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Complex spatiotemporal patterns, called chimera states, consist of coexisting coherent and

incoherent domains and can be observed in networks of coupled oscillators. The interplay of

synchrony and asynchrony in complex brain networks is an important aspect in studies of both the

brain function and disease. We analyse the collective dynamics of FitzHugh-Nagumo neurons in

complex networks motivated by its potential application to epileptology and epilepsy surgery. We

compare two topologies: an empirical structural neural connectivity derived from diffusion-

weighted magnetic resonance imaging and a mathematically constructed network with modular

fractal connectivity. We analyse the properties of chimeras and partially synchronized states and

obtain regions of their stability in the parameter planes. Furthermore, we qualitatively simulate the

dynamics of epileptic seizures and study the influence of the removal of nodes on the network

synchronizability, which can be useful for applications to epileptic surgery. Published by AIP

Publishing. https://doi.org/10.1063/1.5009812

The investigation of synchronization in coupled oscillatory
systems is an important research field in physics, biology,
and technology.1–3 Complex mechanisms of coexistence of
synchrony and asynchrony play an important role in the
understanding of the functionality and malfunctions of
many natural and technological systems. An interesting,
strikingly counterintuitive example of such complex pat-
terns is chimera states. They exhibit a hybrid structure
combining domains of both synchronized and desynchron-
ized dynamics and were first reported for the well-known
model of phase oscillators.4,5 In this paper, we investigate
chimera states and spatiotemporal patterns in complex
networks of FitzHugh-Nagumo oscillators, which model
the spiking neuron dynamics. We compare the dynamics
of the networks with two types of connectivity: an empiri-
cal structural brain network topology and a simulated
modular fractal topology. We find regions of existence for
chimera states and other complex patterns. In the context
of application to the study of epileptic seizures, we qualita-
tively simulate the dynamics of epileptic seizures and ana-
lyse the removal of nodes and its influence on the general
synchronizability of the networks.

I. INTRODUCTION

The collective behaviour in networks of oscillators is of

great current interest, having numerous applications in nature

and technology. Besides complete and cluster synchroniza-

tion, special attention has recently been paid to chimera states

where incoherent and coherent oscillations occur in spatially

coexisting domains. Surprisingly, this symmetry-breaking

behaviour was first discovered for identical elements and sym-

metric coupling configurations.4,5 Chimera states have been

studied now in a variety of oscillatory systems6–51 and discrete

maps,52–54 with a wide range of network topologies including

regular, nonlocal, nearest-neighbour, global, interacting iden-

tical subpopulations, and irregular ones. Moreover, chimera

patterns are possible in higher spatial dimensions,28,55 multi-

layer networks,56 and time varying network structures.57

Promising applications of chimera states in nature are

studies of complex partially synchronized states observed in

neural networks. Synchronization and desynchronization of

neural activity are essential for explaining both the healthy

brain function and brain disorders, such as epileptic seiz-

ures58–60 and Parkinson’s disease. It is well known that the

synchronization pattern and the related functionality depend

on both the structural connectivity and the type of local

dynamics and the type and strength of coupling;61–65 making

all these parameters potentially relevant for explaining

synchronization alterations. For instance, during an epileptic

seizure, the electrical activity in the brain is excessive and

synchronous, and studying chimera states can give further

insights into the underlying mechanisms of the initiation or

termination of epileptic seizures. Recent studies on the archi-

tecture of the neuron interconnectivity of the human and the

mammalian brain have shown that the connectivity of the

neuronal axon network represents a hierarchical, quasi-

fractal structure.66,67 The existence of chimera states in

networks with hierarchical connectivity (fractal) has been

recently discovered.68–71a)Electronic mail: schoell@physik.tu-berlin.de
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Chimera-like states in neural networks were reported

under the notion of bump states.72,73 They were also

observed for nonlocally coupled Hodgkin-Huxley mod-

els11,74 and FitzHugh-Nagumo,68,75 Hindmarsh-Rose,22,76

and Integrate-and-Fire neurons.77

In the present manuscript, motivated by studies of epi-

leptic seizures, we provide a comparison of the transition

from asynchronous behaviour to synchrony via chimera

states in an empirical structural brain network derived from

diffusion-weighted magnetic resonance imaging and in a

mathematically constructed network with modular fractal

connectivity. Our purpose is to provide insights into the

nature of the real brain connectivities by studying an artifi-

cial connectivity matrix which is constructed by a well-

defined iterative mathematical algorithm, generating a hier-

archical, nested, quasi-fractal connectivity structure. To

describe the dynamics of individual units, we use the para-

digmatic FitzHugh-Nagumo oscillator, describing the activa-

tion and inhibition dynamics of a spiking neuron. We

analyse and compare the network dynamics and complex

spatiotemporal patterns in both topologies. Additionally, we

analyse the influence of the removal of nodes on the network

synchrony, an important aspect for the understanding of the

dynamical nature of epileptic seizures78 and for improving

the outcome of epilepsy surgery.79,80

II. THE MODEL

In our study, we consider a system of N identical cou-

pled FitzHugh-Nagumo oscillators

e
duk

dt
¼ uk �

u3k
3
� vk þ r

XN

j¼1

Gkj buuðuj � ukÞ þ buvðvj � vkÞ
� �

dvk

dt
¼ uk þ aþ r

XN

j¼1

Gkj bvuðuj � ukÞ þ bvvðvj � vkÞ
� �

; (1)

where u and v are the activator and inhibitor variables, and

all indices k ¼ 1;…;N are taken modulo N. The parameter

e > 0 characterizes the timescale separation, and it is fixed at

e ¼ 0:05 throughout the paper. The coupling strength is

determined by r, and a is the threshold parameter. In this

study, the oscillatory regime of the FitzHugh-Nagumo oscil-

lators is considered, i.e., jaj < 1.

The adjacency matrix G defines the topology of the net-

work. The two investigated topologies are (i) a symmetrized

empirical structural neural connectivity Gemp obtained from

diffusion-weighted magnetic resonance imaging and (ii) a

mathematically constructed topology with modular fractal

connectivity Gmod. In both cases, the adjacency matrix G is

weighted and undirected.

The local interaction scheme is characterized by a rota-

tional coupling matrix75

B ¼
buu buv
bvu bvv

� �

¼
cos/ sin/

�sin/ cos/

� �

: (2)

The coupling phase / is fixed at / ¼ p
2
� 0:1, allowing

information transfer between the activator and the inhibitor

variable of the oscillators. Recently, it was shown that the

cross-couplings between the activator and the inhibitor in

systems of identical nonlocally coupled FitzHugh-Nagumo

oscillators are essential for the observation of chimera

states.75

A. Empirical structural topology

The structural brain network of a healthy human subject

shown in Fig. 1(a) was obtained from diffusion-weighted

magnetic resonance imaging data measured in a randomly

selected member of the healthy control group that took part

in the Early-Stage Schizophrenia Outcome study (ESO). For

details of the original study including data acquisition

parameters, see Ref. 81. The data were analysed using proba-

bilistic tractography82 as implemented in the FMRIB

Software Library (FSL) where FMRIB stands for Functional

Magnetic Resonance Imaging (fMRI) of the Brain

(www.fmrib.ox.ac.uk/fsl/, Oxford). Note that diffusion-

weighted magnetic resonance imaging is a principally

“anatomical” method, different from the well-known func-

tional magnetic resonance imaging (fMRI), which provides

the indirect measurement of neuronal activity over time. The

data were acquired during the awake resting state with the

instruction to stay as still as possible during the scanning.

The anatomic network of the cortex and subcortex is con-

structed using Diffusion Tensor Imaging (DTI) and is

divided into 90 cortical and subcortical regions according to

the Automated Anatomical Labelling (AAL) atlas,83 each

region corresponding to a node in the network. Diffusion

Magnetic Resonance Imaging (dMRI) provides information

on the distribution of the preferred diffusion direction in

each volume element (voxel) of the brain, thus giving

FIG. 1. Adjacency matrix of a network

topology with (a) empirical structural

connectivity and (b) modular fractal

connectivity with the base matrix from

Eq. (5).
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indirect information for probabilistic estimation of the trajec-

tory of white matter fibres connecting different brain areas.

Then, probabilistic tractography provides for each voxel a

set of Ns streamlines, simulating the possible white matter

tracts. A coefficient Pij giving the connectivity probability

from the i-th to the j-th region (node) can thus be introduced

for all i; j 2 f1;…; 90g. It is defined as the number of proba-

bilistic tracts connecting voxels in the i-th to voxels in the j-

th area, normalized by Ns¼ 5000 times the number of voxels

in region i, giving the probability of a streamline entering j,

conditional on starting in region i. Because of the high corre-

lation of Pij and Pji, the connectivity probability is approxi-

mated with an undirected connectivity probability given by

the average of Pij and Pji for each pair of areas (i, j). This

way, a weighted and undirected (symmetric) adjacency

matrix of size 90� 90 is constructed, where each node corre-

sponds to a cortical or subcortical area and each link is

defined by the averaged connectivity probability between a

pair of areas. The detailed pipeline for constructing the struc-

tural network has been adopted from a previous study focus-

ing on the differences between healthy subjects and

schizophrenia patients.65

Note that while the FitzHugh-Nagumo model is a sim-

plified model of a single neuron, it is also often used as a

generic model for excitable media on a coarse-grained level.

However, studies of FitzHugh-Nagumo networks often lack

realistic heterogeneity of the connectivities of the network.

While the full connectivity between all neurons of the human

brain is not known, as a coarse approximation, here we use

the matrix of structural connections among 90 well-defined

anatomical regions covering the main cortical and subcorti-

cal areas.

B. Topology with modular fractal connectivity

In order to provide more insights into the nature of the

empirical brain connectivities, here we use an artificial con-

nectivity matrix which has some similar features as the

empirical one [Fig. 1(b)]. It is constructed by a well-defined

iterative algorithm, generating a hierarchical, quasi-fractal

connectivity structure from the iteration of an initial b� b

base matrix A1, as described in Ref. 71. The bn � bn adja-

cency matrix G for the nth hierarchy level can then be

formed by taking n – 1 Kronecker products of the initial

adjacency matrix A1 with itself, i.e.,

G ¼ A1�…�A1

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{

n times

: (3)

In the binary case, where A1 contains only ones and zeros,

this is essentially the 2D version of the Cantor construction

of a fractal: We start with a b� b base matrix A1 of size

m�m. If we encounter a non-zero element in the base, we

substitute it with the element times the matrix A1, whereas a

zero is replaced by a zero matrix of size equal to the size of

A1. We repeat this substitution procedure n times, resulting

in the adjacency matrix G of size mn�1 � mn�1 given in Eq.

(3). This matrix G then defines the coupling topology, but it

is no longer a circulant matrix like in a 1D ring topology but

describes a modular topology. Note that by the method used

to construct the adjacency matrix G, G has a constant row

sum if A1 has a constant row sum.

To apply this algorithm to generate a similar structure as

the empirical topology in Fig. 1(a), the empirical adjacency

matrix Gemp;il is divided into 52 equal squares of size m�m,

m¼ 18. The sum of links in each square determines the 5� 5

elements of the base matrix A1

A1;kj ¼
Xk�m

i ¼
ðk � 1Þmþ 1

Xj�m

l ¼
ðj� 1Þmþ 1

Gemp;il; (4)

with k; j 2 f1;…; 5g. For the empirical data of Fig. 1(a), it

reads explicitly

A1 ¼

5:25677 3:22776 0:02343 1:00899 0:86886

3:22776 4:77906 0:71110 1:58785 0:68990

0:02343 0:71110 5:39732 1:27769 1:03968

1:00899 1:58785 1:27769 3:83577 1:92157

0:86886 0:68990 1:03968 1:92157 4:69323

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

:

(5)

The third iteration of the base matrix gives the investigated

modular adjacency matrix Gmod ¼ A1 � A1 � A1 with

N¼ 125 elements. The size of the base matrix A1 and the

number of iterations are chosen such that the mathematically

constructed network topology is of comparable size and

visually similar to the empirical topology. The base matrix is

weighted, and therefore, a weighted modular fractal connec-

tivity emerges. The link weights are normalized, and the

empirical and the mathematically constructed network have

equal mean link weights. Furthermore, the self-coupling is

set to zero. The degree distributions of the empirical and the

mathematically constructed network are compared in the

Appendix.

III. THE DYNAMICAL REGIMES

We aim to compare possible dynamical regimes of the

system Eq. (1) with the two network topologies described

above. As control parameters, we will consider the threshold

parameter a of the individual FitzHugh-Nagumo units and

the coupling strength r. Starting from random initial condi-

tions, we provide numerical simulations of the underlying

networks and observe a plethora of dynamical behaviours.

Together with the coexistence of coherent and incoher-

ent domains in space, the second significant feature of

chimera states is the difference of averaged oscillator fre-

quencies. Usually, the oscillators belonging to the coherent

domains have identical frequencies, and oscillators from

incoherent domains are characterized by higher or lower

mean frequencies. If the average time window is sufficiently

large and the network is characterized by a regular topology,

characteristic arc-like mean phase velocity profiles can be

formed. In networks with irregular or all-to-all coupling

topologies in some cases, spatial reordering of the nodes is

necessary to group the oscillators with equal average

045112-3 Chouzouris et al. Chaos 28, 045112 (2018)



frequencies. The mean phase velocities of the oscillators are

calculated as xk ¼ 2pMk=DT; k ¼ 1;…;N; where Mk

denotes the number of complete rotations realized by the kth

oscillator during the time DT. As a measure for the charac-

terization of the mean phase velocity profiles, we use the

standard deviation Dx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1=NÞ
PN

k¼1 ðxk � �xÞ2
q

; where

�x ¼ ð1=NÞ
PN

k¼1 xk. Larger values of Dx thus correspond to

more pronounced frequency differences, giving an opportu-

nity to uncover possible chimera states.

For the characterization of the spatial structure of the

obtained patterns, we use the global Kuramoto order parame-

ter r ¼ j 1
N

PN
k¼1 e

i/k j; k ¼ 1;…;N; where /k is the dynami-

cal phase. In the uncoupled case, the geometrical phase is

defined as ~/kðtÞ ¼ arctan½vkðtÞ=ukðtÞ�. The function tð ~/k Þ is

calculated numerically, assigning a value of time 0 < tð ~/kÞ

< T for every value of the geometrical phase, where T is the

oscillation period. The dynamical phase is then defined as

/k ¼ 2p � tð ~/kÞ=T, which yields constant phase velocity _/k .

The global order parameter varies between 1 and 0, and

r¼ 1 corresponds to the completely synchronized state in the

system. Small values denote spatially desynchronized states.

Figure 2 depicts the numerically obtained maps of

regimes for empirical and modular fractal networks of

FitzHugh-Nagumo oscillators, respectively, in the plane of

the coupling strength r and the threshold parameter of the

individual units a. Note that the two systems exhibit a

FIG. 2. Map of regimes in the parame-

ter space of coupling strength r and

threshold parameter a. (a) Empirical

structural connectivity (N¼ 90) and

(b) modular fractal connectivity

(N¼ 125). Hatched regions denote

multistability of dynamical states

shown with the corresponding colours.

The letters A, B, C, D, E, F, and G

mark parameter values corresponding

to Figs. 4(a), 5(a), 6(a), 4(e), 5(d), 5(g),

and 6(d), respectively.

FIG. 3. Spatially averaged mean phase velocity �x (left panels), standard deviation of the mean phase velocities Dx (middle panels), and the temporal average

of the global Kuramoto order parameter hri (right panels) in the ðr; aÞ parameter space. The orange dots depict the stability boundary of the synchronous state

evaluated from the Master Stability Function; it is stable in the parameter regime above this line. (a), (c), and (e) Empirical structural connectivity (N¼ 90)

and (b), (d), and (f) modular fractal connectivity (N¼ 125).
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qualitatively similar dynamical picture with cascades of chi-

mera states, solitary states,84 frequency synchronized states,

and fully coherent states that are presented in detail in the

following.

Figure 3 shows the numerical evaluation of three quanti-

ties: Spatially averaged mean phase velocity �x, their standard

deviation Dx, and the temporal average of the global

Kuramoto order parameter hri for both types of connectivity.

The initial conditions for the smallest values of the coupling

strength are random. The obtained final state is used as an ini-

tial condition for the subsequent set of parameters and so forth.

Additionally, we calculate the Master Stability Function85

which defines the stability regime for the completely synchro-

nized state. In Fig. 3, the orange dots show the stability bound-

ary of the synchronous state, which is stable in the parameter

regime above this line, i.e., the Master Stability Function is

negative for all eigenvalues of the adjacency matrix.

For small values of the coupling strength r and the

threshold parameter in the approximate range a 2 ð0; 0:8Þ,
both networks exhibit chimera states (shown red in Fig. 2).

This is in line with earlier observations of chimera states in

ring networks of FitzHugh-Nagumo oscillators with nonlocal

coupling,75 where chimera states are usually found for weak

coupling strength and a similar range of the threshold

parameter.

Examples of chimera states are shown in Fig. 4, where

panels (a)–(d) correspond to the network with empirical

structural connectivity and parameter values marked by A in

Fig. 2(a), and panels (e)–(h) correspond to the network with

modular fractal connectivity with parameter values marked

by D in Fig. 2(b). The upper panels (a) and (e) in Fig. 4 show

space-time plots for the activator variables uk. The middle

panels 4(b) and 4(f) depict the mean phase velocity profiles,

where the network nodes are reordered by increasing xk

(index ~k). We observe well pronounced differences of the

mean phase velocities, which is usually a prominent signature

of chimera states. Due to the spatial motion of the incoherent

domains, which is common for chimera states in networks of

small or moderate size,16 and the two-dimensionality of the

considered topologies, the mean phase velocity profile does

not allow for a clear distinction of a coherent and an incoher-

ent domain. For both networks, the mean phase velocity pro-

file is independent of the initial conditions. The middle

panels 4(c) and 4(g) present the spatial and temporal coher-

ence measures g0 and h0, respectively, introduced by Kemeth

et al.86 for a general classification of chimera patterns.

Corresponding to this classification scheme, the states pre-

sented in Fig. 4 are stationary moving chimeras. The net-

work’s temporal coherence is equal to zero, and the spatial

coherence is constant, indicating that the incoherent domain

of the chimera states is moving in space and has a stable size.

The lower panels 4(d) and 4(h) demonstrate the dynamics of

the global Kuramoto order parameter. Low values indicate

the incoherence of the observed chimera patterns, and strong

fluctuations of r indicate the random distribution of the inco-

herent oscillators around the limit cycle in phase space, which

changes in time.

Chimera states, which we observe both in networks with

empirical structural connectivity and networks with modular

fractal connectivity, have a complex spatial structure due to

the complexity of the network topologies and the absence of

natural spatial ordering, in contrast to ring networks. This

makes their visualization more difficult, but at the same

time, the spatial and temporal correlation measures clearly

indicate a chimera state.

With increasing threshold parameter a and coupling

strength r, in both considered networks, chimera states can-

not be observed any more, and two other types of dynamical

states occur. One of them is a frequency synchronized state

shown in grey in Figs. 2(a) and 2(b). In contrast to the chi-

mera state, now all the oscillators have equal mean phase

velocities. Examples are shown in Fig. 5, corresponding to

parameter values marked by B [empirical structural connec-

tivity, Figs. 5(a)–5(c)] and E and F [modular fractal connec-

tivity, Figs. 5(d)–5(i)]. The upper panels in Fig. 5 show

FIG. 4. Chimera states: (a)–(d) Network with empirical structural connectiv-

ity (a¼ 0.5, r ¼ 0:2, and N¼ 90) and (e)–(h) network with modular fractal

connectivity (a¼ 0.5, r ¼ 0:3, and N¼ 125). (a) and (e) Space-time plots of

uk. Oscillators are reordered from the lowest to the highest value of xk

(index ~k). (b) and (f) Mean phase velocity profile xk; the mean phase veloc-

ity of an uncoupled oscillator is depicted by a thin black dotted line; (c) and

(g) Spatial and temporal coherence measures g0 and h0 vs. time; (d) and (h)

Dynamics of global Kuramoto order parameter r.
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space-time plots for the activator variables uk. For better

visualization, we reorder the network nodes corresponding to

the values of uk and obtain a coherent travelling wave-like

pattern. The middle panels show the mean phase velocities

which are the same for all oscillators, and furthermore, they

stay constant in time. The lower panels depict the dynamics

of the global Kuramoto order parameter, which has large val-

ues and exhibits small periodic oscillations on the short time

scale due to the amplitude dynamics, i.e., slow-fast motion

on the limit cycle. Moreover, in the network with modular

fractal connectivity at slightly larger coupling strength, we

observe a breathing frequency-synchronized state [Figs.

5(g)–5(i)], which exhibits stronger and slower periodic oscil-

lations of the global Kuramoto order parameter on the long

time scale due to the cyclic changes of the travelling wave

speed.

For the increasing values of coupling strength r and

threshold parameter a, we observe the bistability of frequency

synchronized states and solitary states84 in both considered

networks. Solitary states are characterized by frequency syn-

chronization of the majority of oscillators, while single oscil-

lators have a different frequency. The regimes of solitary

states are shown in yellow in Figs. 2(a) and 2(b); the dynam-

ics of both networks is multistable, and solitary states coexist

with frequency synchronized states (hatched regions). These

patterns might also be classified as weak chimera states

according to the definition introduced by Ashwin and

Burylko,44 where partial frequency synchronization is the

main indicator of such states.

In the network with empirical structural connectivity,

we find two parameter regimes of solitary states, shown in

yellow in Fig. 2(a). In the first regime, usually only one

oscillator splits off, exhibiting a different mean phase veloc-

ity. This state, corresponding to parameter values marked by

C in Fig. 2(a), is shown in Figs. 6(a)–6(c) and has one oscil-

lator with different frequencies [panel (b)]. This solitary

incoherent oscillator periodically, after a fixed number of

periods, receives a strong input from the network and per-

forms an additional oscillation, indicated by strong oscilla-

tions of the global order parameter [panel (c)], while the rest

of the network remains frequency synchronized. A deeper

analysis shows that this solitary oscillator has the smallest

clustering coefficient, and variable input from different dis-

tant parts of the network might be the reason for its incoher-

ent behaviour. Note also the regular oscillatory dynamics of

the global Kuramoto order parameter depicted in Fig. 6(c).

In the second yellow region [Fig. 2(a)], for larger coupling

strength r, we observe solitary states with three incoherent

oscillators and turbulent solitary states with one incoherent

oscillator and non-periodic dynamics.

In the network with modular fractal connectivity, we

observe similar regimes of solitary states at the transition from

chimera states to complete synchronization and a regime of

coexistence of solitary and frequency synchronized states. An

example corresponding to parameter values marked by G in

Fig. 2(b) is shown in Figs. 6(d)–6(f). In this case, numerous

solitary oscillators split off from the coherent domain.

Hence, in both empirical and mathematically con-

structed networks, we observe similar dynamical scenarios:

for weak coupling strength, we find chimera states, and a fur-

ther increase in the coupling strength leads to a transition to

complete synchronization via solitary and frequency syn-

chronized states. For the empirical network, due to its irregu-

lar structure, larger values of coupling strength are needed,

FIG. 5. Frequency synchronized state:

(a)–(c) network with empirical struc-

tural connectivity, a¼ 0.5, r ¼ 1:3,
N¼ 90; (d)–(f) network with modular

fractal connectivity, a¼ 0.5, r ¼ 0:45,
N¼ 125. (g)–(i) Breathing frequency-

synchronized state: network with mod-

ular fractal connectivity, a¼ 0.5,

r ¼ 0:51Þ, N¼ 125. (a), (d), and (g)

Space-time plots of uk. Oscillators are

reordered from the lowest to the high-

est value of uk at a fixed time (index
~k). (b), (e), and (h) Mean phase veloci-

ties xk; the mean phase velocity of an

uncoupled oscillator is shown as a thin

black dotted line. (c), (f), and (i)

Dynamics of global Kuramoto order

parameter r.
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while for the modular fractal network, which due to its con-

struction has some topological symmetries, smaller values of

the coupling strength r are sufficient for the stabilization of

the completely synchronized pattern.

IV. SIMULATION OF EPILEPTIC SEIZURES

Considering the empirical network, dynamics qualitatively

similar to the dynamics of epileptic seizures can be computed.

Spontaneous or driven high coherence events occur, indicating

pathological seizure behavior. In Fig. 7(a), an example of such

a spontaneous event is given. The temporal evolution of the

order parameter for a chimera state at fixed values ða; rÞ
¼ ð0:5; 0:6Þ is shown. The temporal mean of the order param-

eter is hri � 0; 5, and longer events of high coherence sponta-

neously occur. Before the high coherence event, a drop of the

order parameter can be noticed, while the highest value of r is

obtained right before its collapse. Both effects have been

observed in the study of synchrony in epileptic seizures,60

while a decrease in order preceding complete synchronization

has been observed by Andrzejak et al. in a ring of nonlocally

coupled phase oscillators.59 The high coherence events can be

controlled by the coupling strength r; strong coupling in

the regime of chimera states increases their probability of

occurrence. Furthermore, as shown in Fig. 7(b), changing the

coupling can induce switching between the chimera and

the solitary or frequency synchronized state, which controls

the pathological dynamics. It is interesting to note that the sys-

tem needs some time to respond to modified coupling strength

and the high synchronization event persists for some time,

even after the coupling is changed back to its initial value.

V. NODE REMOVAL AND SYNCHRONIZABILITY

In studies of epileptic seizures, the focus is usually

placed on possible ways to avoid the synchronization of the

neural network; for this reason, the analysis of the network

synchronizability is of great importance. In recent years,

studies have been made on the change in the seizure proba-

bility when network nodes are removed, in order to incorpo-

rate the network approach in epilepsy surgery and improve

its outcome.79,80 We examine the change in synchronizabil-

ity in the networks with empirical structural and modular

fractal connectivity, depending on dynamical and topological

properties of the nodes removed.

In our stability analysis of the synchronous solution, we

apply the Master Stability approach85 to the linearized sys-

tem Eq. (1)

_dnðtÞ ¼ ðDFþ �DBÞdnðtÞ; (6)

where dn ¼ ðdu; dvÞ is a small perturbation and DF and DB

are the Jacobian of the local dynamics and the interaction

scheme, respectively. The Master Stability Function is the

largest Lyapunov exponent Kmax expressed as a function of

the complex parameter �. The regime of �, where Kmax < 0,

is defined as the synchronous regime S. Due to the diffusive

coupling in system Eq. (1), we consider the Laplacian matrix

L ¼ D�G, where D is the degree matrix. Both investigated

connectivity matrices are undirected and therefore have real

eigenvalues. The longitudinal Laplacian eigenvalue k1 is

FIG. 6. Solitary states: (a)–(c) network with empirical structural connectiv-

ity (a¼ 0.5, r ¼ 0:7, and N¼ 90) and (d)–(f) network with modular fractal

connectivity (a¼ 0.5, r ¼ 0:85, and N¼ 125). (a) and (d) Space-time plots

of variables uk, oscillators are reordered from the lowest to the highest value

of uk at a fixed time (index ~k). (b) and (e) Mean phase velocities xk; the

mean phase velocity of an uncoupled oscillator is shown by a thin black dot-

ted line. (c) Dynamics of Kuramoto order parameter r51;62 restricted to the

incoherent node ~k ¼ 51 and a reference node ~k ¼ 62. (f) Dynamics of global

Kuramoto order parameter r.

FIG. 7. Temporal evolution of the global Kuramoto order parameter r shown

in blue for the network with empirical structural connectivity with a¼ 0.5

and N¼ 90. The coupling strength r is shown in red. (a) Chimera state: con-

stant coupling strength r ¼ 0:6. (b) Controlled dynamics: coupling strength

r ¼ 0:6 is increased to the value r ¼ 0:7 and kept fixed for the time interval

650 < t=2� 104 � 1350, followed by a decrease back to r ¼ 0:6; this

causes the transitions between the chimera state and solitary or frequency

synchronized states.
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equal to zero, and all transversal Laplacian eigenvalues ki,

i ¼ 2;…;N, are greater than zero: 0 ¼ k1 < k2 � � � � � kN .

The synchronous solution is stable if all transversal eigenmo-

des lie in S, i.e., �rki 2 S; i ¼ 2;…;N. For Eq. (1)

S ¼ ð�1; �cÞ, where �c < 0 is the critical value for which

Kmaxð�cÞ ¼ 0. Thus, the smallest transversal eigenvalue k2 is

sufficient for determining the stability of the synchronous

solution, and the condition �rk2 2 S has to be fulfilled. The

value of k2 is therefore used as a synchronizability index,

indicating the system’s ability to synchronize; the closer it is

to zero the less synchronizable is the system.

Removing network nodes perturbs the topological eigen-

value spectrum of the Laplacian matrix and can cause a shift

of the smallest transversal eigenvalue, altering the system’s

synchronizability index. The synchronizability index fm
¼ k2;m=k2;0, i.e., the ratio of the smallest transversal eigen-

value when m nodes are removed and in the unperturbed

case, measures the change in synchronizability. The incre-

mental synchronizability index fkm ¼ kk2;m=k2;m�1; k
2 1;…;N is defined as the change in synchronizability when

the removal of m – 1 nodes is increased to m by removing

one further node, k 2 1;…;N. If fkm > 1, the smallest trans-

versal Laplacian eigenvalue shifted to right when the k-th

node was removed, increasing the systems’ ability to syn-

chronize. If fkm < 1, the opposite is the case. Removing the

node k with the lowest value fkm, thus, most effectively

decreases the network’s ability to synchronize.

In Fig. 8, the change in the synchronizability index fm is

shown, when nodes of either the highest degree, or the highest

closeness centrality, or the lowest fkm, or the lowest mean phase

velocities in the chimera state, or randomly chosen nodes are

removed progressively. All measures apart from the mean

phase velocities are recalculated at every step. Removing the

nodes of the lowest fkm gives the optimal results.

In the case of the network with empirical topology,

removing nodes by the degree or closeness centrality gives

better results than random removal. Evidently, nodes that

have a high influence in the network through direct and indi-

rect links enabling quick information flow promote synchro-

nization. The same result has been obtained from studies of

real world networks of the yeast-protein interaction, e-mail

contacts, and internet Autonomous System (AS) relation-

ships.87 Furthermore, removing nodes of high degree most

effectively reduces the mean and standard deviation of the

network degrees. This finding is in line with studies reporting

an increased mean and standard deviation of degrees in

functional networks of epilepsy patients88,89 and suggests

that considering the Laplacian eigenvalue spectra will pro-

vide an explanation for this phenomenon. Counterintuitively,

nodes with maximal mean phase velocities in the chimera

state promote synchronous behaviour.

In the case of the modular fractal topology, the applied

measures are not sensitive, with the exception of the highest

eigenvalue shift. The network degree distribution is nar-

rower, and due to the iterative construction of the topology,

the node properties are not strongly distinct (see the

Appendix).

In the following, we discuss how knowledge on the

change in the synchronizability index can be used to control

the order in the network. In Fig. 9, the asymptotic invariant

probability distribution of the global Kuramoto order parame-

ter r of 30 realizations with random initial conditions is

depicted for fixed parameters ða; rÞ ¼ ð0:5; 0:5Þ in the regime

of chimera states. The unperturbed case is compared to cases

where 5 nodes with minimum fkm; k 2 1;…;N; m 2 1;…; 5,
as well as 5 random nodes, are removed. As expected, remov-

ing nodes with minimum fkm improves the results of using ran-

dom nodes and more successfully lowers the order parameter,

i.e., decreases the level of synchronization.

VI. CONCLUSION

Neural networks are usually characterized by a complex

topology. In order to get deeper insights into their structure

and functionality, we have compared the dynamics of a net-

work with empirical structural neural connectivity derived

FIG. 8. Synchronizability index fm depending on the number m of progressively removed nodes. (a) Empirical structural connectivity and (b) modular fractal

connectivity. All measures except the mean phase velocities are recalculated after each removal.

FIG. 9. Invariant density of the global Kuramoto order parameter r of the

network with empirical structural connectivity and the chimera state with

a¼ 0.5 and r ¼ 0:5, when 5 nodes with the lowest change in the synchroniz-
ability index fkm are removed in comparison to the removal of 5 random

nodes and the unperturbed case.
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from diffusion-weighted magnetic resonance imaging with a

mathematically constructed network with modular fractal

connectivity generated by a hierarchical iterative algorithm.

Although the latter topology is more regular, we observe

similar dynamical scenarios of complex partially synchro-

nized states for both networks, when we apply the FitzHugh-

Nagumo model to describe the individual node dynamics.

In the plane of system parameters, we uncover the

regimes of existence for chimera states which are coexisting

domains of coherent and incoherent dynamics. Chimera

states can be observed for weak coupling strength, and

further increasing the coupling strength leads the system

towards the completely coherent synchronized state. In

between, we observe solitary states, where only single oscil-

lators have different frequencies, and frequency-

synchronized, coherent traveling wave-like states, where all

oscillators have identical frequencies but not yet synchro-

nized amplitudes. We demonstrate that both empirical and

artificially constructed networks can be characterized by

qualitatively similar maps of dynamic regimes, and tuning

the strength of the coupling in the network can result in the

stabilization or destabilization of the completely synchro-

nized state and in partially synchronized patterns.

The knowledge of the possible dynamical regimes and

transitions between them can be applied to the study of brain

diseases, where synchronized behaviour is pathological, and

to find possible ways to avoid it. As a prominent example,

we have simulated epileptic seizures where the increased

coupling strength leads to pathological synchrony, initiated

or terminated via chimera states, and have discussed the sup-

pression of synchrony by the removal of nodes. We have

analysed the synchronizability of the neural networks

depending on the dynamical and topological properties of

the nodes removed and have shown that a topologically

defined synchronizability index can be a good instrument for

optimizing which nodes should be removed to decrease the

synchronizability. These results from our network approach

might be applied for the improvement of epilepsy surgery.
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APPENDIX: DEGREE DISTRIBUTIONS OF THE
CONSIDERED TOPOLOGIES

The degree distributions of the considered empirical

topology and the mathematically constructed topology are

depicted in Fig. 10. Please note that since both topologies are

undirected, the in-degree is equal to the out-degree.
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