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Abstract

The Chinese Imaging Genetics (CHIMGEN) study establishes the largest Chinese neuroimaging genetics cohort and aims to

identify genetic and environmental factors and their interactions that are associated with neuroimaging and behavioral

phenotypes. This study prospectively collected genomic, neuroimaging, environmental, and behavioral data from more than

7000 healthy Chinese Han participants aged 18–30 years. As a pioneer of large-sample neuroimaging genetics cohorts of

non-Caucasian populations, this cohort can provide new insights into ethnic differences in genetic-neuroimaging

associations by being compared with Caucasian cohorts. In addition to micro-environmental measurements, this study also

collects hundreds of quantitative macro-environmental measurements from remote sensing and national survey databases

based on the locations of each participant from birth to present, which will facilitate discoveries of new environmental

factors associated with neuroimaging phenotypes. With lifespan environmental measurements, this study can also provide

insights on the macro-environmental exposures that affect the human brain as well as their timing and mechanisms of action.

Introduction

Neuroimaging (intermediate) phenotypes reflecting the

structural and functional properties of the human brain have

been linked to human cognitive abilities and neu-

ropsychiatric disorders (external phenotypes), and both

intermediate and external phenotypes are precisely modu-

lated by genetics, environments and their complex interac-

tions [1, 2]. However, we know little about pathways from

genetics and environments to neuroimaging phenotypes and

then to external phenotypes. The associations between

genetic factors and neuroimaging phenotypes have been

investigated using neuroimaging genetics [3], initially by

exploring the effects of a single nucleotide polymorphism

(SNP) in small samples and eventually by identifying reli-

able genetic effects using genome-wide association studies

(GWAS) in large samples [4, 5]. However, almost all

available neuroimaging genetics cohorts include only Cau-

casian populations (Table 1), preventing us from identifying

ethnic differences in genetic-neuroimaging associations.

Although previous cohorts have included many micro-

environmental factors, such as social economic status, early

life events and lifestyle, few cohorts have included macro-

environmental factors derived from remote sensing and

national survey databases, such as climate, air pollution,

population density, and gross domestic product (GDP) per

capita. The joint analyses of micro- and macro-

environmental variables will provide more information

about environmental-neuroimaging associations and gene-

environment interactions on neuroimaging phenotypes

[6, 7]. Moreover, China has the largest populations in
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the world and has experienced dramatic changes in

its macro-environments in recent decades, making the

Chinese population more suitable for identifying macro-

environmental factors associated with neuroimaging

phenotypes.

Although the China Brain Project, which covers basic

neuroscience, translational research, and brain-inspired

intelligence, is being developed [8], there are no available

large-scale Chinese neuroimaging genetics data. In this

context, the Chinese Imaging Genetics (CHIMGEN) study

Table 1 Comparisons of major neuroimaging genetics cohorts (N > 2000 with both genetic and neuroimaging data).

Project name Number of
subjects

Ethnic
populations

Age
range (year)

Diagnosis Prominent features Assessments of data
qualitya

CHIMGEN N > 7000 Chinese
Han only

18–30 Healthy The largest prospective neuroimaging genetics cohort of
Chinese Han adults with lifespan natural and socioeconomic
environmental measurements obtained from remote sensing
and national survey databases

Brain imaging data (+++):
3 modalities for all subjects;
2 for 2/3 subjects
Genetic data (++++):
genomic data
Environment data (+++
+): more than a hundred of
quantitative measures
Behavioral data (++++):
dozens of measures

UK Biobank N > 30,000 Most
Caucasian

40–69 at
baseline

Mixed The largest prospective longitudinal imaging genetics
cohort of adults in the world

Brain imaging (++++): 5
imaging modalities for most
subjects
Genetic data (++++):
genomic data
Environment data (++):
dozens of measures
Behavioral data (++++):
dozens of measures

ENIGMA N > 50,000 Most
Caucasian

3.3–91 Mixed The largest imaging genetics pooling dataset included more
than 50 currently available datasets with both imaging and
genetic data

Brain imaging (++): only
structural imaging for all
subjects
Genetic data (++++):
genomic data
Environment data (−): no
measure
Behavioral data (++): no
measure but with diagnostic
information

ABCD N= 11,875 Most
American
African and
Caucasian

9–10 at
baseline

Relatively
healthy

The largest prospective longitudinal imaging genetics
cohort of children to explore adolescent brain development

Brain imaging (++++): 4
modalities for most subjects
Genetic data (++++):
genomic data
Environment data (++):
dozens of measures
Behavioral data (++++):
dozens of measures

IMAGEN N= 2000 Most
Caucasian

14–22 Relatively
healthy

The first prospective longitudinal imaging genetics cohort
of adolescence to investigate the risk for mental disorders

Brain imaging (++++): 4
modalities for most subjects
Genetic data (++++):
genomic data
Environment data (++):
dozens of measures
Behavioral data (++++):
dozens of measures

ADNI N > 2000 Most
Caucasian

55–90 AD, MCI
and normal
controls

The largest prospective longitudinal imaging genetics
cohort of elderly people to define the progression of AD

Brain imaging (+++): 5
modalities but not collected
from all subjects
Genetic data (++++):
genomic data
Environment data (+): a
few measures
Behavioral data (++++):
dozens of measures

ABCD Adolescent Brain Cognitive Development, AD Alzheimer’s disease, ADNI Alzheimer's Disease Neuroimaging Initiative, CHIMGEN

Chinese Imaging Genetics, ENIGMA Enhancing Neuro Imaging Genetics Through Meta-Analysis, IMAGEN imaging genetics,MCI mild cognitive

impairment
aNotes: The seven major imaging modalities included structural imaging, susceptibility weighted imaging (SWI), diffusion tensor imaging (DTI),

artery spin labeling (ASL), task fMRI, resting-state fMRI, and positron emission tomography (PET). For each kind of data, the number of +signs

indicates the subjective data availability, which includes two factors: the richness of the variables and the number of participants with data on these

variables
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was designed to collect genomic, environmental, neuroi-

maging, and behavioral data from a large number of Chi-

nese participants to enhance neuroimaging genetics research

in different ethnic populations and geographic locations.

Compared with currently available large-scale neuroima-

ging genetics studies (Table 1), the CHIMGEN study

includes the only cohort of non-Caucasian participants and

has collected hundreds of macro-environmental measure-

ments in addition to micro-environmental measurements.

These comprehensive multiscale data can fill the gap in our

understanding of how environmental factors, and their

interaction with genetic factors can affect the human brain

and consequently affect behavior by using effective

dimension reduction or feature selection techniques [9–11].

The CHIMGEN study

The CHIMGEN study (chimgen.tmu.edu.cn) was approved

by the local ethics committee, and written informed consent

was obtained from each participant. The aim of this study

was to collect genomic, neuroimaging, environmental, and

behavioral data from 10,000 healthy Chinese Han partici-

pants aged 18–30 years in 30 research centers from 21

mainland cities in China. To date, we have recruited more

than 7000 participants, becoming the largest and most

integrative Chinese neuroimaging genetics cohort. The

detailed inclusion and exclusion criteria as well as the

methods and procedures for screening; genotyping; blood

sample collection; and behavioral, environmental, and

neuroimaging data acquisition are described in the stan-

dardized operation procedures (SOPs) of the CHIMGEN

study (Supplementary file 2). The detailed quality control

procedures for personal information; blood samples;

GWAS; and behavioral, environmental, and neuroimaging

assessments are elaborated in the quality control manual of

the CHIMGEN study (Supplementary file 3). Since the

CHIMGEN study is ongoing, the following description of

the CHIMGEN cohort was based on the data of only 5819

participants who had undergone comprehensive quality

assessments.

Sampling strategies

All participants were recruited by advisements posted in

colleges and communities. The number of participants in

each center depends on the available resources (researchers,

funds, scanners, etc.) of the center. The recruited partici-

pants were not solely from the city or province of the par-

ticipating centers. These samples are not used to represent

populations (epidemiological samples), but to investigate

biological mechanisms. Their epidemiological relevance

needs to be investigated in subsequent studies.

Recruitment distribution

The 5819 participants were recruited from 29 centers. The

recruitment distribution of these participants across centers

is shown in Fig. 1a. Eighteen of the 29 centers recruited

more than 100 participants. The largest center recruited

1307 participants and the smallest center recruited 54

participants.

Quality control for MR scanners

For each MR scanner, two phantoms were used to assess the

imaging quality of the scanner. Specifically, an American

College of Radiology MRI phantom was used to assess the

functioning of the MR scanner, including geometric dis-

tortion, slice positioning and thickness accuracy, high

contrast spatial resolution, intensity uniformity, ghosting

artefacts and low contrast object detectability. A custom

phantom [12, 13] was used to evaluate temporal stability

during a functional MRI acquisition. Moreover, two healthy

volunteers were scanned at all centers to assess the con-

sistency of the MRI data acquired by different MR scanners.

The effects of scanners on common MRI measures (gray

matter volume (GMV), regional homogeneity (ReHo) and

fractional anisotropy (FA)) are shown in Supplementary

Fig. 1. These measures showed high consistency for MRI

data acquired by the same type of MR scanner with the

same scan parameters; however, there were visible differ-

ences for MRI data acquired by different types of MR

scanners. For the latter, a meta-analysis of the results

derived from MR data from different scanners may be a

practical method to reduce the bias caused by MR

scanner types.

First-step quality assessments of the neuroimaging
data

All 5819 participants were included in the first-step quality

assessments of the neuroimaging data: 23 participants were

excluded for metal artefacts, 1 for brain atrophy and 1 for

excessively large ventricle. The remaining 5794 participants

were included in the following quality control and statistics.

Genotyping and quality control

A high-throughput genotyping chip designed for the Asian

population (Illumina Asian screening array chip) with

700,000 sampling SNPs was used for genome-wide geno-

typing. Although all 5794 participants had blood samples,

only 4885 participants have been genotyped thus far. After

excluding two sex mismatching samples, nine duplicated or

related samples, 29 samples with extreme heterozygosity

and one sample with divergent ancestry (Supplementary
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Fig. 2), 4844 participants (99.16%) passed the quality

control for the genetic data. It should be noted that the

following quality assessments (n= 5753) also included 909

participants without genotyping results.

Neuroimaging data and quality control

Neuroimaging data were acquired by nine types of 3.0-

Tesla MRI scanner (Supplementary Fig. 3). Structural

MRI (sMRI), diffusion tensor imaging (DTI) and resting-

state functional MRI (rs-fMRI) data were acquired in all

centers, and diffusion kurtosis imaging (DKI) and arterial

spin labeling (ASL) data were acquired in 16 centers. The

numbers of participants whose MRI data were acquired by

each type of MRI scanner are shown in the insertion of

Fig. 1a. The MRI data of 4045 (70.31%) of the 5753

participants were acquired by the MR 750 scanners. For

each type of MRI scanner, the voxel-level maps of GMV

calculated based on sMRI data, ReHo calculated based on

rs-fMRI data, and FA and mean diffusivity (MD) calcu-

lated based on DTI data averaged across all qualified

participants are shown in Supplementary Fig. 4. All types

of scanner showed similar and symmetrical spatial dis-

tribution of the GMV, FA and MD, and 8/9 types of

scanner showed similar and symmetrical spatial distribu-

tion of ReHo with the GE Signa HDx which showed

asymmetric spatial distribution of the ReHo map, espe-

cially in posterior brain regions, being the only exception

(Supplementary Fig. 4C). Therefore, the rs-fMRI data of

the 97 participants acquired by the GE Signa HDx were

excluded from this study.

The quality control results of the neuroimaging data

(n= 5753) are shown in Supplementary Fig. 5. In the

5753 participants, there were 5743 (99.83%) participants

with qualified sMRI data, 5507 (95.72%) with qualified

rs-fMRI data, and 5750 (99.95%) with qualified DTI data.

In the 3619 participants with DKI data, 3610 (99.75%)

participants passed the quality control. In the 4108 parti-

cipants with ASL data, all participants passed the quality

control. Based on these MRI data, thousands of neuroi-

maging variables could be calculated. For example, the

average maps of the GMV of the 5743 participants, the

Fig. 1 Recruitment and neuroimaging, behavioral, and environ-

mental characteristics. a The main graph shows the numbers of

participants recruited by each of the 29 centers. The insertion shows

the numbers of participants recruited using each type of scanner. b The

mean parameter maps of the gray matter volume (GMV), regional

homogeneity (ReHo), fractional anisotropy (FA), mean diffusivity

(MD), mean kurtosis (MK), and cerebral blood flow (CBF). c Data

distribution of the representative behavioral assessments. CVLT II-

Total score, the total number of correct recalls over the five learning

trials of the word list A in the version 2 of the California verbal

learning test; N-back-CR, the correct rate of the 3-back task in the N-

back task; No-Go-CR, the correct rate of the No-Go task in the Go/

No-Go task; ROCFT-DR score, the score of delayed recall of the Rey-

Osterrieth complex figure test; TPQ-RD, reward dependence of tridi-

mensional personality questionnaire. d Data distribution of the repre-

sentative paper-based environmental assessments. EA emotional

abuse, EN emotional neglect, PA physical abuse, PN physical neglect,

and SA sexual abuse.
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ReHo of the 5507 participants, the FA and MD of the

5750 participants, the mean kurtosis (MK) calculated

based on DKI data of the 3610 participants, and the cer-

ebral blood flow (CBF) calculated based on ASL data of

the 4108 participants are shown in Fig. 1b. All of these

parameter maps showed a symmetrical spatial distribution

in the brain.

Quality control for behavioral and paper-based
environmental data

The preliminary quality control results for behavioral and

paper-based environmental data of the 5753 participants are

shown in Supplementary Fig. 6. In the 5753 participants, 8

participants were excluded for the loss of almost all beha-

vioral and paper-based environmental data. In the remaining

5745 participants, 5723 (99.48%) participants with qualified

Beck depression inventory (BDI- II) data, 5722 (99.46%)

with qualified state and trait anxiety inventory (STAI) data,

5728 (99.57%) with qualified tridimensional personality

questionnaire (TPQ) data, 5688 (98.87%) with qualified

California verbal learning test (CVLT-II) data, 5619

(97.67%) with qualified symbol digit modalities test

(SDMT) data, 5640 (98.04%) with qualified Rey-Osterrieth

complex figure test (ROCFT) data, 5578 (96.96%) with

qualified N-back task data, 5536 (96.23%) with qualified

Go/No-Go task data, 5616 (97.62%) with qualified ball-

tossing game data, 5639 (98.02%) with qualified ultimatum

game (UG) data, 5733 (99.65%) with qualified urbanization

score data, and 5728 (99.57%) with qualified childhood

trauma questionnaire (CTQ) data.

The data distributions of the representative behavioral

variables are demonstrated in Fig. 1c and those of the

representative paper-based environmental variables are

shown in Fig. 1d. Although some variables do not follow a

normal distribution, the relatively wide range of values

indicates good discriminative power across participants.

Sample characteristics

The demographic characteristics of the 5745 participants

with relatively complete assessments are shown in Table 2.

This study included 3718 females and 2027 males. Their

ages ranged from 18 to 30 years, with a mean ± standard

deviation (SD) of 23.7 ± 2.4 years. Their years of education

ranged from 9 to 24 years, with a mean ± SD of 16.8 ± 1.9

years. Their heights ranged from 146 to 197 cm, with a

mean ± SD of 166.4 ± 7.9 cm. Their weights ranged from 23

to 114 kg, with a mean ± SD of 58.8 ± 10.7 kg. Their body

mass indices (BMI) ranged from 10.8 to 38.5, with a

mean ± SD of 58.8 ± 10.7. Most of these participants were

unmarried (n= 5550), with only 195 married.

Sex-specific demographic, behavioral, and paper-
based environmental statistics

The sex-specific demographic, behavioral and paper-based

environmental statistics of the 5745 participants with rela-

tively complete assessments are shown in Table 2. Although

most of these variables show significant differences (P <

0.05) between male and female participants, the effect sizes

were generally very small except for sex differences in

height (|r|= 0.74, large effect), weight (|r|= 0.67, large

effect), and BMI (|r|= 0.39, medium effect).

Quantitative environmental variables derived from
remote sensing and national survey databases

In this study, we recorded the precise residential location

of each participant in each year from birth to present. In

the 5745 participants who passed the initial quality con-

trols for the neuroimaging, behavioral and genetic data,

5723 participants (99.62%) provided both current and

birthplace (Fig. 2a) residential locations; however, only

3979 participants (69.26%) provided lifetime migration

information (Fig. 2b). Based on remote sensing and

national survey databases, we obtained hundreds of

macro-environmental measurements for each participant.

Some representative macro-environmental variables at

birth (Fig. 2c) and their lifetime changes are shown in

Fig. 2d.

Future plans of the CHIMGEN study

In the future, the CHIMGEN consortium will complete the

following tasks: (a) further recruit at least 3000 participants

to reach the goal of 10,000 qualified participants; (b)

simultaneously obtain the genomic, epigenomic, and tran-

scriptomic data of ~700 participants; (c) collect 2000–3000

patients with major mental disorders; and (d) develop the

CHIMGEN cohort into a longitudinal cohort by recalling

the participants at a later time.

Data sharing policy

We would like to share all CHIMGEN data (including the

genetic, environmental, neuroimaging and behavioral data)

with other scientific communities according to the laws and

regulations of the Chinese government. All the raw data of

the CHIMGEN study can be accessed via collaboration with

the CHIMGEN consortium. The summary statistics of the

CHIMGEN data can be freely accessed via a formal

application. A detailed scheme for sharing the CHIMGEN

data can be found on our website (chimgen.tmu.edu.cn) and

in Supplementary file 4.
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Discussion

With genomic, environmental, neuroimaging, and beha-

vioral data, the CHIMGEN study will help answer the

following scientific questions about the associations

between genetic and environmental factors on one hand and

brain and cognitive phenotypes on the other hand.

Cross-ethnic differences in genetic-neuroimaging
associations

Although GWAS analyses have identified many genetic

variants associated with cognitive and neuropsychiatric

phenotypes [14–16], we know little about the genetic var-

iants associated with neuroimaging phenotypes. The most

substantial obstacle for neuroimaging genetics studies is the

time and economic cost of collecting high-quality neuroi-

maging data in a large sample (e.g., 10,000 participants).

Fortunately, European and American countries have laun-

ched several large-scale neuroimaging genetics studies (n >

2000) (Table 1), such as the Alzheimer Disease Neuroi-

maging Initiative (ADNI) [17, 18], Imaging Genetics

(IMAGEN) [19], Enhancing Neuroimaging Genetics

through Meta-analysis (ENIGMA) [20], UK Biobank

(UKBB) [21], and Adolescent Brain Cognitive Develop-

ment (ABCD) [22]. These studies aim to identify reliable

genetic variants associated with neuroimaging phenotypes

and to discover new biomarkers for neuropsychiatric dis-

orders. However, the majority of the participants included in

these cohorts are Caucasian.

Ethnic differences have been reported in the allele fre-

quencies of SNPs [23–25], linkage disequilibrium and

polygenic risk scores [26], genetic susceptibilities for neu-

ropsychiatric disorders [27], and neuroimaging phenotypes

[28–30]. In addition to environmental factors, genetic

factors are the main causes for ethnic differences in

Table 2 Sex-specific demographic, behavioral and environmental data (n= 5745).

Items Total (mean ± SD) Males (mean ± SD) Females (mean ± SD) Gender differences

Z/χ² value P-value Effect size

Age (years) 23.7 ± 2.4 (n= 5745) 23.6 ± 2.6 (n= 2027) 23.7 ± 2.3 (n= 3718) −2.77 5.58 × 10−3 −0.04

Years of education 16.8 ± 1.9 (n= 5745) 16.5 ± 1.9 (n= 2027) 16.9 ± 1.9 (n= 3718) −8.18 2.74 × 10−16 −0.11

Marital status (No/Yes) 5550/195 (n= 5745) 1941/86 (n= 2027) 3609/109 (n= 3718) 6.88 8.73 × 10−3 0.03

Height (cm) 166.4 ± 7.9 (n= 5745) 174.5 ± 5.7 (n= 2027) 162.0 ± 5.0 (n= 3718) −56.35 <1.15 × 10−190 −0.74

Weight (Kg) 58.8 ± 10.7 (n= 5745) 68.5 ± 10.1 (n= 2027) 53.6 ± 6.6 (n= 3718) −51.12 <1.15 × 10−190 −0.67

BMI 21.1 ± 2.6 (n= 5745) 22.5 ± 2.8 (n= 2027) 20.4 ± 2.2 (n= 3718) −29.45 1.15 × 10−190 −0.39

TPQ-NS 13.8 ± 4.5 (n= 5728) 13.0 ± 4.3 (n= 2019) 14.2 ± 4.5 (n= 3709) −9.48 2.66 × 10−21 −0.13

BDI-II 3.37 ± 4.41 (n= 5723) 3.01 ± 4.06 (n= 2017) 3.56 ± 4.58 (n= 3706) −4.25 2.19 × 10−5 −0.06

State anxiety 30.8 ± 7.6 (n= 5722) 30.2 ± 7.5 (n= 2018) 31.2 ± 7.6 (n= 3704) −5.39 7.20 × 10−8 −0.07

CVLT II-total score 55.6 ± 8.8 (n= 5703) 54.1 ± 9.1 (n= 2014) 56.4 ± 8.6 (n= 3689) −9.06 1.32 × 10−19 −0.12

ROCFT-DR score 24.7 ± 5.0 (n= 5643) 24.8 ± 5.0 (n= 1989) 24.6 ± 5.0 (n= 3654) −1.46 0.15 −0.02

SDMT score 69.6 ± 12.7 (n= 5619) 68.8 ± 13.1 (n= 1989) 70.0 ± 12.5 (n= 3630) −4.12 3.76 × 10−5 −0.05

N-back-CR 0.73 ± 0.16 (n= 5578) 0.74 ± 0.15 (n= 1973) 0.72 ± 0.16 (n= 3605) −5.88 4.18 × 10−9 −0.079

No-Go-CR 0.55 ± 0.19 (n= 5536) 0.58 ± 0.19 (n= 1957) 0.53 ± 0.18 (n= 3579) −10.05 9.48 × 10−24 −0.14

UG-AR 0.76 ± 0.32 (n= 5639) 0.78 ± 0.31 (n= 1989) 0.74 ± 0.33 (n= 3650) −4.08 4.54 × 10−5 −0.05

BTG-ACC 0.80 ± 0.19 (n= 5616) 0.81 ± 0.19 (n= 1977) 0.79 ± 0.19 (n= 3639) −3.82 1.34 × 10−4 −0.05

Urbanization score 34.7 ± 13.9 (n= 5733) 35.2 ± 14.0 (n= 2022) 34.5 ± 13.9 (n= 3711) −1.91 0.06 −0.03

CTQ-EN 8.19 ± 4.17 (n= 5728) 8.01 ± 3.98 (n= 2022) 8.28 ± 4.26 (n= 3706) −1.45 0.15 −0.02

Notes: Only one representative measure of each behavioral or environmental assessment is shown in this table. The sample sizes of the behavioral

and environmental assessments are different across measures because only qualified participants are included in the statistical analysis. The effect

sizes for categorical variables are evaluated by Φ and those for continuous variables are evaludated with Mann–Whitney and Wilcoxon

nonparametric tests using r. Cohen’s guidelines for effect size are that a large effect is >0.5, a medium effect is between 0.3 and 0.5, and a small

effect is between 0.1 and 0.3

BDI-II beck depression inventory II, BMI body mass index, BTG-ACC the total correct rate in the ball-tossing game, CTQ-EN the emotional

neglect score of childhood trauma questionnaire, CVLT II-Total score the total number of correct recalls over the five learning trials of the word list

A in the version 2 of the California verbal learning test, N-back-CR the correct rate of the 3-back task in the N-back task, No-Go-CR the correct rate

of the No-Go task in the Go/ No-Go task, ROCFT-DR score the score of delayed recall of the Rey-Osterrieth complex figure test, SDMT symbol

digit modalities test, TPQ-NS novelty-seeking of tridimensional personality questionnaire, UG-AR the ratio of participants who accept the 1:9

allocation schemes in situation 1 of the ultimate game. In this situation, if the participant accepts the plan, the proposer and the participant will

divide the money according to this plan. If the participant rejects the plan, neither of them gets the money

522 Q. Xu et al.



neuroimaging phenotypes because of their high heritability

[31–33]. However, the common and specific genetic var-

iants associated with neuroimaging phenotypes of different

ethnic populations remain unknown, because there is no

available large-scale neuroimaging genetics cohort of non-

Caucasian individuals. From this perspective, the CHIM-

GEN data will provide an opportunity to discover ethnic

differences in neuroimaging-related genetic variants

between Chinese and Caucasian participants.

Although it is clinically important to identify genetic

associations with neuroimaging markers of neuropsychiatric

disorders [34–38], it is also critical to identify genetic-

neuroimaging associations in normal populations to better

understand how genetic variants cause brain structural and

functional impairments in neuropsychiatric disorders.

However, none of the large-scale neuroimaging genetics

studies (n > 2000) have included a sufficient number of

healthy adults aged 18–30 years (Table 1), an age window

during which human brains and their functions are mini-

mally influenced by the confounding factors of

development and ageing [39]. Thus, the CHIMGEN study

of 7000 healthy adults between 18–30 years is suitable for

investigating genetic-neuroimaging associations in unaged

mature brains.

Environmental factors associated with
neuroimaging phenotypes

One unique aspect of the CHIMGEN study is the collection

of hundreds of macro-environmental measurements from

satellite images and national survey databases. Compared

with micro-environmental assessments based on ques-

tionnaire and self-report data, remote sensing, and national

survey data can provide many new quantitative macro-

environmental assessments. For example, we can obtain

quantitative environmental measurements of landform and

topography, urbanization, climate, and air quality of the

living places of each participant based on remote sensing

data [40–43], and those of economy, urbanization, living

condition, healthcare, and education of the living places of

Fig. 2 Environmental variables derived from remote sensing and

national survey data. a Geographic location of each participant’s

birthplace (n= 5723). Blue dots indicate rural area, green dots indicate

towns, and red dots indicate cities. b The migration map of participants

(n= 3979). Red dots indicate current places of residence, and green

dots indicate birthplaces. Gray lines connect the birthplaces and cur-

rent places of residence of a given participant. c Data distribution of

the representative environmental variables in the birth year or the year

nearest to the birth year. Certified doctors is the number of certified

doctors per 10,000 persons. NDVI, normalized difference vegetation

index, and GDP, gross domestic product. d Longitudinal changes of

the representative environmental variables in selected years. The value

in each column is shown as the mean ± SE.
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the participant based on national survey databases (data.

stats.gov.cn/english/). Associations between neuroimaging

phenotypes and most of these macro-environmental mea-

surements have not been explored, and they may provide us

with an opportunity to discover new environmental factors

related to neuroimaging phenotypes. The feasibility of using

macro-environmental measurements derived from remote

sensing and national survey databases to discover new

environmental factors associated with the human brain and

behavioral phenotypes has been tested in pilot studies. For

example, the green space assessed by the normalized dif-

ference vegetation index (NDVI) based on remote sensing

data has been linked to human health [44, 45], and the

lifelong exposure to greenness has been associated with

GMV differences in children [7]. In addition, several

macro-environmental measurements derived from national

survey databases, such as population density, local GDP per

capita, medical supply, and educational resources have also

been associated with human health [46–48].

More importantly, with the precise lifelong residential

locations of each participant, we can obtain the macro-

environmental measurements of each participant in each

year from birth to present, from which we can estimate the

cumulative exposure of environmental risk factors

throughout the lifespan or during a period of interest. The

detailed lifelong environmental data of the CHIMGEN

study will help determine the macro-environmental expo-

sures that affect the structural and functional properties of

the human brain as well as their timing and mechanisms of

action.

Genome-wide by environment interactions on
neuroimaging phenotypes

Most neuropsychiatric disorders have a multifactorial

etiology and emerge through the interplay of genetic and

environmental factors [49]. Similarly, the structural and

functional architectures of the human brain are also

modulated by both factors [50], and gene-environment

interactions may explain the missing heritability of certain

phenotypes [51]. Candidate-gene approaches have been

used extensively to explore gene-environment interac-

tions. For example, the serotonin transporter promoter

polymorphism interacts with stressful life events to

increase the risk of depression [52]. However, candidate-

gene approaches are criticized for oversimplifying the

genetic substrates of these complex phenotypes since a

single genetic variant minimally contributes to these

phenotypes. The PRS integrates many genetic variants of

the genome and is a better representation of genetic risk

than single variants by having a much larger effect

[53, 54]. Indeed, considering the combination of PRS and

childhood trauma can improve the ability to predict

depression [55, 56]. Genome-wide by environment inter-

actions have been used to unbiasedly explore the effects

of gene-environment interactions on depression [57].

However, the lack of large dataset simultaneously with

genome-wide genetic data, objective environmental

assessments and neuroimaging data has prevented inves-

tigations of genome-wide by environment interactions on

neuroimaging phenotypes. In this context, the CHIMGEN

study has rich genomic, environmental, and neuroimaging

measurements of 7000 participants, and is particularly

suited to investigate genome-wide by environment inter-

actions on human neuroimaging phenotypes.

Gene (environment)-brain-behavior pathways

In contrast to many studies focusing on pairwise correla-

tions of genetic variants, environmental factors, neuroima-

ging measures, and cognitive or neuropsychiatric

phenotypes, only a few studies have explored biological

pathways from genes and environment to brain structure

and function and ultimately to cognition and symptoms

[58–60]. These studies have been primarily conducted using

candidate-gene approaches and small samples, and they

have been criticized based on the minimal effect size of a

single variant and their lack of statistical power. In view of

polygenic profiles of neuroimaging and cognitive pheno-

types [61, 62], genomic data should be integrated to identify

normal and abnormal gene-brain-behavior pathways. Since

environmental factors alone and gene-environment interac-

tions affect neuroimaging and cognitive phenotypes

[6, 63, 64], it is important to identify the environmental

factors associated with these phenotypes, which would help

better guide clinical practice to address these adverse

environmental factors. Furthermore, it is also critical to

investigate how gene-environment interactions affect brain

structure and function and then influence normal cognitive

functions and brain disorders. By gathering genomic,

environmental, neuroimaging, and cognitive data, the

CHIMGEN project is ideally suited to explore the normal

pathways of gene (environment)-brain-cognition.

Comprehensive understanding of human cognitive
functions with multiscale data

The human brain is the most complex system in the world,

and even the simplest cognitive task requires an efficient

cooperation of multiscale neural elements [65, 66]. Thus,

human cognitive function can be understood only by inte-

grating multimodal data at different scales, e.g., genomic,

epigenomic, transcriptomic, and proteomic data at the

microscale, neural circuit, and neuronal activity data at the

mesoscale, and neuroimaging data at the macroscale. In

addition to establishing reliable correlations between
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multiscale features and cognitive functions, it is also critical

to identify causal linkages between these features to dis-

cover the causal pathways from the microscale to the

mesoscale then to the macroscale and ultimately to cogni-

tion [8]. With genomic, transcriptomic, epigenomic, neu-

roimaging, and cognitive data obtained from 700

participants, the CHIMGEN study can be used to establish

associations between microscale genetic variants and mac-

roscale neuroimaging phenotypes, and then the functions of

the identified genetic variants can be explored and validated

at the cellular level [67] and in animal models [68] using

gene editing techniques. One can also try to identify causal

links among findings from different scales by integrating

currently available multiscale neurobiological datasets and

state-of-the-art bioinformatics.

Associations with major neuropsychiatric disorders

Many neuropsychiatric disorders are associated with genetic

and environmental factors and their interactions [69]. We

have identified many risk factors for major neuropsychiatric

disorders, but the underlying mechanisms remain largely

unknown. Taking neuroimaging measures as intermediate

phenotypes, researchers could explore how these factors

increase the risk for neuropsychiatric disorders by investi-

gating the effects of these factors on neuroimaging mea-

sures in healthy subjects. For example, the CHIMGEN data

can be used to investigate the effects of a single or inte-

grated genetic and/or environmental risk factor(s) for neu-

ropsychiatric disorders on neuroimaging phenotypes in

healthy individuals. Moreover, we can identify new genetic

or environmental risk factors that significantly affect neu-

roimaging markers of neuropsychiatric disorders.

Potential models, methods or strategies for
analyzing the CHIMGEN data

Many models, methods and strategies can be used to ana-

lyze the CHIMGEN data. For example, GWAS can identify

genetic variants associated with neuroimaging phenotypes

[4, 70, 71], multifactor dimensionality reduction and deri-

vatives can investigate genome-wide gene-gene interactions

on these phenotypes [72–74], and canonical correlation and

partial least square regression analyses can uncover envir-

onmental factors associated with these phenotypes [75, 76].

Although genome-wide gene-environment interaction stu-

dies theoretically need more samples than GWAS, the

CHIMGEN data can be used to investigate gene-

environment interactions on neuroimaging phenotypes

with effective dimension reduction or feature selection

techniques [77–79]. For example, a structured linear mixed

model was recently proposed to identify candidate loci that

interact with environmental variables [80]. The linkage

disequilibrium score regression can estimate genetic corre-

lations of neuroimaging phenotypes with disease-, person-

ality- or cognition-related phenotypes [81]. Mendelian

randomization and mediation analysis [82] can identify

potential pathways from genes to brain to cognition. Arti-

ficial intelligence techniques, such as deep learning algo-

rithms [83], can disclose meaningful relationships between

measures from different scales.

Conclusion

As an important supplement to the research field of neu-

roimaging genetics, the CHIMGEN cohort can be integrated

with cohorts of different ethnicities, geographic locations

and socioeconomic conditions to facilitate a cross-ethnic

and cross-geographic understanding of the human brain. By

integrating these cohorts, we can identify the effect of

ethnic factors on the brain by controlling for or stratifying

by geographic and socioeconomic factors. With the same

strategies, we can identify common and specific genetic-

neuroimaging associations in various ethnic populations.

More importantly, we can identify brain-related macro- and

micro-environmental factors that are common to all ethnic

populations or specific to a certain ethnic population.

Therefore, cross-ethnic and cross-geographic studies based

on integrated cohorts would enhance our understanding of

how human brains differ from each other.
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