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Abstract 

Background: Dystonia is a clinically and genetically heterogeneous movement disorder characterized by sustained 

or intermittent muscle contractions causing abnormal, often repetitive, movements and/or postures. Heterozygous 

variants in lysine methyltransferase 2B (KMT2B), encoding a histone H3 methyltransferase, have been associated with a 

childhood-onset, progressive and complex form of dystonia (dystonia 28, DYT28). Since 2016, more than one hun-

dred rare KMT2B variants have been reported, including frameshift, nonsense, splice site, missense and other in-frame 

changes, many having an uncertain clinical impact.

Results: We characterize the genome-wide peripheral blood DNA methylation profiles of a cohort of 18 patients 

with pathogenic and unclassified KMT2B variants. We resolve the “episignature” associated with KMT2B haploinsuf-

ficiency, proving that this approach is robust in diagnosing clinically unsolved cases, properly classifying them with 

respect to other partially overlapping dystonic phenotypes, other rare neurodevelopmental disorders and healthy 

controls. Notably, defective KMT2B function in DYT28 causes a non-random DNA hypermethylation across the 

genome, selectively involving promoters and other regulatory regions positively controlling gene expression.

Conclusions: We demonstrate a distinctive DNA hypermethylation pattern associated with DYT28, provide an epi-

genetic signature for this disorder enabling accurate diagnosis and reclassification of ambiguous genetic findings and 

suggest potential therapeutic approaches.
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Background
Dystonia is a neurological hyperkinetic movement con-

dition characterized by sustained or intermittent mus-

cle contractions causing abnormal movements and/

or postures. Dystonia’s symptoms can be characterized 

based on body location into focal, segmental or general-

ized forms, as well as into isolated or combined forms, 

whether other movement disorders or neurological signs 

occur or not [1]. Childhood-onset dystonias, which are 

Open Access

*Correspondence:  marco.tartaglia@opbg.net; bekim.sadikovic@lhsc.on.ca
†Andrea Ciolfi and Aidin Foroutan have contributed equally to this work 

and Marco Tartaglia and Bekim Sadikovic have jointly coordinated this 

work
1 Genetics and Rare Diseases Research Division, Ospedale Pediatrico 

Bambino Gesù, IRCCS, 00146 Rome, Italy
2 Department of Pathology and Laboratory Medicine, Western University, 

London, ON N6A 3K7, Canada

Full list of author information is available at the end of the article

http://orcid.org/0000-0001-7736-9672
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13148-021-01145-y&domain=pdf


Page 2 of 11Ciol� et al. Clin Epigenet          (2021) 13:157 

usually genetically determined and can be characterized 

by other additional neuropsychiatric and systemic fea-

tures, pose a significant diagnostic challenge for clini-

cians [1].

�e advent of high-throughput sequencing has revo-

lutionized the landscape of dystonia’s genetics, ena-

bling identification of several novel disease genes in 

the last decade, most of them causing complex forms 

[2]. Recently, heterozygous variants in lysine methyl-

transferase 2B (KMT2B; MIM *606834), encoding a his-

tone H3 methyltransferase, have been associated with a 

childhood-onset, progressive and complex form of dys-

tonia named dystonia 28 (DYT28; MIM #617284) [3–5]. 

Pathogenic KMT2B variants generally are de novo events 

and result in loss-of-function of the methyltransferase, 

indicating haploinsufficiency as the mechanism of dis-

ease [3–6]. Although the pathomechanistic consequences 

of KMT2B variants require further study, KMT2B hap-

loinsufficiency is postulated to affect CNS development 

and function by perturbing the expression of key genes 

involved in neurodevelopment and motor control [7, 8]. 

Of note, while KMT2B was identified as a dystonia-asso-

ciated gene only recently, more than one hundred rare or 

private heterozygous single nucleotide variants (SNVs) 

as well as insertions/deletions (indels) have been iden-

tified in this gene, the majority predicted to cause hap-

loinsufficiency [4–6, 9]. A small proportion of bona fide 

pathogenic KMT2B variants are missense and have been 

reported to affect conserved functional domains of the 

protein (i.e., the PHD-like and FYR-N domains). How-

ever, a number of clinically unclassified missense variants 

have been described and, in a significant proportion of 

cases, these variants are inherited from a healthy parent 

[3, 6]. Currently, no functional assay is available to clas-

sify these variants.

KMT2B belongs to the family of Set1-Trithorax-type 

methyltransferases, which are enzymes that specifically 

methylate histone 3 at lysine 4 (H3K4) and play a key 

role in chromatin remodeling and gene expression [10]. 

Mammals possess six SET-related H3K4 methyltrans-

ferases (i.e., KMT2A (MLL1), KMT2B (MLL2), KMT2C 

(MLL3), KMT2D (MLL4), SETD1A and SETD1B), which 

are dynamically regulated during cell-type specifica-

tion, in a spatially and temporally non-redundant way [7, 

11]. H3K4 can be mono- (H3K4me1), di- (H3K4me2) 

and tri-methylated (H3K4me3), with each modification 

differentially distributed in promoters, enhancers and 

other regulatory regions of actively transcribed genes 

[12]. While SETD1A and SETD1B are major contribu-

tors of global histone H3K4 tri-methylation (H3K4me3), 

KMT2B and KMT2A H3K4me3 marks occur at the tran-

scription start site (TSS) regions of a more restricted set 

of genes. Different from the other members of the KMT2 

family, KMT2C and KMT2D catalyze H3K4me1/2, which 

are particularly enriched at enhancers [12].

�ere is a growing evidence that variants in genes 

encoding proteins involved in the maintenance of chro-

matin remodeling show unique DNA methylation 

(DNAm) patterns (known as “episignatures” or Epi-

Signs), and that these DNAm signatures can be used as 

highly specific and robust biomarkers for an increasing 

number of disorders caused by mutations in these genes 

[13–16]. �ese genome-wide DNAm signatures currently 

include over 40 rare neurodevelopmental disorders asso-

ciated with more than 60 genes [13, 17]. Of note, these 

disease-specific episignatures are detectable in peripheral 

blood despite the variable nature and complexity of dis-

eases and the high variance characterizing the DNAm of 

genomes from different cells and tissues [13, 17]. As such, 

DNA methylation testing has recently been implemented 

in clinical diagnosis of patients with rare disorders [17].

By characterizing the genome-wide DNA methyla-

tion profiles of a cohort of clinically and genetically con-

firmed DYT28 patients, here we define a disease-specific 

episignature for this disorder and show that the identi-

fied methylation pattern could be successfully used to 

classify KMT2B variants of uncertain significance (VUS) 

and help diagnose clinically unsolved cases. We also 

provide evidence that dysfunctional KMT2B in DYT28 

causes DNA hypermethylation of promoters and other 

regulatory regions positively controlling gene expression, 

which collectively points out toward a general repression 

of transcriptional activity as pathogenic mechanism in 

DYT28.

Methods
Study cohort

�e study included eight case individuals (five females 

and three males) with bona fide pathogenic KMT2B 

variants and clinically confirmed DYT28 (labelled as 

DYT28_Pathogenic), and 10 subjects (seven females and 

three males) showing variable clinical phenotypes and 

KMT2B VUS (labelled as DYT28_VUS), according to 

the American College of Medical Genetics and Genom-

ics/Association for Molecular Pathology (ACMG/AMP) 

guidelines for interpretation of genomic sequence vari-

ants [18] (Additional file 9: Table S1). Additionally, nine 

control samples were also used (labelled as Control_Test-

ing). �e study was approved by the Ospedale Pediatrico 

Bambino Gesù Ethical Committee (1702_OPBG_2018) 

and the Western University Research Ethics Board (REB 

106302). All DNA samples and clinical records were 

pseudonymized. DNA specimens were collected follow-

ing procedures in accordance with the ethical standards 

of the declaration of Helsinki protocols, with signed 

informed consents from the participating subjects/
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families. Peripheral blood DNA was extracted using 

the salting out procedure [19] (patients 1, 2, 5–11, 14 

and 18) or the Qiagen DNA extraction kit (patients 3, 

4, 12, 13, 15–17). All variants had been confirmed by 

Sanger sequencing using the Big-Dye terminator reac-

tion Kit v.1.1 on a 3100XL Genetic Analyzer Automated 

Sequencer (Applied BioSystems) (patients 1, 2, 5–11, 14 

and 18) or using the Big-Dye terminator reaction Kit v.3.1 

on a SeqStudio Genetic Analyzer (Applied Biosystems) 

(patients 3, 4, 12, 13, 15–17) (Additional file 1: Figure S1).

DNA methylation pro�ling and data analysis

Following bisulfite conversion, samples were analyzed 

using Illumina Infinium MethylationEPIC BeadChips, 

according to the manufacturer’s protocol. Data analysis 

was carried out as previously reported [13, 14]. Briefly, 

IDAT files containing methylated and unmethylated sig-

nal intensity were imported into R v.4.0.2 for analysis fol-

lowing normalization with background correction using 

the minfi package [20]. Probes located on X/Y chromo-

somes or known to cross-react with chromosomal loca-

tions other than their target regions contain SNPs at 

or near the CpG sites, and suggested by Illumina to be 

cross-reactive were excluded, resulting in 776,314 probes 

remaining for the analysis. Arrays having more than 5% 

probe failure rate and those that were previously identi-

fied in our database to impose batch effect were excluded 

from the analysis. Sex of the two unknown samples was 

predicted using minfi package [20], whereas for the age 

estimation the wateRmelon package was used [21]. �e 

eight samples with DYT28-causing KMT2B variants 

(DYT28_Pathogenic) were used to identify the episigna-

ture, while the 10 additional samples (DYT28_VUS) were 

used for validation and classification by blind testing 

(Additional file 9: Table S1).

Principal component analysis (PCA) was performed 

to inspect any batch effect and identify outlier sam-

ples. MatchIt package was used to select best-matching 

controls from EPIC arrays in the EpiSign Knowledge 

Database (EKD) at the London Health Sciences Center 

(LHSC) considering age, and sex, as matching variables, 

providing a control sample size seven times larger than 

that of tested cases (56 controls labelled as Control_

Training) [13, 17]. �e control cohort characterization is 

provided in Additional file 10: Table S2.

Methylation levels (beta values) were converted to 

M-values, which were used for linear regression mod-

eling by means of empirical Bayes moderated t-statistic 

corrected for false discovery rate (FDR) using the Ben-

jamini-Hochberg (BH) method (limma package [22]) 

to identify differentially methylated probes (DMPs). 

Estimated blood cell proportions for each sample were 

added to the model matrix to reduce the bias associated 

with those confounding variables [23]. �e most 

informative 1,000 probes were identified considering 

the interaction between the effect size (absolute mean 

methylation difference between DYT28 samples and 

batch controls) and p-value [13, 14]. Receiver’s operat-

ing curve characteristic analysis was performed to iden-

tify the top 500 of these 1000 probes, then probes with 

a Pearson’s pairwise correlation > 0.9 were removed, 

resulting in identification of 196 independent probes.

Hierarchical clustering was performed using the 

gplots package. Multidimensional scaling (MDS) was 

performed by scaling of the pairwise Euclidean dis-

tances between samples. �e e1071 R package was used 

to train a support vector machine (SVM) and for con-

struction of a prediction model to calculate what we 

refer to as “methylation variant pathogenicity” (MVP) 

scores [13]. �e eight samples with DYT28, and sam-

ples from the EKD databases split into two cohorts, 

75% of control subjects (> 1000 individuals) and 75% 

of patients from 38 other neurodevelopmental disor-

ders/rare diseases (NDDs/RDs) in the EKD (> 1000 

individuals) were used as training set. �e remaining 

25% control subjects and patients with KMT2B VUS 

were considered as the testing set (Additional file  9: 

Table  S1), in order to improve the specificity of the 

classifier. An MVP plot was generated to assess speci-

ficity of the classification model.

Functional analysis of di�erentially methylated regions

To detect the differentially methylated regions (DMRs), 

the DMRcate package was used [24], and regions con-

taining at least five different CpGs within 1  kb with a 

minimum methylation difference of 10% and a Fisher’s 

multiple comparison P < 0.01 were selected. Functional 

analysis of differentially methylated regions was per-

formed by means of missMethyl R package [25] and Web-

Gestalt [26]. Genomic region enrichment with respect to 

the EPIC annotation manifest for the episignature probes 

was calculated by means of Fisher’s exact test; for the 

region-level analysis of DMRs, we took advantage of bed-

Tools (v.2.30) [27] Fisher command, considering DMRs 

showing overlapping fraction > 50% with the genomic 

regions annotated as 5’UTR, TSS1500, TSS200, 1stExon, 

Body, 3’UTR regions. DMRs comparison to the 127 ref-

erence epigenomes from the NIH Roadmap Epigenom-

ics Consortium was carried out by means of GIGGLE, 

a fast and highly scalable genomic interval searching 

strategy, and evaluated using the GIGGLE score, that 

combines the estimation of the enrichment for observed 

versus expected (odds ratio), and Fisher’s two tailed tests 

p-value [28].
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Results
DYT28 is associated with hypermethylated DNA 

episignature in blood

Eight individuals carrying bona fide pathogenic vari-

ants in KMT2B (NM_014727.2), as per the ACMG/AMP 

guidelines [18], were included in the study. �ese variants 

can be considered as representative of the DYT28-caus-

ing KMT2B variants, as they included frameshift changes 

(Pt. 1–4 and 7), in-frame deletions (Pt. 6), and missense 

substitutions (Pt. 5 and 8) (Additional file  9: Table  S1). 

Variants in Pt. 1, 2, 5–8 had been identified by WES in 

a cohort of 65 patients with genetically unclassified 

childhood-onset dystonia [3, 5, 6, 9]. �e two frameshift 

variants in Pt. 3 and 4, both resulting in premature termi-

nation, were identified in the frame of diagnostic genetic 

testing. �e clinical and molecular characterization of the 

DYT28 cohort is reported in Additional file 9: Table S1. 

Comparison of DNA methylation patterns between 

the peripheral blood DNA specimens of these 8 sam-

ples and 56 controls selected from our database based 

on matching for age and sex resulted in identification 

of 196 DMPs (methylation difference > 10%, FDR < 0.01, 

adjusted for blood cell-type compositions). Notably, 

more than 96% of probes (189 out of 196) exhibited rela-

tive hypermethylation (Additional file  11: Table  S3). Of 

note, while the most robust and significant methylation 

change described in this episignature classifier involved 

hypermethylated regions in DYT28 (Additional file  2: 

Figure S2), the majority of the probes in these samples 

were found as slightly hypomethylated compared to the 

control group (Additional file  3: Figure S3). In order to 

assess the robustness of the episignature in differentiating 

between case and control samples, hierarchical cluster-

ing (Fig. 1A) and MDS analysis (Fig. 1B) were performed, 

resulting in clear separation between groups. Eight 

rounds of cross-validation on MDS plot were performed 

using different combinations of samples with pathogenic 

KMT2B variants (n = 7) as training set and single samples 

with pathogenic variants as testing set. In all steps, the 

testing samples were correctly clustered with the training 

samples further providing evidence of a robust common 

DNA methylation signature (Additional file 4: Figure S4). 

While the two DYT28-associated missense variants iden-

tified in Pt. 5 and Pt.8 satisfied the ACMG/AMP criteria 

as bona fide pathogenic variants [18], the same analysis 

was also performed excluding those patients (Additional 

file  5: Figure S5). Comparison of the DNA methylation 

patterns of these six samples and the same 56 Control-

Training samples confirmed the previous results.

The DYT28-speci�c episignature allows functional 

classi�cation of KMT2B variants

�e generated DYT28-specific episignature was used to 

test 10 samples with unclassified KMT2B variants that 

had been identified in diagnostic genetic testing (Addi-

tional file  9: Table  S1). Among these variants, two mis-

sense substitutions, for which the inheritance pattern 

could not be established, had been found in two sub-

jects with childhood-onset dystonia fitting DYT28 (Pt. 

9 and 10). Two missense variants, both inherited from 

an apparently unaffected parent, had previously been 

reported in subjects with DOPA-responsive cervical and 

mandibular dystonia (Pt. 14) and slowly progressive dys-

tonia and dyskinesias with caudo-rostral progression (Pt. 

Fig. 1 DYT28 episignature identification. A Hierarchical clustering with Ward’s method on Euclidean distance was performed. In the heatmap plot, 

each row illustrates a selected CpG site, and each column depicts a sample. The heatmap color scale indicates the range of methylation level; from 

blue (no methylation or 0) to red (full methylation or 1). The detected episignature clearly differentiates between samples with pathogenic KMT2B 

variants and controls. B The first two dimensions of a MDS plot using the selected probes separate the samples with pathogenic variants in KMT2B 

from control samples. Blue circles represent control subjects and red circles indicate subjects with pathogenic KMT2B variants and a confirmed 

diagnosis of DYT28. Ellipses indicate 95% confidence interval
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18) without decisive evidence for clinical relevance [3, 9]. 

Patient 13, who was characterized by progressive gen-

eralized dystonia with caudo-cranial progression, pre-

sented with an in-frame duplication previously reported 

as VUS in ClinVar (VCV000808518.4), and annotated 

in gnomAD v.2.1 (MAF = 1.18 ×  10−3). �e only other 

variant that had previously been reported in the general 

population was p.Ser2390Leu identified in patient 15 

(MAF = 4.02 ×  10−5, gnomAD), who showed gait insta-

bility and dystonia of the upper and lower limbs during 

paroxysmal attacks. Finally, we selected four additional 

private missense variants predicted as pathogenic by 

CADD [29] and MetaDome [30] algorithms (Additional 

file  9: Table  S1) in patients showing late-onset dystonia 

(Pt. 11 and 12) and congenital movement disorders (Pt. 

16 and 17). �e de novo occurrence of these variants 

could be ascertained only in two cases (Pt. 16 and 17).

�e genome-wide methylation data obtained from 

blood DNA specimens of the 10 patients with heterozy-

gous KMT2B VUS (Pt. 9 to 18) were analyzed by hier-

archical clustering and MDS analysis using the 196 

informative probes defining the DYT28-specific episig-

nature (Fig. 2A, B). Two samples of the testing set (Pt. 9 

and 10) clustered with the DYT28 cohort, seven grouped 

with controls and one sample (Pt. 18) showed an inter-

mediate position.

To test the use of the episignature in a clinical setting, 

the recently developed SVM-based classifier was used 

[13, 17], trained by comparing the eight samples with 

bona fide pathogenic variants (Pt. 1–8) against the 10 

VUS samples (Pt. 9–18), controls and a large set of indi-

viduals affected by various forms of NDDs or other RDs 

included in the EKD. All patients from other NDDs/RDs 

and controls were classified with low probability scores, 

indicating the high level of specificity of the DYT28 clas-

sifier (Fig.  2C). Consistent with the MDS and hierar-

chical clustering analyses, two missense KMT2B VUS, 

p.Ser1615Leu and p.Arg1777Pro (Pt. 9 and 10), were 

classified as disease-causing, while all other variants were 

scored with a significantly lower score, ruling out their 

clinical relevance in DYT28. Interestingly, the DYT28-

related missense variants did not show a preferred 

Fig. 2 DNA methylation pattern analysis yields full sensitivity and specificity in classifying individuals affected by DYT28. Hierarchical clustering 

analysis (A) and MDS (B) plots are used to classify VUS (used as the testing set) with respect to pathogenic KMT2B variants and control samples 

(used as the training set). C A support vector machine (SVM) was used to classify samples and calculate probability scores reaches full sensitivity 

and specificity for KMT2B variants. The classifier was trained using pathogenic variants, controls and other NDDs/RDs. 75% of controls and NDD/RD 

samples used for training (blue), 25% for testing (grey). Ellipses indicate 95% confidence interval
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localization in putative constrained regions and func-

tional domains along the protein sequence. Nevertheless, 

we noted the existence of an apparent mutational hot-

spot for the four pathogenic missense variants between 

codons 1,615 and 1,777 (Fig. 3), similarly to what previ-

ously reported in the literature [3]. �e clinical re-evalua-

tion of patients 11 to 18 documented features or a natural 

history of disease that did not fit the classical presenta-

tion of DYT28, clinically validating the conclusions based 

on the episignature analysis (Additional file 9: Table S1).

Of note, the same validation analysis was performed 

considering the episignature generated excluding Pt.5 

and Pt.8 (Additional file 6: Figure S6). As shown, hierar-

chical clustering and MVP classifier properly classified 

Pt.5, Pt.8, Pt.9 and Pt.10 within the DYT28 group, further 

documenting the robustness of the approach. An appar-

ently lower specificity, however, was provided by MDS 

analysis, confirming the dependency of the signature 

classification efficacy/specificity on sample size.

DYT28-causing KMT2B variants are associated 

with a non-random distribution of hypermethylation 

in the genome

H3K4 trimethylation is highly enriched at active promot-

ers near TSS and is positively correlated with transcrip-

tion [10, 11, 31, 32]. Since this non-random distribution 

of H3K4me3 throughout the genome, we assessed the 

genome-wide distribution of DMRs (defined as stretches 

harboring ≥ 5 consecutive CpGs) in DYT28. �e analysis 

allowed us to identify significant methylation changes in 

146 genomic regions (hg19 genome assembly), the vast 

majority represented by relative hypermethylation in Pt.1 

to Pt.8 (144 out of 146; Additional file 12: Table S4, Addi-

tional file 7: Figure S7). Considering all probes contained 

in these 146 regions, we first assessed the overall fit of the 

methylation patterns characterizing the 10 samples with 

KMT2B VUS with those obtained for the DYT28 and 

control groups (Additional file  8: Figure S8). As shown, 

the methylation levels for Pt.9 and Pt.10 were more simi-

lar to those characterizing patients carrying pathogenic 

KMT2B variants (93 and 89% of probes, respectively), 

while Pt.11–18 clearly diverge from the DYT28-specific 

pattern for a significant proportion of probes (from 55 to 

12% of probes with methylation levels similar to DYT28). 

�ese data further validate the ability of the identified 

episignature in functionally classifying the tested KMT2B 

VUS.

Aiming to functionally characterize the genomic meth-

ylation differences in DYT28, we performed gene set 

enrichment analyses considering the genes mapping 

within DMRs by means of missMethyl [25] and Web-

Gestalt [26] tools, failing to identify any enrichment for 

specific biological pathways (MSigDB’s hallmark, Gene 

Ontology, KEGG, Reactome, Panther pathways), includ-

ing those functionally linked to neurodevelopment and 

neuronal physiology (data not shown). To further gain 

insights on the functional implications of the observed 

hypermethylated status associated with defective KMT2B 

function, we then explored the hypothesis of a non-ran-

dom distribution of DNA hypermethylation in genomic 

regions typically enriched in H3K4me3, such as promot-

ers. First, we noted that DMPs constituting the episigna-

ture were enriched for genomic regions that are generally 

poorly methylated in actively transcribed genes (e.g., gene 

Fig. 3 KMT2B missense variants distribution. The diagram on the top illustrates the KMT2B’s tolerance to missense changes landscape according 

to MetaDome web server. The protein structure is depicted on the bottom, along with the missense variants analyzed in the present work. Purple 

boxes indicate protein domains. Green bars depict mutated residues. Known pathogenic variants are written in black [9]; variants classified as 

disease-causing in this work (red) and those classified as benign (blue) by the identified episignature are also shown
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promoters [TSS1500] and first exon regions [1stExon]) 

(Fig.  4A). Consistently, gene body regions, which are 

known to be positively correlated with gene expression 

when methylated, where significantly underrepresented 

(Fig.  4A). To further delve into these results, all probes 

located within the annotated gene regions encompassing 

the identified DMRs were tested for enrichment analysis 

(Fig.  4B, Additional file  12: Table  S4). Consistently, we 

observed a qualitatively similar pattern of enrichment 

involving promoter regions coupled with a depletion of 

gene body regions (Fig. 4B).

To further support the correlation between DNA meth-

ylation levels in DYT28 and the H3K4me3 epigenetic 

modification, we assessed the overlap of DMRs against 

the 127 reference epigenomes representing all major cell 

lineages in human body generated by the NIH Roadmap 

Epigenomics Consortium [12]. �is analysis allowed us to 

inspect the enrichment of DMRs for regions specifically 

marked by H3K4me3 (i.e., active TSSs) and the other 15 

associated chromatin states as defined by the consortium 

(Fig. 5). �e analysis documented a clear enrichment for 

the chromatin states associated to H3K4me3 marks (i.e., 

active TSS and flanking active TSS) (Pairwise Wilcoxon 

Test’s adjusted p-value < 2.1  10−7), while regions in quies-

cent state were consistently underrepresented (Fig. 5).

Discussion
Here we report that DYT28 is associated with a genome-

wide hypermethylated profile, showing that the identi-

fied methylation episignature can be successfully used 

to diagnose this disorder. DYT28 is a recently identified 

form of dystonia caused by heterozygous inactivating 

KMT2B variants. �e disorder is generally characterized 

by initial lower limb involvement during childhood fol-

lowed by a more general involvement, usually including 

the bulbar and cranio-cervical muscles leading to dys-

arthria and dysphonia [3, 6]. Of note, the clinical phe-

notype associated with KMT2B variants is emerging as 

variable and has been reported to include conditions not 

manifesting dystonia at all [6]. Given the variable phe-

notypic presentation, lack of validated biomarkers and 

scarcity of experimental assays to promptly and straight-

forwardly assess KMT2B function, current interpreting 

of the clinical relevance of KMT2B variants can be chal-

lenging. In line with these considerations, bioinformatic 

strategies recently proposed showed lack of specificity 

[6, 33]. Although protein truncating variants and whole-

gene deletions classification under a haploinsufficiency 

paradigm could be straightforward, caution is needed for 

missense changes and in-frame indels in a clinical set-

ting. Indeed, even using combination of state-of-the-art 

in silico prediction algorithms (e.g., CADD [29]), regional 

constraint analyses (MetaDome [30]), as well as segrega-

tion and population frequency data, did not help to iden-

tify bona fide pathogenic variants among the subset of 

KMT2B missense variants included in this study.

�e identified episignature in peripheral blood DNA of 

DYT28 patients is defined by a relatively small number 

of hypermethylated CpG sites (< 200) and proved to be 

robust and effective in classifying DYT28 patients, with 

respect to other partially overlapping dystonic pheno-

types, other NDDs/RDs, as well as healthy controls. By 

Fig. 4 DYT28 is characterized by a hypermethylation pattern on specific gene regions. Histograms illustrate the non-random gene region 

distribution for episignature’s probes (A), and DMRs (B) in DYT28 patients. Fisher’s exact test was used to report the statistical significance of the 

enrichment/depletion with respect to genomic background (EPIC array). TSS200, transcription start sites 1–200; TSS, transcription start sites 201–

1500; IGR, intergenic regions. A Percentage and statistical significance of feature enrichment for DYT28 episignature: *P < 0.01; **P <  10−3 ***P <  10−6; 

B Percentage and statistical significance of feature enrichment for DMRs in DYT28 patients: *P < 0.05; **P < 0.01 ***P < 0.001
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using this episignature, we correctly classified missense 

changes not residing in constrained regions (Pt. 8) [30, 

34], and excluded pathogenicity in cases with partially 

overlapping phenotype, or heterozygous for low-fre-

quency alleles predicted as deleterious by in silico algo-

rithms with unknown segregation (Pt. 15) [29, 30, 35], or 

documented to occur as de novo events (Pt. 16 and 17). 

Of note, our classification algorithm rejected a diagnosis 

of DYT28 in patient 18, who carried the p.Arg1003Gln 

variant in KMT2B, previously reported as VUS and pre-

dicted to have a destabilizing structural effect by homol-

ogy modeling [9]. We would note, however, that while a 

confirmation of a related episignature in a patient with 

a genetic VUS is considered strong functional evidence 

for pathogenicity under the PS3/BS3 criterion [13, 17], 

using the ACMG/AMP sequence variant interpretation 

framework [18, 36], a negative result in a patient with or 

without a known genetic variant, while indicative, does 

not rule out pathogenicity. Although majority of the 

genes with episignatures currently have a single common 

episignature mapped, genes with multiple episignatures 

have been described, and assessment of pathogenicity of 

variants outside the established reference range warrants 

caution [17].

�e present epigenomic analysis also provides rele-

vant insights on the molecular effects of DYT28-causing 

KMTB2 variants. A significant genome-wide shift in DNA 

methylation was documented: this hypermethylated 

status was not associated with a specific enrichment of 

biological pathways but was characterized by a signifi-

cant overrepresentation of regulatory regions known to 

be inversely correlated with gene expression (i.e., gene 

promoters, and first exons) [11, 37, 38], and a deple-

tion of gene-body regions, where a positive correlation 

between DNA methylation and active transcription has 

been described [11, 39]. �is non-random hypermeth-

ylation pattern is opposite of the relative enrichment of 

nucleosomes with H3K4me3, which is prominent in TSS 

of actively transcribed loci [10–12, 40]. Based on the key 

role of KMT2B in H3K4me3, our findings provide new 

evidence that dysfunctional KMT2B in DYT28 causes 

specific DNA hypermethylation of promoters and other 

regulatory regions positively controlling gene expression, 

which collectively points out toward a general repres-

sion of transcriptional activity in DYT28. �is finding has 

potentially relevant implications in terms of therapy, as it 

points to the use of nonspecific DNA methyltransferase 

inhibitors (e.g., 5-aza-2’-deoxycytidine) or small mol-

ecules specifically targeting KDM5 demethylases (e.g., 

CPI-455), as a potential approach to restore proper DNA 

methylation levels in DYT28 [41].

Conclusions
In summary, we demonstrate evidence of a distinct DNA 

methylation episignature associated with KMT2B-related 

DYT28, enabling accurate diagnosis and reclassification 

Fig. 5 DMRs enrichment for 15 chromatin states in 127 reference epigenomes in DYT28. Boxplots display enrichment scores (GIGGLE combo 

scores) distribution for 15 chromatin states as defined by the NIH Roadmap Epigenomics project. The active states (associated with expressed 

genes) consist of active transcription start site (TSS) proximal promoter states (Active TSS and Flanking Active TSS), a transcribed state at the 5′ 

and 3′ end of genes showing both promoter and enhancer signatures (Transcription at 5’ and 3’), actively transcribed states (Strong Transcription 

and Weak Transcription), enhancer states (Enhancers and Genic Enhancers) and a state associated with zinc finger protein genes (ZNF genes and 

repeats). The inactive states consist of constitutive heterochromatin, bivalent regulatory states (Bivalent poised TSS, Flanking bivalent TSS enhancers 

and Bivalent enhancers), repressed PolyComb states (Repressed PolyComb and Weak Repressed PolyComb) and a quiescent state
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of ambiguous genetic findings. We also provide insights 

into the molecular pathophysiology of this disorder, 

documenting that KMT2B haploinsufficiency causes 

specific DNA hypermethylation of promoters and other 

regulatory regions positively controlling gene expression, 

pointing to the use of DNA methyltransferase inhibitors 

or molecules targeting KDM5 demethylases as potential 

therapeutic approaches in DYT28.
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