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China’s city‑level carbon 
emissions during 1992–2017 
based on the inter‑calibration 
of nighttime light data
Jiandong Chen1,8, Ming Gao1,8, Shulei Cheng1, Xin Liu2, Wenxuan Hou3,4, Malin Song5, 
Ding Li6* & Wei Fan7*

Accurate, long‑term, full‑coverage carbon dioxide  (CO2) data in units of prefecture‑level cities are 
necessary for evaluations of  CO2 emission reductions in China, which has become one of the world’s 
largest carbon‑emitting countries. This study develops a novel method to match satellite‑based 
Defense Meteorological Satellite Program’s Operational Landscan System (DMSP/OLS) and Suomi 
National Polar‑orbiting Partnership’s Visible Infrared Imaging Radiometer Suite (NPP/VIIRS) nighttime 
light data, and estimates the  CO2 emissions of 334 prefecture‑level cities in China from 1992 to 2017. 
Results indicated that the eastern and coastal regions had higher carbon emissions, but their carbon 
intensity decreased more rapidly than other regions. Compared to previous studies, we provide the 
most extensive and long‑term  CO2 dataset to date, and these data will be of great value for further 
socioeconomic research. Specifically, this dataset provides a foundational data source for China’s 
future  CO2 research and emission reduction strategies. Additionally, the methodology can be applied 
to other regions around the world.

China has experienced an acceleration of urbanization and industrialization and is now one of the largest emit-
ters of carbon dioxide  (CO2)  globally1. Hence, an increasing number of scholars are focusing their e�orts on the 
development of e�ective carbon emission reduction strategies and ways to promote a sustainable low-carbon 
 economy2,3. However, these studies mainly have been concentrated at the national and provincial levels, and 
research on city-level carbon emissions remains scarce. One reason for this trend is that there exists a lack of 
o�cially published city-level data. Additionally, even though some cities have published detailed information 
on energy use, cross-sectional and consecutive year data are di�cult to compare and the quality of the corre-
sponding data is o�en very  limited4–6. In reality, cities are the main carbon emitters globally, and constitute a 
very signi�cant branch of the Chinese government because these places are in an intermediate position in the 
overall policy formulation and implementation framework for carbon emission mitigation  e�orts7–10. If only the 
national or provincial carbon emissions and corresponding driving forces receive attention, the heterogeneous 
characteristics of city-level carbon emissions will be ignored, and this will not be bene�cial for the development 
of strategies that can support city-level sustainable development.

In light of these issues, some scholars have attempted to calculate China’s city-level carbon emissions. At 
present, the relevant literature can be classi�ed into two categories on the basis of the di�erent methods that 
were used. �e �rst group directly estimates carbon emissions of several cities in certain years based on energy 
inventory data, which were collected from China City Statistical Yearbooks, Local Government Work Reports, 
or other relevant statistical sources in local  governments8,10–15. In total, these studies collectively represent an 
extensive e�ort to organize relevant data and produce relatively reliable data on city-level carbon emissions. 
However, this category of research has several limitations: �rst, the city-level carbon emissions obtained to date 
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cannot have a signi�cantly wide spatial and temporal coverage; second, the energy inventory data collected on 
di�erent cities may be of di�erent scales, and may make in�uences on the comparability of the cities’ carbon 
emissions; and third, because the di�erent studies adopted di�erent study areas, periods, and sectors, there may 
be large discrepancies among the results, which is not helpful for further research on city-level carbon emissions.

�e second group of studies mainly adopts nighttime light data, especially DMSP/OLS (Defense Meteorologi-
cal Satellite Program’s Operational Landscan System) images, as a proxy tool to estimate carbon  emissions6,16–18, 
and this approach has been widely accepted in a variety of research  �elds19–22. However, although DMSP/OLS 
data tend to �t well when used to measure carbon emissions, the research period cannot exceed 2013 because 
DMSP/OLS images are not available a�er 2013. Furthermore, even when another type of nighttime light data, 
such as NPP/VIIRS (Suomi National Polar-orbiting Partnership’s Visible Infrared Imaging Radiometer Suite) 
images, is used to generate data from 2012 onwards, there are evident discrepancies between the two types of data.

As time advanced, studying only the period of 1992–2013 was proven to be insu�cient. Hence, a few studies 
have tried to extend the research period and estimate China’s city-level carbon emissions a�er  201323,24. How-
ever, important limitations have been encountered, such as white noise in the NPP/VIIRS images, poor �tting 
models, and saturation that can lead to errors. In conclusion, although studies have found that nighttime light 
data can be used as a good proxy tool for estimating carbon emissions, few studies have successfully been able 
to provide accurate, long-term, full-coverage  CO2 data in units of China’s prefecture-level cities because of the 
unavailability of corrected nighttime light data and inaccurate estimation methods.

To address the gaps in existing data on city-level carbon emissions in China, both Chen et al.25 and we have 
proposed an improved method for inter-calibrating the two sets of data, which can be used to obtain stable, long-
term nighttime light data series that can facilitate carbon emission assessments and the development of e�ective 
mitigation strategies. Compared to Chen et al.25 and other studies, the contributions of this study are as follows: 
(1) we developed an accurate, easy-to-understand, and improved method for inter-calibration of DMSP/OLS and 
NPP/VIIRS datasets to estimate the nighttime lighting of 334 prefecture-level cities in China from 1992 to 2017. 
Compared to previous studies, we extended the research time span. �ese data can be used for research in various 
�elds such as in estimating the population distribution, gross domestic productivity, and income per capita; (2) 
we adopted variant coe�cient models and the normalized di�erence index (NDI) to quantify China’s city carbon 
emissions based on nighttime light data of cities. Compared to the PSO-BP (Particle Swarm Optimization-Back 
Propagation) model adopted by Chen et al.25, our models improved the data �tting and provided a reliable data 
source for further studies; and (3) we explored the drivers of cities’ carbon emission increment in China, and 
provided useful reference for e�ective carbon emission reduction policies.

Methods
Study area and materials. As there are regional di�erences in China, and provincial carbon emissions 
data for Tibet, Hong Kong, Macau, and Taiwan were unavailable, our research scope excluded these regions. To 
match existing o�cial statistics and re�ect the continuous changes in China’s carbon emissions, our research 
period spanned from 1992 to 2017.

In this study, DMSP/OLS and NPP/VIIRS nighttime light imagery were adopted to simulate China’s city-level 
carbon emissions. �e DMSP/OLS nighttime light imagery was primarily obtained from the F10, F12, F14, F16, 
and F18 satellite sensors in use during 1992–2013; a total of 34 years of synthetic images were available, and 
light noise caused by �res and other incidental background noise were removed. �e product showed annual 
average composites of stable and persistent NTL with 30 arc-second grids (~ 1 km). However, the limitation 
of the product was the six-bit data quanti�cation, which leads to over saturation, particularly in large cities. 
�e NPP/VIIRS nighttime light imagery were derived from a polar orbiting Earth observation satellite during 
2012–2020, and these data were more e�ective in discriminating various light sources than the DMSP/OLS data, 
which helped to prevent the oversaturation of bright parts in the areas of  light26. Compared to the DMSP/OLS 
stable NTL product, the NPP/VIIRS product improved the spatial resolution to 15 arc-second grids (~ 500 m) 
and the data quanti�cation to 14-bit.

Data preprocessing. For the DMSP/OLS images, by considering that the size of each grid cell decreased 
with increasing latitude, we projected the synthetic images of 34 years as Lambert equal area projections and 
resampled them at a spatial resolution of 1 km to reduce the impacts of grid cell changes. For the NPP/VIIRS 
images, we averaged the monthly images to obtain annual images and then used the same method as that for the 
DMSP/OLS data to resample and obtain nighttime light datasets with a consistent spatial resolution. Addition-
ally, although the NPP/VIIRS images �ltered out the e�ects of stray lights, moonlight, and cloud coverage, they 
retained noise from auroras, �res, boats, and other temporary lights. �erefore, some scholars have used the 
bright areas of DMSP/OLS imagery in 2013 as a mask to extract NPP/VIIRS images and remove the in�uence 
of white  noise27. However, this method ignores the new bright areas during 2014–2017. �erefore, we adopted 
0.3 nW m−2 sr−1 as the threshold to remove the noise, which is consistent with previous  studies28,29.

DMSP/OLS nighttime light image data correction. To strengthen the continuity and comparability 
of the nighttime light data from DMSP/OLS, we adopted the invariant region method, described by Wu et al.30, 
to inter-calibrate DMSP/OLS images; this was done to improve the accuracy of the data a�er inter-calibration. 
Additionally, we selected Hegang City, Heilongjiang Province, as the constant target area, which is consistent 
with previous  studies31–33. �ere are two kinds of images that can be used as reference in the inter-calibration of 
DMSP/OLS nighttime light images; one group consists of the images from satellite F16 in  200731,33, and the other 
group is formed from the global Radiance Calibrated Nighttime Lights (RCNTL) data in 2006 as a  reference30,34. 
For the �rst and second inter-calibration methods, we adopted a second-order regression function for each sat-
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ellite and a power function because the results did not exceed the upper limit of NPP/VIIRS data, respectively, 
because these results had a higher  R2 value in each case than that of other  functions30,33. �ese results are pre-
sented in Appendix Tables A2 and A3, respectively.

�en, we adopted an intra-annual composition to utilize the data in the same year provided by the di�erent 
satellite sensors and improve the stability of lit pixels (such as F14 in 2001 and F15 in 2001). �e model is as 
follows:

where DN(n,i) represents the DN (digital number) values of the ith lit pixel from two kinds of satellite sensors in 
the nth year ( n = 1994, 1997 − 2007).

The inter‑calibration between DMSP/OLS and NPP/VIIRS. Because the DMSP/OLS and VIIRS 
nighttime light images are two di�erent sets of data, the data cannot be matched directly. �e discrepancies in 
the data primarily exist because the spatial resolutions of the two sets of data are di�erent, the points of spread 
functions of the two sensors are di�erent, and NPP/VIIRS has a stronger capacity to identify low light  levels29.

Hence, it was necessary to establish a relationship between the DMSP/OLS and NPP/VIIRS nighttime light 
images, and achieve a uniform scale for the two datasets. Since both DMSP/OLS and NPP/VIIRS provided images 
in 2013, we extracted the city-level mean DN values in 2013 from the two datasets and explored their relation-
ships. Moreover, we had two types of inter-calibrated DMSP/OLS images based on the proposed inter-calibration: 
the individually adopted images from the satellite F16 in 2007 and the global RCNTL reference image in 2006. 
To conduct the comparison, we adopted the two sets of DMSP/OLS data respectively, to �t the NPP/VIIRS data. 
For simplicity, we use D1 , D2 , and V  to represent the DMSP/OLS data adopted from satellite F16 in 2007, that 
adopted from RCNTL in 2006, and the NPP/VIIRS data, respectively.

�en, we adopted a power function to �t the relationship between the mean pixel value of DMSP/OLS and 
NPP/VIIRS, which is consistent with previous  studies29,35. �e models constructed are as follows:

where α , β , � , and θ represent equation parameters.
Additionally, in accordance with the characteristics and changing rules of the nighttime light imagery, the 

DN value of a pixel on the light image in the following year should not be less than that in the previous year. 
Based on this inference, corrections of the multi-year stable bright pixel images of DMSP/OLS and NPP/VIIRS 
were performed using Eq. (4).

Use of nighttime light data as a proxy to estimate  CO2 emissions. As China does not have an o�-
cial source of carbon emissions data, we adopted a method provided by the Intergovernmental Panel on Climate 
Change to estimate carbon emissions from the national energy consumption data; this approach has been used 
in many  studies36–39. �e corresponding equation is as follows:

where COt
i,2 represents the provincial carbon emissions, million tons; Etij represents the jth type of energy use in 

province i ; LCV t
ij is the low calori�c value of the jth energy consumption; CCt

ij is the carbon content of the jth 
energy source; and COFtij is the carbon oxidation factor of the jth energy source.

In order to capture the di�erences between provinces, we also adopted a panel regression model to �t the 
relationship between the provincial sum of digital number (SDN) values and carbon emissions, which is an 
approach consistent with previous  studies6,23. �e econometric model was constructed as follows:

where SDN
it

 represents sum of digital number, ω
it

 is the estimated coe�cient and γ
it

 is the �xed-e�ect, which 
re�ects the di�erences between provinces.

Additionally, the panel regression results between provincial carbon emissions and SDN values (see Table 1) 
show that although model (d) �tted the data well, the coe�cients of time �xed e�ects during 1992–1996 were 
unavailable because of the lack of provincial carbon emissions data during 1992–1996. As model (c) had better 
�tting e�ects than model (b) but might produce negative values when obtaining estimates for cities with lower 
DN values, we adopted the NDI concept to combine models (b) and (c), thereby avoiding negative values and 
improving the continuity of the results. �e model is as follows:

(1)DN(n,i) =

{

0 DN
a
(n,i) = 0&DNb

(n,i) = 0

(DNa
(n,i)+DN

b
(n,i))

2
otherwise

(2)D1 = αVβ

(3)D2 = �V
θ

(4)DN(n,i) =

{

DN(n−1,i)
, DN(n−1,i) > DN(n,i)

DN(n,i) , otherwise

(5)COt
2 =

30
∑

i=1

COt
2,i =

30
∑

i=1

17
∑

j=1

[

Etij× LCV t
ij × CCt

ij × COFtij ×
44

12

]

(6)CO2,it = ωSDNit + γi + εit
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where COt
2,it mod el(c) represents the city-level carbon emissions based on model (c) and COt

2,it mod el(b) rep-
resents the city-level carbon emissions based on model (b). �e threshold for the NDI was set as 0.1, which is 
similar to Wu et al.30. If NDI > 0.1, a signi�cant gap between the two results is implied which might be due to the 
constant of model (c); therefore, we should adopt model (b) in such cases. Meanwhile, if NDI < 0.1, this indicates 
that there is little gap, and model (c) should be adopted because it �tted the data well.

Decomposition model of  CO2 emissions. �e combination of Kaya  identity40 and Logarithmic 
Mean Divisia Index (LMDI) decomposition  approach41 can be used to separate the contribution of drivers to 
 CO2  emissions42,43. �is approach is simple, not a�ected by the time-span, and can realize the zero residual 
 decomposition44,45.

According to the Kaya identity, the IPAT equation of the  CO2 emissions was built as follows:

where Ci , GDPi , and Pi represent the  CO2 emissions, gross regional product, and population size in di�erent 
cities, respectively; i represents Chinese cities; EIi = Ci

/

GDPi and EGi = GDPi

/

Pi represent technical progress 
and economic growth of city i , respectively.

�e LMDI decomposition approach was used to calculate the contribution of driving factors to the changes 
of  CO2 emissions. We set the  CO2 emissions for the reporting and base periods as Ct

i
 and Cb

i
 , respectively. �e 

change of  CO2 emissions between the two periods could subsequently be decomposed into:

where �EIi , �EGi , and �Pi represent the contribution of technical progress, economic growth, and population 
size to the change of  CO2 emissions, respectively, and the speci�c forms are as follows:

among these, L
(

C
t
i
,Cb

i

)

=

C
t
i
−C

b
i

Ln(Ct
i
)−Ln(Cb

i
)
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(7)NDI =
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t
2,it mod el(c) − CO
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∣

∣

CO
t
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(8)COt
2,it =

{

COt
2,it mod el(c) , if NDI < 0.1

COt
2,it mod el(b) , otherwise

(9)

Ci =
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×
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= EIi × EGi × Pi

(10)�Ci = C
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Table 1.  Results for the panel regressions between the provincial carbon emissions and the SDN values. (1) 
***Denote signi�cance at the 1% level. (2) �e values in parentheses are standard errors. (3) Models (a), (b), (c) 
and (d) represent the results estimated based on �xed-e�ect models, estimated by variant slope models, from 
the use of variant slopes and individual �xed e�ects, and from the use of variant slopes and individual and time 
�xed e�ects, respectively. (4) AIC represents the Akaike information criterion.

Variables

Model (a) Model (b) Model (c) Model (d)

C C C C

Coe�cient
0.000502*** 0.000300*** 0.000300*** 0.000250***

(0.000026) (0.000016) (0.000017) (0.000016)

N 630 630 630 630

R2 0.953 0.929 0.992 0.996

AIC 11.11 11.53 9.41 8.88
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Results
Estimation of nighttime light image in China. A�er applying the �tting relationships, we obtained α , 
β , � , and θ in Eqs. (2) and (3) as 5.7005, 0.7248, 6.7214, and 0.7197, respectively. �e  R2 values of the relation-
ships of inter-calibrated NPP/VIIRS and D1 , D2 were 0.90 and 0.91, respectively, which are relatively close to the 
0.915 estimate by Li et al.29. �en, we were able to convert the NPP/VIIRS image scale into the DMSP/OLS image 
scale, similar to Ma et al.24. To further eliminate the unstable pixel DN values and the obvious over-glow e�ect of 
DMSP/OLS data, we assumed that the bright areas of the corrected and transformed NPP/VIIRS image in 2017 
were stable, used the data to extract the DMSP/OLS images, and replaced the remaining lit pixels with values of 
zero, which is consistent with Liu et al.33.

�en, we estimated and obtained two sets of data on the city’s SDN values on the basis of two types of inter-
calibrated DMSP/OLS images. �e SDN values were estimated by two methods and the results are presented 
in Fig. 1. �e comparison curve reveals the gap between the two satellite’s images and indicates the signi�cance 
of the inter-calibration. Although the trends of the result estimated by method 1 and 2 are similar, the method 
2 curve is higher than method 1, due to the problem of saturation. �erefore, we used the results of method 2.

Considering that there is a signi�cant relationship between GDP statistics and nighttime light  data17,30,46,47, 
we selected the provincial cross-sectional GDP statistics to perform linear regression with the nighttime light 
data in this study. �e  R2 values were > 0.8756 and the Akaike information criterion (AIC) values were small 
during 1992–2017, indicating that the calibrated nighttime light data could well characterize the GDP. Detailed 
results are presented in Appendix Table A4.

Analysis of the city‑level carbon emissions. Because of the large sample size of long-panel data, if indi-
vidual points have di�erent intercept terms, they may not �t the relationship between the two very well. �ere-
fore, we further applied models that contained only the variable slope or both the variable slope and a constant, 
to perform the regressions. �ese results are presented in Table 1, and detailed information about the coe�cients 
for the individual points, time, and variant slope are presented in Appendix Table A5.

As shown in Table 1, the slopes of all panel linear regression models were statistically signi�cant. Addition-
ally, the coe�cient of the �xed-e�ect model was close to that estimated by Meng et al.6, thus indicating that our 
estimated linear relationship between carbon emissions and the SDN values was robust.

Moreover, because the  R2 and AIC values can be used to evaluate the �tting results, all of the models �tted 
well. �e  R2 values were > 0.90, which indicated that over 90% of the changes in provincial carbon emissions 
in China could be explained by the SDN values; the AIC values were lower than the value (29.30) estimated by 
Meng et al.6. We observed that among the four models, model (d) �tted the data best, which brought the time 
�xed e�ects into consideration; this model explained over 99.6% of the changes in carbon emissions. Hence, we 
used model (d) to estimate the city-level carbon emissions during 1997–2017.

Moreover, as our data contained long-panel data of 26 years, the regression was likely a�ected by the possible 
presence of unit roots in the variables. Hence, the LLC (Levin, Lin, and Chu t test) and IPS (Im, Pesaran, and 
Shin Wald statistic test) panel unit root test results were presented for the series of provincial carbon emissions, 
as well as the SDN values and their �rst-order di�erences, which have been widely used in previous  studies42,48. 
�e results based on the LLC and IPS tests are presented in Table 2.

�e results for both the LLC test and IPS test indicated that all variables appeared to be �rst-order single inte-
ger [I (1)] simultaneously. Hence, it was necessary to conduct panel cointegration tests and estimate the long-run 
equilibrium relationship among the variables. We adopted the Pedroni residual  method49, which has been widely 
applied widely in various  studies50–52. �e results for the panel cointegration test statistics are presented in Table 3.
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Figure 1.  �e total trend of the SDN values during 1992–2017 (unit of the SDN values:  107). Notes: (1) 
method 1 represents the results based on D1 data; (2) method 2 represents the results based on D2 data; and 
(3) the comparison curve represents the results without the inter-calibration between DMSP/OLS and NPP/
VIIRS images, revealing the gap between the two satellite’s images and indicating the signi�cance of the inter-
calibration.
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From the statistical results, all the tests led us to signi�cantly reject the null hypothesis of no cointegration, 
thereby suggesting a cointegration relationship among the provincial carbon emissions and SDN values. Hence, 
our econometric models for estimating carbon emissions were reliable and reasonable.

To test the robustness of the results obtained by our proposed method, we reported on the gaps between our 
estimated total emissions and published total emissions; these results are shown in Fig. 2. Simultaneously, we 
estimated the error rate between our simulated total carbon emissions and published total carbon emissions as 
“simulated carbon emissions / actual carbon emissions”, and these data are also presented in Fig. 2.

Visually, our simulated results were very close to the total values from the provincial energy balance tables. At 
the same time, it was evident that all of the error rates were far less than 0.05 million tons (the biggest absolute 
value of the error rate was around 2.11%). �e following three key time nodes were of interest: 1997, 1999, and 
2010. Evidently, the total carbon emissions increased during 1992–1997, while they decreased during 1997–1999. 
During 2000 to 2012, the carbon emissions increased rapidly, which is similar to the conclusions provided by 
Meng et al.6 and Su et al.18. However, from 2010 to 2017, the growth rates of total carbon emissions were relatively 

Table 2.  Results for the panel unit root tests. (1) Values in parentheses are the p-values. LLC denotes the 
Levin, Lin, and Chu t test; IPS denotes the Im, Pesaran, and Shin Wald statistic test. (2) �e LLC and IPS tests 
for all of the series include an intercept term. (3) ** and *** denote the null hypotheses of a unit root at the 5% 
and 1% signi�cance level, respectively. (4) SDN denotes the sum of digital number.

Variable

LLC IPS

Level First di�erence Level First di�erence

C
− 1.995** − 6.219*** 4.1241 − 9.2***

(0.023) (0.00) (1.00) (0.00)

SDN
− 6.0257*** − 7.886*** 0.5888 − 7.7515***

(0.00) (0.00) (0.722) (0.00)

Table 3.  Results for the panel cointegration tests based on the Pedroni residual method. (1) ***Denote 
signi�cance at the 1% level. (2) �e values in parentheses are the p-values. (3) SDN denotes the sum of digital 
number.

Test equation Regression C SDN

Panel PP statistic
− 3.5974***

(0.0002)

Panel ADF statistic
− 5.424***

(0.00)

Group PP statistic
− 3.2135***

(0.0007)

Group ADF statistic
− 5.9127***

(0.00)
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Figure 2.  Comparison of our simulated total carbon emissions and actual total carbon emissions estimated 
from provincial energy balance tables during 1997–2017 (unit: million tons).
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lower than before, which may have been a result of the strict limitations placed on emissions in policies proposed 
by the Chinese  government38,39,53.

In total, China’s national carbon emissions increased continuously from 1992 to 2017, during which the 
amount increased from 2239.58 to 9741.65 million tons with an average 6.23% annual growth rate. Addition-
ally, the total growth rates for the periods of 1992–1996, 1997–1999, 2000–2012, and 2013–2017 were 40.58%, 
-0.11%, 207.93%, and 2.27%, respectively. As for the spatial and temporal variation trends of China’s city-level 
carbon emissions from 1992 to 2017, we constructed spatial maps that depict the results for 1992, 2000, 2005, 
2010, 2015, and 2017, and these results are presented in Fig. 3; additional comprehensive �gures are presented 
in Appendix Figs. 1–3.

Comparison with previous studies. To further estimate the accuracy of the proposed method, we com-
pared the estimated city-level carbon emissions with results from previous  studies13–15. Speci�cally, we used 
the data from our proposed method and carried out regressions with their corresponding data; the results are 
presented in Table 4.

In accordance with the coe�cients of determination provided in Table 4, the results indicate that our cor-
responding data were 84.17% similar to 187 cities’ carbon emissions in 2010 as estimated by Shan et al.15, 84.64% 
similar to 287 cities’ carbon emissions in 2012 as estimated by Cai et al.13, and 91.63% similar to 41 cities’ carbon 
emissions in 2010 as estimated by  Jing14. At the same time, because there were also some scholars who calculated 
carbon emission data for a few select cities in other years or over a certain  period11,12, we also carried out com-
parisons with these data to test the accuracy of our results. Bi et al.11 measured Nanjing city’s carbon emissions 
from 2002 to 2009 based on six sectors in the energy inventory, and these data not only included emissions related 
to energy consumption, but also process- and waste-related emissions. Evidently, our corresponding estimated 
data were very consistent with those of Bi et al.11 as the  R2 was almost 0.98. At the same time, our results were also 
consistent with the carbon emissions for several cities estimated by Mi et al.12, and the  R2 was approximately 0.91.

Although our results were close to those of previous studies, there were also some di�erences. �ese di�er-
ences may have stemmed from the di�erent accounting methods used (the previous studies mainly relied on 
the city-level energy inventories from China City Statistical Yearbooks, Local Government Work Reports, and 
other relevant statistical sources of local governments), the errors caused by econometric models, or the errors 
from the estimated provincial carbon emissions.

In summary, because of the limited quality and availability of city-level energy inventories, we have proposed 
a new method for estimating China’ city-level carbon emissions based on the inter-calibration between DMSP/
OLS and NPP/VIIRS data. Our results for 1992–2017 were very consistent with the results of previous studies. 
�us, this technique should be useful for providing reliable city-level carbon emission data over a wide spatial 
scale in China, which will be bene�cial for future academic and policy research.

Analysis of carbon emission drivers. To further explore the changing trend of carbon emission incre-
ment in Chinese prefecture-level cities, we considered 1992 as the base period and 2017 as the report period, 
and combined with Kaya identity and LMDI decomposition approach, calculated the contribution of population 
size, economic growth, and technical progress to each city’s emission increment, respectively. Figure 4 shows 
the distribution of each driver increment. �e results indicated that, in general, the  CO2 emissions of 285 cities 
increased from 1992 to 2017, as shown in Fig. 4d. �e primary reason is that industrialization and urbaniza-
tion processes have been advancing rapidly due to reformation and expansion of China, and fossil-fuel energy 
consumption has been increasing annually in both production and residential sectors. Using the decomposition 
analysis of the driving factors of carbon emissions, we observed that, �rstly, emission intensity was an indirect 
indicator of a city’s emission reduction technology, its contribution to the emission increment was negative, 
which implied that a city’s  CO2 emissions were more likely to be reduced with an increase in the level of the city’s 
emission reduction technology. Secondly, the contribution of economic growth and population size to the emis-
sion increment was positive, which indicated that the city’s  CO2 emissions were more likely to increase with the 
increase in the economic development and population density. However, the positive contribution of economic 
growth to the emission increment was greater than that of population growth.

From the perspective of cities, we observed that the cities with the highest emission increment can be broadly 
divided into two types: the �rst comprises the regional central cities dominated by Chongqing, Shanghai, Suzhou, 
Chengdu, Tianjin, Wuhan, and Beijing. Most of these cities are located in the eastern coastal areas and the central 
and western plains of China, where the population is dense and the degree of industrialization is extremely high. 
�e second comprises the resource-based cities of Ordos, Hulunbeir, Yulin, Tangshan, Chifeng, etc., most of 
which are rich in coal, oil, and other mineral resources. For example, Ordos, whose annual raw coal production 
accounts for about one-sixth of the country’s raw coal production, is China’s largest coal producing city, and is 
commonly known as China’s “coal capital”. In addition, most of these two types of cities are dominated by iron 
and steel, coking, thermal power, cement, and casting industries, resulting in high fossil-fuel energy consump-
tion and  CO2 emissions.

From the perspective of driving factors, �rst, technological impact is the key factor for a city’s emission reduc-
tion. Among 285 prefecture-level cities in China, Shanghai, Tianjin, Beijing, Cangzhou, Suzhou, Wuhan, Chong-
qing, Shijiazhuang, Nanjing, and Guangzhou have the highest technological impact. �ese cities are primarily 
distributed in the eastern coastal areas and the central and western regional centers, as shown in Fig. 4c. �e 
phenomenon is consistent with the actual layout of China’s regional development. �ese regions have gathered a 
large number of advantageous enterprises, and are the fastest and most advanced regions in China’s technological 
progress, especially in the application of low-carbon innovative  technology54. Moreover, economically developed 
areas will also absorb more high-quality human capital than the rest. �e participation of innovative talents has 
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Figure 3.  Spatial and temporal pattern of China’s city-level carbon emissions during 1992–2017 (unit: million 
tons). (a) 1992, (b) 2000, (c) 2005, (d) 2010, (e) 2015, and (f) 2017. Note: �ese images were made by ArcGIS 
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empowered the enterprises to implement carbon emission reduction  technologies55. Secondly, economic and 
population growth are the primary factors for urban emission increase, as shown in Fig. 4a,b. Considering that 
China is in the critical stage of industrialization development, most of the industrial enterprises are expanding, 
large-scale input of factors is inevitable, and economic growth and human survival are inseparable from fossil-
fuel energy consumption, resulting in high carbon dioxide  emissions56.

In addition, the contribution of population size to emission increment in a few cities was negative, which 
may be because of the decrease of population in these cities in the reporting period compared to the base period. 
Speci�cally, �rstly, some cities have poor development and are a�ected by the siphon e�ect of surrounding big 
cities, which leads to the loss of population every year. Additionally, the births in these cities are lower than 
deaths, which make the natural population growth rate negative for many years, such as Nantong city. Secondly, 
some urban administrative areas have changed, and the reduction of administrative areas will cause the decline 
of population size. For example, Suqian, which is under the jurisdiction of Yangzhou City, was upgraded to a 
prefecture-level city in 1996. Meishan and Hongya counties were established from Leshan City in 1997, and 
Zongyang County of Anqing city was under the jurisdiction of Tongling City in 2016.

Discussion
Because cities have an intermediate position in the overall policy formulation and implementation framework 
for carbon emission mitigation  e�orts8–10, our data will be helpful for identifying the heterogeneous character-
istics of city-level carbon emissions that can lead to further insights into the emission–economic nexus and the 
development of the most e�ective mitigation actions instead of only focusing only on national or provincial 
carbon emissions.

Based on the integration of two nighttime light datasets, we used the variant coe�cient model and NDI index 
to estimate China’s city-level carbon emissions during 1992–2017. �en, to test the reliability of our data, we 
conducted comparisons with the data provided by other scholars. Given that detailed carbon emission data esti-
mated by nighttime light data were not available and comparisons among di�erent categories would be valuable, 
we adopted some relatively comprehensive emissions data calculated by energy inventories as a benchmark for 
the comparative analyses. �e analyses showed that our results were 84.17–91.63% similar to previous city-level 
results reported for  China13–15. �ese �ndings imply that our estimated prefecture-level carbon emissions data 
are reliable and valid.

Next, we individually estimated each city’s emission during 1992–2017. �ese results indicated that China’s 
high carbon emissions regions were clearly agglomerated in eastern coastal China, such as in the Beijing–Tian-
jin–Hebei region, Yangtze River Delta, and Pearl River Delta. At the same time, several cities in energy intensive 
provinces and mega-cities such as those in Inner Mongolia, Xinjiang, and Chongqing also had high carbon 
emissions. �e counts of high-emission regions showed a trend of gradual spread.

To identify the causes of China’s  CO2 emissions increase, we explored three aspects: technological progress, 
economic growth, and population size. From the results, we conclude that economic growth and population size 
are the boosters of a city’s emission growth, which is consistent with the conclusions drawn by Dong et al.57 based 
on global samples and Ding and  Li53 based on China’s provincial samples. In contrast, this study is based on the 
city samples, and has a long time span; therefore, it can better capture the causes of city’s emission increase from 
the perspective of socioeconomic development. Moreover, Wang et al.58 and population control, but methods 
should be adopted to achieve a balance between socioeconomic development and carbon emission reduction. 
Some scholars believe that to achieve a balance, we may need to rely on improving energy e�ciency and optimiz-
ing industrial structure, and the key to all these lies in technological  progress45,59. �eoretically, the impact of 
technological progress on carbon emission reduction will �rst be re�ected in the reduction of fossil-fuel energy 
demand. For example, using technological innovation, we can develop robust clean energy sources to replace 
fossil-fuel energy to meet the needs of economic development and human survival. �is view is consistent with 
that of Brännlund et al.60. Simultaneously, in the power, transportation, construction, metallurgy, chemical, 
petrochemical and other industries with heavy pollution, we should strengthen technological innovation to 
promote the e�ciency of carbon emission reduction. For example, clean and e�cient use of coal resources, 
green development of oil–gas and coalbed methane, installations of carbon capture and storage equipment may 
be implemented.

In conclusion, this study adopted nighttime light data as a proxy tool to estimate China’s carbon emissions 
and obtain accurate, long-term, full-coverage  CO2 data at the scale of prefecture-level cities, and the data was 

Table 4.  Comparison of the results of our proposed method with those of Shan et al.15, Cai et al.13, and Jing 
et al.14. (1) �e regression model is: C = α+βX+µ , where C represents the  CO2 emissions of this study, µ is 
the residual term, and X represents the  CO2 emissions of Shan et al.15, Cai et al.13, and Jing et al.14, respectively. 
(2) Models (1), (2), and (3) represent the results compared with the data proposed by Shan et al.15, Cai et al.13, 
and Jing et al.14, respectively. (3) We focused on the similarity of  CO2 emissions of this study with the other 
studies indicated here; thus, we have only provided the  R2 value. (4) N is the number of cities.

Variables

Model (1) Model (2) Model (3)

C C C

N 181 287 41

R2 0.8417 0.8464 0.9163
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Figure 4.  Spatial distribution of drivers of China’s city-level carbon emission increment during 1992–2017 
(unit: million tons). (a) �e contribution of economic growth to emission increment; (b) �e contribution of 
population size to emission increment; (c) �e contribution of technological progress to emission increment; (d) 
�e emission increment of each city. Notes: (1) �e gross domestic product (GDP) and population data of each 
city are from China City Statistical Yearbook, the statistical yearbook of each city, and the government bulletin. 
A few missing values have been supplemented by interpolation method. (2) Because of the lack of population 
and GDP data for some cities, 285 cities are covered here, excluding Hong Kong, Macao, and Taiwan. (3) �ese 
images were made by ArcGIS 10.0. �e version is available from: https ://www.esri.com/en-us/arcgi s/produ cts/
arcgi s-maps-for-o�c e/downl oad.
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validated with corresponding data on carbon emissions calculated by conventional methods. On the basis of 
estimated city-level carbon emissions and factor decomposition analysis, we can identify the drivers and het-
erogeneity characteristics of city-level carbon emission increment, and provide an e�ective policy tool for the 
government to implement carbon emission reduction strategies. Notably, the dataset presented here will be useful 
for further studies that analyze the budget allocation of cities’ carbon emission rights, e�ciency evaluations of 
city-level emission reductions, etc. Additionally, based on the proposed method for inter-calibrating the sets of 
DMSP/OLS and NPP/VIIRS data, we obtained continuous and stable nighttime light data during 1992–2017. 
As a basic data source, this nighttime light data is of great value and has broad application prospects in many 
research �elds, particularly because it can be combined easily with other basic data such as data on the popula-
tion size, economic activities, and energy use.

 Data availability
�e data that support the �ndings of this study is available from the corresponding authors upon request.
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