to avoid damage from the tsunami. If ID2 and ID7 in the coastal area move to the nearest
VES, they would be moving toward the tsunami. ID3 would also move toward the tsunami,
then bypass the coast and move out of the flooded area to the hill. ID2, ID7, and ID3 could
evacuate from the flooded area faster by moving toward the tsunami than by moving to the
nearest VES (Figure 6). People in areas near the coast do not have time to wait for warnings
from the authorities. It has been pointed out that people should act immediately after
ascertaining that an earthquake has hit [50]. When developing a coastal CC evacuation plan,
it is important to consider the tsunami arrival time at the evacuation route, the direction of
the tsunami, and the distance to the land outside the flooded area to determine if evacuation
to the nearest TET is optimal. CC evacuation behavior should differ according to the age
of the children. Children aged 3–5 years tend to be instructed to walk two abreast under
the guidance of teachers, and children aged 0–2 years tend to be carried piggyback or
transported in multi-passenger baby strollers [8]. This means that children aged 3–5 years
and their teachers must evacuate at the walking speed of a 3-year-old. According to the
Ministry of Health, Labor, and Welfare, CC evacuation drills show that the walking speed of
a 3-year-old child is approximately 1.0 m/s (3.6 km/h) [51]. Taking into account the child’s
physical strength and walking endurance, future evacuation plans must assume a walking
speed slower than 3.6 km/h. Geographic least-cost distance modeling, which incorporates
time-variable exposure, distributed travel speeds, and uncertain evacuation departure time,
shows that evacuation departure time has a large effect on total evacuation time [52].

In recent years, the importance of risk reduction in disaster risk management has been
highlighted [53,54]. After the Great East Japan Earthquake, Japan implemented a program
of TEB designation and TET construction in tsunami inundation areas to reduce risk from
tsunamis [55]. The main implications of our findings for CC disaster risk management
are that TEB designation, TET construction, and evacuation requests do not reduce risk
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sufficiently. CC geographic features, tsunami arrival times, walking speeds, and evacu-
ation directions should also be considered to prevent child casualties. Several real and
hypothetical tsunami evacuations by Chen et al. [56] show significant delays in departure
times. CCs require more evacuation time than institutions with adults, and further research
on the evacuation preparation time of nursery schools is necessary. We suggest that such
considerations be applied not only to CCs but also more generally in areas of expected
tsunami inundation.

This study has some limitations. The present study did not consider the time from
the occurrence of the earthquake to the evacuation departure time. Because the time
required for departure may vary depending on the age and condition of the child, a
more elaborate evacuation strategy is required that takes into account children’s age and
condition. Incorporation of departure delays would produce higher estimates of fatalities
and thus, further research is needed to assess departure time delays for CCs. In the
ArcGIS Pro Find Closest Facilities analysis, the tsunami arrival time was set at 0.3 m. This
inundation depth simply indicates the height of inundation from the ground surface. It
does not consider the direction of the tsunami, the flow speed, or the effects of slope and
terrain. Furthermore, depending on children’s body shape and walking speed, it is highly
possible that children will be unable to evacuate owing to flooding of several cm. We did
not consider the time between the occurrence of the earthquake and the start of evacuation.
In calculating the difference between the time required for evacuation and the tsunami
arrival time, the time taken for the tsunami to reach CCs was calculated, but the time taken
for the tsunami to reach the evacuation route was not taken into account. Formulating
a CC evacuation plan requires interviews with CC managers about planned evacuation
routes and a detailed analysis that includes all additional factors. However, earthquakes
occur around the world. This model may also be useful for developing tsunami evacuation
plans that match the actual conditions of coastal areas elsewhere.

5. Conclusions

VES need to be well provisioned, and it is also important to take into account evac-
uation direction, walking speed, and the tsunami arrival time at the evacuation route to
prevent late CC evacuation. CCs exposed to short tsunami arrival times should consider
relocating to higher ground or, if that is not possible, installing a TET adjacent to the CC.
The TEB designation for three-story buildings and below should be reviewed to take into
account the land subsidence caused by a Nankai Trough earthquake.
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