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Abstract

Childhood maltreatment (CM) is all too frequent among western societies, with an estimated 

prevalence of 10 to 15%. CM associates with increased risk of several psychiatric disorders, and 

therefore represents a worrying public and socio-economic burden. While associated clinical 

outcomes are well characterized, determining by which mechanisms early-life adverse experiences 

affect mental health over the lifespan is a major challenge. Epigenetic mechanisms, in particular 

DNA methylation, represent a form of molecular memory that may modify brain function over 

extended periods of time, as well as serve as a bio-marker of behavioral phenotypes associated 

with CM. Here, we review human studies suggesting that DNA methylation is a crucial substrate 

mediating neurobiological consequences of CM throughout life, thereby potentiating maladaptive 

behavioral patterns and psychopathological risk.
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Introduction

Children in our society are all too often subjected to maltreatment, which is a global 

problem of significant proportion affecting children of all races and socio-economic 

backgrounds [1]. It is estimated that over 30% of adult psychopathology is directly related to 

childhood maltreatment (CM), including but not limited to parental neglect, physical, sexual, 

and psychological abuse [2–4]. In extension to predicting psychiatric illness, CM has been 

associated with chronic forms of these pathologies, poor clinical course, greater incidence of 

hospitalization, increased comorbidity and reduced responsiveness to pharmacotherapy [5–

8].

An effort to gain insight into the mechanisms through which CM interacts with an 

individual’s biological make-up to trigger psychopathology has pointed towards the 

emerging field of behavioral epigenetics. Epigenetic modifications refer to the collective 

chemical and physical alterations of the genome that regulate the activity of genes in a time- 

and cell-dependent manner [9]. One of the most studied epigenetic marks is DNA 
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methylation, which mostly refers to the covalent addition of a methyl group to cytosines, 

often followed by a guanine (CpG dinucleotide). Methylation of cytosine has been 

associated with a variety of molecular events (including the modulation of DNA binding by 

transcription factors, or the recruitment of methyl-CpG binding proteins), and classically 

leads to chromatin condensation and transcriptional repression [10]. A majority of studies to 

date have focused on methylation of CpG sites in gene promoter regions. For additional 

information on molecular mechanisms of DNA methylation, as well as for methodological 

considerations, we refer the reader to recent exhaustive reviews [11–13].

A major challenge in the field of CM is to understand how early-life experiences can affect 

behavior and mental health outcomes over the lifespan. Epigenetic mechanisms, in particular 

DNA methylation, represent a form of cerebral plasticity that has the potential to modify 

gene expression over extended periods of time. Furthermore, while epigenetic processes may 

potentially occur throughout life, it has been proposed that early development represents a 

particularly sensitive period to epigenetic modification of the genome [14]. Within this 

framework, the present mini-review will emphasize the biological memory of CM embedded 

into the genome and its relation to stress related psychopathology [15–17]; what we refer to 

as the epigenetic memory hypothesis. We will focus our analysis on DNA methylation, by 

far the most studied epigenetic substrate linking early-life events with lifelong mental health.

HPA Axis

The most extensively investigated and reviewed gene in epigenetic studies of CM appears to 

be the glucocorticoid receptor (GR) [18]. Much of excitement surrounding this system arose 

from i) animal findings pointing towards differential DNA methylation as a result of early-

life variations in maternal care [19], as well as ii) dysfunctional hypothalamic-pituitary-

adrenal (HPA) axis responses to stress in humans with a history of CM [20, 21]. Building on 

these findings, our group was the first to provide evidence for an interaction between early-

life adversity and the human epigenome [22]. Briefly, DNA methylation of 2 CpG sites in 

the exon 1F promoter region of the GR gene was increased in suicide completers with a 

history of CM as compared to non-abused suicidees, as well as healthy controls. At the 

transcriptomic level, this resulted in reduced GR expression. Additional in vitro experiments 

focused on the promoter region where differential DNA methylation occurred as a function 

of CM. Results showed that low DNA methylation in this region leads to decreased 

transcriptional activation by the transcription factor NGFI-A, as well as decreased DNA 

occupancy by NGFI-A, strongly suggesting a molecular mechanism whereby CM may 

program GR expression.

Following this initial study, increased DNA methylation in the GR gene as a result of CM 

has been consistently associated with altered GR expression or stress reactivity across a 

variety of behavioral phenotypes (see [23–26] for recent reviews). Furthermore, consistent 

results have been obtained in both brain and peripheral tissues, thus establishing GR as a 

promising candidate gene for use as a biomarker of CM [26].

In addition to studies focusing exclusively on GR, epigenetic associations between GR and 

the monoamine oxidase A (MAOA) gene were assessed in a Swedish cohort of depressed 
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subjects with a history of early life adversity [27]. MAOA is of particular importance in 

psychiatric disorders as it plays a key role in the degradation of neurotransmitters such as 

noradrenaline, dopamine and serotonin (5-HT). One specific type of adversity, namely early 

parental death, was associated with hypermethylation of the NR3C1 gene proximal to an 

NGFI-A biding site, as assessed in saliva samples. A regression analysis revealed that this 

association may be mediated by a well-characterized genetic polymorphism in the MAOA 

promoter, therefore suggesting the involvement of both gene x gene and gene x environment 

interactions.

Activity of the HPA axis is tightly controlled by multiple regulatory mechanisms. At the 

intracellular level, FKBP5 represents a negative feedback loop: the expression of FKBP5 is 

stimulated by GR, while this protein functionally inhibits GR signaling. Independent groups 

have identified an interaction between several FKBP5 single nucleotide polymorphisms 

(SNPs) and a history of CM in PTSD, depression, and suicide attempts [28–30]. Recently, a 

functional SNP has been identified at a glucocorticoid response element in the FKBP5 intron 

2 that moderates the relationship between CM and adult PTSD [31]. Interestingly, 

individuals carrying the risk allele in intron 2, and with a history of CM, were shown to 

display decreased methylation in FKBP5 intron 7. Furthermore, intron 7 DNA methylation 

appeared to be regulated by glucocorticoid levels, and influenced FKBP5 activity.

Altogether, several genes and neuronal pathways are likely epigenetically reprogrammed by 

CM to alter HPA axis and stress responses over the lifespan.

Serotonin

The serotonergic system has been extensively investigated in its relation to early-life induced 

epigenetic regulation and psychiatric disorders. The most highly investigated gene being the 

serotonin transporter (SLC6A4), involved in neurotransmitter reuptake at serotonergic 

synapses. Early evidence has pointed to an interaction between 5-HTTLPR, a functional 

polymorphism in the promoter region of the SLC6A4 gene, and psychosocial stressors in 

conferring a risk for depression [32]. Although some later studies failed to replicate previous 

findings of genome x environment interactions between the SLC6A4 gene, adversity, and 

depression [33], there is still considerable support for this relationship [34]. In a recent series 

of investigations performed in the Iowa Adoptee Sample, methylation of the promoter region 

of the SLC6A4 gene was linked to a family history of CM, including physical and sexual 

abuse [35]. While no significant association emerged between specific CpG loci methylation 

and CM, overall DNA methylation was significantly increased across the promoter region 

for abused, in comparison to non-abused, males. This was in contrast to females, where two 

loci were found significantly hyper-methylated for those who had experienced CM. 

Replicating prior findings in a non-overlapping cohort of females, the authors validated that 

CM still associated with higher levels of SLC6A4 methylation [36]. Furthermore, in 

subsequent studies, epigenetic patterns of this gene were suggested to represent a 

mechanism linking CM to antisocial personality disorder (ASPD) symptoms. The same 

group of investigators discovered an interaction between parental history of 

psychopathology and CM as a predictor of the intensity of SLC6A4 DNA methylation and 

the risk of ASPD symptomology [37]. Finally, the authors aimed at determining how DNA 
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methylation impacts gene expression, and whether other non-promoter regions of the 

SLC6A4 gene served as additional candidates for gene x environment interactions [38]. The 

analysis identified two methylation sites that associated with variant-specific expression, as 

well as one site that associated with global SLC6A4 expression. Given the above studies, the 

relevance of SLC6A4 methylation on pre-treatment characteristics, and treatment outcome 

of depression are brought into question. Kang et al. [39] determined that SLC6A4 promoter 

DNA methylation status as a function of CM was significantly associated with worse pre-

treatment clinical presentation of depression, including severer symptomology, higher 

perceived stress, and an increased family history of psychopathology. Interestingly, the type 

of abuse (physical versus sexual) determined methylation site, while higher methylation at 

specific sites predicted both higher scores on tests of disability and lower scores on quality 

of life assessments. These data therefore suggest the possibility of interactive relationships 

between the type of childhood adversity, site of methylation, and clinical outcome.

Additional studies have focused on addressing the role of SLC6A4 DNA methylation and in 

vivo measures of serotonin synthesis (using positron emission tomography) in childhood 

physical aggression. Wang and colleagues [40] followed a longitudinal sample of adult 

males who showed significant levels of high childhood-limited aggression (C-LHPA), a 

phenotype associated with early-life adversity, and compared methylation patterns in T cells 

and monocytes of these males to controls. The authors found increased methylation at 4 

CpG sites in C-LHPA, which negatively correlated with in vivo levels of brain serotonin 

synthesis in the orbitofrontal cortex.

BDNF

There is evidence to support an interaction between 5-HT and brain-derived neurotrophic 

factor (BDNF) in guiding the development and plasticity of neurocircuits that regulate 

affective behaviors [41]. In a large population-based cohort study [42], two polymorphisms 

in the SLC6A4 and BDNF genes (5-HTTLPR and Val66Met, respectively) interacted with 

an unfavourable early environment to predict depressive symptomology. Depressive 

symptomology was most common in carriers of either the ll + Met or the ss/sl + Val/Val 

genotypes in the presence of a history of early-life adversity.

BDNF may also play an important role in energy homeostasis and food intake, thus 

representing a theoretically supported candidate gene in the pathophysiology of eating-

disorders [43]. In a recent study by Thaler et al. [44], a significant increase in methylation at 

specific CpG sites of the BDNF promoter was observed in a bulimia nervosa group as 

compared to normal eaters. A significant interaction effect was also observed between 

borderline personality disorder (BPD), CM, and methylation levels of the BDNF gene. 

Similar interactions were observed between bulimia nervosa, BPD and DNA methylation for 

the dopamine D2 receptor [45], suggesting that several neuronal networks may be affected. 

While methylation levels did not differ between bulimia and normal eaters, there was a slight 

increase in methylation of the D2 receptor in bulimics with BPD, as well as those who 

reported a history of childhood sexual abuse. Further investigating the BPD phenotype, 

Perroud et al. [46] explored the effects of psychotherapy on BDNF methylation levels. Prior 

to treatment, BPD subjects had a higher baseline BDNF methylation status as compared to 
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controls. In addition, a positive correlation was observed between the incidence rate of 

childhood trauma and methylation status in the BPD patients. BDNF methylation status was 

reassessed following a 4-week course of intensive dialectical behavior therapy, during which 

responders showed a decrease in methylation status over time. Additional studies will be 

necessary to further assess the appealing possibility that, in addition to pharmacotherapies 

and life experiences, psychotherapy might also associate with epigenetic plasticity.

Genome-wide studies

While hypothesis-driven approaches provide insight into the role that specific genes play in 

psychopathology, epigenetic reprogramming as a result of early-life adversity may occur on 

a much larger scale. As such, genome-wide studies seem better equipped to investigate 

disorders of complex genetic and epigenetic heterogeneity. Such methodological approaches 

allows for a more comprehensive overview of the molecular pathways potentially involved, 

and of the relationships between specific methylation sites and nearby genomic regions.

Moving away from a GR centered locus, our group recently broadened our explorations in 

the human brain hippocampus to a 6.5 million base pair region surrounding the GR [47], and 

to the genome-wide level [48] (using immuno-precipitation of methylated DNA and 

hybridization to custom-designed promoter arrays, MeDIP-chip). The latter study identified 

362 sites that were differentially methylated in suicide completers with a history of CM 

compared to psychiatrically normal controls, 248 of which were hypermethylated and 114 

hypomethylated [48]. Differentially methylated sites followed a non-random distribution and 

were clustered in specific genomic regions, suggesting wide reprogramming of the 

epigenome. Furthermore, fluorescence-assisted cell sorting using an antibody raised against 

the neuron specific protein Neu-N, allowed us to separate neuronal versus non-neuronal 

nuclear fractions, and revealed that most CM-associated DNA methylation changes occurred 

in neurons [48]. Highlighted sites included genes involved in neuronal plasticity: histone 

cluster 2, H2ab (HIST2H2AB); nuclear receptor subfamily 1, group D, member 1 (NR1D1); 

and amyotrophic lateral sclerosis 2 (ALS2), with DNA methylation level in the ALS2 

promoter region displaying functional effects on gene expression in vitro. Thus, these 

studies provide additional evidence supporting the hypothesis that CM leads to functionally 

relevant, genome-wide and cell-type specific reprogramming of the epigenome.

In addition to post-mortem brain analyses, researchers have also assessed epigenetic 

consequences of CM in peripheral samples. One such study characterized methylation 

patterns in peripheral blood samples of 14 institutionalized and 14 children raised by their 

biological parents [49]. Of the 26,214 sites tested (using the Infinium 27 array), 914 were 

differentially methylated in the two groups. These differences were mostly due to increased 

DNA methylation in the genomes of institutionalized children. In another genome-wide 

study [50], salivary specimens were analyzed in 96 maltreated children who were removed 

from their parents due to neglect or CM, in comparison to 96 matched controls. The analysis 

found 2868 CpG sites that showed significantly different methylation values between 

maltreated children and controls. The next level of inquiry then, is to question whether 

whole-genome epigenetic reprogramming in response to CM could predict dimensional 

ratings of childhood psychiatric disorders. Weder et al. [51] aimed to address this difficult 
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question using saliva-derived DNA in 94 maltreated and 96 healthy non-traumatized 

controls, while also assessing child depressive symptomology via the Mood and Feelings 

Questionnaire (MFQ). Methylation values at CpG sites in 3 genes significantly predicted 

depression scores, beyond the effects of CM: DNA Binding Protein Inhibitor ID-3 (ID3); 

Glutamate Receptor, Ionotropic N-methyl-D-aspartate (NMDA) 1 (GRIN1); and Tubulin 

Polymerization Promoting Protein (TPPP). In a follow-up analysis to investigate the impact 

of CM on DNA methylation of these 3 genes, all main effects reached significance while no 

significant interaction was observed.

While these studies have focused primarily on effects of CM on epigenetic programing 

early-on in life, other genome-wide studies have performed similar investigations at latter 

points in development. In the study by Essex et al., DNA methylation was investigated in 

buccal epithelial cells obtained from adolescents whose parents themselves experienced high 

levels of stress earlier in their child’s life [52]. Differential methylation was observed as a 

function of parental stress, child’s sex, and maternal versus paternal stress. Specifically, 

maternal and paternal stress resulted in 139 and 31 differentially methylated CpG sites, 

respectively. Parental stress resulted in differential methylation of the protein kinase N1 

(PKN1) gene promoter in boys, and the FAM172A (family with sequence similarity 172, 

member A; also known as C5orf21) gene promoter in girls. In another study by Suderman et 
al., methylation profiles of 40 males in a 1958 British Birth cohort were compared between 

those with and without a history of CM [53]. 20,000 genes and 489 microRNAs were 

analyzed by MeDIP-chip. The result of their investigation revealed 997 differentially 

methylated gene promoters, 311 of which were hyper-methylated and 686 hypo-methylated. 

Functionally, these genes have implications in cell signaling cascades related to development 

and transcriptional regulation. Abuse-associated differential methylation was found in 39 

microRNA genes; among these, hyper-methylation in 6 microRNA genes associated with 

hypo-methylation in downstream gene targets. Lastly, the metalloproteinase gene (PM20D1) 

displayed abuse-associated differential methylation that withstood validation and replication 

in an additional 27 males.

Because epigenetic modifications as a result of CM could disrupt complex physiological 

systems involved in stress regulation and behavioral regulation, researchers also explored 

epigenetic patterns in PTSD populations. In the study by Mehta et al. [54], expression 

microarray profiles revealed a total of 303 transcripts differentially expressed between PTSD 

subjects with a history of CM and controls. Meanwhile, 244 transcripts showed differential 

expression between PTSD subjects lacking a history of CM and control samples. 

Interestingly, an overlap of only 14 transcripts (2%) was found between these 2 gene lists, 

suggesting dissociable biomarkers for the PTSD phenotype in the presence and absence of a 

history of CM. Illumina 450K arrays were then used to assess whether gene expression 

changes associated with DNA methylation differences. At least one CpG site was 

differentially methylated in 69.3% of the transcripts specific to PTSD with a history of CM, 

while only 33.6% of the transcripts specific to PTSD without CM satisfied this requirement. 

When the criteria selectivity was increased to methylation of 5 or more CpG sites, the 

difference was accentuated to 11.7% compared with 0.8%. These results suggest that distinct 

biological pathways may be perturbed in clinical PTSD populations with and without a 
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history of CM, with epigenetic adaptations being more prominent in the group of CM 

victims.

Finally, CM-induced epigenetic modifications have also started being addressed in the 

context of addictive disorders, and as a function of ethnicity. Zhang et al. performed a 

methylome analysis in African and European Americans with or without a history of CM, 

and with or without a diagnosis of alcohol dependence [55]. In European Americans, CM 

resulted in several sites of increased DNA methylation in both alcohol dependent and non-

dependent subjects that had a history of CM. In African Americans, CM-associated DNA 

methylation changes in dependent patients were not observed in non-dependent controls, 

suggesting interactive effects between ethnicity, clinical status, and epigenetic plasticity.

Altogether, recent data suggest that CM-induced DNA methylation changes at specific 

genes, in both peripheral and brain tissues, have major physiological implications for stress 

regulation, neural plasticity, and neurodevelopment.

Future directions

While the present review has attempted to highlight available human data indicating 

potential mechanisms through which the epigenome may represent a long lasting imprint of 

childhood adversity, the complexities of biological processes mediating this relationship 

have only begun to be unraveled. Several lines of converging evidence direct us towards 

DNA methylation as a potential epigenetic mechanism through which CM may exert long 

lasting effects on gene expression and human behavior. Nevertheless, this rapidly evolving 

field of investigation faces numerous key methodological limitations and challenges. Among 

these, we need to better understand at the molecular level how exposure to adversity results 

in differential methylation. Within this line, animal models should be instrumental in 

determining which epigenetic reprogramming events truly contribute to the emergence of 

behavioral dysregulation, or merely represent epiphenomenons (i.e. the difficult question of 

causality).

Researchers will also have to determine whether or not different forms of maltreatment 

trigger specific methylation patterns and neurobiological alterations [56], an issue that 

remains debated. Developmental timing [57] and cell-specificity [58] of CM-induced DNA 

methylation adaptations remain also largely unknown. In fact, there is some evidence that 

the timing of CM might be important in determining the severity of epigenetic alterations 

[14]. It is possible that abuse occurring earlier in development might lead to severer 

consequences, suggesting that there may be a critical period where CM exerts its greatest 

effects on the human epigenome [59]. As such, researchers have begun to incorporate 

epigenetics assessments into longitudinal studies, so as to tap into the developmental course 

of CM on the epigenome. Another major consideration is whether genome-wide epigenetic 

consequences of CM in peripheral tissue are reflective of plastic changes in the CNS [60–

63]. Advances in cell sorting methods, as well as DNA collection from multiple tissue 

sources will allow us to gain a more comprehensive overview of CM-dependent epigenetic 

memory [58], at the “body-wide” level. Finally, studies should standardize methodologies to 

improve comparison of findings and facilitate multicenter initiatives.
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In conclusion, we summarized in the present review our current knowledge on epigenetic 

mechanisms mediating lifelong consequences of early-life adversity in human. As the 

understanding of molecular epigenetic processes is rapidly progressing, future studies will 

likely provide deeper insight on the crucial role of DNA methylation, in combination with 

other epigenetic marks and mechanisms, at the interface of genes, life experiences, 

behavioral regulation and mental health.

Abbreviations

ASPD antisocial personality disorder

ALS2 amyotrophic lateral sclerosis 2

BDNF brain-derived neurotrophic factor

BPD borderline personality disorder

CM childhood maltreatment

FAM172A family with sequence similarity 172, member A (also known as C5orf21)

GR glucocorticoid receptor

GRIN1 Glutamate Receptor, Ionotropic N-methyl-D-aspartate (NMDA) 1

HPA axis hypothalamic-pituitary-adrenal axis

HIST2H2ABhistone cluster 2, H2ab

ID3 DNA Binding Protein Inhibitor ID-3

MAOA monoamine oxidase A

NR1D1 nuclear receptor subfamily 1, group D, member 1

PET positron emission tomography

PKN1 protein kinase N1

SLC6A4 serotonin transporter

SNP single nucleotide polymorphisms

TPPP Tubulin Polymerization Promoting Protein

5-HT serotonin
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