
CHIMP, the CMU Highly Intelligent Mobile Platform

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Anthony Stentz, Herman Herman, Alonzo Kelly, Eric Meyhofer, G. Clark Haynes, David Stager, Brian Zajac,

J. Andrew Bagnell, Jordan Brindza, Christopher Dellin, Michael George, Jose Gonzalez-Mora, Sean Hyde,

Morgan Jones, Michel Laverne, Maxim Likhachev, Levi Lister, Matt Powers, Oscar Ramos∗, Justin Ray,

David Rice, Justin Scheifflee, Raumi Sidki†, Siddhartha Srinivasa, Kyle Strabala, Jean-Philippe Tardif,

Jean-Sebastien Valois, J. Michael Vande Weghe, Michael Wagner, and Carl Wellington

National Robotics Engineering Center, Carnegie Mellon University, 10 40th Street, Pittsburgh, Pennsylvania 15201

Received 9 March 2014; accepted 23 November 2014

We have developed the CHIMP (CMU Highly Intelligent Mobile Platform) robot as a platform for executing
complex tasks in dangerous, degraded, human-engineered environments. CHIMP has a near-human form
factor, work-envelope, strength, and dexterity to work effectively in these environments. It avoids the need for
complex control by maintaining static rather than dynamic stability. Utilizing various sensors embedded in the
robot’s head, CHIMP generates full three-dimensional representations of its environment and transmits these
models to a human operator to achieve latency-free situational awareness. This awareness is used to visualize
the robot within its environment and preview candidate free-space motions. Operators using CHIMP are able
to select between task, workspace, and joint space control modes to trade between speed and generality. Thus,
they are able to perform remote tasks quickly, confidently, and reliably, due to the overall design of the robot and
software. CHIMP’s hardware was designed, built, and tested over 15 months leading up to the DARPA Robotics
Challenge. The software was developed in parallel using surrogate hardware and simulation tools. Over a six-
week span prior to the DRC Trials, the software was ported to the robot, the system was debugged, and the tasks
were practiced continuously. Given the aggressive schedule leading to the DRC Trials, development of CHIMP
focused primarily on manipulation tasks. Nonetheless, our team finished 3rd out of 16. With an upcoming year
to develop new software for CHIMP, we look forward to improving the robot’s capability and increasing its
speed to compete in the DRC Finals. C© 2015 Wiley Periodicals, Inc.

1. INTRODUCTION

The Defense Advanced Research Projects Agency (DARPA)
has a long history of sponsoring competitions that advance
the state of the art in robotics. For instance, in the two Grand
Challenges (2004, 2005) and the Urban Challenge (2007), the
robotics field made immense progress in the development
of autonomous vehicles. Alarmed by the 2011 Fukushima
Daiichi nuclear disaster in Japan, DARPA announced a sim-
ilar competition, the DARPA Robotics Challenge (DRC), to
accelerate the development of robots capable of responding
to natural and manmade disasters.

As a Track A participant in the DARPA Robotics Chal-
lenge Trials, the Tartan Rescue team developed CHIMP,
the CMU Highly Intelligent Mobile Platform, for execut-
ing complex tasks in dangerous environments engineered
for humans to perform work. CHIMP is roughly human in
size and form, so it fits into the same spaces and requires
the same workspace as a human. The robot possesses both
strength and dexterity to work effectively in these envi-

∗Visiting researcher from LAAS-CNRS
†NREC intern participating on the DRC project
Direct correspondence to Anthony Stentz: axs@nrec.ri.cmu.edu

ronments, but it avoids the need for complex control by
maintaining static rather than dynamic stability. Bipedal
machines, such as classic humanoid robots, must balance
as they walk about (Grizzle, Chevallereau, Ames, & Sinnet,
2010; Yi, Zhang, Hong, & Lee, 2011). If the terrain is un-
even or shifts under the robot’s feet, the humanoid runs the
risk of toppling over and breaking, thus becoming part of
the problem rather than the solution. Although roughly an-
thropomorphic (see Figure 1), CHIMP includes motorized
tracks on all four limbs to provide stable mobility. When per-
forming work, CHIMP rests on the tracks in its legs. This
provides a broad, stable base for CHIMP to roll forward,
in reverse, or turn in place to position its arms and hands
to grasp objects in its environment. To move over uneven
terrain, CHIMP changes posture to drive on all four tracks.
This transformation lowers CHIMP’s center of gravity, pro-
vides a wider base of support, and engages more motors
while driving. For work tasks, CHIMP’s high degree-of-
freedom arms allow it to reach into constricted areas. Its
electric drive provides both strength and precision. CHIMP
was designed to operate with either an external tethered
power supply or a battery.

Human operators controlling a robot in a danger-
ous environment may need to do so over a degraded

Journal of Field Robotics 32(2), 209–228 (2015) C© 2015 Wiley Periodicals, Inc.
View this article online at wileyonlinelibrary.com • DOI: 10.1002/rob.21569



210 • Journal of Field Robotics—2015

Figure 1. System diagram of CHIMP standing.

communications link, especially in a disaster response sce-
nario when the deployment is unexpected and the infras-
tructure support is inadequate. The operator may lack line-
of-sight to the robot and the link may exhibit latency that
complicates real-time control with bandwidth limitations
that preclude streaming video. To address these problems,
CHIMP leverages techniques from telerobotics (Sheridan
1992), including a virtualized/augmented reality interface
(Kanade, Rander, & Narayanan, 1997; Tzafestas, 2006) that
is incrementally updated in real time (Kelly et al., 2011). To
provide situational awareness, CHIMP uses cameras and
laser rangefinders (see Figure 8) to construct a texture-
mapped, three-dimensional model of its environment.
CHIMP uses an accurate position estimation system based
on an inertial measurement unit (IMU), visual odometry,
and kinematic motion estimates to incrementally assemble
the model as it moves about. CHIMP transmits the model to
the remote operator. To minimize the effects of latency, the
operator plans robot actions, previews them in the model,
and sends them to the robot for execution once properly
vetted. During the preview, the operator is able to observe
the planned action from any viewpoint and check robot
stability, collision avoidance, and grasp approach. To min-
imize the effects of bandwidth limitations, CHIMP sends
just the model changes to update the remote operator’s
model.

In an ideal world, CHIMP would be fully autonomous,
but the state of the art does not support it. Instead,

we blend manual and autonomous control in different
ways (Kortenkamp, Burridge, Bonasso, Schrenkenghost, &
Hudson, 1999) depending on the circumstances, leverag-
ing the strengths of both human and robot. The overall
approach was influenced by our efforts in autonomous ma-
nipulation (Bagnell et al., 2012). CHIMP supports three op-
erator control modes. In task mode, the operator selects
objects for the robot to pick up, indicates which grasping
strategy to use, and specifies how devices such as a valve
are able to move. The software autonomously plans the
robot motion that accomplishes the task, and then it sends
the result to CHIMP for execution. Task mode is faster
than the other modes, but it may not be applicable in all
situations. In workspace mode, the operator controls the
position and orientation of the hands and feet. CHIMP au-
tomatically calculates how to coordinate the movement of
its joints. Workspace mode is slower than task mode but
handles a wider variety of situations. In joint mode, the op-
erator directly controls the individual joints for extra pre-
cision or to recover if the other modes fail. To overcome
latency problems, CHIMP achieves these various behaviors
using different methods of control.

The DRC was not only a technical challenge but also
a schedule challenge. CHIMP was just a paper concept
15 months before the DRC Trials. The hardware team de-
signed, built, and tested the robot in parallel with the
software development. The software team made use of sim-
ulators and surrogate robot arms to develop and test until

Journal of Field Robotics DOI 10.1002/rob



Stentz et al.: The CHIMP Robot • 211

Figure 2. CHIMP limb.

the actual robot was ready. The software was used to evalu-
ate candidate hardware configurations and to put finishing
touches on the design. The CHIMP hardware was com-
pleted six weeks before the robot was shipped to the DRC
Trials. Over these six weeks, the Tartan Rescue team ported,
integrated, and debugged the software on the robot, and it
practiced the tasks under realistic competition conditions.
CHIMP was well prepared to perform the five manipula-
tion tasks but not the three mobility tasks, due to a lack
of schedule time to develop software for driving a vehicle,
climbing a ladder, and moving in four-limb mode over large
obstacles. Nonetheless, the robot performed well enough to
capture 3rd place out of 16 teams.

In this paper, we describe CHIMP’s hardware and soft-
ware in detail, including its mechanical design, power,
safety, computing, sensing, perception, pose estimation,
planning, control, operator interface, and communications
subsystems. We also describe CHIMP’s performance at the
DRC Trials, and we draw conclusions from the endeavor.

2. CHIMP ROBOT DESIGN

2.1. Robot Design Overview

CHIMP is a 39 degree-of-freedom (DOF) robot designed to
perform a variety of tasks in human-engineered environ-
ments. We selected a design philosophy to minimize the
number of engineering challenges. We were able to largely
ignore dynamic stability issues by driving on tracks rather

than walking with legs. The track modules give CHIMP the
ability to drive on all four appendages like a tank or on its
knees in a standing position, as shown in Figure 1. This ap-
proach means that CHIMP is inherently stable, and it makes
many tasks simpler to accomplish. To maximize reach and
maneuverability in tight spaces, we designed the arms to in-
corporate a traditional 3-1-3 kinematic architecture, as seen
in Figure 2. Three joints are used at both the shoulder and
wrist to create spherical DOFs, while an additional joint at
the elbow provides one DOF of redundancy.

Of the 39 DOFs found on CHIMP, 26 are used to control
the robot’s limbs, four control track velocities, eight adjust
gripper finger positions (four for each gripper), and one
is used to actively control the spinning of the LIDAR units
atop its head. To minimize complexity, we designed just four
custom drive joints in different sizes that are used for 30 of
the DOFs. CHIMP makes extensive use of modular designs,
weighs a total of 400 lb, includes 10,600 individual parts, and
is designed for all-electric operation. CHIMP additionally
includes full onboard sensing and computation necessary
for autonomous mobile manipulation tasks.

CHIMP’s limbs provide all actuation requirements and
are connected through modular structures containing the
necessary support components. CHIMP’s head contains
a variety of sensor payloads and computing. Its torso
houses the IMU, additional computing, power distribution,
as well as a dedicated and embedded safety system that
continuously monitors CHIMP’s operations to guarantee
overall system safety. In this section, we provide greater

Journal of Field Robotics DOI 10.1002/rob



212 • Journal of Field Robotics—2015

Figure 3. Actuator interconnect structure and wiring detail.

details on CHIMP’s mechanical design, drive joints, power,
control, safety, computing, and sensor systems, prior to de-
scribing the software used to operate CHIMP.

2.2. Mechanical Design

CHIMP is comprised of four modular limbs, a rigid torso,
and a fixed sensor head. The limbs are nearly identical and
use common drive joints and structural links. The arms and
legs differ only in the most distal drive joint, end-effector,
and track length. The torso contains all primary networking,
computing, positioning, and power electronics. It is also de-
signed to accommodate a hot-swappable battery for tether-
free operation. The sensor head integrates the laser scanning
mechanism, primary perception sensors, and sensor-related
computing.

CHIMP’s limbs are comprised of common, self-
contained drive joints of four different sizes. Each joint is
identical in feature set and general design, but the size and
strength are scaled to optimize system weight and power. To
size each joint, we analyzed worst-case static and dynamic
point cases. Several DRC tasks and load cases were studied,
but the ladder climb dominated joint torque requirements
and the 2-to-4 limb transition drove stability requirements.

CHIMP’s arms contain seven degrees of freedom to
maximize reachable manipulation workspace. To prevent
self-collisions and allow continuous rotation of the wrist, the
arm tracks are only 250 mm long. The end-effector consists
of a Barrett 6-DOF force-torque sensor and Robotiq three-

finger adaptive gripper. Working with the manufacturer,
we made custom hardware and firmware upgrades to the
gripper to significantly increase its payload capacity and
grasping force.

Our task analysis showed that CHIMP’s legs needed
only six degrees of freedom. The sixth and seventh drive
joints and an end-effector were replaced with a simple 1-
DOF foot that is utilized for ladder climbing and vehicle
pedal actuation. The foot can rotate to a stowed position
when the tracks are in use or rotate to a load-bearing hard
stop for supporting the full weight of the robot when stand-
ing. To maximize two-limbed driving stability, the leg tracks
are 400 mm long but can only rotate 90°before colliding with
the limb structure.

The arm and leg track assemblies are identical in design
but vary in length for stability and workspace optimization.
The track is a custom 100 mm wide, polyurethane, ATN 12.7
toothed timing belt with a thick vulcanized nitrile backing
for traction. A custom, self-contained drive joint drives the
belt. It includes an incremental encoder, brushless dc mo-
tor, custom planetary gearbox, and custom electromechan-
ical parking brake. Unlike joints that use harmonic drives,
a planetary gearbox is used in the track drive to better han-
dle the shock and impact loads from offroad mobility. The
track is housed inside the limb structure and includes a
lead-screw driven tensioner and suspended idler pulley for
increased ground contact area.

CHIMP’s limbs are modular, serial chains of actuators
with controllers integrated into the connecting structure, as

Journal of Field Robotics DOI 10.1002/rob



Stentz et al.: The CHIMP Robot • 213

Figure 4. Drive joint (left) and component internals (right).

in Figure 3. Each drive joint features an internal slip ring
that passes a shared dc bus for power and a CAN-bus for
communication and control. Signal and power for the end-
effector are also passed through the entire chain. The inte-
grated motor controllers connect the drive joints electrically.
Each joint is controlled using an Elmo Whistle servo drive
with a custom carrier board that adds additional inputs,
outputs, and signal processing. The carrier board has con-
nectors for input from the previous joint’s slip ring, output
to the next joint’s slip ring, and power and control circuits
for one actuator. Through the use of slip rings connecting all
joints, each joint is capable of full continuous rotation when
not kinematically constrained.

We expended significant effort maximizing the rigid-
ity of the limb and torso structure. The location of the
end-effector is primarily calculated using the 18-bit abso-
lute encoders in each drive joint. Any displacement due
to structural flex is unmeasured and directly contributes
to unknown positioning error. Finite-element analysis of a
fully extended arm supporting a 5 kg payload estimated
displacement at the gripper to be about 9 mm. Testing of
the actual arm showed a total, average error of about 4 mm.
This high accuracy positioning contributes to CHIMP’s pre-
cision control and dexterity.

CHIMP’s torso and neck are rigid with no de-
grees of freedom. The sensor head provides 360° of
three-dimensional (3D) LIDAR and color camera data;
therefore, there is little benefit to articulating the neck.
Kinematic analysis showed that a virtual waist can be cre-
ated through coordinated motion of the leg joins, allowing
CHIMP to bend and twist its upper body despite a rigid
torso. Therefore, we made the decision not to include flex-
ibility in the body to maximize electronics and battery vol-
ume. The limbs mount to the torso at a 45° angle to maximize
the virtual waist’s range of motion, minimize shoulder and

hip width for door clearance, and increase the workspace
for dual-handed manipulation.

2.3. CHIMP Drive Joints

Given that CHIMP required a large number of degrees of
freedom, it became clear that to increase our probability
of success, we would need a series of actuators that com-
bined power and torque densities that were not commer-
cially available. In addition, we chose to incorporate a fea-
ture set that would allow for a more robust and durable
design and aid in software development.

Modularity was a key requirement, resulting in com-
pact drive joints that are easily installed or replaced. Tor-
sional compliance built into each joint, in the form of a
torque compliant tube running the length of the drive joint,
provides a safety mechanism to protect the joint from large
impact loads while also simplifying operation when per-
forming force control. By measuring the deflection on each
compliant element using input and output encoders, torque
sensing is possible on each joint. To further protect the drive
joint assembly, a mechanical clutch installed on the output
flange provides torque limiting by causing the joint to slip
rather than damage internal components, while the use of a
magnetically actuated parking brake provides an integrated
solution for drive joints to hold position when powered off
with the robot statically stable. To provide highly accurate
and unique behaviors, each joint provides continuous rota-
tion (when kinematically feasible), has zero backlash, and
uses 18-bit absolute encoders to allow for sub-centimeter
accuracy at the end of each end-effector. See Figure 4 for an
annotated view of a drive joint.

To determine sizing requirements for CHIMP, we de-
veloped a function based on output power and torque ver-
sus mass, and we ran simulations on various orientations

Journal of Field Robotics DOI 10.1002/rob



214 • Journal of Field Robotics—2015

Table I. Drive joint specifications.

NGT-20 NGT-50 NGT-100 NGT-200

Continuous Motor Torque (Nm) 19 90 252 432
Peak Torque (Nm) 50 175 360 660
Continuous RPM 30.4 27.1 14.8 10.9
Mass (kg) 1.0 2.2 3.0 5.2
Length (mm) 90.5 113.5 130.5 135.0
Diameter (mm) 77.0 94.5 111.5 140.0

and scenarios. These simulations helped us size and group
the actuator development into four common sizes, with re-
sultant specifications shown in Table I.

2.4. Power, Control, and Safety Systems

2.4.1. Power Systems

We designed CHIMP to operate with either a battery or an
external tethered power supply. In selecting the main volt-
age, the voltage tolerance of readily available components
was balanced against the desire to minimize the conductor
cross section. In general, higher voltages allow more power
to be transferred over a given conductor size. However,
commercial off-the-shelf (COTS) components such as dc-dc
converters and motor controllers tend to cluster at lower
voltages. Ultimately a bus voltage of around 48 V was de-
sired, as this is an industry standard with a wide component
selection. For battery operation, the full voltage range of the
battery was specified to be 66 V when fully charged and 48 V
when depleted. For tethered operation, we selected an op-
erating voltage of 52 V to allow for voltage drop along the
length of the tether.

Although CHIMP was operated exclusively from a
tether for the DRC Trials in 2013, we designed it from the
beginning to be operable via a battery. Due to the practi-
cal size and weight restrictions for a humanoid robot, the
chemistry selection was effectively limited to Li-ion, which
has the highest energy density among common chemistries.
The specific battery chosen was an increased capacity ver-
sion of the BB-2590 battery, a standardized rugged battery
module designed for hostile environments. BB-2590 battery
modules have several built-in protection mechanisms that
allow the pack-level circuitry to be greatly simplified with-
out sacrificing safety. Each module has a capacity of 10 Ah
at a nominal voltage of roughly 30 V. A single CHIMP bat-
tery pack consists of eight modules arranged in four parallel
stacks of two, for a total energy of 2400 Wh.

In addition to the main battery or tether power supply,
CHIMP also supports a secondary offboard supply desig-
nated the auxiliary power unit (APU). The APU can be
either a small battery pack or a wall-powered ac-dc con-
verter. APU power is routed to the main dc-dc converters
via an ideal diode circuit that prevents it from feeding into

the main battery or onto the motor bus. By providing APU
power, all electronics (but not motors) on CHIMP can re-
main powered while the battery is changed, thus precluding
the need for a full system restart.

Main power is distributed directly to each limb via
independent fuses for fault isolation. The limbs use this
power circuit for driving the motors as well as actuating the
integrated brakes. Main bus voltage also powers two dc-dc
converters to generate 12 and 24 V busses. These lower
voltage busses power the various electronic components on
CHIMP, such as the computers and sensors. As with the
main bus, each component is individually fused for fault
isolation.

2.4.2. Motor Control

For CHIMPs motor controller design, our goal was to mini-
mize size and risk while maximizing power and capability.
Our custom motor design specified the power requirements
for each joint. We selected CAN bus control (as opposed to
Ethernet, Serial, or EtherCAT) because it offered a good
combination of high speed and low conductor count. After
reviewing options for custom controllers as well as COTS
parts, we selected the Whistle controller by Elmo Motion
Controls. The Whistle had by far the greatest power density
of the COTS parts, and we had experience using it. Further-
more, with slightly different arrangements, it was possible
to use the Whistle for every drive joint in the robot, which
provided a single software and electrical interface.

Because the Whistle is designed to be board-mounted,
we used this opportunity to add to the feature set by de-
signing a custom carrier board for CHIMP. Although the
Whistle had many of the functions that the robot required,
we wanted to use encoders on the output of the gearbox that
were not compatible with the motor controller. We mounted
an ARM Coretex M4 onto the custom carrier board to in-
terface with these encoders and communicate on the same
CAN bus as the Whistle. This controller also interfaced with
a microelectromechanical system (MEM) IMU and served as
a heartbeat watchdog to shut off its accompanying Whistle
if there was a lapse in commands from the control computer.

To simplify wiring and repair, both signals and power
pass through the carrier board, allowing the joints to be

Journal of Field Robotics DOI 10.1002/rob



Stentz et al.: The CHIMP Robot • 215

Figure 5. The architecture of CHIMP’s MSTOP Controller.

daisy-chained together. This meant using separate, thick
power planes as well as separate signal planes in the board
to support the pass-through functionality. We created three
variants of the same board to accommodate the physical
structure of CHIMP and allow easy maintenance and re-
placement of motor/controller pairs.

We were concerned about the amount of power re-
quired to hold the brakes in the disengaged position if the
entire robot was moving because of the number of motors in
CHIMP. To address this, we designed a brake driver circuit
into the carrier board that varies the amount of current pro-
vided to the brake so that the “holding” current was much
less than the “take off” current.

2.4.3. Safety Systems

Strong, mobile robots such as CHIMP can pose significant
safety risks that cannot be mitigated completely by adopt-
ing industrial-robot safety standards such as ISO-10218,
especially because it is difficult to establish fixed keep-out
zones for mobile robots. Other relevant safety standards,
such as ISO-26262, can be difficult to apply in the context
of complex, autonomous systems (Koopman & Wagner,
2014). Furthermore, our fast-paced development schedule
made it infeasible to freeze development of CHIMP’s
control software in order to analyze and mitigate hazards
throughout the system architecture. In response to all of
these challenges, we adopted an approach inspired by our
earlier work (Wagner, Koopman, Bares, & Ostrowski, 2009)

that isolates safety-critical function to an independent
subcomponent that can override and disable the more
complex control systems.

On CHIMP, a preliminary hazard analysis identified
that the consequences of many of the hazards listed in ISO-
10218 could be mitigated by maintaining a safe standoff
distance between CHIMP and personnel while the high-
voltage (HV) motor bus was enabled. When CHIMP is op-
erated, a work area and standoff zone are established. A
watchful human operator is given responsibility for iden-
tifying unexpected hazards caused by CHIMP exiting the
work area or personnel entering the standoff area. The op-
erator also monitors CHIMP for unexpected behavior that
may damage the equipment in the test environment or
CHIMP itself. If any hazard is identified, the operator can
reliably disable CHIMP using the subsystem we call the
Mobility-Stop (MSTOP) Controller.

The purpose of the MSTOP Controller subsystem is
to prevent CHIMP’s joint motors from actuating if a red
“MSTOP button” is depressed or if a properly formed heart-
beat message is not received periodically (via CAN bus)
from CHIMP’s control software. The MSTOP Controller has
three mechanisms to prevent motion: 1) engaging fail-safe
brakes on the motors, 2) sending an inhibit command to
limb-motor controllers, and 3) deenergizing CHIMP’s mo-
tor bus after a brief delay.

The architecture of the MSTOP Controller is shown in
Figure 5. This architecture avoids single points of failure by
providing redundant microcontrollers, either of which may

Journal of Field Robotics DOI 10.1002/rob



216 • Journal of Field Robotics—2015

Figure 6. System diagram of CHIMP’s electronic components.

disable the system through series-connected solid-state
relays (X3-X6). The two Mobility Stop inputs are connected
through the tether to two sets of independent contacts
in a safety-rated, mushroom-style button. For wireless
operation, the Mobility Stop inputs are connected to the
independent outputs of a safety-rated wireless receiver.
Due to volumetric constraints, the HV Disconnect output
is connected to a single high-voltage contactor (not shown)
to disconnect power from the motor bus. The risk that the
high-voltage contactor fails to open is mitigated in two
respects. First, the limb-motor brakes are engaged during
an MSTOP, regardless of whether the high-voltage relay
has removed power from the motor bus. Secondly, brakes
remain engaged and controllers remain inhibited if any
HV feedback input indicates that voltage is erroneously
present on the motor bus. The inputs and outputs to each
microcontroller are optically isolated, each microcontroller
has its own voltage regulator, and voltage levels have been
chosen to facilitate fail-stop behavior.

2.5. Embedded Computing Systems

CHIMP’s embedded computing systems provide enough
processing power to support semiautonomous operation.
When an operator sends high-level commands to the robot,
CHIMP is capable of executing and monitoring all tasks lo-
cally while continuing to process large amounts of sensor
data. To support the various functions needed for these ca-
pabilities, we equipped CHIMP with three Quad Core Intel
i7–3820QM CPUs. One of the processors is located in the
sensor head and is dedicated to performing sensor process-
ing, such as visual odometry, LIDAR processing, and sensor

data logging. The other two processors are mounted in the
torso. They control all the limbs, handle the communication
interface, and they are responsible for the main data log-
ging. The interconnections between the three processors are
shown in Figure 6.

In addition to the main embedded processors, CHIMP
is equipped with several field-programmable gate array
(FPGA) systems to serve as sensor interfaces and to pro-
cess data in the sensor head and the torso of the robot. One
important hardware feature built into all of CHIMP’s em-
bedded computers is the ability to synchronize all data to a
common time base. This synchronization allows CHIMP to
accurately merge data from various sensors while recording
the positions of joints precisely in time.

2.6. Sensor System Design

CHIMP’s sensor subsystem must provide accurate data for
use in navigation (e.g., pose estimation and obstacle detec-
tion), situational awareness (e.g., for the robot and human
operator to understand the scene), and manipulation (e.g.,
for the robot to grasp objects). This led to the selection of a
variety of sensors embedded in the robot’s head and torso.

As shown in Figure 7, we selected five main sensing
modalities that are designed to satisfy CHIMP’s navigation,
situational awareness, and manipulation requirements.
Two LIDAR scanners capture 360° of geometric data sur-
rounding the robot. Similarly, two cameras outfitted with
panomorphic fisheye lenses provide video texture data for
the geometric data. A pair of high dynamic range (HDR)
stereo cameras is configured with a wide field of view
and baseline to provide imagery for visual odometry and

Journal of Field Robotics DOI 10.1002/rob



Stentz et al.: The CHIMP Robot • 217

Figure 7. CHIMP’s tasks and corresponding sensing modalities.

Figure 8. CHIMP sensor head.

obstacle detection. Similarly, a second pair of HDR stereo
cameras is configured with a narrow field of view and base-
line to provide detailed range information for manipulation
tasks.

In addition to the sensing components, the sensor head
(Figure 8) contains all embedded processors necessary for
the LIDAR and camera imagery processing tasks, including
a quad core Intel i7–3820QM, two custom Xilinx Spartan 6
FPGA units, and an Arm Cortex M4. These elements are in-
terconnected using Gigabit Ethernet and USB, and all sensor
data are time-stamped using a common time base. Figure 9
describes the architecture of components within the sensor
head.

3. SOFTWARE ARCHITECTURE

CHIMP’s software system interfaces with the various sen-
sors and actuators onboard the robot to accomplish tasks,
while human operators interact with the robot through in-
tuitive user interfaces designed to guide the robot through
these tasks. The overall software architecture includes sen-
sor interfaces, perception algorithms, a positioning system,
motion-planning algorithms, controls, network and com-
munications management, as well as overall user interac-
tion. All systems are designed to work in parallel, utilizing
the limited processing and bandwidth available while
providing all necessary capabilities for mobile

Journal of Field Robotics DOI 10.1002/rob



218 • Journal of Field Robotics—2015

Figure 9. System diagram of sensor head components.

manipulation. Figure 10 displays the overall architec-
ture of the software systems used with CHIMP.

Sensor interfaces retrieve data from the hardware de-
vices found on CHIMP’s head, limbs, and torso to be used
by the perception system. The perception system has two
primary roles. The first and most important is modeling the
environment around the robot for motion-planning pur-
poses. The second is providing situational awareness to
the human operator. To assist with modeling, a position-
ing system makes use of a variety of algorithms to provide
odometry and pose to the overall system.

The operator control interface is used to display the
modeled environment, interact with 3D visualizations of
the robot and its surroundings, and place planning fixtures
within the environment. Task-specific wizards guide the
user through the creation of these fixtures. The operator
control interface interacts closely with planning algorithms
that run on the operator side computing. These planning
algorithms use fixtures to specify constraints in order to
generate collision-free motion paths that perform tasks.

These paths are transmitted to the robot where the con-
trols system generates fully timed trajectories. These tra-
jectories incorporate additional calculations of static and
dynamic torques to move limbs along the collision-free
paths. The trajectories are executed using a 500 Hz real-time
controller.

The overall goal of the CHIMP software architecture
is to allow a human operator to quickly and easily spec-
ify tasks for the robot to accomplish, leveraging all of the
subsystems while guaranteeing task execution. Through-
out this section, we will provide details for these various
components of CHIMP’s software systems.

3.1. Operator Control Interface

Human operators interact with CHIMP via an operator
control unit (OCU). This user interface provides the
operator with situational awareness of the robot and its sur-
roundings, allowing the user to be immersed in the remote
environment while making informed decisions about tasks
the robot must accomplish. These tasks are accomplished
through a series of task-specific wizards that guide the
user through the placement of planning fixtures, virtual
objects that provide semantic information about what the
robot must do, after which planning algorithms are used
to preview and validate collision-free motion paths for the
robot to execute. The operator interacts with the OCU to
accomplish three different levels of control. In task space
control, the operator uses the wizards and planning fixtures
described earlier to leverage the respective advantages of
humans and robots. Humans excel at scene understanding
and can easily place fixtures that define the semantics
of how objects work; robots excel at the high-precision

Journal of Field Robotics DOI 10.1002/rob



Stentz et al.: The CHIMP Robot • 219

Figure 10. CHIMP robot software architecture.

motions necessary to execute these tasks. In workspace
control, a human specifies end-effector motions while the
robot manages their execution. This mode is useful when
the robot must execute something for which we do not
have a proper “task” encoding. Joint space control can be
used in a pinch to perform actions on a joint-by-joint basis.

With an accurate model of the environment surround-
ing the CHIMP robot, the human operator requests tasks
using a planning system that generates robot motion tra-
jectories that satisfy all goals and constraints. All tasks for
the planning system are presented to the algorithms us-
ing the concept of planning fixtures (Figure 11), geometric
constraints that describe the steps of a task in detail to the
robotic system. Planning goals include target joint config-
urations, end-effector locations, and task-specific motions
(such as moving objects in straight or curved paths). Fix-
tures are placed directly into the 3D scene of the environ-
ment and define semantics about tasks in the environment.
For instance, in the wall-cutting task, fixtures describe how
the robot must grasp the handheld drill, where the drill’s
cutting bit is located, and how to trace a path along a wall
in order to perform a cut. Rather than being derived from
perception data, fixtures are placed directly by a human op-
erator studying the OCU displays for situational awareness.

Task-level wizards simplify robot execution of common
tasks. For example, during the valve task the user must label
the valve (axis of rotation, where to grasp, and how far to
turn), query the planning system, preview the motion plans,
and monitor execution. A single wizard, tailored to this spe-
cific task, guides the user through these steps. These wiz-
ards make use of a modular and customizable architecture,
allowing the OCU to display robot data in various configu-
rations to maximize the operator’s effectiveness. When nec-
essary, however, the operator may also access lower-level
displays that provide greater detail on underlying systems
(i.e., health and safety monitoring, raw sensor data, and
diagnostics) while using extra bandwidth only as needed.

These modular displays are built using the Qt frame-
work for layout and the ROS libRViz framework for 3D
visualization and interaction. We leverage many existing
pieces of RViz functionality to provide 3D visualization of
different types of sensor data and object displays, such as
natively displaying sensor point clouds, transform frame
locations, and robot state. The OCU additionally provides
interaction with cameras and video streams transmitted
by the robot. Using a plugin architecture built atop the Qt
framework, individual plugins are allowed to add 3D ob-
jects, toolbar and menu items, and create new methods for

Journal of Field Robotics DOI 10.1002/rob



220 • Journal of Field Robotics—2015

Figure 11. Example fixtures created by the operator to annotate the wall cutting task, including a virtual floating gripper to
represent how the robot holds the drill, a volumetric bounding box for the drill, the location of the drill’s cutting bit, and a planar
cutting path along the wall’s surface.

user interaction. All plugin panels can be undocked as new
windows and laid out according to each user’s preference.

In addition to controlling tasks, the OCU’s responsi-
bilities include providing intuitive 3D representations of
the perceived environment, robot state, and tasks, inter-
acting with the planning system, and providing modal dis-
plays that report robot health, robot communications status,
and more. These must all be performed while using as lit-
tle bandwidth on the communications channel as possible,
while still providing the operator with complete control of
the robot.

Examples of OCU displays and plugins are shown in
Figure 12. Visible in the center is the 3D display of the envi-
ronment. The OCU is capable of simultaneously displaying
multiple views into the 3D world, allowing user interac-
tion in any of these views. Camera views on the left-hand
side allow the user to manage camera video feeds and se-
lect regions of interest on demand. Additional plugins are
used to interact with the communications system (provid-
ing real-time diagnostics on its state as well as allowing
modifications to data priorities) and monitor robot health.
A Vitruvian CHIMP diagram (lower left-hand side) displays
detailed diagnostics from the robot’s hardware and safety
systems, warning users of critical events as they occur.

Finally, the OCU allows the user to fall back on direct
teleoperation of CHIMP when necessary. Utilizing a generic
gaming joystick, the operator can control CHIMP by speci-
fying workspace velocity control of arbitrary points on the
robot. The most common use is to remotely control one
of CHIMP’s end-effectors for grasping or manipulating an
object. It is also used for controlling CHIMP’s elbow or

tracks and for driving on two or four limbs. Joint space con-
trol is possible as well, with the operator exercising com-
plete joint-by-joint control at very fine resolutions when
necessary.

3.2. Perception for Environment Modeling

Given no line of sight between operator and robot, the pri-
mary goal of the perception system is to provide situational
awareness for performing mobility and manipulation tasks.
Due to occlusions, however, CHIMP’s sensors cannot see
the entire environment from a single vantage point, thus
the system fuses together pieces from multiple viewpoints
when generating a 3D model. These models are geocentric
so that they remain fixed as the robot moves about. To
improve situational awareness, models are texture mapped
with camera data and updated incrementally over time. Fur-
thermore, the OCU allows these models to be rendered from
arbitrary viewpoints, allowing a user to easily perceive the
robot’s surroundings. Due to the limited bandwidth avail-
able, the models are sparse and are represented at different
resolutions based upon each task, while model changes
are transmitted and reconstructed at the OCU to preserve
bandwidth. In addition to providing situational awareness,
these models are used by motion-planning routines to
guarantee safe, collision-free paths when determining robot
motions.

The perception system utilizes sensor data to de-
termine the occupancy of environmental models. LIDAR
data from CHIMP’s sensor head, colorized using the two

Journal of Field Robotics DOI 10.1002/rob



Stentz et al.: The CHIMP Robot • 221

Figure 12. CHIMP operator control unit.

panomorphic fisheye cameras and transformed into geo-
centric coordinates using the positioning system, are the
primary range input to the perception system, however col-
orized range data computed from stereo disparity are also
supported.

For all world modeling purposes, CHIMP uses collec-
tions of voxels grids (Figure 13). These grids contain 3D sets
of voxels, each containing occupancy and color tagging in-
formation. Grids are created with different extents and res-
olutions based upon the requirements of individual tasks,
balancing high-resolution world modeling with bandwidth
and computational constraints. The user can view the robot
within a coarse grid of voxels (0.5 m resolution) out to the
full 30 m sensor range for situational awareness. Higher-
resolution models capture the local environment immedi-
ately surrounding the robot (0.05 m resolution). On-demand
regions-of-interest, typically placed by a user at a specific
location, provide information at the 1 cm level and are used
when creating planning fixtures for objects in the environ-
ment. Through plugin panels available on the OCU, a robot
operator can actively modify the settings for each voxel grid,

determine which grids to display at a given time, and view
the scene from arbitrary vantage points using the 3D user
interface.

Voxel grids are implemented using the Octomap open-
source library, utilizing octree data structures to efficiently
describe occupancy of voxels (Hornung, Wurm, Bennewitz,
Stachniss, & Burgard, 2013). Additional features have been
added for use on CHIMP, including color tagging individ-
ual voxels using textures from registered imagery data and
additional models of occupancy for use with the LIDAR
data created by CHIMP’s sensor head. Based upon the time
history of hits and pass-throughs and algorithms counting
these values, individual sensor measurements note the like-
lihood of whether an individual cell is occupied.

As voxel grids are used extensively throughout
CHIMP’s software, having an efficient means of transfer
over a limited bandwidth link is a critical component in our
approach. To do so, voxel deltas are computed, determining
the set of all voxels changed in a given amount of time. These
voxel deltas synchronize distributed models of the world,
thus allowing the operator to see the same data as the robot,

Journal of Field Robotics DOI 10.1002/rob



222 • Journal of Field Robotics—2015

Figure 13. Example of rendered voxel grids during a manipulation task.

while only sending a small amount of data at a time. In
nondynamic environments, the voxels do not change very
rapidly, thus a huge bandwidth savings is possible through
the use of voxel deltas.

In addition to providing situational awareness allow-
ing a human operator to perceive the environment, the voxel
models are used when performing motion planning of ac-
tions. Using grid representations of voxels, robot motions
are tested for collision, thus ensuring the motions gener-
ated by the planning routines are collision-free and do not
attempt to move the robot limbs through obstacles.

3.3. Positioning System

Highly accurate positioning is valuable for many purposes.
First and foremost, maintaining models of the environment
(both for situational awareness and for robot autonomy)
requires that these models be globally consistent, despite
being generated from multiple vantage points as the robot
moves about the world. Furthermore, as CHIMP executes
tasks, accurate positioning is required to engage with objects
(e.g., pick up an object at a specific location) and to avoid
collision. Lastly, if the perception models are misregistered
over time, the robot will incur a bandwidth cost to update
the models using voxel deltas. For these reasons, CHIMP
utilizes a positioning system that strives for high accuracy
and precision through redundant sensor modalities fused
in a Kalman filter.

A variety of sensors provide accurate positioning for
perception and mobility tasks. They can operate indoors,
outdoors, and in the unstructured environments typical of
disaster scenarios. Designed primarily for reliability and
redundancy during motion, CHIMP’s positioning system
prioritizes locally consistent position information so that
perceived environment models remain useful throughout
robot operation.

At its core, the positioning system uses a navigation
grade Honeywell IMU, selected for its accuracy in the worst-
case scenario when all other aiding systems fail. This sys-
tem provides measurements accurate to within 10 m over
several minutes at a time, as well as subdegree orienta-
tion accuracy for several hours. Using cameras on its sen-
sor head, CHIMP incorporates a visual odometry system
(Nister, Naroditsky, & Bergen, 2006) to provide estimates
of pose changes over time. This system produces solutions
based upon incremental structure from motion estimates
while using key frame selection and sparse local bundle
adjustment (Engels, Stewenius, & Nister, 2006) to refine the
results. An additional input to the positioning system comes
from kinematic odometry measurements, calculated using
the high-precision encoders found on each of CHIMP’s
drive joints. Odometry is calculated using a skid steer model
of CHIMP’s track drive mechanisms and mapped to the
varying relative location of the IMU (with respect to the
tracks) using joint measurements.

All three sources of measurements—visual, inertial,
and kinematic—are blended in a modified extended
Kalman filter. The filter uses the common indirect iner-
tial navigation state model, which decouples subsystems
and allows the inertial navigation, visual odometry, and
kinematic odometry to continue operating normally in the
event of filter failure. Furthermore, the filter is modified
to handle the relative position measurements of the sen-
sors and to deal with significant latency of some measure-
ments, such as the visual odometry data (George, Tardif, &
Kelly, 2013).

CHIMP’s positioning system runs on an embedded
400 MHz processor that interfaces directly with the IMU and
a GPS receiver. It receives kinematic odometry and visual
odometry information over a network link and can account
for latency in these measurements. A schematic diagram of
the positioning system is shown in Figure 14.

Journal of Field Robotics DOI 10.1002/rob



Stentz et al.: The CHIMP Robot • 223

Figure 14. Positioning system architecture.

3.4. Planning Systems

CHIMP’s planning system is designed to support task-level
execution. This begins with the human operator annotating
the environment using planning fixtures, semantically de-
scribing how the robot must grasp, manipulate, and move
objects. These fixtures define constraints that the planning
system must respect when interacting with specific ob-
jects (for instance, a valve must be turned precisely on its
axis of rotation). Lastly, the planning system must support
planning in very high-dimensional spaces while checking
for collisions and fixture constraints, to produce full free-
space motions that make use of the robot’s high degree-of-
freedom limbs.

Fixtures that the operator annotates in the scene de-
fine task-space geometric constraints on the poses of other
objects (either robot links or other fixtures). For example, a
grasping strategy fixture may be configured to constrain the
right gripper to a particular pose relative to a grabbed object,
or a single-DOF axis fixture may be configured to constrain
a door handle fixture between a closed and an opened angle.
Once these annotations are added to the scene, the planning
system is invoked to produce a robot trajectory that moves
in accordance with these constraints. The request may spec-
ify a desired end-point constraint (i.e., constrain the trajec-
tory end point only), and/or a trajectory-wide constraint
(i.e., constrain every trajectory waypoint).

The geometric constraints are specified in Cartesian
space in order to be task-relevant and straightforward for
the operator to reason about. We chose the task space re-
gion (TSR) parametrization (Berenson, Srinivasa, & Kuffner,
2011) due to its combination of simplicity, expressiveness,
and desirable properties for planning (e.g., well-defined
metric and projection operator). To produce robot trajec-
tories to, between, and along these constraints, we used
the Constrained Bi-directional Rapidly-exploring Random
Tree (CBiRRT) algorithm (Berenson, Srinivasa, Ferguson, &
Kuffner, 2009), represented in Figure 15.

When desired by the operator, the OCU generates a
planning request message that includes a snapshot of the
full world state (including all voxel data and fixtures), the
current robot pose and joint configuration, and the fixture
identifiers to be used to constrain the desired robot tra-

Figure 15. A visualization of the CBiRRT algorithm; during
tree extension to the sampled target point qtarget from the near-
est node qnear, each new node is projected onto the constraint
surface (green). Reprinted from Berenson et al. (2011).

jectory, if any. This planning request is then passed to the
planning system. This encapsulation allows for planning
requests to be logged and later reproduced for efficient im-
plementation and development of planners.

The planning architecture is a multiprocess system con-
sisting of a number of planning nodes, each implementing a
common request/response interface using ROS’s actionlib.
We used a number of different planning nodes, including
a CBiRRT planner, a constrained path shortcutter, a cached
trajectory generator, and a full-body posture change plan-
ner. For tasks that required a predetermined sequence of
subplans (e.g., debris clearing, valve turning, and wall cut-
ting), we implemented task planner nodes that intelligently
sequenced subplanners and concatenated their results. We
also implemented a simple fan-out dispatcher node, which
received requests (e.g., from the OCU), and simultaneously
broadcasted them to all known planning nodes, aggregating
the result in a first-to-succeed manner.

3.5. Control System

CHIMP requires precise motor control to accurately position
its limbs and end-effectors to grasp objects and avoid obsta-
cles. Furthermore, it requires accurate models of torque and
manipulation forces to support forceful manipulation with-
out damaging objects within the environment (e.g., acciden-
tally breaking a door handle). CHIMP’s control system is de-
signed to support these operations while also guaranteeing
safety, performance, and reliability in addition to precision
and strength. When performing a given task, all control is

Journal of Field Robotics DOI 10.1002/rob



224 • Journal of Field Robotics—2015

performed directly and autonomously on the robot to avoid
any delay due to bandwidth restrictions or latency.

All control of CHIMP’s limb and gripper motors (a total
of 38 degrees of freedom) is performed by a single process
running on one of the Core-i7 processors in the torso. By
controlling all of the drive joints from a central process, we
are able to achieve better synchronization and thus higher
end-point accuracy than if we relegated the position control
to the distributed Elmo motion controllers. Furthermore,
centralized control allows us to add torque terms for each
joint that compensate for the static and dynamic effects cre-
ated by the rest of the robot, improving the stability and
accuracy during motion.

The controller consists of three primary components: a
high-level trajectory generator that allows the planners to
command CHIMP via position or velocity sequences across
a robot operating system (ROS) interface; a midlevel con-
trol system that calculates correction torques for each of
the joints in order to keep them on target; and a low-level
hardware interface that manages the CAN bus interfaces to
gather feedback from and send commands to each of the
hardware nodes.

The trajectory generator accepts sequences of multi-
DOF position waypoints and calculates timed joint trajec-
tories that observe position, velocity, acceleration, and jerk
limits for each of the joints. It also provides a velocity inter-
face for direct control of the track speeds and for real-time
servoing of the limb joints during user teleoperation.

The joint control component performs all calculations
in joint units (positions, velocities, torques), leaving it to
the hardware interface to translate the values into motor
units. Individual joint torques are calculated via standard
proportional-integral-derivative (PID) controllers, which
can be modified at runtime to provide specific control be-
haviors such as compliance in specified workspace direc-
tions. The control component also calculates feedforward
torques to proactively compensate for gravity, coriolis, cen-
tripetal, and acceleration forces on each of the kinematic
links. PID gains are manually tuned by analyzing the re-
sponse to single-joint step inputs, and all control values
from each cycle can be optionally logged to disk for offline
analysis of transient behaviors.

Trajectories are executed in real time, controlling the
movement of all joints simultaneously while also moni-
toring overall joint speeds and torques. By comparing the
actual torque of a given joint against the calculated feed-
forward torque, the control software notes when a joint ex-
periences torque far greater than expected, such as when
a limb encounters an unexpected obstacle. In this scenario,
the software safely degrades by temporarily halting the con-
trol system, engaging the parking brakes on all robot joints,
and waiting for the robot operator to reactivate and initiate
robot control.

The hardware interface component maintains commu-
nication with 64 CAN bus nodes across four 1Mb CAN

buses (one per limb). During each control cycle, it calcu-
lates motor currents necessary to achieve the specified joint
torques, sends the currents to the Elmo motion controllers,
and gathers actual motor and joint encoder values from
the Elmos and the ARM Coretex modules. Additionally,
the hardware interface gathers ancillary sensor data (motor
and drive temperatures, drive status, MEMS IMU readings)
to protect the hardware from damage. Because the over-
all control cycle frequency is limited by the speed of the
CAN bus communications, substantial effort was spent on
developing protocols to minimize overhead and maximize
throughput. As a result, we are able to achieve a control fre-
quency close to 500 Hz. As with the control component, the
hardware interface component also has an optional logging
facility that allows it to record every CAN bus message on
all four busses for offline analysis.

To achieve the stringent timing requirements, the con-
troller runs on two dedicated cores of the processor and
elevates the Unix scheduler priority of the thread perform-
ing the CAN bus communication and joint control calcula-
tions. Data flow into and out of the control thread is han-
dled by lower priority threads using circular ring buffers
and minimal use of mutexes. The hardware interface ab-
stracts away specific details so that the controller can be
run on different hardware or in a simulation mode without
any changes to the higher-level ROS clients. Finally, most of
the hardware configuration is specified via runtime param-
eters, which allows us to exchange hardware and maintain
calibration values without modifying any source code.

3.6. Communications and Network Bridge

The major requirement of CHIMP’s communications sys-
tem is to manage all communications between the OCU
and the robot while ensuring the system stays within the
constraints of the network connecting the two. These com-
munications include receiving updates to the 3D models of
the environment surrounding the robot, receiving informa-
tion regarding the current state of the robot, and sending
control commands for the robot to execute tasks. Given the
severe bandwidth and latency restrictions, we have devel-
oped a scheme to constantly compress data and prioritize
communications based upon what the robot and operator
require at any given time.

At the DRC Trials, DARPA tested the teams’ robustness
to poor communications channels by introducing artificial
impairments to the network between the robot and opera-
tors. They used a Mini Maxwell network emulator from In-
terWorkings Labs to affect both the available bandwidth and
latency of the network. During the actual competition, the
network alternated between two states: “good” and “bad.”
During “good” communications, the bandwidth was lim-
ited to 1 Mbps and an induced, round-trip latency of 0.1 s
round trip. Under “bad” communications, the bandwidth
was limited to 100 Kbps and an induced, round-trip latency

Journal of Field Robotics DOI 10.1002/rob



Stentz et al.: The CHIMP Robot • 225

of 1.0 s. Given the constant changes in network degradation,
it is essential to have a software system constantly monitor-
ing and managing the flow of data between the OCU and
the robot to prevent overloading the communications link.

To achieve this with the ROS architecture, we split our
system into two ROS networks. One ROS network is for
the computers onboard CHIMP; the other is for the OCU
computers. Each ROS network has its own ROS master. We
created a Communications Bridge (CommsBridge) module
to handle communication between the two networks. This
provides a single point of data transfer from CHIMP to the
operator.

The CommsBridge software is a custom library that
provides a point-to-point communications link while mon-
itoring and reporting the health of the link. This includes
present bandwidth utilization and latency observed from
both sides of link. It provides the ability to send messages us-
ing either lossy or lossless style guarantees. This can be con-
figured per data pipe. A lossy guarantee means the Comms-
Bridge will send the message once and forget about it if the
link drops it. A lossless transmission will ensure that a mes-
sage is received by the other side even if this blocks newer
data that have arrived in the outgoing queue. Each data
channel also has a configurable queue size that can be used
to throttle messages and ensure only the most up-to-date in-
formation is available. Lastly, each data channel is assigned
a unique, rank-order priority. The CommsBridge software
uses these priorities when determining what data to send.
The CommsBridge will always send data from high-priority
channels before those from low-priority channels.

Finally, we created a ROS interface for the Comms-
Bridge library. The wrapper handles the ROS communica-
tions on each side of the two networks. It is responsible for
subscribing to and queuing ROS messages and republishing
them on the other end. This solution allows us to run our
software with or without the CommsBridge without any
additional changes to the rest of the system. The wrapper
also provides additional functionality for controlling each
message channel. Each message channel has the option to
turn on compression of messages. The operator can decide
at runtime to configure a channel to send all data received,
disable the channel altogether, or specify that it should send
n messages and then stop. The wrapper allows configura-
tion of throttling to a specific rate on a per channel basis.

The Communications Bridge is essential in maximizing
the utilization of the poor network link between the operator
and CHIMP, and it allowed the operator to concentrate on
completing a task and not actively monitor or care about
the state of the network.

4. CHIMP TESTING AND TRIALS

We now describe Tartan Rescue’s strategy to prepare for
the DRC Trials in December 2013 as well as CHIMP’s over-
all performance in the trials. As with any large systems

engineering project, the principal challenge in preparing
CHIMP for the trials was the massive systems integration
required to field a complete hardware and software system.
Due to the compressed schedule of the DRC, systems had
to be designed and built in parallel; thus we relied upon
simulations, surrogate hardware, and testing throughout.
An enormous effort was required by the entire team to both
finalize the robot’s construction as well as thoroughly test
all software in time for competition at the DRC Trials.

Despite the disadvantage of not having an available
robot to test our entire approach until the final weeks lead-
ing up to the DRC Trials, our strategy was a successful one,
with CHIMP placing 3rd in the trials, and Tartan Rescue
qualifying for additional funding from DARPA to prepare
for the upcoming DRC Finals.

4.1. CHIMP Testing

Unlike other teams with access to existing humanoid robots
at the start of the DRC program, our CHIMP robot was a
mere concept on paper. To design and build the robot from
scratch over the course of 15 months, we used a variety of
simulations and surrogate hardware systems to begin soft-
ware testing and systems integration early in the schedule.
When CHIMP was fully constructed, only six weeks prior
to shipping for the DRC Trials, we transitioned from sub-
systems verification to full system testing, including end-
to-end tests on most DRC Trials task events.

We utilized simulation heavily to guide our design
choices. By developing multiple simulations early in the
process, we validated design decisions using various meth-
ods, thus allowing for rapid design iterations. With an ini-
tial design for the robot’s degrees of freedom and kinematic
arrangement, we used dynamic simulations (created by a
team sponsor using commercial software) to validate drive
joint sizing and ensure the robot’s limbs would be strong
and fast enough for typical tasks. Furthermore, we used
simulations of the robot’s kinematics and statics to test the
manipulation workspace of the limbs, validate CHIMP’s
approach for static stability, and test visibility constraints of
sensor placement on the robot’s head.

An even more critical component for software devel-
opment, however, was the use of surrogate hardware to test
early and often. The software team used a 7-DOF arm that
was designed and built for a previous project for early con-
trols and manipulation testing. While kinematically similar
to the eventual CHIMP limb designs, this surrogate arm
exhibited significant error in end-effector accuracy, differ-
ent from CHIMP’s design requirement of sub-centimeter
accuracy. To combat this, we used a commercial motion
capture solution to measure and correct for any inaccuracy,
thus simulating the absolute precision of CHIMP’s limbs
well before they were designed and built. We used simi-
lar approaches to test sensors and perception algorithms by
mounting CHIMP’s various sensors and other components

Journal of Field Robotics DOI 10.1002/rob



226 • Journal of Field Robotics—2015

Figure 16. An operations trailer, containing isolated power, network, and computing, used to control the CHIMP robot. Inset:
exterior view of the trailer at the DRC Trials.

into a fully integrated system before finalizing the design
and construction of the sensor head. We placed this surro-
gate head alongside the surrogate arm during manipulation
testing, and we also used it with a rolling base (including
IMU) to test the positioning system software early in the
project.

Using a surrogate sensor head and a fixed base sur-
rogate arm, our software development efforts focused on
manipulation tasks. When the CHIMP robot was fully con-
structed on November 1, 2013, its design with static stabil-
ity and precision motion control allowed our software to
be directly ported between platforms with very few mod-
ifications. Further development was required to integrate
software that could not be tested using either simulations
or surrogate hardware, such as mobility using CHIMP’s
track drive systems and kinematic odometry input to the
positioning system.

To realistically test bandwidth constraints and the ef-
fect upon remote operation, we performed sequestered op-
eration over the network-disrupting MiniMaxwell device,
identical to the setup used at the DRC Trials. An opera-
tions trailer (Figure 16) was outfitted with desks, isolated
power, networking, and computing, providing a setup that
was used both in NREC’s Pittsburgh facility and at the DRC
Trials. In the days and weeks prior to the DRC Trials, we
performed testing on mocked-up challenge events in con-
figurations that were as close as possible to the actual con-
figurations at the trials.

4.2. DARPA Robotics Challenge Trials Performance

The DRC Trials were held on December 20–21, 2013, with
CHIMP being one of 16 robot competitors attending. While

CHIMP was designed to have humanlike dexterity and ma-
nipulation capabilities, its track-drive mechanisms for sta-
ble locomotion and precision manipulator arms to perform
tasks made it one of the most unique robot designs. The
supervised autonomy approach taken to control CHIMP, in
which a human operator places fixtures to annotate the envi-
ronment and guide task execution, was successful through-
out the challenge events. Furthermore, the use of a statically
stable robot that was designed for both strength and preci-
sion led to CHIMP’s overall reliability at accomplishing the
tasks required.

CHIMP’s performance at the DRC Trials focused heav-
ily on manipulation tasks, the result of a conscious deci-
sion months before to focus development efforts on critical
manipulation capabilities developed using surrogate hard-
ware. Despite the robot’s unique mobility design, the short
time frame available with the robot required prioritization,
thus curtailing development on the three mobility tasks.
At the trials, CHIMP scored only 2 of 12 possible mobil-
ity points. In comparison, CHIMP was a top contender
on manipulation tasks, scoring 16 of 20 possible points.
Overall, CHIMP placed 3rd among the field of 16 competi-
tors, a strong standing for a robot that was a mere con-
cept 15 months prior. Table II shows the individual points
awarded to CHIMP during the DRC Trials.

Our approach for supervised autonomy was also suc-
cessful at the DRC Trials. Our software system utilized
planning algorithms to determine CHIMP’s own motions
for most tasks. It performed collision checking against it-
self and environment models while feeding back the state
of the robot and environment at all times to the human
operators, rather than relying heavily upon teleoperation
approaches. An example of our planning approach is the

Journal of Field Robotics DOI 10.1002/rob



Stentz et al.: The CHIMP Robot • 227

Table II. DRC Trials results for the CHIMP robot.

Event Time Interventions Points

Vehicle N/A N/A 0
Terrain 30 0 1
Ladder 30 0 1
Debris 29 0 4
Door 30 0 2
Wall 27 0 4
Valve 21 0 4
Hose 30 0 2
TOTAL 197 0 18

wall cutting task (Figure 17), in which CHIMP executed
perfectly straight cuts to remove a piece of dry wall while
using a handheld drill. Furthermore, once a human oper-
ator annotated the wall cut desired, the software system
computed and executed the necessary motions with very lit-
tle human intervention. In all, CHIMP’s stability, precision,
and strength, coupled with unique methods for operator
control, were all great successes at the DRC Trials.

5. CONCLUSIONS

CHIMP’s performance at the DRC Trials validated its de-
sign. The robot was never in danger of falling down; in
fact, it was the only robot that did not incur an intervention
to arrest a fall. The electric drive limbs demonstrated both
power and precision in picking up a heavy tool and cut-
ting a straight line in the wall. The high-DOF limbs enabled
CHIMP to maneuver in constrained environments when
removing boards from a truss and opening a door.

The operator interface was an excellent tool for the
remote operator to plan, preview, and evaluate candidate
operations before committing CHIMP to execution. The in-
cremental model construction and updating made such effi-
cient use of the limited bandwidth that operators performed
the same whether communications were degraded or not.
The operators made use of all modes of control, including
task mode for removing debris, workspace mode for grasp-
ing the rail and stepping on the ladder, and joint mode for
adjusting the legs to balance the torques in CHIMP’s knees.

In the end, CHIMP’s performance was limited only by
a lack of sufficient development time. We started the DRC
Trials with the software capability to compete for 22 of the
32 possible points. In the end, Tartan Rescue captured 18 of
those points for 3rd place overall. On the road to the DRC

Figure 17. CHIMP at the conclusion of the “Wall” task event.

Journal of Field Robotics DOI 10.1002/rob



228 • Journal of Field Robotics—2015

Finals, we will develop the remaining software necessary to
capture all points. We will also work on increasing the level
of autonomy and reducing the time required to perform
the tasks. We believe that the CHIMP robot hardware is an
excellent design and we will develop software that makes
maximal use of its inherent capabilities.

ACKNOWLEDGMENTS

Development of the CHIMP robot has been supported by
DARPA/SPAWAR under Contract No. N65236–12-C-3886.
This work would not be possible without the extreme ded-
ication of the Tartan Rescue team as well as the entirety of
the National Robotics Engineering Center at Carnegie Mel-
lon University. Additional team sponsors have provided
generous support, including Accurate Gear and Machine,
Brentronics, Eclipse Metal Fabrication, Elmo Motion Con-
trol, Faulhaber, Glenair, Google, Harmonic Drive, Honey-
well, Kollmorgen, Micromo, Oshkosh/JLG, Pratt & Miller,
Robotiq, Sepac, and THK.

REFERENCES

Bagnell, J. A., Cavalcanti, F., Cui, L., Galluzzo, T., Hebert, M.,
Kazemi, M., Klingensmith, M., Libby, J., Liu, T. Y., Pollard,
N., Pivtoraiko, M., Valois, J.-S., & Zhu, R. (2012). An inte-
grated system for autonomous robotics manipulation. In
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS’12).

Berenson, D., Srinivasa, S., Ferguson, D., & Kuffner, J. (2009).
Manipulation planning on constraint manifolds. In Pro-
ceedings of the IEEE International Conference on Robotics
and Automation (ICRA ’09).

Berenson, D., Srinivasa, S., & Kuffner, J. (2011). Task space
regions: A framework for pose-constrained manipula-
tion planning. International Journal of Robotics Research,
30(12), 1435–1460.

Engels, C., Stewenius, H., & Nister, D. (2006). Bundle adjust-
ment rules. Photogrammetric Computer Vision 2.

George, M., Tardif, J.-P., & Kelly, A. (2013). Visual and inertial
odometry for a disaster recovery humanoid. International
Conference on Field and Service Robotics (FSR ’13).

Grizzle, J. W., Chevallereau, C., Ames, A. D., & Sinnet, R. W.
(2010). 3D bipedal robotic walking: Models, feedback con-
trol, and open problems. 8th IFAC Symposium on Nonlin-
ear Control Systems (IFAC ’10).

Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., &
Burgard, W. (2013). OctoMap: An efficient probabilistic
3D mapping framework based on octrees. Autonomous
Robots, 34, 189–206.

Kanade, T., Rander, P., & Narayanan, P. J. (1997). Virtualized
reality: Constructing virtual worlds from real scenes. In
IEEE MultiMedia Magazine 4, 1 (IEEE ‘97).

Kelly, A., Chan, N., Herman, H., Huber, D., Meyers, R., Ran-
der, P., Warner, R., Ziglar, J., & Capstick, E. (2011). Real-
time photorealistic virtualized reality interface for remote
mobile robot control. International Journal of Robotics Re-
search, 30(3), 384–404.

Koopman, P., & Wagner, M. (2014). Transportation CPS safety
challenges. NSF Workshop on Transportation Cyber Phys-
ical Systems.

Kortenkamp, D., Burridge, R., Bonasso, P., Schrenkenghost, D.,
& Hudson, M. (1999). An intelligent software architecture
for semiautonomous robot control. In Autonomy Control
Software Workshop (Autonomous Agents ’99), 99, 36–43.

Nister, D., Naroditsky, O., & Bergen, J. (2006). Visual odometry
for ground vehicle applications. Journal of Field Robotics,
23(1), 3–20.

Sheridan, T. B. (1992). Telerobotics, automation, and human
supervisory control. Cambridge, MA: MIT Press.

Tzafestas, C. S. (2006). Virtual and mixed reality in telerobotics:
A survey, Industrial Robotics: Programming, Simula-
tion, and Applications. In Low Kin Huat (E d.), ISBN:
3-86611-286-6, InTech, DOI: 10.5772/4911. Available from:
http://www.intechopen.com/books/industrial_robotics
_programming_simulation_and_applications/virtual_
and_mixed_reality_in_telerobotics__a_survey.

Wagner, M., Koopman, P., Bares, J., & Ostrowski, C. (2009)
Building safer UGVs with run-time safety invariants. Na-
tional Defense Industrial Association Systems Engineering
Conference.

Yi, S.-J., Zhang, B.-T., Hong, D., & Lee, D. D. (2011). Prac-
tical bipedal walking control on uneven terrain using
surface learning and push recovery. IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems
(IROS ’11).

Journal of Field Robotics DOI 10.1002/rob


