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Chimera and phase-cluster states in populations
of coupled chemical oscillators

Mark R. Tinsley, Simbarashe Nkomo and Kenneth Showalter*

Populations of coupled oscillators may exhibit two coexisting
subpopulations, one with synchronized oscillations and the
other with unsynchronized oscillations, even though all of
the oscillators are coupled to each other in an equivalent
manner. This phenomenon, discovered about ten years ago
in theoretical studies’, was then further characterized® and
named the chimera state after the Greek mythological crea-
ture made up of different animals. The highly counterintuitive
coexistence of coherent and incoherent oscillations in popula-
tions of identical oscillators, each with an equivalent coupling
structure, inspired great interest and a flurry of theoretical
activity®>'°. Here we report on experimental studies of chimera
states and their relation to other synchronization states in
populations of coupled chemical oscillators. Our experiments
with coupled Belousov-Zhabotinsky oscillators?°?' and corre-
sponding simulations reveal chimera behaviour that differs
significantly from the behaviour found in theoretical studies of
phase-oscillator models.

Following ref. 5, we study a system with two subpopulations
of oscillators that are globally coupled, both within and between
the subpopulations. As in the original model of ref. 1, in which
each oscillator has an equivalent coupling structure, with coupling
strength decreasing exponentially with distance, each oscillator in
the model in ref. 5 has an equivalent coupling structure, with
stronger global coupling to its fellow subpopulation members and
weaker global coupling to the oscillators in the other subpopulation.
Both model systems are multistable, with the fully synchronized
state exhibited for homogeneous initial conditions and the chimera
state exhibited for particular heterogeneous initial conditions**.

There are two sources of heterogeneity in coupled oscillator
systems that exhibit chimera states. The nonlocal coupling of each
oscillator is by its nature heterogeneous, such as two different cou-
pling strengths in the model of ref. 5 or an exponentially decreasing
coupling strength in the model of ref. 1. In addition, the coupling
in a chimera state at any moment is heterogeneous in the sense that
the coupling strength depends on the phase of each oscillator with
respect to the phases of all the oscillators to which it is coupled’.

Our experiments are carried out with discrete chemical
oscillators based on the photosensitive Belousov—Zhabotinsky
reaction’®??, in which the Ru(bpy);?" catalyst is loaded onto
ion-exchange particles that are then immersed in a catalyst-free
reaction mixture. The N oscillatory particles are divided into two
groups of equal size, A and B, with each member i of group o
experiencing the feedback light intensity P{:

Pia = P0+kJPmax(fa(t - T) _Il(t))
+koU'Pmax(fa'(t_T)_Ii(t)) (1)

where 0 = A,B and o’ = B, A. The mean intensity of the oscillators
in group o is I,, and k, and k,, are the intra- and inter-group

coupling coefficients, respectively, with |k, | < k,. Each member of
each group is globally coupled through the mean signal of its own
group and the mean signal of the other group, with the intra-group
coupling stronger than the inter-group coupling. The maximum
light perturbation is Py = 3.0 mW cm™2, the background light
intensity is Py = 1.4 mW cm™2 and the measured intensity I is scaled
from 0 to 1. The delay term t (refs 6,11,23) plays a role akin to
the phase-frustration term used in the model in ref. 5 and in other
phase-oscillator models of chimera states.

This coupling scheme gives rise to several different types of
synchronization behaviour in our experiments. In all cases, group
A remains fully synchronized, whereas group B exhibits four
basic states: fully synchronized, n-cluster, the unsynchronized
chimera and semi-synchronized. We label these states 1-1, 1-n
(n=2,3,4,...), 1-c and 1-s, respectively, where the first number
represents the state of group A and the second number (or letter)
represents the state of group B.

During full synchronization, the 1-1 state, members of group B
synchronize both in frequency and phase®, typically with a constant
phase difference relative to the synchronized members of group A.
Figure la shows a time series of the mean oscillator intensity in
groups A and B, and the inset shows a snapshot of the phase of each
oscillator in the two groups. An example of a two-cluster state’* is
shown in Fig. 1b, where the different occupancies of the two clusters
are visible in the phase snapshot. We see a wide range of occupancies
in the two-cluster state as well as in higher order 1-3 and 1-4 states
in our experiments.

In the 1-c chimera state, the members of group B typically remain
unsynchronized for the entire duration of the experiment. The
mean intensity for group B is a small-amplitude, noisy signal, as
shown in Fig. 1c. At any moment, the phases of the oscillators are
spread almost evenly between 0 and 27 (see inset). In addition
to chimera states, we also observe semi-synchronized states, which
involve higher- and lower-frequency oscillators intermittently
aligning, resulting in occasional mean intensities with irregular large
amplitudes (Fig. 1d). An example of transient partial alignment
leading to larger values in mean amplitude is shown in the
phase snapshot. The behaviours shown in Fig. 1 are found at
different intra- and inter-group coupling strengths, and the various
behaviour regimes as a function of ky = kg and kap = kg, are shown
in Fig. 2a. The synchronized 1-1 state is in-phase or out-of-phase
for kxp > 0 or kxp < 0, respectively.

The 1-c chimera region shown in Fig.2a occurs primarily
with the inter-group coupling strength kss < 0, although there
is a small region of 1-c behaviour for kys > 0. The chimera for
negative inter-group coupling strengths was surprising in view
of the model of ref. 5, which employs only positive coupling,
and we therefore investigated the underlying coupling mechanism.
Figure 2b shows experimental and simulated phase-response curves
for perturbations involving both increases and decreases in light
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Figure 1| Normalized mean intensity (I) of group A and group B as a
function of time, and snapshot of the phases ¢ of oscillators i =1-20 in
group A and 21-40 in group B. Blue, group A; red, group B. a, Synchronized
out-of-phase 1-1 state, ka = 3.0, kag = —1.8. b, Synchronized 1-2 phase
cluster state, ka = 4.0, kag = —1.0. ¢, Chimera 1-c state, ka = 3.0,

kag = —0.2.d, Semi-synchronized 1-s state, kn =2.0, kag = —1.0. All
time-series curves show fits to data points (o). The phase ¢ = 0-2r of an
individual oscillator i (inset) is assigned by linear interpolation between
adjacent maxima. In all of the experiments t =30s.

intensity. As both positive and negative perturbations give rise
to positive phase responses, both positive and negative values
of kap result in positive inter-group coupling, consistent with
the theoretical model®.

We model the experimental system with a two-variable model®
for the photosensitive Belousov—Zhabotinsky particle system?!,
where dX;/dt = f(X;,Z;, @) + ¢7, dZ;/dt = g(Xi, Z;, qi) + 2¢7
describes the chemistry of each oscillator i in group o (see
Supplementary Information). The terms f and g give the non-
photochemical components of the Belousov—Zhabotinsky reaction,
and X;, Z; and g; are [HBrO,], [Ru(bpy);*"] and the stoichiometric
coefficient, respectively, associated with the ith oscillator.

The photo-excitatory feedback to oscillator i in group o is ¢7,
calculated according to

¢;7 = ¢0 +ko¢max(20(t - t) _Zl(t))
+ kaa'¢max(ZAa/ (t - T) _Zl(t))

with other terms as in equation (1). Simulations are carried out
with up to 80 particles (40 per group) for both homogeneous
(period =41.0) and heterogeneous (period =41.04+2.1) oscillator
systems. The heterogeneous oscillator system has an approximately
normal distribution in period.

The model simulations generate behaviour in qualitative
agreement with that exhibited by the experimental system,
namely, the 1-1, 1-n, 1-c and 1-s states. Standard continuation
methods were used to determine whether or not a state is stable
in a given parameter region and whether other stable states
coexist. The location of these states in the ky—ksp phase diagram
(see Supplementary Information) is similar to the experimental
behaviour shown in Fig.2a, with a small region of chimera
behaviour observed for ksp > 0 and a much larger region observed
for kAB < 0.

The probability of the homogeneous frequency system residing
in the 1-c, 1-1 or 1-2 state as a function of k4 is shown in Fig. 2c. At
low values of k,, the system predominantly finds the chimera state,
with the 1-1 and 1-2 states increasingly prevalent at higher values of
ka. Continuity methods demonstrate that the chimera is embedded
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Figure 2 | Dependence of the chimera and cluster states on parameters.
a, Regions of 1-c chimera behaviour (red), 1-1in-phase (light blue) and 1-1
out-of-phase (dark blue) synchronization observed in experiments as a
function of coupling strengths ka and kag. The grey region corresponds to
values of |kag| > ka. b, Phase-response curves for experimental (upper
panel) and model (lower panel) systems, in which perturbations were an
increase (red) or decrease (blue) in light intensity. ¢, Probability of 1-c
(blue), 1-1 (red) and 1-2 (green) states as a function of ks from simulations
of the homogeneous frequency model, with N = 80. Continuity methods
yield stable states in the following regions: 1-1 state stable for all values of
ka, 1-2 state stable for 0.23 < ka < 1.6, 1-c state stable for 0.21 < ka < 0.8.
d, Probability of a stable chimera state (green) for the homogeneous
frequency system as a function of the number of oscillators N. The
logarithm of the mean time to collapse to a synchronized state for
homogeneous (red) and heterogeneous (blue) frequency oscillator
populations is shown. Probabilities in ¢ and d are based on 400 simulations
for each abscissa value using random initial phases for group B; conditions:
T =236, kn = 0.6, kag = 0.12, except where otherwise indicated.

in a region of multistability, with the 1-1 state occurring over the
entire range of k, and small regions of higher-order 1-2, 1-3 and 1-4
cluster states also occurring. Non-stationary (breathing) chimera
states were also found in certain parameter regimes, similar to those
reported in ref. 5. No semi-synchronized behaviour is found in
the homogeneous frequency system, because when partial phase
alignment occurs, the system quickly relaxes to a 1-1 or 1-# state. In
the simulations for Fig. 2¢, for example, the system rapidly evolved
to a 1-1 or 1-2 state when the mean signal of group B exceeded a
threshold (see Methods), indicating partial alignment.

Simulations were also carried out to determine the effects of
group size and frequency heterogeneity on the probability of the
system residing in the 1-c chimera state. For the homogeneous
frequency system, the probability of the 1-c state increases with
increasing group size, as shown in Fig. 2d, where the 1-1 state
is exhibited when the chimera state is not found. Also shown
in Fig. 2d is the lifetime of asynchronous states that collapsed to
synchronized states. The relatively short lifetime of these collapsing
states is almost constant, and they apparently arise from initial
conditions unfavorable to finding the chimera state. In contrast,
the system with a distribution of oscillatory frequencies exhibits
chimera lifetimes that increase approximately exponentially with
increasing system size, Fig. 2d. No asymptotically stable chimera
is observed in this system for this level of period heterogeneity
(41.0 £ 2.1); however, extremely long-lived 1-c states are observed
for larger system sizes (>10* periods for N =70).

The small-amplitude mean signal of the chimera in the
homogeneous frequency system is illustrated in Fig. 3a, as well as
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Figure 3 | Long-lived and transient chimera states in simulations and
experiments. a, Time series for a chimera state (blue) and transient to a 1-1
state (red) in the homogeneous frequency model, with N=60. b, A
chimera state (blue) and a collapse to synchronization (red) in the
heterogeneous frequency model, with N=60. ¢, A sustained chimera state
(blue) and an example of a collapse to synchronization (red) in an
experiment, with k4 =3.0 and kag = —1.0 in both cases. d, Time to collapse
in the heterogeneous frequency model as a function of the standard
deviation of the parameter g determining the period, with N=40. The
dashed line shows the approximate location of the asymptote of the
divergent chimera lifetime. Other parameters for a, b and d are the same as
in Fig. 2. The time series shown in a-c are the mean signal for group B, with
the blue time series offset for illustration purposes.

the large-amplitude mean signal of the system when the initial
conditions lead quickly to a synchronized 1-1 state. Figure 3b shows
a long-lived chimera in the heterogeneous frequency system, with
a noisy small-amplitude mean signal, along with the collapse of a
chimera to a synchronized 1-1 state for the same conditions but with
a different initial phase distribution. Figure 3¢ shows a long-lived
chimera state along with a chimera collapsing to a synchronized 1:1
state in experiments with the same conditions.

The effects of period heterogeneity on the chimera lifetime can
be seen in a plot of mean lifetime as a function of the standard
deviation of the period distribution, shown in Fig. 3d. The mean
lifetime markedly increases at low heterogeneity of the oscillator
population. The simulations indicate that there is a small but finite
range of very low period heterogeneity in which the chimera states
are asymptotically stable.

Our studies of coupled chemical oscillators show that the
heterogeneous frequency system, corresponding to the experiments
and associated simulations, exhibits chimera, cluster and fully
synchronized states. The chimera lifetime grows approximately
exponentially with system size (Fig.2d), and we find evidence
of asymptotically stable chimera behaviour at very low levels of
frequency heterogeneity (Fig. 3d). Interestingly, simulations of the
homogeneous frequency system indicate that asymptotically stable
chimera states occur and increase in occurrence with increasing
system size (Fig. 2d.) This is in contrast with recent studies'’, which
demonstrate that the chimera state is transient for finite system
sizes for identical phase oscillators. This suggests that the relaxation
oscillations of the Belousov—Zhabotinsky system lend stability to the
chimera state, as this is the primary feature that differs between these
systems. We note that extremely long-lived chimera states in our
simulations do not provide unequivocal evidence for asymptotic
stability of these states.
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The chimera behaviour found in our experiments and
corresponding simulations of the heterogeneous frequency system
is similar in many respects to the behaviour found in ref. 17 in a
homogeneous phase-oscillator model. In this paper, it is pointed
out that above small system sizes, the chimera state becomes very
long-lived, and the behaviour is much like that observed in the
thermodynamic limit, N — oco.

The chimera state in populations of coupled chemical oscillators
is made up of subpopulations that exhibit coherent and incoherent
oscillations. The chimera state arises from the non-local coupling
and would disappear with uniform global coupling. The chimera
behaviour is not the result of frequency heterogeneity in our system,
because, in fact, frequency heterogeneity reduces the lifetime
and hence the likelihood of finding the state (Fig. 3d). Chemical
oscillators are stiff, relaxation oscillators, which may give rise to
important differences in their chimera behaviour from the more
idealized theoretical models. The semi-synchronized state in this
system remains to be fully characterized, but we believe it may be the
result of transient phase clusters (switchers) that are known to occur
in related globally coupled Belousov—Zhabotinsky systems?*!.

The very existence of the chimera is a surprise, and we note
that this peculiar dynamical behaviour could be of importance
in certain biological and physical systems. Many birds as well as
dolphins sleep with one eye open, in the sense that one hemisphere
of the brain is synchronous while the other is asynchronous®”. In
addition, the simultaneous appearance of laminar and turbulent
regions in Couette flow?® represents the coexistence of coherent and
incoherent behaviour.

Methods

Experiments. A population of 40 coupled oscillators is studied in the experiments
reported here. The natural period of the uncoupled oscillators is 60.0 =4 s. The
oscillations of the particles are accompanied by changes in concentration of the
oxidized form of the catalyst Ru(bpy);** and are monitored by the changes in the
transmitted light intensity I of each particle. The oscillatory particles are monitored
using a CCD (charge-coupled device) camera®!, with intensity recorded every
3.0 s. With the coupling algorithm switched off, images of the reaction domain are
obtained with a background light intensity of P, projected onto each particle. The
projected image from a spatial light modulator is reflected with a beam splitter to
the reaction domain while permitting intensity measurements with the camera.

An experiment is initiated by applying the intra-group feedback for group
A alone (kas =0, ks =0), allowing this group to fully synchronize. The group B
particles are not coupled and oscillate with approximately random phases. After
an initial period, the intra-group feedback for group B, with ks = k,, and the
inter-group feedback, with ks = kga, are simultaneously switched on, and the
system is monitored for a further 50 min.

Simulations. A simulation is initiated by synchronizing the oscillators in group
A by applying intra-group feedback to that group alone. Intra-group feedback is
then applied to the oscillators in group B at t = 200, with ks = ks, where the phase
of each oscillator is selected from a random distribution. Inter-group feedback is
also applied at this time, with kyp = kga. Simulations are typically carried out until
t =100,000, and the state of the system is then recorded. The model presented here
is non-dimensional and we report non-dimensional values; however, dimensional
quantities can easily be derived.

The mean amplitude of the chimera is a noisy, flat signal, allowing an empirical
threshold in the mean signal amplitude to be established and computationally
employed to test for the existence of chimera states and to distinguish the chimera
from other states such as semi-synchronized states. A mean signal threshold of
0.35 was found to be satisfactory for detecting the collapse of a chimera state
and distinguishing it from other states. The time series in Fig. 3 illustrate the
utility of the mean signal threshold for distinguishing the chimera state from
other states in the large number of simulations carried out to obtain lifetimes and
occurrence probabilities.
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