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ABSTRACT 
CHILES 2 is a finite element computer program that calcu

lates the strength o£ singularities in linear elastic bodies. 
A generalized quadrilateral finite element that includes a 
singular point at a corner node is incorporated in the code. 
The displacement formulation is used and interelement compat
ibility is maintained so that monotone convergence is preserved. 
Plane stress, plane strain and axisymmetric conditions are 
treated. Isotropic and orthotropic crack tip singularity prob
lems are solved by this version of the code but any type of 
singularity may be properly modeled by modifying selected sub
routines in the program. 
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1. Introduction 
Mathematical modeling of linear elastic structures often gives 

solutions that have stress and strain singularities at particular 
points in the body. Specifically these points are crack tips, re-en
trant corners, or other non-continuous loading and boundary configura
tions. These features are of major concern to the stress analyst 
because they can lead to catastrophic structural failure. Critical 
components in nuclear reactors, aircraft and space vehicles, nuclear 
waste storage vessels, and turbine generators, to mention a few, must 
be designed against any such failure. 

Several different analysis techniques have been used to gain 
solutions to problems that have singularities. An excellent compila
tion of closed form solutions to elastic crack tip problems is given 
by Sneddon(•••'. Although these solutions may be considered "exact,"' 
they are severely limited to the most simple loading and geometry 
conditions. Sih^ •* gives several techniques, both analytical and 
numerical, for solving crack tip problems, and Tada*- ̂  has compiled 
a handbook cataloging most of the crack tip geometries that have been 
solved either exactly or approximately. Again, most of these methods 
are restricted to very simple geometrical and loading conditions. 

The finite element technique is a very versatile method for 
mathematically analyzing arbitrarily shaped structures with compli
cated boundary conditions. A reader unfamiliar with finite elements 
should consult Zienkiewicz *- ' for a complete treatment of the subject. 
A survey of this technique as applied to the crack tip singularity 
problem has been presented by Gallagher.^ ^ Essentially, the finite 
element method may be used in the following ways to characterize 
singularities. 
1, Direct Method - Conventional elements are used by defining the 

region near the singularity with extremely small elements. This 
is obviously a very costly and inefficient procedure. 

Superscripts refer to references listed at the end of this report. 

6-7 



2. Energy Release Method - Conventional elements are used by defin
ing the singular region with relatively small elements. The 
energy of the system is then monitored as the crack length grows 
(i.e., several static solutions with increasing crack lengths 
are run). This method proves to be more accurate than 1. and 
requires significantly fewer elements but remains awkward and 

•' time-consuming by requiring the solution to several similar 
problems. A modification of this method for three-dimensional 
problems given by Parks1- ' appears encouraging. One drawback 
of this method is its inability to distinguish between Mode I 
and Mode II* intensities. 

3. Superposition Methods - Conventional elements with coarse grids 
are used in conjunction with a classical solution. The method 
is attractive but somewhat cumbersome. 

4. Singularity Function Formulations - A special element is formu
lated that contains the proper singularity. This procedure 
requires the formulation of a complicated element stiffness 
matrix but can be coupled easily to conventional elements. 
Coarse meshing gives very accurate results. 
The CHILES 2 computer program is a two-dimensional solid finite 

element code that uses a singularity function formulation to model 
both isotropic and orthotropic elastic bodies with singular points. 
This version of CHILES 2 contains subroutines that calculate the 
state of strain at the tip of a crack in either plane stress, plane 
strain or axisymmetric geometries. These subroutines can be modified 
by the user to calculate the state of any singularity of the form 
given in the following section of this report (.i.e., Equation 11.) 
Linear isotropic stTess-strain material properties are used and small 
strain theory is assumed. Only axisymmetrical mechanical loadings are 
accepted by the code. 

See Figure 2 for the definitions of Modes I and II. 



2. Mathematical Modeling of Singularities 
2.1 Isotropic Materials 
Figure 1 shows the local coordinate system used to define the 

neighborhood of a crack tip. The singular elastic stress field in the 
vicinity of the tip has the form (10) 
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KI' KII = stress intensity factors 
a- . - stresses . 
u, • displacements 
G = Elastic shear modulus 
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K - (3 - 4v) f.or plane strain or axisynunetric 
• C3 - v)/(l + \>1 for plane stress 

v - Poisson's Ratio 
p,8 * polar coordinates as shown in Figure 1 

2.2 Orthotropic Materials 
The singular elastic.stress field in the vicinity of a tip of a 
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Kj,K = stress intensity factors 
a.• - stresses 
u- = displacements 
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The constants a.,., a,,, etc., are obtained from the generalized form 
of Hooke's law for an anisotropic material in a plane state of stress 
or strain: 

"11 1 2 "16 l ar-
a21 a22 a26 P' 
_a61 a62 a66_ (Tr'z 

CIO) 

2,3 Generalized Formulation 

The near field displacement Equations 2 and 4 may be generalized 

u i = K i Q i i C p . e » - - 0 + K r lQ I UCp,e • O fll) 

where the Qo^'s are any generalized functions that define the correct 
displacement field in the region of the singularity. In the specific 
case of crack tip problems, Kj is the strength of the Mode I singular
ity and KJJ is the strength of the Mode II singularity. These modes 
are depicted in Figure 2. 

The displacements given by Equation 2 are "near field" terms 
that characterize the singularity only over a region close to the 
singular point. Consequently, an elastic body may be properly modeled 
with finite elements by defining the region near the singularity with 
elements enriched with the displacement field of Equation 11 and de
fining the remainder of the body with conventional elements. A rigor
ous treatment of this actual procedure is given by Hilton.' ' Several 
special finite elements that incorporate "embedded singularities" have 
been developed.'- ' The one used in CHILES 2 was reported by Benzley' ' 
and is described in the following section. 
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.i.O"" Numerical Modeling 
3.1 Element Formulation 
An arbitrary quadrilateral element with a singular point at node 

i " is shown in Figure 3. The effects of the singularity are included 
in the element by "enriching" a bilinear element displacement assump-

.; ! ion wit'i terms that give the proper singularity at node i, i.e., 

uj - "a"*-. «i2 a + a i 4 a b * KI Qli Cp''5 + K I I Q 2 i t p ' 9 ) ! 1 2 > 

i = 1,2 
•ij. •:.= unknown coefficients 
a,b - local, nondimensional oblique coordinates 
Q,. = specific singular assumptions, see Equation Z. 

Solving Equation 12 for the unknown coefficients a..'s in terms of 
the nodal displacements, u.^ where k » 1, 2, 3, 4, the displacement 
assumption may be written as 

u i • £ 'k"ik * K l ( Q l i " | ? f k 5 l i k ) + K " v 2 i ' S f ^ 2 i k ) ri3j 
k=l 

where 

(J , . . = the va lue of Q. • eva lua ted a t node k 

f k - *(1 - a a k K l - b b k ) 

a k,b. = the coordinates of node k [t 1) 
The terms enclosed in the parentheses in Equation 13 account for the 
singularity. It is desirable to let this singularity "live" only 
over a portion of the elastic body.' The reasons for this are: 
i. Typically., the Qoj's aTe "near field"'terms. 
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MODE MODE II 

FIGURE 2. CRACK OPENINR MODE I AND 
SLIDING MODE II 



FIGURE 3. A QUADRILATERAL FINITE ELEMENT WITH A 
SINGULAR POINT AT NODE (i). 

16 



2. Away from the singular point the bilinear displacement assump
tions are adequate to describe weaker strain gradients. 

3. Some calculaticnal savings are obtained by carrying the singu
larity only over a few elements in the neighborhood of the 
singularity. 

It is obvious that an element with the displacement assumption of 
Equation 13 connected to an element with a bilinear displacement 
assumption, would produce a slight incompatibility between the ad
joining elements. This incompatibility can be removed by altering 
the displacement assumption of Equation 13 to 

:u.k • RCa,b) j x ^ -gj fkQlikj * !„ ̂ - g f ^ A j 
(14) 

where R(a,b) is chosen such that it equals 1 on boundaries adjacent 
to "enriched" elements and equals 0 on boundaries adjacent to "bi
linear" elements. An example of an element configuration using the 
above procedure is shown in Figure 4. Using the assumption given by 
Equations 13 or 14 in a standard finite element formulation, the left 
hand side of the equilibrium equations for an element become: 

I k 22 K 

'II 
1 ) KIT/ 

where 
u 

,.11 
- olement nodal point displacements 
= "regular" stiffness matrix 

22 k = stiffness matrix from the "enrichment" terms 
12 k = coupled stiffness matrix from regular and enrichment terms 

k 2 1 = transpose (k 1 2) 

12 22 Integration of k and k must be done very accurately because they 
contain singular terms. For this work a high order (7x7) Gaussian 
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CRACK TIP-

c c C C C C 

c 6 6 B B C 

c B A A B C 

c * y% A B C 

c B B B B C 

c C c C C c 

FIGURE 4 . 

A - Elements with displacement 
assumptions given by Eq, 5 

B - Elements with displacement 
assumptions given by Eq. a 

C - Elements with bilinear dis
placement assumptions only 

COMPATIBLE FINITE ELEf«ENT CONFIGURATION! 
WITH ELEMENT TYPES A, B, AND C. 
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quadrature was used for elements of type A and B (see Figure 4). 

3.2 Global Equations 

The global set of equations is obtained by summing the contribu
tions of each elejnent in the total set of equations in the standard 
fashion, thus 

K 1 1 I K 1 2 

K 2 1 I K 2 2 

*II' 

f IS) 

where 
K = Global banded stiffness matrix as would exist if no 

singular terms were present 
Global stiffness matrix from coupled Tegular and "enrich
ment" terms (a sparse matrix) 
Global stiffness matrix from "enrichment" terms 

V\Z 

vll -

K 2 1 = Transpose (K 1 2) 
F = Load vector 
F = "Singular" load vector. This is a null vector if no A 

or B element is on a loaded boundary. 

Note that Equation IS has a banded portion (i.e., K ) plus 
extra active columns (i.e., K and K ) . This set of equations 
is easily solved by including the "extra" columns in a Gaussian 
elimination procedure. Only a slight increase in the computer 
storage requirements comes with carrying K .12 

4. Operating Instructions 

CHILES 2 has the option of either reading a tape that contains 
geometry information or internally creating this information by a 
semi-automatic procedure. An output tape is written to provide 

QMESfi' ' is the pre-processor mesh generator currently in use with 
CHILES 2. 
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information for a plotting post-processor. The specific formats for 
writing the input tape by the pre-processov and reading the output 
!>>- the post-processor ire given in Section 5. 

4.1 Input Cards 
This section lists the formats ar.d the variables of the data 

.-.ards read by CHILES Z. Five blocks of cards are used. These blocks 
arc denoted by Roman numerals in the list that follows. 

20 



PROBLEM IDENTIFICATION CARDS 
Card 1 (8A10) - Problem title 
Col 1-80 Any information to be printed as the title of the 

problem 
(Note: Do not use the word END starting in Column 1. 

Card 2 (7151 - Problem Parameter Card 
Col 1-5 Number of Singular Points (NSP)(3 Max.) 

6-10 Geometry Selector (NPAR) 
1 for axisymmetric geometry 
Z foT plane stress geometry 
3 i*T plane strain geometry 

10-15 Nu-' -T of Materials (NMAT)(10 Max.) 
16-20 Not Used 
21-25 Print Option (1PT2V1 

0 outputs displacements stresses and strains 
1 outputs R-Z coordinates, element connectivity 
table, displacements, stresses and strains 

26-30 Stress Intensity Boundary Switch (KBSW) 
0 - No boundary conditions on intensities 
1 - Intensity boundary condition card read. 

31-35 Geometry Input Switch (KGEOSW) 
0 - Geometry information read from tape 
1 - Block III read for geometry information 

36-40 Boundary Condition Table Cards [NUMTB) - See Block IV 
41-45 Orthotropic Material Switch [K0RTSW) 

0 - Isotropic Material 
1 - Orthotropic Material 
NOTE: If KORTSW - 1, the Sandia MATHLIB routine 

must be used. 
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il. MATERIAL IDENTIFICATION CARDS (one card for each material, 10 
material maximum input in sequential order. Card la is u~ed for 
isotropic materials, i.e., KORTSW - 0 and Card lb is used for 
orthotropic materials, i.e., KORTSW - 1.) 
Card la (2E10.3) 
Col 1-10 Young's modulus 

11-20 Poisson's ratio 

Card lb C7E10.3) 
Col 1-10 E,,, Young's modulus in the first principle direction 

of material orthotropy. 
11-20 v 1 2 , Poisson's ratio in 1-2 plane. 

NOTE: v 1 2 / E n - v ^ / B ^ 
21-30 E22» Young's modulus in the second principle direc

tion of material orthotropy. 
31-40 Ej 3, Young's modulus normal to the plane of analysis. 
41-50 v 3 1 , Poisson's ratio in 1-3 plane. 
51-60 Vj2» Pbisson's ratio in 2-3 plane. 
61-70 6, Angle principle axes of OTthotropy make with respect 

to r-z coordinates. 
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ill GEOMETRY DEFINITION CAiWS (If KGEOSW = 0, these cards are 
omitted. KCEOSW is Tead on card 2 of Set I.) 

Card 1 (415) Geometry Parameters 
Col 1-5 Number of Elements (NEL) 

6-10 Number of Nodes (NODES) 
11-15 Number of Load Cards (NUMPC) 

Card 2 (615) (N,IX-Array) 
Col 1-S Element number (N) 

6-10 I t h nodal point (IX-Array) 
11-15 J t h nodal point (IX-Array) 
16-20 K t h nodal point (IX-Array) 
21-25 L t h nodal point (IX-Array) 
26-30 Material number (MAT, IX-Array) 

Maximum difference between nodal point I.D. must be equal 
to or less than 26. 
In general, every element must be defined; but with the semi
automatic mesh generation feature, a minimum of one element 
per row need be input. For example, if element 10 is read 
with values 1-12, J=13, K=24, L=23, and MAT=1, and the next 
element read is element 15 with values 1=23, J=24, K=35, L=34 
and MAT=1, then element 11 would be assigned values 13, 14, 
25, 24, and 1. 
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Card 3 CIS, F5.0, 4F10.0) 
Col 1-5 Nodal point number (N) 

: 6-10 Boundary condition code (CODE) 
11-20 Radial coordinate (R) 
21-30 Axial coordinate (Z) 
31-41; Radial force or displacement (XR) 
41-50 Axial force or displacement (XZ) 

In general, every nodal point boundary condition must be 
defined, but since the program has a semi-automatic mesh 
generation feature, a minimum of two nodal points per row 
need be input and the intervening points will be assigned 
coordinates based on a linear interpolation procedure. 
For example, if nodal point 1 is the first-point in a row 
with coordinates (2.5, 5.4), and nodal point 11 is the next 
point defined with coordinates (12.5, 10.4), then nodal 
point 2 will be located at (3.5, 5.9), etc. The boundary 
condition CODE will be set 0 unless points 1 and 11 have the 
same CODE, in which case all intervening points will be 
assigned the same CODE as the two end points. The radial 
and axial forces or displacements will be set 0 in all 
cases. 

The boundary condition code is interpreted in the following 
manner as given in Table 1. 

CODE Radial (r) Axial fz) 
0. Force Force 
1.0 Displ Force 
2.0 Force Displ 
3.0 Displ Displ 

Table 1 - BOUNDARY CONDITION CODE DEFINITIONS 
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Card 4 (2I5.2F10.0) Load Cards 
Col 1-S I t h nodal point (IP) 

6-10 J t h nodal point (JP) 
11-20 Normal traction (PR) 
21-30 Shear traction in R-Z plane (PT) 

This subsection is required only if NUMPC > 0. Nodes I and 
J must be such that the body is on the left of the line going 
from I to J (Figure 5). This requires that I and J be in the 
same sequence on the traction cards as on the element cards. 
Positive tractions are indicated on the diagram in Figure 5, 
and the tractions are assumed constant over the length of the 
element boundary. 
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IV BOUNDARY CONDITION FLAG TABLE (NUMTB cards are read; these cards 
define a'boundary condition code or traction option to be used 
with a boundary flag number as set in QMESH). Boundary condition 
codes are defined in Table I) 

Card 1 (I10.3E10.0) 
Col. "1-10 IBC - Boundary flag number as set in QMESH 

11-20 BCODE - Boundary code* 
21-30 XR or PN value of displacement, force or normal 

traction 
31-40 XZ or SH - Value of displacement, force or shear 

traction 

NOTE: If BCODE i 0, the boundary codes are defined in Table 
I and the 3rd and 4th fields of the card are normal 
forces or displacements. If BCODE < 0 the 3rd and 4th 
fields of this card are the normal and shear tractions 
applied on an element face. In this case, the sign 
convention is as shown in Figure 5. 



V. SINGULAR POINTS IDENTIFICATION CARDS 
Card 1 (3(I5,E10.3)) Node and Angle Data (If NSP = 0, omit this 

card. 0 is defined on Figure 1.) 
Col 1-5 Node number of singular point 1 

6-IS Angle <t (degrees) for singular point 2 
-180. <. t <. 180. 

16-20 Node number of singular point 2 
21-30 Angle * (degrees) for singular point 2 

-180. £ • 1 180. 
31-45 Node number of singular point 3 
36-45 Angle (degrees) for singular point 3 

-180. i 4> £ 180. 

Card 2 C3I5J Boundary code for singular points (If KBblV = ij, 
omit this card.) 

Col. 1-5 KODE for point 1 
6-10 KODE for point 2 

11-15 KODE for point 3 
KODE - 1 Kj set equal to 0.0 
KODE = 2 K.j set equal to 0.0 

This set of data cards must be followed Kith a card that has J;\\'D 
beginning in column 1, 



Ji . i l^L. 
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4.2 Program Capabilities and Limitations 
This section of the report lists the capabilities and limitations 

of CHILES that have resulted because of theoretical restrictions, 
economic consideration, computer storage capacity, etc. 
1. CHILES performs a linear elastic stress analyses of any two-

dimensional body in a plane stress, plane strain or axisymmetric 
state. Singular points are treated with enriched finite elements. 

2. Up to three singular nodes may be defined in the body. 
3. 1000 nodal points may be used. 
4. 1000 elements may be used. 
5. Bandwidth is limited to 54 (i.e., difference between node number-

in any one element must be < 27). 
6. Only mechanical loads are accepted. 
7. A pre-created mesh and boundary condition scheme may be read 

from tape. 
8. Displacements, stresses and strains are output on tape for 

plotting. 
9. CHILES automatically surrounds a singularity with type A and 

type B elements as shown in Figure 4. 
10. Small strains are assumed, a condition that is violated at the 

crack tip. 
11. Up to 10 different materials can be defined. 
12. Special elements are compatible with conventional elements. 
13. Users may replace subroutines (CALQ and CALQI) to model singu

larities other than crack tips. 
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4.3 Precautions Considering Fracture Mechanics and CHILES 2 
Certain precautions must be taken when applying fracture mecha

nics considerations to stress analysis. In linear elastic fracture 
mechanics (LEFM) a crack in a brittle material becomes unstable as 
Kj reaches K- where K. is the critical stress intensity factor. 
The same holds true for Kj, and K J T . The critical stress intensity 
factor, a material property, can be measured in the laboratory for 
"brittle" materials with accuracy of about 51. CHILES calculations 
are well within this accuracy. Care must be exercised, however, when 
using critical stress intensity factors for materials that are not 
"brittle." A plastic zone always exists at the tip of the crack and 
as long as this remains "small" LEFM applies. As this zone increases 
in sise, LEFM breaks down and "critical stress intensity factors" are 
not useful. Also, mixed mode fracture criteria are not well estab
lished.'- ' The stress analyst is cautioned to consult with a fracture 
mechanician before applying CHILES to problems where the material 
may not be brittle and/or mixed mode conditions are present. 

5. Programming Information 

The overall flow diagram for CHILES 2 is shown in Figure 6. 
5.1 Subroutine Operations 

The following is a brief description of the operation of 
the main program and each subroutine. 
1. CHILES is the main program that controls the logic for the code. 

It performs the initial data reads, calls subroutines that 
form global matrices and solves the equations, and runs the 
output logic. A flow chart is shown in Figure 7. 

2. ADSING is the subroutine that adds the "singular" rows and 
12 21 22 columns to' the element stiffness matrix (i.e., k , k , k .) 

3. CALB11 calculates the "B" matrix us<d in forming k (i.e.. 
/B DB dv) whe.e B is the matrix relating element 
n to nodal poin 

strain to stresses.' 
strain to nodal point displacements and D is the matrix relating 

(4) 
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CALSI 

FIGURE 6. FLOW DIAGRAM FOR CHILES 
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4. CALKIL calculates the kill function, R, used in eliminating 
the incompatibility in element type B. 

5. CALQ calculates the "Q" terms used in formulating the singular 
part of the element stiffness matrix. 

6. CALQI calculates the Cf terms used in formulating the singular 
part of the element' stiffness matrix. 

7. CALSI is a routine that calculates the sign of an angle between 
two vectors. 

8. ELSTIF controls the calculation of the element stiffness matrix, 
computes element stress and strain matrices, and stores them 
on tape. 

9. MODIFY sets the boundary conditions in the global stiffness 
matrix. 

10. CALG computes the coefficients defined in Equations 5 and 6. 
11. ROOTS computes the complex roots of the orthotropic material's 

characteristic equation. 
12. SOLVE reduces the global set of equations block ty block, per

forms the back substitution, and writes the displacement solution. 
13. STIFF is the subroutine that controls the forming of the global 

stiffness matrix and loading in blocks. It also modifies the 
global matrices by incorporating the boundary conditions. 

14. SYMSOL solves a small set of banded equations. 
15. TYPE is a subroutine that identifies the element types and 

catalogs the different singular points. 
16. ZONE reads meshing cards internally and creates a mesh. 

Table 2 lists many of the main variables of the code and 
identifies their function. 

5.2 Definition of Variables 
FORTRAN NAME DESCRIPTION 
BETA (1000) Identifies the element type (i.e., 1, 2, 3, 

4 • singular element type A with singularity at 
node 1, 2, 3, 4; 5 • element type "B"; 6 = 
conventional element type CJ 

CODE (1000) Boundary condition code 



D(4,4,10) Material properties array 
ES(4) Stress array 
EST(4) Strain array 
HED(8) Problem title array 
ICODE(50) Boundary array indicator 
INODE(50) Boundary point array 
IP(200) INODE for pressure load 
IPTSW Printed switch 
IS(200) INODE for shear load 
ISMAT(6) Singular point material type 
ISP(1000) Singular region identifier for element 
IX(5,1000) Element connectivity and material 
JNODE(50) Boundary array indicator 
JP(200) J node for pressure load 
JS(200) J node for shear load 
KBSW Stress intensity boundary switch 
KGEOSW MESH generation switch 
KODE(3) Intensity boundary type 
MBAND Bandwidth 
NODF 2 * NEL 
NEL Number of elements 
NFORCE Number of pressure load cards 
NMAT Number of materials 
NMESHC Number of mesh change cards 
NODES Number of nodal points 
NPAR Geometry indicator 
NRN(10) Row number array 
NSINN(3) Nodal point of singularity 1, 2, and 3 
NSP Number of singular points 
NST Number of singular terms 
NUMSC Number of shear cards 
PHI (3) Angle cji for singular point 1, 2, and 3 
PR(200) Pressure at node 
PRI{50) loading arrays 
PRJ(SO) Loading arrays 



PZI(SO) 
PXJ(SO) 
R(IOOO) 
RCf3) 
SH(200) 
SIG(4,1.000) 
ST(4,10) 
lf(10) 
XBM(108,54) 
XBT(6) 
XC(108,6) 

XCT(6,6) 
XF(108) 
XK(10,10) 
XR(IOOO) 
XZ(IOOO) 
Z(1000) 
ZC(3) 

Loading arrays 
Loading arrays 
R coordinate array 
R coordinate of singular points 
Shear loading array 
Stress array output on tape 
Element strain matrix 
Element displacement array 
One block of banded stiffness matrix 
Intensity "loads" 
Coupled conventional - singular global stiffnesses 
fin block form), K 1 2 

Singular part of global stiffness matrix, 
Blocked loading vector 
Element stiffness matrix 
Nodal load or displacement R component 
Nodal load or displacement Z component 
Z coordinate array 
Z coordinate of singular point 

„22 

Table 2. Names of Variables used in CHILES 2 

5.3 Read/Write Statements for Pre- and Post-Processors 

CHILES reads TAPE 9 for a pre-created meshing scheme, loading 
and boundary conditions. The read statements for this information 

(8) The as they exist in CHILES are compatible with QMESH and RENUM.l 

variable definitions are given in Section 5.2. 
TAPF 10 is written to be used in a post-processor for plotting. 

This tape is written as follows: 
WRITE(10) HED, NEL, NODES 
WRITE(IO) TDUM 
WRITE(IO) ptF(I),I=l,NDOF), (XF(I),I=1,ND0F), (XFCI) ,NDOF) 
WRITE(10) ((SIGCI,J),J=1,NEL),1-1,4) 
WRITE(10) ((STRN(I,J),J=l,NEL),1=1,4) 



ZERO ARRAYSl 

READ AND WRITE 
INPUT INFORMATION 

CALL STIFF 
(FORMS ELEMENT STIFFNESS AND LOAD 
MATRICES AND ADDS THEM TO GLOBAL 
SET) 

CALL SOLVE 
(SOLVES FOR GLOBAL DISPLACEMENTS) 

WRITES DISPLACEMENTS 
(OUTPUT AND TAPE) 

CALCULATES ELEMENT 
STRESSES AND STRAINS 

WRITES STRESSES AND STRAINS 
(OUTPUT AND TAPE) 

FIGURE 7. FLOW CHART FOR CHILES 
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The first record contains the problem title, number of' elements and 
number of nodes, respectively. The second record is a dummy time 
output. The third record lists the displacements and two dummy lists. 
Records four and five have the element stresses and strains, respec
tively. 

6. Sample Problems 

Four example problems are given. The first two problems compare 
the results obtained from CHILES with other solutions. The third i:s 
an example of a very practical problem, the compact tension specimen 
commonly used in fracture mechanics tests. The final problem pre
sented is to be used as a test problem in that it exercises most of 
the features of the code. In all examples, elements of type A exist 
at the crack tip, elements of type B are their next neighbors and 
elements of type C define the remainder of the problem. This "typing" 
is done automatically in CHILES 2. 

6.1 Tensile Strip with Side Crack 
A closed form solution to this problem was done by Keer and 

Freedman.' ' The finite element definition of the problem is shown 
in Figure 8. Figure 9 gives a comparison between the finite element 
solution and the closed form solution for the stress intensity factor 
Kj as a function of crack length. Figure 10 compares the opening 
displacement of the crack trip of the two solutions and Figure 11 
shows a typical crack opening shape. 

6.2 Circumferentially Cracked Round Bar Subjected to Tension 

This problem demonstrates the solution of an axisymmetric solid 
with CHILES. The. mesh used was similar to that shown in Figure 8 
with 10 elements in the radial direction but 13 in the axial direc
tion. The radius of the bar is 1,0 in. and the half length is 3.0 
in. A plot comparing the CHILES solution with two other approximate 
solutions'- ' is given in Figure 12. 
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FIGURE 8. FINITE ELEMENT DEFINITION OF 
SIDE CRACKED PANEL. 
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FIGURE 10. CRACK MOUTH OPENING AS A FUNCTION OF 
CRACK LENGTH. 
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FIGURE 12. COMPARISON OF STRESS INTENSITY FACTOR, Ki, VS 
CRACK LENGTH FOR CIRCUMFERENTIALLY CRACKED 
ROUND BAR. 
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6'. 3 Compact Tension Specimen 
The mesh used for a compact tension specimen is shown in Figure 

13. /The geometry condition was assumed to be plane stress and a con
centrated load of 8000 lbs. was applied at the top of the cutout hole 
as shown. The results compared to a boundary collocation analysis 
are given in Table 2. An example of a stress contour plot is given 
in'Figure 14. ... 

CHILES 2 •., 
Roberts^1) 

Stress Intensity., 
Kj(psi /TH) 

54,216 
54,306. 

Crack Opening 
at Load Line (in) 

.00648 

.00992 

Table 3. Comparison of Finite Element'and Boundary Collocation 
Results for Compact Tension Specimen 

6.4 45 Crack in Finite Width Strip 
This problem shows the versatility of CHILES 2 in that 
1. Multiple singular points are defined. 
2. Elements are skewed at the crack tip. 
4. :'• Mode I and Mode II intensities are present. 

The meshing scheme and material properties are shown in Figure 15. 
The listing of the CHILES input cards is given in Figure 16. The 
results obtained from the code are compared to the solution of an 
infinite plate with a 45° crack*- ' in Table 3. 

Singular Point 
lr-:-" 
•2 

h KII 
Infinite Plate 

Solution (Xj = Kj.) 

75.7 77.5 73.0 
75.5 76.9 73.0 

Table 4. Comparison of Stress Intensity Factors 
of Plate with 45° Crack. 



P - 8000 lb. 
E • 3.0U0>? lb/in? 
"•• 0.3 
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FIGURE 13. PROBLEM DESCRIPTION FOR COMPACT TENSION 
SPECIMEN 
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COMPACT TENSION SPECIMEN PLANE STRESS EPS MAX 

0.0 
1.000E-3 
2.00E-3 
3.000E-3 

*- z 

FIGURE 14. MAXIMUM STRAIN CONTOUR PLOT 
FOR COMPACT TENSION SPECIMEN 
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FIGURE 15. GEOMETRY FOR 45° CRACKED PLATE IN TENSION 
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45 DEGREE CRACKED PLATE IN TENSION 

2 3 1 
3.0E7 

244 -135 
100 2 
200 -1 
300 1 
400 1 
END OF DATA 

250 45.0 

100 

FIGURE 16. LISTING OF INPUT CARDS FOR CHILES 
FOR 45° CRACKED PLANE TN TENSION 
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6.5 Central Crack in an Orthotropic Plate 

The plane problem of a central crack in a rectangular sheet of 
orthotropic material has been analyzed by Bowie and Freese' ' by 
a "modified mapping collocation" technique. The problem solved by 
Bowie is defined in Figure 17. A comparison between some of the 
results obtained by Bowie and Freese are compared to CHILES 2 cal
culations in Table 5. The input cards required for both QMESH and , ' 
CHILES 2 are shown in Figure 18. The finite element grid was a 
regular 10 x 10 quadrilateral mesh. 

B 2
2 E L E2 v12 u12 KB0WIE KCHILE 

.1 L 10 0 .909090 231.86 232.37 

.3 L 3.33 0 .769231 196.77 202.17 

.5 L 2.0 0 .6666666 182.98 187.67 

.7 L 1.4286 0 .588235 174.21 179.17 

.9 L 1.1111 0 .52632 169.20 173.61 
1.1 L .90909 0 .47619 165.44 169.72 
1.5 .6667 0 .4 160.42 164.65 
2.5 L .4 0 .28571 155.41 158.66 
3.5 .2857 0 .22222 152.90 156.00 
4.5 ] .2222 0 .1818181 150.40 154.49 

Table 5. Comparison of Stress Intensity Factors Between CHILES 2 
and Reference 13 for L/b = .5, C/b = 1. B1&2 = (E 1/E 2) i 

and 8 1 + 6 2 = /? {(Ej/Ep* + E ^ u ^ - v 1 2 } h ' 
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