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Abstract

Our closest living relatives, chimpanzees and bonobos, have a complex demographic history. We 

have analyzed the high-coverage whole genomes of 75 wild-born chimpanzees and bonobos from 

ten countries in Africa. We find that chimpanzee population sub-structure makes genetic 

information a good predictor of geographic origin at country and regional scales. Most strikingly, 

multiple lines of evidence suggest that gene flow occurred from bonobos into the ancestors of 
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central and eastern chimpanzees between 200 and 550 thousand years ago (Kya), probably with 

subsequent spread into Nigeria-Cameroon chimpanzees. Together with another possibly more 

recent contact (after 200 Kya), bonobos contributed less than 1% to the central chimpanzee 

genomes. Admixture thus appears to have been widespread during hominid evolution.

Main Text

Compared to our knowledge of the origins and population history of humans, much less is 

known about the extant species closest to humans, chimpanzees (Pan troglodytes) and 

bonobos (Pan paniscus). Unraveling the demographic histories of our closest living relatives 

provides an opportunity for comparisons with our own history, and thus for studying 

processes that might have played a recurring role in hominid evolution. Due to a paucity of 

fossil records (1), our understanding of the demographic history of the Pan clade has 

primarily relied on population genetic data from mitochondrial genomes (2,3), nuclear 

fragments (4,5), and microsatellites (6,7). More recently, the analysis of whole-genome 

sequences from chimpanzees and bonobos hinted at a complex evolutionary history for the 

four taxonomically recognized chimpanzee subspecies (8). However, although chimpanzees 

and bonobos hybridize in captivity (9), the extent of interbreeding among chimpanzee 

subspecies and between chimpanzees and bonobos in the wild remains unclear.

We analyzed 75 complete genomes from the Pan clade, of which 40 were sequenced for this 

project to a mean sequence coverage of 25-fold. Our samples span ten African countries, 

from the westernmost to easternmost regions of the chimpanzee range (Fig. 1A). We 

discover 32% more variable sites than previously identified (8,10), highlighting the value of 

our sampling scheme. Different analyses suggest larger historical effective population sizes 

in central chimpanzees, including haplotype diversity in each subspecies (Fig. S5), Y 

chromosome diversity (Fig. S3), FST-based phylogenies (Fig. S16) and genome-wide 

linkage disequilibrium (Fig S6). An analysis of the long-term demographic history using 

PSMC (11) (Fig. S17), and a composite-likelihood modelling approach performed to fit the 

observed joint site frequency spectrum (SFS) (12) infer a high long-term population size in 

central chimpanzees (10). The apportionment of genetic diversity among Pan populations 

reveals that central chimpanzees retain the largest diversity in the chimpanzee lineage, while 

the western, Nigeria-Cameroon and eastern subspecies harbor signals of population 

bottlenecks (Fig. S7).

We explored chimpanzee population structure to determine the extent to which genetic 

information can predict geographic origin. This is important because determining the 

geographical origin of confiscated individuals can help to localize hotspots of poaching 

activity (13). Both PCA and population clustering analyses reveal local stratification most 

strongly in central and eastern chimpanzees (Fig. 1B, 1C), but less so in western 

chimpanzees (10). Although we could not include enough geolocalized samples to assess 

fine-scale population structure in Nigeria-Cameroon and western chimpanzees, we expect 

similar stratification with broader sampling. To test the accuracy of our current predictions, 

we produced low-coverage whole-genome sequences for six additional individuals whose 

geographical origins were known (Table S1) and sequenced chromosome 21 from four fecal 
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GPS-labeled samples, all from central and eastern chimpanzees (10). The genetic predictions 

are accurate to a level of country and region within a country (Fig. 1B, C). In the future, 

probably the origins of confiscated chimpanzees of unknown origin will be discernible with 

sufficient data from reference populations, with implications for the in-situ and ex-situ 
management of this species.

Since multiple events of gene flow between modern and archaic humans have been 

described (14–17), we explored similar evidence of admixture within the Pan clade. In our 

SFS-based demographic model, we found support for gene flow among chimpanzee 

subspecies embedded in an improved picture of the complex population history (10,12). 

Previously, gene flow between chimpanzees and bonobos was not supported in analyses of 

low-coverage genomes (18). However, here we find that central, eastern and Nigeria-

Cameroon chimpanzees share significantly more derived alleles with bonobos than western 

chimpanzees do (Figs. 2A, S26). Although an excess of derived allele sharing has been 

reported previously, it was attributed to greater genetic drift in the western subspecies (6,19), 

or described as inconclusive due to insufficient sampling (20), but using high-coverage data 

from more individuals allows to investigate the possibility of migration. Since the chance of 

derived alleles to be introduced through gene flow from bonobos into chimpanzees increases 

with the frequency in the donor population, alleles at high frequencies are expected to 

exhibit greater sharing (15,17). Indeed, derived alleles at high frequency in bonobos are 

disproportionally shared with central, compared to western, chimpanzees (Figs. 2B, S28). 

Since we used sites with high sequence coverage, we exclude contamination as a potential 

source of unequal allele sharing. Furthermore, gene flow should introduce bonobo alleles 

into chimpanzee populations at low frequency. We find that these shared derived alleles do 

indeed segregate at low and moderate frequencies in the non-western chimpanzee 

populations (Figs. 2C, S30). This observation thus suggests ancient low-level gene flow 

from bonobos, with a minority of introgressed alleles drifting to moderate frequencies after 

segregating in the chimpanzee populations, a scenario which is supported by the 

demographic model particularly into the ancestor of central and eastern chimpanzees (Fig. 

3). An alternative explanation for such shared ancestry through incomplete lineage sorting 

would predict such alleles to drift towards fixation after their separation (10).

If bonobos contributed alleles to chimpanzees, these should be recognizable as introgressed 

segments in chimpanzees, i.e. regions with unusually low divergence to bonobos and 

unusually high heterozygosity. Following an approach used to identify gene flow from 

modern humans into Neandertals (17), we calculated the divergence from bonobos to the 

chimpanzee alleles that result in the minimum divergence to derived alleles at high 

frequency (≥90%) in sequence windows of 50 Kbp (10), and compared it to the maximum 

divergence between chimpanzee subspecies. Genomic regions in the non-western 

chimpanzees were least divergent to bonobos and more divergent to western chimpanzees 

than western chimpanzees are to non-western chimpanzees (Figs. 2D, S36), and these also 

showed an increase in heterozygosity (Fig. S37).

We identified discrete putatively introgressed regions in the individual genomes harboring 

heterozygous bonobo-like and chimpanzee haplotypes (17). We detect almost an order of 

magnitude more of such haplotypes in central chimpanzees than in western chimpanzees, 
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spanning a total of ∼2.4% across the genomes of ten individuals, while the amount is smaller 

in eastern and Nigeria-Cameroon chimpanzees (Fig. 4A, Table S6). Furthermore, central 

chimpanzees carry an excess of haplotypes which do not overlap with any of the other 

subspecies (P < 0.01, G-test). These regions also show a significant depletion in background 

selection (21) (P < 0.01, Wilcoxon rank test), suggesting that bonobo alleles might have 

been disadvantageous in a chimpanzee genetic background (10). This observation, together 

with the X chromosome not carrying more derived alleles shared between bonobos and non-

western chimpanzees (Fig. S31), resembles patterns in modern and archaic human genomes 

(16,22,23).

Further support for a scenario of gene flow between chimpanzees and bonobos is provided 

by a model-based inference with TreeMix (24) (Fig. S24), and the SFS-based demographic 

models described above (10), which have significantly higher likelihoods when the models 

include multiple gene flow events between species (Figs. S50, S52). The best-fitting models 

infer a complex admixture history, including low-level gene flow from bonobos to central 

chimpanzees, the ancestors of central and eastern chimpanzees, as well as from chimpanzees 

into bonobos (Figs. 3, S51, S54).

We used simulations to test whether these differential allele sharing patterns would be 

expected in the absence or presence of gene flow under the demographic history inferred by 

our models (10). Only a scenario including gene flow reproduced stratified D-statistics 

different from zero (Fig. S33), and even substantial genetic drift in the western subspecies 

could not explain the asymmetries in shared derived alleles with bonobos (Fig. S34, S35). 

Additionally, only models with gene flow from bonobos into the ancestors of central and 

eastern chimpanzees, and to a lesser extent into Nigeria-Cameroon chimpanzees, reproduced 

the observed patterns in sequence windows (Figs. 2D, S38-S43), and heterozygous regions 

(Fig. S45). In sum, the unequal allele and haplotype sharing is unlikely to result from 

alternative demographic models without gene flow from bonobos into chimpanzee 

populations. Although alternative models – e.g. different gene flow events or differences in 

population size – may explain some features of the data, none of those tested here could 

reproduce all features of the data (10).

Finally, if gene flow occurred between the Pan species after their separation 1.5-2.1 million 

years ago (Fig. 3), haplotypes younger than this should be shared among them. Using 

ARGweaver (25), we estimated the age of haplotypes for which one chimpanzee subspecies 

coalesces within the subtree of bonobos more recently than with another chimpanzee 

subspecies (10). A fraction of these haplotypes may result from incomplete lineage sorting, 

but it has been shown that gene flow introduces an excess of young haplotypes into the 

receiving population (17). We found that central chimpanzees carry 4.4-fold more bonobo-

like haplotypes than western chimpanzees, and these are longer (P < 0.01, Wilcoxon rank 

test), while eastern and Nigeria-Cameroon chimpanzees smaller amounts (Table S10). These 

haplotypes are inferred to coalesce 200 to 550 Kya, consistent with gene flow from bonobos 

into the ancestors of central and eastern chimpanzees less than 650 Kya (Fig. 3, 4B). The 

smaller amount of such haplotypes in Nigeria-Cameroon and western chimpanzees might 

result from subsequent gene flow between chimpanzee populations. Additionally, central 

chimpanzees carry a slightly larger proportion of younger haplotypes (100 to 200 Kya), 
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supporting another, more recent phase of secondary contact between chimpanzees and 

bonobos. These estimates agree with the phases of gene flow before and after the split of 

central and eastern chimpanzees (< 180 Kya) inferred by our demographic model (Fig. 3), 

and the excess of bonobo-like alleles and haplotypes in central chimpanzees. These methods 

estimate the overall contribution to individual genomes to less than 1% (10).

Through the analysis of multiple high-coverage genomes we were able to reconstruct a 

complex history of admixture within the Pan clade. It appears that there was gene flow from 

an ancestral bonobo population into non-western chimpanzees several hundred thousand 

years ago. Although we cannot distinguish whether the gene flow occurred at low levels over 

a long time or in discrete pulses, it seems likely that at least two phases of secondary contact 

between the two species took place. This study reveals that our closest living relatives 

experienced a history of admixture similar to that within the Homo clade. Thus, gene flow 

might have been widespread during the evolution of the great apes and hominins.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Chimpanzee geography and genetic substructure
(A) Geographic distribution of Pan populations. Reported coordinates for individuals are 

shown as circles colored by broad region of origin. Grouping is based on prior information 

on geographical origin (Table S1), connected by lines to clustered locations within the 

current range of subspecies. No further coordinates were available for Equatorial Guinea and 

Nigeria-Cameroon. (B & C) PCA plot of chromosome 21 SNP data for central (B) and 

eastern (C) chimpanzees. PCA coordinates modified by Procrustes transformation. Samples 

with unknown origin colored in gray. Squares: Low coverage genomes. Triangles: 

Chromosome 21 captured from fecal samples. These GPS labelled samples cluster within 

the range of regional genetic variation reported in whole-genome sampling.
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Figure 2. Genome-wide statistics support gene flow between chimpanzees and bonobos
(A). Population-wise D-statistic of the form D(X, Y; Bonobos, Human). Non-western 

chimpanzees share more derived alleles with bonobos than western chimpanzees. (B) 
Western and central chimpanzee allele sharing with bonobos binned by derived allele 

frequency in bonobos (Dj); bonobo alleles are more often shared with central chimpanzees 

across bonobo frequencies. Real data (top panel); simulations without gene flow (middle); 

simulations of a model with gene flow into non-western chimpanzees (bottom). (C) Western 

and central chimpanzee allele sharing with bonobos stratified by both bonobo and 
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chimpanzee derived allele frequency (Djx), calculated at a given frequency in bonobos and at 

least one of the chimpanzee subspecies (color gradient representing the extent of sharing). 

(D) Divergence between chimpanzee subspecies versus minimum divergence to bonobos at 

sites with bonobo derived allele frequency ≥90% in windows of 50 Kbp. Error bars represent 

95% confidence intervals from 500 bootstrap replicates. Segments with low divergence to 

bonobos in the genomes of central chimpanzees show high divergence to western 

chimpanzees. Real data (top), simulated data without gene flow (middle) and with gene flow 

(bottom).
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Figure 3. Conceptual model of a complex population history
SFS-based modeling infers several contacts between chimpanzees and bonobos after their 

divergence. Split times (Kya) and migration rates correspond to 95% confidence intervals 

(CI) obtained with the demographic model with western, central and eastern chimpanzees 

(10). Quantification of gene flow as migration rates scaled by the effective size (2Nm). Red 

arrows: gene flow from bonobos into chimpanzees. The ancestral population of central and 

eastern chimpanzees received the highest amount of bonobo alleles, while central 

chimpanzees received additional, more recent gene flow (<200 Kya). Blue arrows: Highest 

inferred migrations within chimpanzee subspecies; intense gene flow between central and 

eastern chimpanzees. (α) Dotted line: Putative ancient gene flow between the ancestors of 

all chimpanzees and bonobos is inferred by the model. (β) More recent gene flow from 

chimpanzees into bonobos is inferred. Shaded area: Range of estimates across all 

chimpanzee populations. (γ) Inferred admixture between Nigeria-Cameroon and central/

eastern chimpanzees; indirect gene flow from bonobos into Nigeria-Cameroon chimpanzees 

might have occurred through these contacts. (δ) Divergence time between western and 

Nigeria-Cameroon chimpanzees is estimated by using MSMC2 (10).
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Figure 4. Introgressed segments and inferred age of introgressed haplotypes
(A) Numbers of putatively introgressed segments in heterozygosity per population, and 

proportion of the chimpanzee genome. Dark bars represent segments uniquely found in each 

population, grey bars simulations without gene flow. (B) Age distribution of bonobo-like 

haplotypes in chimpanzee populations as estimated by ARGweaver. Chimpanzee subspecies 

are compared pairwise, and bonobo-like haplotypes are defined as regions of at least 50 Kbp 

that coalesce within the bonobo subtree before coalescing with the other chimpanzee 

population (inset). Error bars represent 95% confidence across MCMC replicates (10).
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