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Chinese diabetes datasets for  
data-driven machine learning
Qinpei Zhao   1,2,6, Jinhao Zhu   1,6, Xuan Shen3,6, Chuwen Lin3,6, Yinjia Zhang4, 
Yuxiang Liang1, Baige Cao3, Jiangfeng Li1,7 ✉, Xiang Liu5, Weixiong Rao1,7 ✉  
& Congrong Wang3,7 ✉

Data of the diabetes mellitus patients is essential in the study of diabetes management, especially 
when employing the data-driven machine learning methods into the management. To promote 
and facilitate the research in diabetes management, we have developed the ShanghaiT1DM and 
ShanghaiT2DM Datasets and made them publicly available for research purposes. This paper describes 
the datasets, which was acquired on Type 1 (n = 12) and Type 2 (n = 100) diabetic patients in Shanghai, 
China. The acquisition has been made in real-life conditions. The datasets contain the clinical 
characteristics, laboratory measurements and medications of the patients. Moreover, the continuous 
glucose monitoring readings with 3 to 14 days as a period together with the daily dietary information 
are also provided. The datasets can contribute to the development of data-driven algorithms/models 
and diabetes monitoring/managing technologies.

Background & Summary
Diabetes is a chronic disease that could lead to cardiovascular disease, neuropathy, retinopathy, kidney failure 
and even mortality. Rapid socioeconomic changes and unhealthy lifestyle habits have led to the increasing prev-
alence of diabetes worldwide. Type 1 diabetes mellitus (T1DM) and Type 2 diabetes mellitus (T2DM) are the two 
main types of diabetes. T1DM is a chronic autoimmune disease resulting from destruction or damaging of the 
pancreatic beta cells1. T2DM is caused by insulin resistance and relative insulin deficiency2. T1DM accounts for 
only 5–10% of all diabetes worldwide, but varies geographically with the annual incidence of adult-onset T1DM 
about 1 per 100,000 in China3, while T2DM is the most common subtype of diabetes, accounting for over 90% of 
all the diabetes worldwide and in China3,4. It is shown that good blood glucose (BG) control significantly reduces 
the development or progression of chronic complications in T1DM and T2DM5–7. Thus, BG measurement plays 
a key part in diabetes care, which allows patients to adjust their food intake, physical activity and medications 
with the help of physicians (clinicians)8. Self-monitoring of blood glucose (SMBG) is a measurement that uses 
blood to collect blood glucose information at many time points9. Recently, a continuous glucose monitoring 
(CGM) technology is used to continuously monitor the BG levels in more or less real time10,11.

The use of CGM technology makes it possible to obtain a large amount of continuous BG data. However, 
there were relatively few publicly available BG datasets, as the data may have ethical restrictions and privacy 
concerns. There have been many studies12,13 on the BG prediction using different datasets. A rigorous literature 
review12 was conducted to develop a compact guide regarding machine learning methods on BG prediction in 
T1DM. The review included 55 papers from 2000 to 2018 and showed their subject, type of input, data source, 
input pre-processing methods, machine learning algorithms, prediction horizon and performance metrics.  
A systematical review13 on the literature from 2014 to 2020 was performed to study the data-based algorithms 
and models using real data for BG and hypoglycaemia prediction in T1/T2DM. The existing datasets in T1/
T2DM for the BG prediction have been listed in the review. However, the T2DM datasets are much less stud-
ied than the T1DM datasets, e.g., 6 of 63 publications included T2DM in the review13. For real data, the data 
size was relatively small. In the review13, 27 papers (42.9%) present small samples (n < 10), 19 papers (30.2%) 
with small-medium samples (n = 11–50) and 17 papers (27%) with relatively large samples (n > 50). In another 
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review for T1DM12, 51.7% were with small samples, 29.3% with small-medium samples, 17.2% with simulated 
data and 1.7% with samples over 50 patients. Another limitation pointed out by the reviews was the low free 
access data availability. Most data are credentialed or not accessible due to ethical restrictions and data privacy. 
We summarized recently studied and popular T1DM and T2DM datasets in Table 1.

In T1DM, both real and simulated patient data in silico were well studied. Simulators can conveniently pro-
vide and customize detailed data of virtual diabetic patients from their dietary and treatment strategies. UVA/
Padova T1DM simulator14 was widely employed, which was approved by Food and Drug Administration (FDA) 
and provided 30 different virtual patients freely. Virtual diabetes simulators were studied in tasks such as glyce-
mic events identification, BG control15 and predictions14,16–18. The simulators were able to generate as many BG 
instances as possible for each patient14.

As a public dataset, OhioT1DM18–22 was a comprehensive dataset of real T1DM patients in the United 
States, which was publicly released by Ohio University and contained data of 12 real patients. Compared to 
the OhioT1DM, D1NAMO23 dataset focused on diabetes management. This dataset was composed of 20 real 
healthy people and nine real T1DM patients with additional patient information such as BG measurements, 
food pictures, breathing signals and accelerometer outputs. A clinical data18,24 including 10 T1DM adults from 
the ABC4D project using CGM sensors was used in a deep learning framework for accurate glucose forecast-
ing. Weinstock25 collected diabetes-related data from adult type 1 diabetes (> = 60 years of age, diabetes dura-
tion > = 20 years). This dataset consisted of 14 days’ CGM data, information of insulin, other medications and 
patient demographics from 201 patients. This dataset was proposed to analyze the risk factors that can cause 
severe hypoglycemia in old patients. Fox et al.26 collected CGM records from 40 T1DM patients over three years 
(data size > = 1900 days of BG measurements, > = 550k distinct glucose measurements) and developed a deep 
multi-output forecasting algorithm.

T2DM datasets were less common than T1DM datasets27,28. A CGM data from both the T1DM and T2DM 
patients were employed to predict future BG levels for preventing hyperglycemia or hypoglycemia29, which 
was collected over a period ranging from 1.3 to 7 days. The Maryland data27 contained 56,000 SMBG data 
points collected in a 1-year prospective study. In this study, patients were treated with a variety of medications, 
including oral antihyperglycemic agents and insulin. The Maastricht Study28,30, an observational, prospective, 
population-based cohort study, focused on the aetiology, pathophysiology, complications and comorbidities of 
T2DM, and was characterized by an extensive phenotyping approach.

The existing diabetes data are used not only in BG prediction31, but also in other diabetes-related fields, 
such as the generation of BG control strategies15 and the study of the influence of external factors on blood 
glucose level. However, the limitations of many diabetes datasets in terms of the number of patients, the racial 
regions where they are collected, and the types of diabetes mellitus have led to the restrictions in diabetes-related 
research.

It is known that dietary intake, exercise and medication are the main factors affecting the BG level32,33. The 
collection on these external information is therefore essential in the datasets, which is a tedious task. More spe-
cifically, eating habits are quite influenced by ethnic groups and regions, e.g., the Chinese dietary habits are very 
complicated34. Therefore, two datasets from T1DM and T2DM patients in Shanghai, China with dietary infor-
mation, clinical characteristics, laboratory measurements and medications of the patients were constructed. To 
the best of our knowledge, these are the first publicly available datasets to include rich information for people 
with T1DM and T2DM in China. The datasets could contribute to the research in data-driven machine learning.

Methods
Study population.  A registry study on Diabetes Data Registry and Individualized Lifestyle Intervention 
(DiaDRIL) was initiated in Shanghai East Hospital and Shanghai Fourth People’s Hospital affiliated to Tongji 
University since 2019. The aims of this project were to provide evidence for personalized lifestyle recommenda-
tions and optimize glycemic control.

In this study, the patients were recruited from DiaDRIL in Shanghai East Hospital (September 2019 to March 2021)  
and Shanghai Fourth Peopleś Hospital (June 2021 to November 2021), respectively. The inclusion criteria were 
as follows: patients with diagnosed diabetes according to the 1999 World Health Organization (WHO) criteria; 

Datasets Type
Study period 
(days)

No.of 
patients

Data 
Availability

CGM /
CBG Food Exercise

Insulin 
Use

Published 
Year

UVA/Padova14,16–18,41,42 T1DM customized 30 Open43 ✓/✓ ✓ × ✓ 2018

OhioT1DM18,19,21,22,44 T1DM 56 12 Credentialed45 ✓/✓ ✓ ✓ ✓ 2020

D1NAMO23 T1DM 4 9 Credentialed46 ✓/× ✓ ✓ ✓ 2018

ABC4D18,24 T1DM 180 10 not accessible ✓/× ✓ × ✓ 2020

Weinstock25 T1DM 12 201 not accessible ✓/× × × ✓ 2016

KDD1826 T1DM 1095 40 Open47 ✓/× × × × 2018

Yang29 T1/T2DM 1–7 49/51 not accessible ✓/× N/A N/A N/A 2018

Maryland27 T2DM 365 N/A not accessible ×/✓ × × ✓ 2015

Maastricht study28,30 T2DM 2 851 Credentialed48 ✓/✓ × ✓ × 2021

Table 1.  A summary on existing diabetes data in the literature. CBG, capillary blood glucose; CGM, continuous 
glucose monitoring; N/A, not available; T1DM, Type 1 diabetes mellitus; T2DM, Type 2 diabetes mellitus.
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more than 18 years of age, willing to sign the informed consent form and with CGM recording for at least  
3 days. Patients were excluded if they reported alcohol or drug abuse, were unable to comply with the study, or 
were not suitable to attend this study judged by the investigators. Data was anonymous to protect the sensitive 
information of the patients.

Clinical and laboratory measurements.  A standard questionnaire was conducted by trained research 
staff to obtain demographic information. Information on diagnosis and treatment of diabetes, duration of diabe-
tes, laboratory measurements, comorbidities and pharmacologic treatments were collected from medical records. 
Each patient underwent a physical examination including measurement of height and weight. Body mass index 
(BMI) was calculated as weight divided by height squared (kg/m2). Each patient wore a flash glucose monitoring 
device (FreeStyle Libre H, Abbott Diabetes Care, Witney, UK) to measure interstitial glucose levels continuously 
for up to 14 days. CGM glucose data were automatically stored on the sensor every 15 minutes. The data can be 
obtained by scanning the glucose sensor with the reader and uploaded using the device software. Available lab-
oratory measurements (≤6 months before or after CGM) including glucose metabolism, lipid profile and renal 
function were obtained from medical records. Any dietary intake including the exact time at consumption and 
weighed food record was reported by the patients. Hypoglycemic medications during CGM were also recorded.

This study was approved by the Ethics Committee of Shanghai Fourth People’s Hospital and Shanghai East 
Hospital affiliated to Tongji University in accordance with the Declaration of Helsinki. The informed consent 
was obtained from all the patients.

CGM parameters.  Time in range (TIR), one of the critical CGM-derived metrics, reflects the glucose var-
iability and evaluates the quality of glycemic control35. It is associated with microvascular complications and 
macrovascular outcomes of diabetes. TIR is defined as the percentage of time spent in the target glucose range 
of 70–180 mg/dL. Time below range (TBR) and time above range (TAR) are the percentage of time when blood 
glucose is below 70 mg/dL and above 180 mg/dL, respectively. For most patients with T1DM or T2DM, the rec-
ommended CGM targets by the Advanced Technologies & Treatments for Diabetes (ATTD) consensus were 
≥70% for TIR, ≤25% for TAR and ≤4% for TBR36.

Analysis for CGM data.  A clinical important task in diabetes management is the prevention of hypo/hyper-
glycemic events37. The algorithms to prevent the hpyo/hyperglycemic events can be obtained by generating hpyo/
hyperalerts on the basis of ahead-of-time prediction of glucose concentration by using past CGM data and suit-
able time-series models.

Auto-correlation38 represents the degree of similarity between a given time series and a lagged version of 
itself over successive time intervals. It can help to uncover hidden patterns in data. Additionally, analyzing the 
autocorrelation function (ACF) and partial autocorrelation function (PACF) in conjunction is necessary for 
selecting the appropriate time-series models, e.g., ARIMA39.
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where xt is the observation at time t, k is lag, E is the expected value operator, μ is the mean and σ2 is the variance 
of the time series. ρk can show the correlation between two observations with a lag k in the time series.

Data Records
The datasets ShanghaiT1DM and ShanghaiT2DM comprise two folders named “Shanghai_T1DM” and 
“Shanghai_T2DM” and two summary sheets named “Shanghai_T1DM_Summary” and “Shanghai_T2DM_
Summary”. The datasets can be downloaded through Figshare repository40.

The “Shanghai_T1DM” folder and “Shanghai_T2DM” folder contain 3 to 14 days of CGM data correspond-
ing to 12 patients with T1DM and 100 patients with T2DM, respectively. Of note, for one patient, there might 
be multiple periods of CGM recordings due to different visits to the hospital, which were stored in different 
excel tables. In fact, collecting data from different periods in one patient can reflect the changes of diabetes 
status during the follow-up. The excel table is named by the patient ID, period number and the start date of the 
CGM recording. Thus, for 12 patients with T1DM, there are 8 patients with 1 period of the CGM recording and  
2 patients with 3 periods, totally equal to 16 excel tables in the “Shanghai_T1DM” folder. As for 100 patients 
with T2DM, there are 94 patients with 1 period of CGM recording, 6 patients with 2 periods, and 1 patient with 
3 periods, amounting to 109 excel tables in the “Shanghai_T2DM” folder. Overall, the excel tables include CGM 
BG values every 15 minutes, capillary blood glucose (CBG) values, blood ketone, self-reported dietary intake, 
insulin doses and non-insulin hypoglycemic agents. The blood ketone was measured when diabetic ketoacidosis 
was suspected with a considerably high glucose level. Insulin administration includes continuous subcutaneous 
insulin infusion using insulin pump, multiple daily injections with insulin pen, and insulin that were given intra-
venously in case of an extremely high BG level.

Each excel table in the “Shanghai_T1DM” folder and “Shanghai_T2DM” folder contains the following data 
fields: <Date> Recording time of the CGM data. <CGM> CGM data recorded every 15 minutes. <CBG> 
CBG level measured by the glucose meter. <Blood ketone> Plasma-hydroxybutyrate measured with ketone 
test strips (Abbott Laboratories, Abbott Park, Illinois, USA). <Dietary intake> Self-reported time and weighed 
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food intake <Insulin dose-s.c.> Subcutaneous insulin injection with insulin pen. <Insulin dose-i.v.> Dose of 
intravenous insulin infusion. <Non-insulin hypoglycemic agents> Hypoglycemic agents other than insulin. 
<CSII-bolus insulin> Dose of insulin delivered before a meal through insulin pump. <CSII-basal insulin> The 
rate (iu/per hour) at which basal insulin was continuously infused through insulin pump.

The summary sheets summarize the clinical characteristics, laboratory measurements and medications 
of the patients included in this study, with each row corresponding to one excel table in “Shanghai_T1DM” 
and “Shanghai_T2DM” folders. Clinical characteristics include patient ID, gender, age, height, weight, BMI, 
smoking and drinking history, type of diabetes, duration of diabetes, diabetic complications, comorbidities 
as well as occurrence of hypoglycemia. Laboratory measurements contain fasting and 2-hour postprandial 
plasma glucose/C-peptide/insulin, hemoglobin A1c (HbA1c), glycated albumin, total cholesterol, triglyceride, 
high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, creatinine, estimated glomerular filtra-
tion rate, uric acid and blood urea nitrogen. Both hypoglycemic agents and medications given for other diseases 
before the CGM reading were also recorded.

Technical Validation
The characteristics of the Chinese diabetes datasets.  The detailed characteristics of the patients in 
the ShanghaiT1DM and ShanghaiT2DM datasets were summarized in Table 2. The age of the ShanghaiT1DM 
group and the ShanghaiT2DM group was 57.8 ± 11.1 and 60.2 ± 13.7 years, respectively. There was no statistically 
significant difference in age between the ShanghaiT1DM group and ShanghaiT2DM group. This is because most 
of the patients (10/12) in the ShanghaiT1DM group belonged to a subtype of T1DM called “latent autoimmune 
diabetes in adults”, which is characterized by slow autoimmune β-cell destruction and an older mean age at onset 
of diabetes1. Women accounted for 58.3% of the ShanghaiT1DM group and 44% of the ShanghaiT2DM group, 
respectively. Besides, data concerning fasting plasma glucose, 2-hour postprandial plasma glucose and HbA1c 
were comparable between the two groups. However, the ShanghaiT2DM group had higher BMI values than the 
ShanghaiT1DM group (p < 0.05).

To show the size of these two datasets more intuitively, we listed the patient’s type, the study period, sampling 
interval of CGM devices, number of patients, total number of recording files and total CGM measurements 
of the ShanghaiT1DM and ShanghaiT2DM in Table 3. For a given patient, he or she may have more than one 
recording period. In Fig. 1, we showed the number of recording files with different CGM data size in days in the 
ShanghaiT1DM and ShanghaiT2DM. The collected CGM data size varied from 3 days to 14 days.

We summarized the hypo/hyperglycemia events and calculated the auto-correlation coefficient on the BG 
values of the two datasets in time series. Hypoglycemia and hyperglycemia events are two potential risk fac-
tors for complications in diabetes. Hence, the time percentages of hypoglycemia (TBR) and hyperglycemia 
(TAR) events for each patient were calculated in Fig. 2. The horizontal axis represented each recording file of the 
patients with an order of TBR increasing, while the vertical axis represented the percentage of time (TAR, TIR 
and TBR) during the data collection period. The higher values of the TAR and TBR indicated that the patient’s 
condition was more serious. To give a clearer view of the TBR, TIR and TAR in the two datasets, we calculated 
the mean ± standard deviation of these values for the two datasets. For the ShanghaiT1DM, the mean ± standard 

Characteristics ShanghaiT1DM (n = 12) ShanghaiT2DM (n = 100) p value

Age, years 57.83 ± 11.12 60.17 ± 13.71 0.571

Women, n (%) 7 (58.3%) 44 (44.0%) 0.346

BMI, kg/m2 20.95 [17.87–24.21] 23.69 [22.12–25.54] 0.017

Duration of diabetes, years 8.50 [2.25–16.75] 7.00 [1.00–14.75] 0.614

Fasting plasma glucose, mg/dL 184.08 [117.00–262.35] 158.40 [126.00–194.40] 0.410

2-hour postprandial plasma glucose, mg/dL 297.00 [248.76–348.84] 250.65 [196.16–317.88] 0.218

HbA1c, mmol/mol 71 [63–122] 69 [54–97] 0.223

Table 2.  The characteristics of the T1DM and T2DM patients in the ShanghaiT1DM and ShanghaiT2DM. Data 
are presented as mean ± SD, median [interquartile range], or number(percentage%). BMI, body mass index; 
HbA1c, hemoglobin A1c; T1DM, Type 1 diabetes mellitus; T2DM, Type 2 diabetes mellitus.

Datasets
Type of 
diabetes

Study period 
(days)

Monitoring 
interval (minutes)

No. of 
patients

No. of 
recording file

Total CGM 
measurements

ShanghaiT1DM T1DM 4–14 15 12 16 15,695

ShanghaiT2DM T2DM 3–14 15 100 109 112,475

SimulatorT1DM T1DM 56 5 30 unlimited 482,610

OhioT1DM T1DM 56 5 12 12 191,605

Table 3.  General characteristics of the datasets. CGM, continuous glucose monitoring; T1DM, Type 1 diabetes 
mellitus; T2DM, Type 2 diabetes mellitus; No., number.
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deviation of the TIR were 54.7 ± 14.5% and 77.7 ± 18.1% for the ShanghaiT2DM. We noted that the average TIR 
was higher in T2DM patients than in T1DM patients (Fig. 2).

Besides, as the collection on individual patient’s behavior information in each dataset was different, we ran-
domly chose three patients from each dataset for the auto-correlation graph of the BG time series in Fig. 3. The 
auto-correlation coefficients identify seasonality and trend in time series data. It can be found that patients in 
ShanghaiT2DM (Fig. 3b) showed a more noticeable 24-hour periodic pattern than those in ShanghaiT1DM (Fig. 3a).

Since there might be discrepancy in BG levels by different blood glucose monitoring methods, we conducted 
a comparative analysis of the blood glucose measured by the CGM and CBG in Fig. 4, 5. The collection of the 
CBG was more sparse than that of the CGM, we only plotted the time stamps with both of the measurements. 
Two patients were randomly selected from each dataset. The results showed that the CBG values were usually 
greater than those of CGM readings.

Comparison to other datasets.  There have been widely used datasets such as the SimulatorT1DM and 
the OhioT1DM (see Table 3). In order to show more specifically the difference between the newly constructed 
datasets and other existing data, the comparisons were performed in Table 3, figs. 3c,d & 6.

The auto-correlation coefficients of the ShanghaiT1DM (Fig. 3a) and OhioT1DM (Fig. 3d) indicated that the 
two real T1DM datasets shared similar trend and periodic pattern, which made it possible to combine the two 
datasets together in certain research. The SimulatorT1DM (Fig. 3c) had strong regularity as it was simulated.

Achieving higher TIR has been shown to reduce the percentages of time in the hypoglycemic and hyperg-
lycemic range and complications of diabetes. In Fig. 6, we found that the patients in the OhioT1DM had lower 
mean TBR values compared to those in the ShanghaiT1DM (Fig. 2), which means that they have better control 
of hypoglycemia. In addition, patients in the ShanghaiT2DM (Fig. 2) had the highest mean TIR values, which 
suggests that people with T2D have better glycemic control overall than people with T1D. The virtual patients 
from the UVA/Padova (Fig. 6) had worse control of hypoglycemia, which may be due to the fact that the gly-
cemic control strategy of the virtual patients was based on a fixed formula and therefore could not produce a 

Fig. 1  The number of recording files with different CGM data size in days (a) ShanghaiT1DM dataset  
(b) ShanghaiT2DM dataset.

Fig. 2  The average percentage of TBR (time below range), TIR (time in range) and TAR (time above range)  
for CGM in two datasets. (a) ShanghaiT1DM: TAR (37.8 ± 18.8%), TIR (54.7 ± 14.5%), TBR (7.5 ± 7.0%).  
(b) ShanghaiT2DM: TAR (20.0 ± 18.4%), TIR (77.7 ± 18.1%), TBR (2.4 ± 7.2%). Data are presented as 
mean ± SD.
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Fig. 3  Auto-correlation coefficient of randomly picked three patients from the (a) ShanghaiT1DM,  
(b) ShanghaiT2DM, (c) SimulatorT1DM and (d) OhioT1DM.

Fig. 4  Randomly selected patients (a) 1008_0_20210713 and (b) 1003_0_20210831 in the ShanghaiT1DM for 
the distributions of glucose values of CGM readings and CBG. (CGM, continuous glucose monitoring; CBG, 
capillary blood glucose).

Fig. 5  Randomly selected patients (a) 2010_0_20220111 and (b) 2022_0_20210419 in the ShanghaiT2DM for 
the distributions of glucose values of CGM readings and CBG. (CGM, continuous glucose monitoring; CBG, 
capillary blood glucose).
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timely response to the hypoglycemia. By comparing the ShanghaiT1DM and OhioT1DM (Fig. 6), we found that 
the standard deviations of TBR, TIR and TAR in the ShanghaiT1DM were higher than those in the OhioT1DM.

Code availability
The code for the analysis of the datasets and the generation of the figures and tables can be accessed in the 
Figshare repository40, which is a JUPYTER notebook named “data_analysis.ipynb”. The script can be executed 
with Python 3.6 and allows for reproducibility and code reuse.
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