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Chimpanzee Reservoirs of Pandemic
and Nonpandemic HIV-1
Brandon F. Keele,1 Fran Van Heuverswyn,2 Yingying Li,1 Elizabeth Bailes,3 Jun Takehisa,1

Mario L. Santiago,1* Frederic Bibollet-Ruche,1 Yalu Chen,1 Louise V. Wain,3 Florian Liegeois,2

Severin Loul,4 Eitel Mpoudi Ngole,4 Yanga Bienvenue,4 Eric Delaporte,2 John F. Y. Brookfield,3

Paul M. Sharp,3 George M. Shaw,1,5 Martine Peeters,2 Beatrice H. Hahn1†

Human immunodeficiency virus type 1 (HIV-1), the cause of human acquired immunodeficiency
syndrome (AIDS), is a zoonotic infection of staggering proportions and social impact. Yet
uncertainty persists regarding its natural reservoir. The virus most closely related to HIV-1 is a
simian immunodeficiency virus (SIV) thus far identified only in captive members of the chimpanzee
subspecies Pan troglodytes troglodytes. Here we report the detection of SIVcpz antibodies and
nucleic acids in fecal samples from wild-living P. t. troglodytes apes in southern Cameroon, where
prevalence rates in some communities reached 29 to 35%. By sequence analysis of endemic SIVcpz
strains, we could trace the origins of pandemic (group M) and nonpandemic (group N) HIV-1 to
distinct, geographically isolated chimpanzee communities. These findings establish P. t. troglodytes
as a natural reservoir of HIV-1.

S
ince the first detection of an HIV-1–

related lentivirus in chimpanzees (1, 2),

this species has been suspected as the

source of the human AIDS pandemic. However,

a crucial missing link in the chain of evidence

implicating SIVcpz in the origin of HIV-1 and

AIDShas been the absence of a recognizable virus

reservoir in wild-living apes. Chimpanzees (Pan

troglodytes) are classified into four subspecies on

the basis of differences in mitochondrial DNA

sequence (3): P. t. verus in west Africa; P. t.

vellerosus in Nigeria and northern Cameroon; P. t.

troglodytes in southern Cameroon, Gabon, and

the Republic of Congo; and P. t. schweinfurthii

in the Democratic Republic of Congo and

countries to the east (Fig. 1). Two of these

subspecies, P. t. troglodytes and P. t. schwein-

furthii, are known to harbor SIVcpz, and their

viruses form divergent subspecies-specific phy-

logenetic lineages (SIVcpzPtt and SIVcpzPts)

(4). HIV-1 is most closely related to SIVcpzPtt

(5), but this virus has been detected only rarely

and then only in captive apes (1, 5–7). There is

no counterpart of SIVcpzPts that is known to

infect humans (4, 8–10).

Wild-living chimpanzees are reclusive and

highly endangered and live in remote jungle

areas. To study chimpanzees in their natural

habitat, we developed methods to detect

SIVcpz-specific antibodies and nucleic acids in

fecal samples collected from the forest floor

(9–11). In addition, we developed genotyping

approaches to amplify host mitochondrial and

genomic markers (polymorphic microsatellite

loci) from these same specimens for species,

gender, and individual identification (11, 12).

These methods were validated in captive and

habituated apes of known infection status (13).

We used these noninvasive approaches to con-

duct the first molecular epidemiological field

study of SIVcpz in wild-living nonhabituated

chimpanzees in west central Africa.

Cameroon is home to two chimpanzee

subspecies, P. t. vellerosus in the north and

P. t. troglodytes in the south, with the Sanaga

River forming the boundary between their

ranges (Fig. 1). In the present study, we col-

lected 599 fecal specimens at 10 forest sites

throughout the southern part of Cameroon (Fig.

1). All field sites, except one (WE), were in the

range of the P. t. troglodytes subspecies. To

establish the species and subspecies origin of

each sample, a 498–base pair (bp) mitochon-

drial DNA (mtDNA) (D-loop) fragment was

amplified from fecal DNA and subjected to

phylogenetic analysis (13). Eighty-six speci-

mens were degraded, and 67 samples contained

gorilla mtDNA sequences (table S1). The re-

maining 446 samples were of chimpanzee

origin: 423 from P. t. troglodytes and 23 from

P. t. vellerosus. These comprised 82 unique

mtDNA haplotypes (fig. S1 and table S2).

Consistent with the recognized ranges of the

two subspecies, all 23 P. t. vellerosus speci-
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1857, Yaoundé, Cameroun. 5Howard Hughes Medical
Institute, 720 South 20th Street, KAUL 816, Birmingham,
AL 35294, USA.

*Present address: Gladstone Institute for Virology and
Immunology, University of California at San Francisco,
1650 Owens Street, San Francisco, CA 94158, USA.
†To whom correspondence should be addressed. E-mail:
bhahn@uab.edu

Fig. 1. Natural ranges of the four chimpanzee subspecies (top) and locations of wild chimpanzee
study sites WE, MT, DG, DP, BQ, EK, CP, BB, MB, and LB in southern Cameroon (inset and bottom).
Field sites with endemic SIVcpzPtt infection are color-coded to correspond with the SIVcpzPtt
lineages shown in Figs. 3 and 4.
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mens were collected north of the Sanaga River,

whereas 421 of 423 P. t. troglodytes samples

were collected south of the river (table S1).

All mtDNA-positive fecal samples were

tested for virus-specific antibodies with a sen-

sitive immunoblot assay specifically developed

for surveys at remote field sites (13). This

analysis identified 34 specimens, all from P. t.

troglodytes apes, that contained antibodies

reactive with HIV-1 antigens (Fig. 2). Twelve

samples exhibited a strong and broadly cross-

reactive Western blot profile that was virtually

indistinguishable from the HIV-1–positive hu-

man plasma control. Eighteen additional samples

reacted with both the HIV-1 envelope (gp160)

and major core (p24) proteins, thus also meeting

formal criteria for HIV-1/SIVcpz antibody posi-

tivity. Four samples (EK502, EK506, MB245,

and MB248) reacted only faintly with a single

HIV-1 protein (p24) and were classified as

indeterminant. None of 23 P. t. vellerosus or 67

gorilla specimens exhibited detectable Western

blot reactivity to any HIV-1 protein (table S1).

To corroborate the fecal antibody results,

RNA was extracted from all immunoblot-

reactive samples and subjected to reverse

transcription polymerase chain reaction amplifi-

cation using consensus env and pol primers. In

addition, fecal DNA was used to amplify

polymorphic microsatellite loci to identify and

distinguish individual apes and to amplify a

portion of the amelogenin gene for gender de-

termination (13). These analyses revealed that

the 34 immunoblot-reactive samples represented

16 different P. t. troglodytes apes (7 males and

9 females). Each of these apes had detectable

virion RNA in one or more fecal samples (table

S3). SIVcpz env (È390 bp) and/or pol (È890

bp) sequences were amplified from 31 of 34

(91%) immunoblot-reactive samples, including

all four specimens with indeterminant Western

blot reactivity (Fig. 3 and table S3). These data,

Fig. 2. Detection of SIVcpz antibodies in chimpanzee fecal samples. Fecal
samples from wild-living chimpanzees were tested by enhanced chemi-
luminescent Western blot using HIV-1 antigen–containing strips. Samples are
numbered, with letters indicating their collection site as shown in Fig. 1. Samples

from the same individual (ID) are grouped. Asterisks indicate two antibody-
negative but virion RNA–positive samples (also see table S3). Molecular weights
of HIV-1 proteins are indicated. The banding patterns of plasma from HIV-1–
infected (Pos) and –uninfected (Neg) humans are shown as controls.
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Fig. 3. Phylogenetic analysis of SIVcpzPtt strains from wild P. t. troglodytes apes. Newly identified SIVcpzPtt
strains are highlighted by colors reflecting their collection sites (Fig. 1). Representative strains of HIV-1 groups
M, N, and O and SIVcpzPts (TAN1, TAN2, TAN3, and ANT) are shown. Trees were inferred by the Bayesian
method; numbers on nodes are percentage posterior probabilities (only values above 95% are shown). The scale
bars represent 0.05 and 0.1 substitutions per site. Pol, polymerase; gp41, envelope transmembrane protein.
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together with previous findings for SIVcpzPts-

infected apes (10), indicate that fecal antibody

reactivity to a single HIV-1 Gag protein is in-

dicative of SIVcpzPtt infection (14).

The prevalence of SIVcpzPtt infection in

wild chimpanzee communities was estimated

for each of the 10 field sites (table S1). For the

DP, EK, MB, BB, and LB communities, this

was done based on the proportion of infected

individuals as determined by microsatellite

analyses, taking into consideration assay sensi-

tivities and specimen degradation (tables S1 and

S4). For the remaining sites, prevalence rates

were estimated based on the proportion of

antibody- and/or SIVcpz virion RNA–positive

fecal samples, while also adjusting for repeat

sampling (13). The results indicated widespread

but notably uneven SIVcpzPtt infection of wild-

living P. t. troglodytes apes, with prevalence

rates ranging from 23 to 35% in the LB, EK,

and MB communities; 4 to 5% in the DP and

MT communities; and the absence of infection

in the WE, DG, BQ, BB, and CP communities.

To determine the evolutionary relationships of

the 16 new SIVcpzPtt viruses to each other and

to previously characterized SIVcpz and HIV-1

strains, pol and env sequences were subjected to

phylogenetic analyses. All of the newly identi-

fied SIVcpz strains were found to fall within the

radiation of SIVcpzPtt strains from captive P. t.

troglodytes apes, which also includes HIV-1

groups M (pandemic) and N (nonpandemic) but

not group O or SIVcpzPts (Fig. 3). The new P. t.

troglodytes viruses exhibited significant phylo-

geographic clustering: SIVcpz sequences from

the EK, DP, MT, and MB/LB collection sites

formed well-separated clades corresponding to

their field site of origin. One of these clades

included closely related SIVcpz strains (EK519,

EK516, EK502, and EK505), probably reflecting

recent virus transmission within that community.

The remaining clades were each composed of

more divergent but still monophyletic SIVcpz

strains (Fig. 3). Thus, chimpanzee populations

separated by long distances or major geograph-

ical barriers such as rivers (Fig. 1) harbored

distinct SIVcpz lineages (such as populations

EK, DP, and MT), whereas neighboring

communities not separated by such barriers

harbored viruses that were phylogenetically

interspersed (such as populations MB and LB).

The phylogeographic clustering of the newly

identified SIVcpzPtt strains allowed us to trace

the origins of present-day human AIDS viruses

to distinct chimpanzee communities. In sub-

genomic pol and env regions, SIVcpzPtt strains

from the MB/LB and EK sites were much more

closely related to HIV-1 groups M and N,

respectively, than were any previously identi-

fied SIVcpz strains (Fig. 3). Full-length genome

analysis of 4 of the 16 new viruses confirmed

and extended these findings, revealing strong

statistical support for the clustering of HIV-1

groups M and N with the MB/LB and EK

lineages of SIVcpzPtt, respectively (Fig. 4).

Moreover, inclusion of the new viruses reduced

the lengths of the branches marking the cross-

species transmission events for all genomic

regions by almost half (arrows in Fig. 4). Given

these short branch lengths, it is highly unlikely

that other SIVcpzPtt strains exist that are sig-

nificantly more closely related to HIV-1 groups

M and N than are the viruses from the MB/LB

and EK communities. Indeed, expanded field

studies in southern Cameroon by our group

have identified additional SIVcpzPtt strains,

including nine from the MB/LB area, whose

sequences support this conclusion and corrob-

orate the phylogenetic relationships shown in

Figs. 3 and 4 (15). Thus, an extensive set of

molecular epidemiological data all points to

chimpanzees in southeastern and south central

Cameroon as the sources of HIV-1 groups M

and N, respectively.

The findings presented here, together with

prior studies, provide for the first time a clear

picture of the origin of HIV-1 and the seeds

of the AIDS pandemic. SIVcpz, the progenitor

of HIV-1, arose as a recombinant of ancestors of

SIV lineages presently infecting red-capped

mangabeys and Cercopithecus monkeys in

west-central Africa (16). Chimpanzees ac-

quired this recombinant virus, or its progeni-

tors, by cross-species transmission some time

after the split of P. t. verus and P. t. vellerosus

from the other subspecies (fig. S1) but possibly

before the divergence of P. t. schweinfurthii

from P. t. troglodytes (4). This explains the

absence of SIVcpz infection in present-day
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P. t. verus and P. t. vellerosus apes, the pres-

ence of SIVcpz infection in P. t. troglodytes

and P. t. schweinfurthii apes, and the phyloge-

netic separation of SIVcpzPtt from SIVcpzPts

viruses (4, 7, 9, 15). HIV-1 groups M, N, and O

each resulted from independent cross-species

transmissions of SIVcpzPtt from P. t. troglo-

dytes to humans early in the 20th century

(17–19). We show here that the SIVcpzPtt

strain that gave rise to HIV-1 group M be-

longed to a viral lineage that persists today in

P. t. troglodytes apes in southeastern Camer-

oon. That virus was probably transmitted lo-

cally. From there it appears to have made its

way via the Sangha River (or other tributaries)

south to the Congo River and on to Kinshasa

where the group M pandemic was probably

spawned (20). HIV-1 group N, which has been

identified in only a small number of AIDS pa-

tients from Cameroon (21, 22), derived from

a second SIVcpzPtt lineage in south central

Cameroon and remained geographically more

restricted. The source of HIV-1 group O re-

mains unknown but will probably yield to

further study of wild ape populations not yet

sampled. Given the extensive genetic diversity

and phylogeographic clustering of SIVcpz now

recognized, and the vast areas of west central

Africa not yet sampled (Fig. 1), it is quite pos-

sible that still other SIVcpz lineages exist that

could pose risks of human infection and prove

problematic for HIV diagnostics and vaccines.

The present report describes molecular tools

and noninvasive strategies that can be used to

explore these possibilities as well as the mo-

lecular ecology of pathogens in endangered

species more generally.
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Mast Cells Can Enhance Resistance to
Snake and Honeybee Venoms
Martin Metz,1 Adrian M. Piliponsky,1 Ching-Cheng Chen,1 Verena Lammel,1 Magnus Åbrink,2

Gunnar Pejler,2 Mindy Tsai,1 Stephen J. Galli1*

Snake or honeybee envenomation can cause substantial morbidity and mortality, and it has been
proposed that the activation of mast cells by snake or insect venoms can contribute to these effects.
We show, in contrast, that mast cells can significantly reduce snake-venom–induced pathology in
mice, at least in part by releasing carboxypeptidase A and possibly other proteases, which can
degrade venom components. Mast cells also significantly reduced the morbidity and mortality
induced by honeybee venom. These findings identify a new biological function for mast cells in
enhancing resistance to the morbidity and mortality induced by animal venoms.

V
enomous reptiles and their prey have

coexisted for È200 million years (1),

and snake envenomation still accounts

for considerable human morbidity and mortality

worldwide (2, 3) (SOM Text 1). The mecha-

nisms by which snake envenomation can

produce tissue injury and death have been

studied extensively (3–5), and it is known that

many components of snake venoms can induce

mammalian mast cells (MCs) to release potent

biologically active mediators (6, 7). These MC

products in turn can promote an increase in

vascular permeability, local inflammation,

abnormalities of the clotting and fibrinolysis

systems, and shock (8, 9).

Accordingly, it has been considered that the

activation of tissue MCs can contribute impor-

tantly to the local tissue injury, systemic dis-

tribution of venom components, and death

associated with snake envenomation (6, 7). This

hypothesis is consistent with the well-understood

role of MCs in the pathology of allergic dis-

orders such as anaphylaxis and asthma (8–11).

However, MCs can enhance survival in certain

models of innate immunity to bacterial infection

(12–15). In one such model, MCs can reduce

morbidity and mortality in part by promoting the

degradation of the potent endogenous vaso-

constrictor peptide endothelin-1 (ET-1) (16).

The most toxic components of the venom of

Atractaspis engaddensis (the burrowing asp or

Israeli mole viper) are the sarafotoxins, which

exhibit a very high homology (È70% at the

amino acid level) to ET-1 (17).

When various amounts of A. engaddensis

venom (A.e.v.) were administered intraperi-

toneally, wild-type mice developed signifi-

cant reductions in body temperature at a dose

of 5 mg, and death occurred at 50 mg (fig. S1).

By contrast, as little as 5 mg of A.e.v. induced

death in KitW-sh/KitW-sh mice, which are genet-

ically deficient in MCs (18). Levels of sarafo-

toxins in the peritoneal cavity of wild-type mice

were significantly lower than those in the corre-

sponding KitW-sh/KitW-sh mice at all amounts of

A.e.v. tested that were Q5 mg (fig. S1). Although
intraperitoneal injection has been recommended

for analyses of the systemic toxicity of snake

venoms (4), many snake bites are to the skin

and subcutaneous tissue. MC-deficient mice

were also much more susceptible than wild-

type mice to the development of hypothermia

and death when A.e.v. (10 mg) was injected

subcutaneously (fig. S2).

A.e.v. contains several toxic compounds,

including sarafotoxins 6a, 6b, 6c, and 6d, and

hemorrhagins, but the most toxic of these is
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