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Chimera States in Networks of
Locally and Non-locally Coupled
SQUIDs
Johanne Hizanidis*, Nikos Lazarides and Giorgos P. Tsironis

Department of Physics, University of Crete, Heraklion, Greece

Planar and linear arrays of SQUIDs (superconducting quantum interference devices)

operate as non-linear magnetic metamaterials in microwaves. Such SQUID

metamaterials are paradigmatic systems that serve as a test-bed for simulating

several non-linear dynamics phenomena. SQUIDs are highly non-linear oscillators

which are coupled together through magnetic dipole-dipole forces due to their mutual

inductance; that coupling falls-off approximately as the inverse cube of their distance,

i.e., it is non-local. However, it can be approximated by a local (nearest-neighbor)

coupling which in many cases suffices for capturing the essentials of the dynamics of

SQUID metamaterials. For either type of coupling, it is numerically demonstrated that

chimera states as well as other spatially non-uniform states can be generated in SQUID

metamaterials under time-dependent applied magnetic flux for appropriately chosen

initial conditions. The mechanism for the emergence of these states is discussed in

terms of the multistability property of the individual SQUIDs around their resonance

frequency and the attractor crowding effect in systems of coupled non-linear oscillators.

Interestingly, controlled generation of chimera states in SQUID metamaterials can be

achieved in the presence of a constant (dc) flux gradient with the SQUID metamaterial

initially at rest.

Keywords: SQUID, snaking resonance curve, SQUID metamaterials, magnetic metamaterials, coupled non-linear

oscillators, chimera states, attractor crowding, synchronization-desynchronization transition

1. INTRODUCTION

The notion of metamaterials refers to artificially structured media designed to achieve properties
not available in natural materials. Originally they were comprising subwavelength resonant
elements, such as the celebrated split-ring resonator (SRR). The latter, in its simplest version,
is just a highly conducting metallic ring with a slit, that can be regarded as an effectively
resistive–inductive–capacitive (RLC) electrical circuit. There has been a tremendous amount of
activity in the field ofmetamaterials the last two decades, the results of which have been summarized
in a number of review articles [1–8] and books [9–16]. One of metamaterial’s most remarkable
properties is that of the negative refraction index, which results from simultaneously negative
dielectric permittivity and diamagnetic permeability.

An important subclass of metamaterials is that of superconducting ones [17, 18], in which
the elementary units (i.e., the SRRs) are made by a superconducting material, typically Niobium
(Nb) [19] or Niobium Nitride (NbN) [20], as well as perovskite superconductors such as yttrium
barium copper oxide (YBCO) [21]. In superconductors, the dc resistance vanishes below a critical
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temperature Tc; thus, below Tc, superconducting metamaterials
have the advantage of ultra-low losses, a highly desirable
feature for prospective applications. Moreover, when they
are in the superconducting state, these metamaterials
exhibit extreme sensitivity in external stimuli, such as the
temperature and magnetic fields, which makes their thermal
and magnetic tunability possible [22]. Going a step beyond, the
superconducting SRRs can be replaced by SQUIDs [23, 24],
where the acronym stands for Superconducting QUantum
Interference Devices. The simplest version of such a device
consists of a superconducting ring interrupted by a Josephson
junction (JJ) [25], as shown schematically in Figure 1A; the most
common type of a JJ is formedwhenever two superconductors are
separated by a thin insulating layer (superconductor / insulator /
superconductor JJ). The current through the insulating layer and
the voltage across the JJ are then determined by the celebrated
Josephson relations. Through these relations, the JJ provides
a strong and well-studied non-linearity to the SQUID, which
makes the latter a unique non-linear oscillator that can be
actually manipulated through multiple external means.

SQUID metamaterials are extended systems containing a
large number of SQUIDs arranged in various configurations
which, from the dynamical systems point of view, can be
viewed theoretically as an assembly of weakly coupled non-linear
oscillators that inherit the flexibility of their constituting elements
(i.e, the SQUIDs). They present a non-linear dynamics laboratory
in which numerous classical as well as quantum complex spatio-
temporal phenomena can be explored. Recent experiments
on SQUID metamaterials have revealed several extraordinary
properties, such as negative permeability [26], broad-band
tunability [26, 27], self-induced broad-band transparency
[28], dynamic multistability and switching [29], as well as
coherent oscillations [30]. Moreover, non-linear effects, such
as localization of the discrete breather type [31] and non-
linear band-opening (non-linear transmission) [32], as well
as the emergence of counter-intuitive dynamic states referred
to as chimera states in current literature [33–35], have been
demonstrated numerically in SQUID metamaterial models [36].

The chimera states, in particular, which were first discovered
in rings of non-locally and symmetrically coupled identical phase
oscillators [37], have been reviewed thoroughly in recent articles
[38–40], are characterized by the coexistence of synchronous
and asynchronous clusters of oscillators; their discovery was
followed by intense theoretical [41–61] and experimental [62–
76] activities, in which chimera states have been observed
experimentally or demonstrated numerically in a huge variety of
physical and chemical systems.

Here, the possibility for generating chimera states in SQUID
metamaterials driven by a time-dependent magnetic flux is
demonstrated. These chimera states can be generated from a
large variety of initial conditions, and they are characterized
using well-established measures. Also, the present work is the
first to demonstrate numerically the generation of chimera states
while the system is “at rest” (i.e., with zero initial conditions)
by using a temporally constant force gradient (i.e, a dc flux
gradient) in addition to the time-dependent magnetic flux.
In that case, controlled generation of chimera states can be

achieved. The SQUIDs in such a metamaterial are coupled
together through magnetic dipole-dipole forces due to their
mutual inductance. This kind of coupling between SQUIDs falls-
off approximately as the inverse cube of their center-to-center
distance, and thus it is clearly non-local. However, due to the
magnetic nature of the coupling, its strength is weak [27, 30], and
thus a nearest-neighbor coupling approach (i.e., a local coupling
approach) is often sufficient in capturing the essentials of the
dynamics of SQUID metamaterials. Chimera states emerge in
SQUID metamaterials with either non-local [33, 35] or local [34]
coupling between SQUIDs.

In the next section (Methods), a model for a single SQUID
that relies on the equivalent electrical circuit of Figure 1B is
described, and the dynamic equation for the flux through the
ring of the SQUID is derived and normalized. In the same
section, the dynamic equations for a one-dimensional (1D)
SQUID metamaterial with non-local coupling are derived, and
subsequently they are reduced to the local coupling limit.
In section 3 (Results), various types of chimera states are
presented and characterized using appropriate measures. In this
section, the possibility to generate chimera states with a dc flux
gradient, is also explored. A brief discussion is given in section
4 (Discussion).

2. METHODS

2.1. The SQUID Oscillator
The simplest version of a SQUID consists of a superconducting
ring interrupted by a JJ (Figure 1A), which can be modeled by
the equivalent electrical circuit of Figure 1B; according to that
model, the SQUID features a self-inductance L, a capacitance
C, a resistance R, and a critical current Ic which characterizes
an ideal JJ. A “real” JJ (brown-dashed square in Figure 1B) is
however modeled as a parallel combination of an ideal JJ, the
resistance R, and the capacitance C. When a time-dependent
magnetic field is applied to the SQUID in a direction transverse
to its ring, the flux threading the SQUID ring induces two
types of currents; the supercurrent, which is lossless, and the so-
called quasiparticle current which is subject to Ohmic losses. The
latter roughly corresponds to the current through the branch
containing the resistor R in Figure 1B. The (generally time-
dependent) flux threading the ring of the SQUID is described in
the model as a flux source, 8ext . Many variants of SQUIDs have
been studied for several decades (since 1964) and they have found
numerous applications in magnetic field sensors, biomagnetism,
non-destructive evaluation, and gradiometers, among others [77,
78]. SQUIDs exhibit very rich dynamics including multistability,
complex bifurcation structure, and chaotic behavior [79].

The magnetic flux 8 threading the ring of the SQUID is
given by

8 = 8ext + L I, (1)

where 8ext is the external flux applied to the SQUID, and

I = −C
d28

dt2
− 1

R

d8

dt
− Ic sin

(

2π
8

80

)

, (2)
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FIGURE 1 | (A) Schematic of a SQUID (superconducting quantum interference device) in a magnetic field. (B) Equivalent electrical circuit. (C) Schematic top view of a

one-dimensional periodic array of SQUIDs in a magnetic field H.

is the total current induced in the SQUID as provided by
the resistively and capacitively shunted junction (RCSJ) model
of the JJ [80] (the part of the circuit in Figure 1B contained
in the brown-dashed square), 80 is the flux quantum, and t is
the temporal variable. The three terms in the right-hand-side of
Equation (2) correspond to the current through the capacitor C,
the current through the resistor R, and the supercurrent through
the ideal JJ, respectively. The combination of Equations (1) and
(2) gives

C
d28

dt2
+ 1

R

d8

dt
+ Ic sin

(

2π
8

80

)

+ 8 − 8ext

L
= 0. (3)

Note that losses decrease with increasing Ohmic resistance R,
which is a peculiarity of the SQUID device. The external flux
usually consists of a constant (dc) term 8dc and a sinusoidal (ac)
term of amplitude 8ac and frequency ω, i.e., it is of the form

8ext = 8dc + 8ac cos(ωt). (4)

The normalized form of Equation (3) be obtained by using
the relations

φ = 8

80
, φac,dc =

8ac,dc

80
, τ = ωLC t, � = ω

ωLC
, (5)

where ωLC = 1/
√
LC is the inductive-capacitive (LC) SQUID

frequency (geometrical frequency), and the definitions

β = IcL

80
= βL

2π
, γ = 1

R

√

L

C
. (6)

for the rescaled SQUID parameter and the loss coefficient,
respectively. Thus, we get

φ̈ + γ φ̇ + φ + β sin (2πφ) = φdc + φac cos(�τ ). (7)

By substituting γ = 0 and φext = 0 and β sin (2πφ) ≃ βLφ into
Equation (7), we get φ̈ + �2

SQφ = 0, with �SQ = √
1+ βL being

the linear eigenfrequency (resonance frequency) of the SQUID.
Equation (7) can be also written as

φ̈ + γ φ̇ = −duSQ

dφ
, (8)

where

uSQ = −φext(τ )φ + 1

2

[

φ2 − β

π
cos(2πφ)

]

, (9)

is the normalized SQUID potential, and

φext(τ ) = φdc + φac cos(�τ ), (10)

is the normalized external flux. The SQUID potential uSQ given
by Equation (9) is time-dependent for φac 6= 0 and � 6= 0. Here,
parameter values of βL less than unity (βL < 1) are considered, in
accordance with recent experiments; in that case, uSQ is a single-
well, although non-linear potential. For φext = φdc, there is no
time-dependence; however, the shape of uSQ varies with varying
φdc, as it can be seen in Figure 2. The potential uSQ is symmetric
around a particular φ for integer and half-integer values of φdc.
In Figures 2A,C,E, the potential uSQ is symmetric around φ =
0, 0.5, and 1, respectively. For all the other values of φdc, the
potential uSQ is asymmetric; this asymmetry of uSQ allows for
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FIGURE 2 | SQUID potential curves uSQ(φ) for βL = 0.86, φac = 0, and (A) φdc = 0; (B) φdc = 0.25; (C) φdc = 0.5; (D) φdc = 0.75; (E) φdc = 1.0.

FIGURE 3 | Flux amplitude–driving frequency (φmax − �) curves for a SQUID

with βL = 0.86, γ = 0.01, φdc = 0, and (A) φac = 10−4, (B) φac = 2× 10−3,

(C) φac = 10−2, (D) φac = 10−1.

chaotic behavior to appear in an ac and dc driven single SQUID
through period-doubling bifurcation cascades. Such cascades
and the subsequent transition to chaos are prevented by a
symmetric uSQ which renders the SQUID a symmetric system
in which period-doubling bifurcations are suppressed [81].
Actually, suppression of period-doubling bifurcation cascades
due to symmetry occurs in a large class of systems, including the
sinusoidally driven-damped pendulum.

For zero dc flux, the strength of the SQUID non-linearity
increases with increasing ac flux amplitude φac. This effect is
illustrated in Figure 3 in which the flux amplitude—driving
frequency (φmax − �) curves, i.e., the resonance curves, for four
values of φac spanning four orders of magnitude are shown (for
φdc = 0). In Figure 3A, for φac = 0.0001, the SQUID is in
the linear regime and thus its φmax − � curve is apparently
symmetric around the linear SQUID eigenfrequency, �SQ =√
1+ βL ≃ 1.364. Weak non-linear effects begin to appear

in Figure 3B, for φac = 0.002, in which the curve is slightly
bended to the left. In Figure 3C, for φac = 0.01, the non-
linear effects are already strong enough to generate a multistable
φmax − � curve. In Figure 3D, for φac = 0.1, the SQUID is
in the strongly non-linear regime and the φmax − � curve has
acquired a snake-like form. Indeed, the curve “snakes” back and
forth within a narrow frequency region via successive saddle-
node bifurcations [79]. Note that in Figures 3C,D, the frequency
region with the highest multistability is located around the
geometrical frequency of the SQUID, i.e., at � ≃ 1 (the
LC frequency in normalized units). Inasmuch the frequency at
which φmax is highest can be identified with the “resonance”
frequency of the SQUID, it can be observed that this resonance
frequency lowers with increasing φac from the linear SQUID
eigenfrequency �SQ to the inductive-capacitive (geometrical)
frequency � ≃ 1. Thus, the resonance frequency of the SQUID,
where its multistability is highest, can be actually tuned by non-
linearity, i.e., by varying the ac flux amplitude φac. Note that the
multistability of the SQUID is a purely dynamic effect, which is
not related to any local minima of the SQUID potential (which
is actually single-welled for the values of βL considered here,
i.e., for βL < 1).

For φdc 6= 0, chaotic behavior appears in wide frequency
intervals below the geometrical frequency (� = 1) for relatively
high φac. As it was mentioned above, the SQUID potential uSQ
is asymmetric for φdc 6= 0, and thus the SQUID can make
transitions to chaos through period-doubling cascades [79]. In
the bifurcation diagram shown in Figure 4A, the flux φ is plotted
at the end of each driving period T = 2π/� for several tenths
of driving periods (transients have been rejected) as a function

of the driving frequency �. This bifurcation diagram reveals
multistability as well as a reverse period-doubling cascade leading

to chaos. That reverse cascade, specifically, begins at � = 0.64

with a stable period-2 solution (i.e., whose period is two times
that of the driving period T). A period-doubling occurs at � =
0.638 resulting in a stable period-4 solution. The next period-
doubling, at � = 0.62, results in a stable period-8 solution.
The last period-doubling bifurcation which is visible in this scale
occurs at � = 0.614 and results in a stable period-16 solution.
More and more period-doubling bifurcations very close to each
other lead eventually to chaos at � = 0.6132. Note that another
stable multiperiodic solution is present in the frequency interval
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FIGURE 4 | (A) Bifurcation diagram of φ(nT ) as a function of the driving frequency �, for βL = 0.86, γ = 0.01, φdc = 0.36, and φac = 0.18. (B) A typical chaotic

attractor on the φ − φ̇ phase-plane for � = 0.6. The other parameters are as in (A).

shown in Figure 4A. A typical chaotic attractor of the SQUID is
shown on the φ − φ̇ phase plane in Figure 4B for � = 0.6.

2.2. SQUID Metamaterials: Modeling
2.2.1. Flux Dynamics Equations
Consider a one-dimensional periodic arrangement of N identical
SQUIDs in a transverse magnetic field H as in Figure 1C, whose
center-to-center distance is d and they are coupled through (non-
local) magnetic dipole-dipole forces [33]. The magnetic flux 8n

threading the ring of the n−th SQUID is

8n = 8ext + L In + L
∑

m 6=n

λ|m−n|Im, (11)

where n,m = 1, ...,N, 8ext is the external flux in each SQUID,
λ|m−n| = M|m−n|/L is the dimensionless coupling coefficient
between the SQUIDs at the sitesm and n, withM|m−n| being their
mutual inductance, and

− In = C
d28n

dt2
+ 1

R

d8n

dt
+ Ic sin

(

2π
8n

80

)

(12)

is the current in the n−th SQUID as given by the RCSJ model
[80]. The combination of Equations (11) and (12) gives

C
d28n

dt2
+ 1

R

d8n

dt
+ Ic sin

(

2π
8n

80

)

+ 1

L

N
∑

m=1

(

3̂−1
)

nm
(8m − 8ext) = 0, (13)

where 3̂−1 is the inverse of the symmetricN×N coupling matrix
with elements

3̂nm =
{

1, ifm = n;
λ|m−n| = λ1 |m− n|−3, ifm 6= n,

(14)

with λ1 being the coupling coefficient between nearest
neighboring SQUIDs. Note that due to the geometry of
the SQUID metamaterial considered here, which is planar,
and according to standard conventions for loops carrying
current flowing in the same direction, the mutual inductance

M|m−n| between the n−th and the m−th SQUIDs is negative
(M|m−n| < 0 for any n,m with n 6= m). Thus, since L > 0,
the coupling strength λ|m−n| is negative. The dependence of
the coupling strength on the center-to-center distance between
SQUIDs in Equation (14) is due to their mutual inductance
M|m−n|, which can be obtained using basic expressions from
electromagnetism. The magnetic field generated by a wire loop,
at a distance d greater than its dimensions, is given by the

Biot-Savart law as B = µ0
4π

πr2wIw
d3

, where Iw is the current in the
wire, rw is the radius of the loop, which approximate the SQUID
geometry, d is the distance from the center of the loop, and µ0

is the permeability of the vacuum. The magnitude of the mutual
inductance between two such (identical) loops lying on the same
plane is given by

M = Bπr2w
Iw

= µ0

4π

(πr2w)
2

d3
∝ d−3, (15)

where it is assumed that the field B is constant over the area
of each loop, πr2w. For square loops of side a, the radius rw
should be replaced by a/

√
π . Equation (15) explains qualitatively

the inverse cube distance-dependence of the coupling strength
λ|m−n| between SQUIDs.

In normalized form Equation (13) reads (n = 1, ...,N)

φ̈n + γ φ̇n + β sin (2πφn) =
N

∑

m=1

(

3̂−1
)

nm
(φext − φm) , (16)

where Equation (5) and the definitions Equation (6) have
been used. When nearest-neighbor coupling is only taken into
account, Equation (16) reduces to the simpler form

φ̈n + γ φ̇n + φn + β sin (2πφn) = λ(φn−1 + φn+1)

+ (1− 2λ)φext , (17)

where λ = λ1.

2.2.2. Local and Non-local Linear Frequency

Dispersion
Equation (11) with 8ext = 0 can be written in matrix form as

L 3̂EI = E8, (18)
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where the elements of the coupling matrix 3̂ are given in
Equation (14), and EI, E8 are N−dimensional vectors with
components In, 8n, respectively. The linearized equation for the
current in the n−th SQUID, in the lossless case (R → ∞), is
given from Equation (12) as

− EI = C
d2

dt2
E8 + 2π

Ic

80

E8, (19)

where the approximation sin(x) ≃ x has been employed. By
substituting Equation (19) into Equation (18), we get

3̂

(

1

ω2
LC

d2

dt2
E8 + βL E8

)

+ E8 = 0. (20)

In component form, the corresponding equation reads

∑

m

3̂nm

(

1

ω2
LC

d2

dt2
8m + βL8m

)

+ 8n = 0, (21)

or, in normalized form

∑

m

3̂nm

(

1

ω2
LC

φ̈m + βLφm

)

+ φn = 0, (22)

where the overdots denote derivation with respect to the
normalized time τ = ωLCt.

Substitute the trial (plane wave) solution

φn = expi(κn−�τ ), (23)

where κ is the dimensionless wavenumber (in units of d−1), into
Equation (22) to obtain

�2 = 1

S
(1+ βLS) , (24)

where

S =
∑

m

3̂nm expiκ(m−n) . (25)

It can be shown that, for the infinite system, the function S is

S = 1+ 2λ

∞
∑

s=1

cos(κs)

|s|3 = 1+ 2λCi3(κ), (26)

where s = m − n, and Ci3(κ) is a Clausen function. Putting
Equation (26) into Equation (24), we obtain the non-local
frequency dispersion for the 1D SQUID metamaterial as

�κ =
√

�2
SQ + 2λβLCi3(κ)

1+ 2λCi3(κ)
, (27)

where �2
SQ = 1 + βL. In the case of local (nearest-neighbor)

coupling the Clausen function Ci3(κ) is replaced by cos(κ). Then,

by neglecting terms of order λ2 or higher, the local frequency
dispersion

�κ ≃
√

�2
SQ − 2λ cos(κ) (28)

is obtained.
The linear frequency dispersion � = �κ , calculated for

non-local and local coupling from Equations (27) and (28),
respectively, is plotted in Figure 5 for three values of the coupling
coefficient λ. The differences between the non-local and local
dispersion are rather small, especially for low values of λ, i.e.,
for λ = −0.02 (Figure 5A), which are mostly considered here.
Although the linear frequency bands are narrow, the bandwidth
1� = �max − �min increases with increasing λ. For simplicity,
the bandwidth 1� can be estimated from Equation (28); from
that equation the minimum and maximum frequencies of the

band can be approximated by �min,max ≃ �SQ

(

1± λ

�2
SQ

)

,

so that

1� ≃ 2|λ|
�SQ

. (29)

That is, the bandwidth is roughly proportional to the magnitude
of λ. Note that for physically relevant parameters, the minimum
frequency of the linear band is well above the geometrical
(i.e., inductive-capacitive) frequency of the SQUIDs in the
metamaterial. Thus, for strong non-linearity, for which the
resonance frequency of the SQUIDs is close to the geometrical
one (� = 1), no plane waves can be excited. It is this frequency
region where localized and other spatially inhomogeneous states,
such as chimera states are expected to emerge (given also the
extreme multistability of individual SQUIDs there).

3. RESULTS

3.1. Chimeras and Other Spatially
Inhomogeneous States
Equation (16) are integrated numerically in time with free-end
boundary conditions (φN+1 = φ0 = 0) using a fourth-order
Runge-Kutta algorithm with time-step h = 0.02. The initial
conditions have been chosen so that they lead to chimera states. It
should be noted that chimera states can be obtained from a huge
variety of initial conditions. Here we choose

φn(τ = 0) =
{

1, for nℓ < n ≤ nr;
0, otherwise,

(30)

φ̇n(τ = 0) = 0, (31)

with nℓ = 18 and nr = 36. The number of SQUIDs in the
metamaterial in all calculations below is N = 54. Equation (16)
are first integrated in time for a relatively long time-interval,
107 T time-units, where T = 2π/� is the driving period, so
that the system has reached a steady-state. While the SQUID
metamaterial is in the steady-state, Equation (16) are integrated
for τsst = 1000 T more time-units. Then, the profiles of the
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FIGURE 5 | Linear frequency dispersion � = �κ for non-local (red) and local (blue) coupling, for βL = 0.86, and (A) λ = −0.02, (B) λ = −0.04; (C) λ = −0.06.

time-derivatives of the fluxes, averaged over the driving period
T, i.e.,

〈φ̇n〉T = 1

T

∫ T

0
φ̇n dτ , n = 1, ...,N, (32)

are mapped as a function of τ . Such maps are shown in
Figure 6, for several values of the ac flux amplitude, φac. In these
maps, areas with uniform colorization indicate that the SQUID
oscillators there are synchronized, while areas with non-uniform
colorization indicate that they are desynchronized.

In Figures 6A,B, i.e., for low values of φac, chimera states
are not excited since the 〈φ̇n〉T are practically zero during the
steady-state integration time. However, this does not mean that
the state of the SQUID metamaterial is spatially homogeneous,
as we shall see below. For higher values of φac, chimera
states begin to appear, in which one or more desynchronized
clusters of SQUID oscillators roughly in the middle of the
SQUIDmetamaterial are visible (Figures 6C–E). For even higher
values of φac, as can be seen in Figure 6F, the whole SQUID
metamaterial is desynchronized. In order to quantify the degree
of synchronization for SQUID metamaterials at a particular
time-instant τ , the magnitude of the complex synchronization
(Kuramoto) parameter r is calculated, where

r(τ ) =
∣

∣9(τ )
∣

∣ = 1

N

∣

∣

∣

∣

∣

∑

n

ei[2πφn(τ )]

∣

∣

∣

∣

∣

. (33)

Note that the phase in the earlier equation, which is enclosed
in the square brackets, 2πφn(τ ), or 2π8n(τ )/80 in natural
units, is actually the argument of the sine term in Equation (13).
Below, two averages of r(τ ) are used for the characterization of
a particular state of SQUID metamaterials, i.e., the average of
r(τ ) over the driving period T, 〈r〉T(τ ), and the average of r(τ )
over the steady-state integration time 〈r〉sst . These are defined,
respectively, as

〈

r(τ )
〉

T
= 1

T

∫ T

0
r(τ ) dτ , 〈r〉sst =

1

τsst

∫ τsst

0
r(τ ) dτ . (34)

The calculated 〈r〉T(τ ) for the states shown in Figure 6, clarify
further their nature. In Figure 7A, 〈r〉T(τ ) is plotted as a
function of time τ for all the six states presented in Figure 6.

It can be seen that for φac = 0.02 and 0.04 (black and red
curves), calculated for the states of the SQUID metamaterial
in Figures 6A,B, respectively, 〈r〉T(τ ) is constant in time,
although less than unity. For such states, 〈r〉T(τ ) = 〈r〉sst ,
where 〈r〉sst can be inferred from Figure 7B for the curves of
interest to be 〈r〉sst ≃ 0.972 and 〈r〉sst ≃ 0.894 for φac =
0.02 and 0.04, respectively. The lack of fluctuations indicates
that these states consist of “clusters” in which the SQUID
oscillators are synchronized together. However, the clusters
are not synchronized to each other, resulting in a partially
synchronized state with 〈r〉T(τ ) < 1. The exact nature of
these partially synchronized states can be clarified by plotting
the flux profiles φn at the end of the steady-state integration
time as shown in Figures 7C,D. In these figures, it can be
observed that all but a few SQUID oscillators are synchronized;
in addition, those few SQUIDs execute high-amplitude flux
oscillations. Moreover, it has been verified that the frequency of
all the flux oscillations is that of the driving, �. Such states can
be classified as discrete breathers/multi-breathers, i.e., spatially
localized and time-periodic excitations which have been proved
to emerge generically in non-linear networks of weakly coupled
oscillators [82]. In the present case, the multibreathers shown
in Figures 7C,D can be further characterized as dissipative ones
[83], since they emerge through a delicate balance of input power
and intrinsic losses. They have been investigated in some detail
in SQUID metamaterials in one and two dimensions [31, 84–
86], as well as in SQUID metamaterials on two-dimensional Lieb
lattices [87].

The corresponding 〈r〉T(τ ) for the states shown in
Figures 6C–F, are shown in Figure 7A as green, blue, orange,
and brown curves, respectively. In these curves there are
apparently fluctuations around their temporal average over

the steady-state integration time (shown in Figure 7B). These

fluctuations are typically associated with the level of metastability
of the chimera states [88, 89]; an appropriate measure of

metastability for SQUID metamaterials is the full-width half-
maximum (FWHM) of the distribution of 〈r〉T [33]. The FWHM
can be used to compare the metastability levels of different
chimera states. For synchronized (spatially homogeneous) and
partially synchronized states, such as those in Figures 6A,B, the
FWHM of the corresponding distribution of the values of 〈r〉T is
practically zero.
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FIGURE 6 | Maps of 〈φ̇n〉(τ ) on the n− τ plane for βL = 0.86, γ = 0.01, λ = −0.02, � = 1.01, N = 54, φdc = 0, and (A) φac = 0.02, (B) φac = 0.04, (C)

φac = 0.06, (D) φac = 0.08, (E) φac = 0.10, (F) φac = 0.12.

Another set of initial conditions which gives rise to chimera
states is of the form [34]

φn(τ = 0) = 1

2
cos

(

2jπn

N

)

, φ̇n(τ = 0) = 0, n = 1, ...,N.

(35)
The initial conditions in Equation (35) allow for generating
multiclustered chimera states, in which the number of clusters
depends on j. In Figures 8A,B, maps of 〈φ̇n〉T on the n− τ plane
for j = 1 and j = 2, respectively, are shown. In Figure 8A,
three large clusters can be distinguished; in the two of them, the
SQUID oscillators are synchronized, while in the third one, in
between the two sychronized clusters, the SQUID oscillators are
desynchronized. The flux profile φn of that state at the end of the
steady-state integration time τsst = 6, 000, is shown in Figure 8C

as blue circles (the black curve is a guide to the eye) along with
the initial condition (red curve). It can be seen that two more
desynchronized clusters at the ends of the metamaterial, which
are rather small (they consist of only a few SQUIDs each), are
visible. Obviously, the synchronized clusters correspond to the
spatial interval indicated by the almost horizontal segments in
the φn profile. The corresponding 〈φ̇n〉T map and flux profile
φn for j = 2 is shown in Figures 8B,D, respectively. In this
case, a number of six (6) synchronized clusters and seven (7)
desynchronized clusters are visible in both Figures 8B,D. In
Figure 8D, the red curve is the initial condition from Equation
(35) with j = 2. Chimera states with even more “heads” can be
generated from the initial condition Equation (35) for j > 2 in
larger systems (here N = 54).

Similar chimera states can be generated with local (nearest-
neighbor) coupling between the SQUIDs of the metamaterial.
For that purpose, Equation (17) is integrated in time using a
fourth order Runge-Kutta algorithm with free-end boundary
conditions and the initial conditions of Equation (30). As above,
in order to eliminate transients and reach a steady-state, Equation
(17) is integrated for 107 T time units and the results are
discarded. Then, Equation (17) is integrated for τsst = 103 T
more time units (steady-state integration time), and 〈φ̇n〉T is
mapped on the n − τ plane (Figure 9). The emerged states
are very similar to those shown in Figure 6, which is the case

of non-local coupling between the SQUIDs. In particular, the
states shown in Figures 9A–C, have been generated for exactly
the same parameters and initial-boundary conditions as those in
Figures 6C,E,F, respectively, i.e, for φac = 0.06, 0.1, and 0.12.
Note that the state of the SQUID metamaterial for φac = 0.12
is completely desynchronized both in Figures 6F, 9C. One may
also compare the plots of the corresponding 〈r〉T as a function
of τ , which are shown in Figure 9D for the local coupling case.
The averages of r over the steady-state integration time τsst for
φac = 0.06, 0.1, 0.12 are respectively, 〈r〉sst = 0.757, 0.656,
0.136 for the non-local coupling case and 〈r〉sst = 0.743, 0.656,
0.146 for the local coupling case. The probability distribution
function of the values of 〈r〉T , pdf (〈r〉T), for the three states in
Figures 9A–C are shown in Figures 9E–G, respectively. As it
was mentioned above, the FWHM of such a distribution is a
measure of the metastability of the corresponding chimera state.
The FWHM for the distributions in Figures 9E,F, calculated
for the chimera states shown in Figures 9A,B, are respectively
0.003 and 0.0215. Thus, it can be concluded that the chimera
state of Figure 9B is more metastable than that in Figure 9A.
The distribution in Figure 9G has a FWHM much larger than
the ones of the distributions in Figures 9E,F as expected, since
it has been calculated for the completely desynchronized state
of Figure 9C. Note that 106 values of 〈r〉T have been used to
obtain each of the three distributions. Also, these distributions
are normalized such that their area sums to unity.

The chimera states do not result from destabilization of the
synchronized state of the SQUID metamaterial; instead, they
coexist with the latter, which can be reached simply by integrating
the relevant flux dynamics equations with zero initial conditions,
i.e., with φn(τ = 0) = 0 and φ̇n(τ = 0) = 0 for any n. In
order to reach a chimera state, on the other hand, appropriately
chosen initial conditions, such as those in Equations (30) or
(35) have to be used. However, one cannot expect that the
synchronized state is stable over the whole external parameter
space, i.e., the ac flux amplitude φac, the frequency of the ac
flux field �, and the dc flux bias φdc. In order to explore the
stability of the synchronized state of the SQUID metamaterial,
the magnitude of the synchronization parameter averaged over
the steady-state integration time, 〈r〉sst , is calculated and then

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 8 July 2019 | Volume 5 | Article 33

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Hizanidis et al. Chimera States in Coupled SQUIDs

FIGURE 7 | (A) The magnitude of the synchronization parameter averaged over the driving period, 〈r〉T , as a function of time τ for βL = 0.86, γ = 0.01, λ = −0.02,

� = 1.01, N = 54, φdc = 0, and φac = 0.02 (black), φac = 0.04 (red), φac = 0.06 (green), φac = 0.08 (blue), φac = 0.10 (orange), φac = 0.12 (brown). (B) The

magnitude of the synchronization parameter averaged over the steady-state integration time τsst, 〈r〉sst, as a function of the ac flux amplitude φac. The other

parameters are as in (A). (C) The flux profile φn for φac = 0.02 and the other parameters as in (A). (D) The flux profile φn for φac = 0.04 and the other parameters

as in (A).

FIGURE 8 | (A) Map of 〈φ̇n〉T on the n− τ plane for βL = 0.86, γ = 0.01, λ = −0.02, � = 1.01, N = 54, φdc = 0, φac = 0.1, and initial conditions given by Equation

(35) with j = 1. (B) Same as in (A) with initial conditions given by Equation (35) with j = 2. (C) Flux profile φn at the end of the steady-state integration time (blue circles,

the black line is a guided to the eye), obtained with the initial conditions Equation (35) with j = 1 (red curve). (D) Flux profile φn at the end of the steady-state

integration time (blue circles, the black line is a guided to the eye), obtained with the initial conditions Equation (35) with j = 2 (red curve).

mapped on the φdc − φac parameter plane. For each pair of
φac and φdc values, the SQUID metamaterial is initialized with
zeros (it is at “rest”). Once again, the frequency � is chosen
to be very close to the geometrical resonance �LC (� ≃ 1).
In Figure 10, maps of 〈r〉sst on the φdc − φac plane are shown
for four driving frequencies � around unity. These maps are

a kind of “synchronization phase diagrams”, in which 〈r〉sst =
1 indicates a synchronized state while 〈r〉sst < 1 indicates a
partially or completely desynchronized state. In all subfigures, but
perhaps most clearly seen in Figure 10C (for � = 1.01) there are
abrupt transitions between completely synchronized (red areas)
and completely desynchronized (light blue areas) states. It can
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FIGURE 9 | (A) Map of 〈φ̇n〉T on the n− τ plane for βL = 0.86, γ = 0.01, λ = −0.02, � = 1.01, N = 54, φdc = 0, φac = 0.06, and initial conditions given by

Equation (30). (B) Same as in (A) but with φac = 0.10. (C) Same as in (A,B) but with φac = 0.12. (D) The magnitude of the synchronization parameter averaged over

the driving period, 〈r〉T , as a function of time τ for φac = 0.06 (red), φac = 0.1 (black), and φac = 0.12 (green). The other parameters are as in (A). (E) The distribution

of 106 values of 〈r〉T , pdf (〈r〉T ), for the chimera state shown in (A). (F) Same as in (E) for the chimera state shown in (B). (G) Same as in (E,F) for the completely

desynchronized state shown in (C).

be verified by inspection of the flux profiles (not shown) that
these synchronization-desynchronization transitions do not go
through a stage in which chimera states are generated; instead,
the destabilization of a synchronized state results either in a
completely desynchronized state (light blue areas) or a clustered
state (green areas). Thus, it seems that chimera states cannot be
generated when the SQUID metamaterial is initially at “rest,”
i.e., with zero initial conditions. As we shall see in the next
subsection, this is not true for a position-dependent external
flux φext = φext (n).

3.2. Chimera Generation by dc Flux
Gradients
3.2.1. Modified Flux Dynamics Equations
In obtaining the results of Figure 10, a spatially homogeneous
dc flux φdc over the whole SQUID metamaterial is considered.
Although, all the chimera states presented here are generated at
φdc = 0, such states can be also generated in the presence of
a spatially constant, non-zero φdc, by using appropriate initial
conditions (not shown here). In this subsection, the generation
of chimera states in SQUID metamaterials driven by an ac flux
and biased by a dc flux gradient is demonstrated, for the SQUID
metamaterial being initially at “rest.” The application of a dc
flux gradient along the SQUID metamaterial is experimentally
feasible with the set-up of Zhang et al. [28]. Consider the SQUID
metamaterial model in section 2.2.1 in the case of local coupling
(for simplicity), in which the dc flux is assumed to be position-

dependent, i.e., φdc = φdc
n . Then, Equation (17) can be easily

modified to become

φ̈n + γ φ̇n + φn + β sin(2πφn) = φ
eff
n (τ )+ λ(φn−1 + φn+1), (36)

where

φ
eff
n = φext

n − λ(φext
n−1 + φext

n+1), (37)

with

φext
n = φdc

n + φac cos(�τ ). (38)

In the following, the dc flux function φdc
n is assumed to be of the

form

φdc
n = n− 1

N − 1
φdc
max, n = 1, ...,N, (39)

so that the dc flux bias increases linearly from zero (for the
SQUID at n = 1) to φdc

max (for the SQUID at the n = N).

3.2.2. Controlled Generation of Chimera States
Equations (36) are integrated numerically in time with free-
end boundary conditions (Equation 36) using a fourth-order
Runge-Kutta algorithm with time-step h = 0.02. The SQUID
metamaterial is initially at “rest,” i.e.,

φn(τ = 0) = 0, φ̇n(τ = 0) = 0, n = 1, ...,N. (40)

This system is integrated for 105 T time units to eliminate the
transients and then formore τsst = 105 T time units during which
the temporal averages 〈r〉sst and 〈r〉T(τ ) are calculated. Note
that the transients die-out faster in this case since the SQUID
metamaterial is initialized with zeros. Typical flux profiles φn,
plotted at the end of the steady-state integration time are shown
in Figures 11A–I. The varying parameter in this case is φdc

max,
which actually determines the gradient of the dc flux. The state of
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FIGURE 10 | Map of the magnitude of the synchronization parameter averaged over the steady-state integration time, 〈r〉sst, on the dc flux bias–ac flux amplitude

(φdc − φac) parameter plane, for βL = 0.86, γ = 0.01, λ = −0.02, N = 54, and (A) � = 1.03, (B) � = 1.02, (C) � = 1.01, (D) � = 0.982.

FIGURE 11 | Flux profiles φn as a function of n for βL = 0.86, γ = 0.01, λ = −0.02, N = 54, φac = 0.04, � = 1.01, and (A) φdcmax = 0.25; (B) 0.30; (C) 0.35; (D)

0.40; (E) 0.45; (F) 0.50; (G) 0.55; (H) 0.60; (I) 0.65. (J) The magnitude of the synchronization parameter averaged over the steady-state integration time 〈r〉sst as a

function of φdcmax for the parameters of (A–I) but with φac = 0.02 (black), 0.04 (red), 0.06 (green), 0.08 (blue), 0.10 (magenta), 0.12 (brown). (K) Distributions of the

values of 〈r〉T for φac = 0.04, and φdcmax = 0.30 (black), 0.40 (red), 0.50 (green), 0.60 (blue). The other parameters as in (A–I). The numbers next to the distributions

are the corresponding full-width half-maximums.

the SQUID metamaterial remains almost homogeneous in space
for φdc

max increasing from zero to φdc
max = 0.22. At that critical

value of φdc
max, the spatially homogeneous (almost synchronized)

state breaks down, for several SQUIDs close to n = N become
desynchronized with the rest (because the dc flux is higher at this

end). The number of desynchronized SQUIDs for φdc
max = 0.25 is

about 6− 7 (Figure 11A). For further increasing φdc
max, more and

more SQUIDs become desynchronized, until they form a well-
defined desynchronized cluster (Figure 11B for φdc

max = 0.30).
As φdc

max continues to increase, the desynchronized cluster clearly
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shifts to the left, i.e., toward n = 1 (Figures 11C–E). Further
increase of φdc

max generates a second desynchronized cluster
around n = N for φdc

max = 0.50 (Figure 11F), which persists
for values of φdc

max at least up to 0.65. With the formation of
the second desynchronized cluster, the first one clearly becomes
smaller and smaller with increasing φdc

max (see Figures 11F–I).
Above, the expression “almost homogeneous” was used instead
of simply “homogeneous,” because complete homogeneity is not
possible due to the dc flux gradient. However, for φdc

max < 0.22,
the degree of homogeneity (synchronization) is more than 99%,
i.e., the values of the synchronization parameter 〈r〉sst are higher
than 0.99 (〈r〉sst > 0.99). The dependence of 〈r〉sst on φdc

max for
several values of the ac flux amplitude φac is shown in Figure 11J.
The SQUID metamaterial remains in an almost synchronized
state (with 〈r〉sst > 0.96 below a critical value of φdc

max, which
depends on the ac flux amplitude φac. That critical value of
φdc
max is lower for higher φac. For values of φdc

max higher than
the critical one, 〈r〉sst gradually decreases until it saturates at
〈r〉sst ≃ 0.12. For φac = 0.12, the SQUID metamaterial is in a
completely desynchronized state for any value of φdc

max (brown
curve). The distributions of the values of 〈r〉T , obtained during
the steady-state integration time, are shown in Figure 11K

for φdc
max = 0.30 (black), 0.40 (red), 0.50 (green), and 0.60

(blue). As expected, the maximum of the distributions shifts to
lower 〈r〉T with increasing φdc

max. These distributions have been
divided by their maximum value for easiness of presentation,
and the number next to each distribution is its full-width
half-maximum (FWHM).

Two typical “synchronization phase diagrams,” in which 〈r〉sst
is mapped on the φac − φdc

max parameter plane, are shown in
Figures 12A,B for λ = −0.02 and λ = −0.06, respectively. The
frequency of the driving ac field has been chosen once again to
be very close to the geometrical resonance of a single SQUID
oscillator, i.e., at� = 1.01. For each point on the φac−φdc

max plane,
Equation (36) are integrated in time with a standard fourth order
Runge-Kutta algorithm using the initial conditions of Equation
(40), with a time-step h = 0.02. First, Equation (36) are integrated
for 105 T time-units to eliminate transients, and then they are
integrated for τsst = 105 T more time-units during which 〈r〉sst is
calculated. A comparison between Figures 12A,B reveals that the
increase of the coupling strength between nearest-neighboring
SQUIDs from λ = −0.02 to λ = −0.06 results in relatively
moderate, quantitative differences only. In both Figures 12A,B,
for values of φac and φdc

max in the red areas, the state of the
SQUIDmetamaterial is synchronized. For values of φac and φdc

max

in the dark-green, light-green and light-blue areas, the state of
the SQUID metamaterial is either completely desynchronized,
or a chimera state with one or more desynchronized clusters. In
order to obtain more information about these states, additional
measures should be used, such as the incoherence index S
and the chimera index η.The definitions of these two measures
follow closely those of previous works [90, 91], with the only
difference being the choice of the relevant parameter on which
subsequent calculations are performed. Specifically, here the
time-derivative of the normalized fluxes through the loops of
the SQUIDs, averaged over the driving period T, 〈φ̇n〉T(τ ), is
chosen as the relevant variable. Note that a similar definition of
the chimera index, using the magnitude of the synchronization

(Kuramoto) parameter as the relevant variable, has been also
proposed [88].

The definitions for S and η employed here are as follows: First,
define

vn(τ ) ≡ 〈φ̇n〉T(τ ), (41)

where the angular brackets denote averaging over T, and

v̄n(τ ) ≡
1

n0 + 1

n+n0/2
∑

j=n−n0/2

vj(τ ), (42)

the local spatial average of vn(τ ) in a region of length n0 + 1
around the site n at time τ (n0 < N is an integer). Then, the
local standard deviation of vn(τ ) is defined as

σn(τ ) ≡
〈

√

√

√

√

√

1

n0 + 1

n+n0/2
∑

j=n−n0/2

(

vj − v̄n
)2

〉

sst

, (43)

where the large angular brackets denote averaging over the
steady-state integration time. The index of incoherence is then
defined as

S = 1− 1

N

N
∑

n=1

sn, (44)

where sn = 2(δ − σn) with 2 being the Theta function, and δ a
predefined threshold that is reasonably small. The index S takes
its values in [0, 1], with 0 and 1 corresponding to synchronized
and desynchronized states, respectively, while all other values
between them indicate the existence of a chimera or multi-
chimera state. Finally, the chimera index is defined as

η =
N

∑

n=1

|sn − sn+1|/2, (45)

and takes positive integer values. The chimera index η gives the
number of desynchronized clusters of a (multi-)chimera state,
except in the case of a completely desynchronized state where
it gives zero. In Figure 13, the incoherence index S and the
chimera index η are mapped on the φac−φdc

max plane for the same
parameters as in Figure 12A.

Figures 13A,B provide more information about the state of
the SQUID metamaterial at a particular point on the φac − φdc

max

plane. In Figure 13A, for values of φac and φdc
max in the light-

green area (S = 0) the SQUID metamaterial is in a synchronized
state (see the corresponding area in Figure 13B in which η = 0).
For values of φac and φdc

max in the red area (S = 1), the SQUID
metamaterial is completely desynchronized (the corresponding
area in Figure 13B has η = 0 due to technical reasons). For
values of φac and φdc

max in one of the other areas, the SQUID
metamaterial is in a chimera state with one, two, or three
desynchronized clusters, as it can be inferred from Figure 13B.

Using the combined information from Figures 12, 13, the
form of the steady-state of a SQUID metamaterial can be
predicted for any physically relevant value of φac and φdc

max. In
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FIGURE 12 | The magnitude of the synchronization parameter averaged over the steady-state integration time 〈r〉sst mapped as a function of the ac flux amplitude

and the maximum dc flux bias (φac − φdcmax plane), for βL = 0.86, γ = 0.01, N = 54, � = 1.01, and (A) λ = −0.02, (B) λ = −0.06.

FIGURE 13 | The index of incoherence S (A) and the chimera index η (B) are mapped on the φac − φdcmax plane, for the same parameters as in Figure 12A and

n0 = 4, δ = 10−4.

FIGURE 14 | Flux and voltage profiles φn (blue) and vn = φ̇n (red), respectively, as a function of n for βL = 0.86, γ = 0.01, � = 1.01, φac = 0.04, and (A) φdcmax = 0.2,

(B) φdcmax = 0.4, (C) φdcmax = 0.6.

Figure 14, three flux profiles φn are shown as a function of n,
along with the corresponding profiles of their time-derivatives,
φ̇n. The profiles in Figures 14A–C, are obtained for φac =
0.04 and φdc

max = 0.2, 0.4, and 0.6, respectively, which are
located in the light-green, light-blue, and dark-green area of
Figure 14B. As it is expected, the state in Figure 14A is an
almost synchronized one, in Figure 14B is a chimera state with
one desynchronized cluster, while in Figure 14C is a chimera
state with two desynchronized clusters. At this point, the use
of the expression “almost synchronized” should be explained.
In the presence of a dc flux gradient, it is impossible for a
SQUID metamaterial to reach a completely synchronized state.
This is because each SQUID is subject to a different dc flux,
which modifies accordingly its resonance (eigen-)frequency. As
a result, the flux oscillation amplitudes of the SQUIDs, whose
oscillations are driven by the ac flux field of amplitude φac

and frequency �, are slightly different. On the other hand, the

maximum of the flux oscillations for all the SQUIDs is attained
at the same time. Indeed, as can be observed in Figure 14A.
the flux profile φn is not horizontal, as it should be in the
case of complete synchronization. Instead, that profile increases
almost linearly from n = 1 to n = N (that increase is related
to the dc flux gradient). However, the voltage profile φ̇n is
zero for any n, indicating that all the SQUID oscillators are in
phase. Since, in such a state of the SQUID metamaterial there
is phase synchronization but no amplitude synchronization, the
synchronization is not complete. However, the value of 〈r〉sst in
such a state is in the worst case higher than 0.96 for moderately
high values of φac = 0.02−0.10 (Figure 11J), which is a very high
degree of global synchronization. Furthermore, the synchronized
clusters in the chimera state profiles in Figures 14B,C, whose
length coincides with that of the horizontal segments of the φ̇n

profiles, also exhibit a very high degree of global synchronization
(〈r〉sst > 0.96).
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4. DISCUSSION

The emergence of chimera and multi-chimera states in a 1D
SQUID metamaterial driven by an ac flux field is demonstrated
numerically, using a well-established model that relies on
equivalent electrical circuits. Chimera states may emerge both
with local coupling between SQUID (nearest-neighbor coupling)
and non-local coupling between SQUIDs which falls-off as the
inverse cube of their center-to-center distance. A large variety
of initial conditions can generate chimera states which persist
for very long times. In the previous section, the expression
“steady-state integration time” is used repeatedly; however, in
some cases this may not be very accurate, since chimera states
are generally metastable and sudden changes may occur at any
instant of time-integration which results in sudden jumps the
synchronization parameter 〈r〉T [33]. For the chimera states
presented here, however, no such sudden changes have been
observed. Along with the ac flux field, a dc flux bias, the same at
any SQUID, can be also applied to the 1D SQUID metamaterial.
Chimera states can be generated in that case as well, although not
shown here. Although a large volume of analytical and numerical
studies on the existence and properties of chimera states for a
variety of non-linear mathematical models of coupled oscillators
exists, there are comparatively very few studies in which the
oscillators are periodically (i.e., sinusoidally) driven. Some of the
latter studies include an array of locally coupled bistable Duffing
oscillators with a common sinusoidal forcing [92], in networks
of non-locally coupled van der Pol-Duffing oscillators excited
by a sinusoidal drive [93], and locally coupled extended Duffing
oscillators with harmonic forcing [94].

The emergence of those counter-intuitive states, their form
and their global degree of synchronization depends crucially
on the initial conditions. If the SQUID metamaterial is
initialized with zeros, the generation of chimera states does
not seem to be possible for spatially constant dc flux bias
φdc. In that case, synchronization-desynchronization and reverse
synchronization-desynchronization transitions may occur by
varying the ac flux amplitude φac or the dc flux bias φdc. In
the former transition, a completely synchronized state suddenly
becomes a completely desynchronized one. The replacement of
the spatially constant dc flux bias by a position-dependent one,
φdc
n , makes possible the generation of chimera states from zero

initial conditions. In the latter case, it is possible to generate
chimera states whose characteristics depend on the external
parameters, such as the dc flux gradient, and the amplitude and
frequency of the ac flux field. Specifically, given that the SQUID
metamaterial is initially “at rest” (φn(τ = 0) = φ̇n(τ = 0) = 0 for
any n), the values of the external parameters determine whether
a chimera state will be generated, its degree of synchronization
and its multiplicity, as well as the location and the size of its
desynchronized cluster(s). It is in this sense that we use the term
“controlled generation of chimera states” in the beginning of
this section.

Here, the driving frequency is always chosen to be very close to
the geometrical frequency of the individual SQUIDs. In the case
of relatively strong non-linearity, considered here, the resonance

frequency of individual SQUIDs is shifted to practically around
the geometrical frequency. That is, for relatively strong non-
linearity, the driving frequency was chosen so that the SQUIDs
are at resonance. For a single SQUID driven close to its
resonance, the relatively strong non-linearity makes it highly
multistable; then, several stable and unstable single SQUID states
may coexist (see the snake-like curves presented in section 2.1).
This dynamic multistability effect is of major importance for the
emergence of chimera states in SQUID metamaterials, as it is
explained below.

The dynamic complexity of N SQUIDs which are coupled
together increases with increasing N; this effect has been
described in the past for certain arrays of coupled non-linear
oscillators as attractor crowding [95, 96]. This complexity is
visible already for two coupled SQUIDs, where the number of
stable states close to the geometrical resonance increases more
than two times compared to that of a single SQUID [34]; some
of these states can even be chaotic. Interestingly, the existence
of homoclinic chaos in a pair of coupled SQUIDs has been
proved by analytical means [97, 98]. It has been argued that the
number of stable limit cycles (i.e., periodic solutions) in such
systems scales with the number of oscillators N as (N − 1)!.
As a result, their basins of attraction crowd more and more
tightly in phase space with increasing N. The multistability of
individual SQUIDs around the resonance frequency enhances
the attractor crowding effect in SQUID metamaterial. Apart
from the large number of periodic solutions (limit cycles), a
number of coexisting chaotic solutions may also appear as in
the two-SQUID system. All these states are available for each
SQUID to occupy. Then, with appropriate initialization of the
SQUID metamaterial, or by applying a dc flux gradient to it,
a number of SQUIDs that belong to the same cluster may
occupy a chaotic state. The flux oscillations of these SQUIDs
then generally differ in both their amplitude and phase, resulting
for that cluster to be desynchronized. Alternatingly, a number
of SQUIDs that belong to the same cluster may find themselves
in a region of phase-space with a high density of periodic
solutions. Then, the flux in these SQUID oscillators may jump
irregularly from one periodic state to another resulting in
effectively random dynamics and in effect for that cluster to
be desynchronized. At the same time, the other cluster(s) of
SQUIDs can remain synchronized and, as a result, a chimera
state emerges.
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