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Abstract

Chinese relation extraction is conducted using

neural networks with either character-based or

word-based inputs, and most existing meth-

ods typically suffer from segmentation errors

and ambiguity of polysemy. To address the is-

sues, we propose a multi-grained lattice frame-

work (MG lattice) for Chinese relation ex-

traction to take advantage of multi-grained

language information and external linguistic

knowledge. In this framework, (1) we incorpo-

rate word-level information into character se-

quence inputs so that segmentation errors can

be avoided. (2) We also model multiple senses

of polysemous words with the help of external

linguistic knowledge, so as to alleviate poly-

semy ambiguity. Experiments on three real-

world datasets in distinct domains show con-

sistent and significant superiority and robust-

ness of our model, as compared with other

baselines. The source code of this paper can

be obtained from https://github.com/

thunlp/Chinese_NRE.

1 Introduction

Relation extraction (RE) has a pivotal role in infor-

mation extraction (IE), aiming to extract seman-

tic relations between entity pairs in natural lan-

guage sentences. In downstream applications, this

technology is a key module for constructing large-

scale knowledge graphs. Recent developments in

deep learning have heightened the interest for neu-

ral relation extractions (NRE), which attempt to

use neural networks to automatically learn seman-

tic features (Liu et al., 2013; Zeng et al., 2014,

2015; Lin et al., 2016; Zhou et al., 2016; Jiang

et al., 2016).

∗ indicates equal contribution
† Corresponding author: Hai-Tao Zheng. ( E-mail:

zheng.haitao@sz.tsinghua.edu.cn )

Figure 1: An example of segmentation ambiguity and

polysemy ambiguity in Chinese RE.

Although it is not necessary for NRE to per-

form feature engineering, they ignore the fact

that different language granularity of input will

have a significant impact on the model, especially

for Chinese RE. Conventionally, according to the

difference in granularity, most existing methods

for Chinese RE can be divided into two types:

character-based RE and word-based RE.

For the character-based RE, it regards each in-

put sentence as a character sequence. The short-

coming of this kind of method is that it can-

not fully exploit word-level information, capturing

fewer features than the word-based methods. For

the word-based RE, word segmentation should be

first performed. Then, a word sequence is derived

and fed into the neural network model. However,

the performance of the word-based models could

be significantly impacted by the quality of seg-

mentation.

For example, as shown in Fig 1, the Chinese

sentence “达尔文研究所有杜鹃 (Darwin studies

all the cuckoos)” has two entities, which are “达

尔文 (Darwin)” and “杜鹃 (cuckoos)”, and the

relation between them is Study. In this case, the

https://github.com/thunlp/Chinese_NRE
https://github.com/thunlp/Chinese_NRE
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correct segmentation is “达尔文 (Darwin) /研究

(studies) /所有 (all the) /杜鹃 (cuckoos)” . Nev-

ertheless, semantics of the sentence could become

entirely different as the segmentation changes. If

the segmentation is “达尔文 (In Darwin) /研究所

(institute) / 有 (there are) / 杜鹃 (cuckoos)”, the

meaning of the sentence becomes ’there are cuck-

oos in Darwin institute’ and the relation between

“达尔文 (Darwin)” and “杜鹃 (cuckoos)” turns

into Ownership, which is wrong. Hence, neither

character-based methods nor word-based methods

can sufficiently exploit the semantic information

in data. Worse still, this problem becomes sev-

erer when datasets is finely annotated, which are

scarce in number. Obviously, to discover high-

level entity relationships from plain texts, we need

the assistance of comprehensive information with

various granularity.

Furthermore, the fact that there are many pol-

ysemous words in datasets is another point ne-

glected by existing RE models, which limits the

ability of the model to explore deep semantic fea-

tures. For instance, the word “杜鹃” has two

different senses, which are ’cuckoos’ and ’aza-

leas’. But it’s difficult to learn both senses infor-

mation from plain texts without the help of exter-

nal knowledge. Therefore, the introduction of ex-

ternal linguistic knowledge will be of great help to

NRE models.

In this paper, we proposed the multi-granularity

lattice framework (MG lattice), a unified model

comprehensively utilizes both internal informa-

tion and external knowledge, to conduct the Chi-

nese RE task. (1) The model uses a lattice-based

structure to dynamically integrate word-level fea-

tures into the character-based method. Thus, it

can leverage multi-granularity information of in-

puts without suffering from segmentation errors.

(2) Moreover, to alleviate the issue of polysemy

ambiguity, the model utilizes HowNet (Dong and

Dong, 2003), which is an external knowledge base

manually annotates polysemous Chinese words.

Then, the senses of words are automatically se-

lected during the training stage and consequently,

the model can fully exploit the semantic informa-

tion in data for better RE performance.

Sets of experiments has been conducted on

three manually labeled RE datasets. The results

indicate that our model significantly outperforms

multiple existing methods, achieving state-of-the-

art results on various datasets across different do-

mains.

2 Related Work

Recent years RE, especially NRE, has been widely

studied in the NLP field. As a pioneer, (Liu et al.,

2013) proposed a simple CNN RE model and it is

regarded as one seminal work that uses a neural

network to automatically learn features. On this

basis, (Zeng et al., 2014) developed a CNN model

with max-pooling, where positional embeddings

were first used to represent the position informa-

tion. Then the PCNNs model (Zeng et al., 2015)

designed the multi-instance learning paradigm for

RE. However, the PCNNs model suffers the issue

of the selection of sentences. To address the prob-

lem, Lin et al. (2016) applied the attention mech-

anism over all the instances in the bag. Further,

Jiang et al. (2016) proposed a model with multi-

instance and multi-label paradigms. Although PC-

NNs models are more efficient, they cannot exploit

contextual information like RNNs. Hence, LSTM

with attention mechanism was also applied to the

RE task (Zhang and Wang, 2015; Zhou et al.,

2016; Lee et al., 2019).

Existing methods for Chinese RE are mostly

character-based or word-based implementations of

mainstream NRE models (Chen and Hsu, 2016;

Rönnqvist et al., 2017; ZHANG et al., 2017; Xu

et al., 2017). In most cases, these methods only

focus on the improvement of the model itself, ig-

noring the fact that different granularity of input

will have a significant impact on the RE mod-

els. The character-based model can not utilize

the information of words, capturing fewer fea-

tures than the word-based model. On the other

side, the performance of the word-based model is

significantly impacted by the quality of segmen-

tation (Zhang and Yang, 2018). Although some

methods are used to combine character-level and

word-level information in other NLP tasks like

character-bigrams (Chen et al., 2015; Yang et al.,

2017) and soft words (Zhao and Kit, 2008; Chen

et al., 2014; Peng and Dredze, 2016), the informa-

tion utilization is still very limited.

Then, tree-structured RNNs was proposed to

address the shortcomings. Tai et al. (2015) pro-

posed a tree-like LSTM model to improve the

semantic representation. This type of structure

has been applied into various tasks, including hu-

man action recognition (Sun et al., 2017), NMT

encoders (Su et al., 2017), speech tokenization
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(Sperber et al., 2017) and NRE (Zhang and Yang,

2018). Although the lattice LSTM model can ex-

ploit word and word sequence information, it still

could be severely affected by the ambiguity of pol-

ysemy. In other words, these models cannot han-

dle the polysemy of words with the change of lan-

guage situation. Therefore, the introduction of

external linguistic knowledge is very necessary.

We utilize sense-level information with the help

of HowNet proposed by Dong and Dong (2003),

which is a concept knowledge base that annotates

Chinese with correlative word senses. In addition,

the open-sourced HowNet API (Qi et al., 2019) is

also used in our work.

3 Methodology

Given a Chinese sentence and two marked enti-

ties in it, the task of Chinese relation extraction

is to extract semantic relations between the two

entities. In this section, we present our MG lat-

tice model for Chinese relation extraction in detail.

As shown in Fig 2, the model could be introduced

from three aspects:

Figure 2: MG lattice framework. 1

Input Representation. Given a Chinese sen-

tence with two target entities as input, this part rep-

resents each word and character in the sentence.

Then the model can utilize both word-level and

character-level information.

MG Lattice Encoder. Incorporating external

knowledge into word sense disambiguation, this

1In order to keep the figure clear and concise, we do not
show gate cells and the backward direction.

part uses a lattice-structure LSTM network to con-

struct a distributed representation for each input

instance.

Relation Classifier. After the hidden states are

learned, a character-level mechanism is adapted to

merge features. Then the final sentence represen-

tations are fed into a softmax classifier to predict

relations.

We will introduce all the three parts in the fol-

lowing subsections in detail.

3.1 Input Representation

The input of our model is a Chinese sentence s

with two marked entities. In order to utilize multi-

granularity information, we represent both charac-

ters and words in the sentence.

3.1.1 Character-level Representation

Our model takes character-based sentences as di-

rect inputs, that is, regarding each input sentence

as a character sequence. Given a sentence s con-

sisting of M characters s = {c1, ..., cM}, we first

map each character ci to a vector of dc dimensions,

denoted as xcei ∈ R
dc , via the Skip-gram model

(Mikolov et al., 2013).

In addition, we leverage position embeddings to

specify entity pairs, which are defined as the rel-

ative distances from the current character to head

and tail entities (Zeng et al., 2014). Specifically,

the relative distances from the i-th character ci to

the two marked entities are denoted as p1i and p2i
respectively. We calculate p1i as below:

p1i =











i− b1 i < b1,

0 b1 ≤ i ≤ e1,

i− e1 i > e1,

(1)

where b1 and e1 are the start and end indices of

the head entity. The computation of p2i is similar

to Eq. 1. Then, p1i and p2i are transformed into two

corresponding vectors, denoted as x
p1
i ∈ R

dp and

x
p2
i ∈ R

dp , by looking up a position embedding

table.

Finally, the input representation for character ci,

denoted as xc
i ∈ R

d (d = dc+2×dp), is concate-

nated by character embedding xce
i , position em-

beddings x
p1
i and x

p2
i :

xc
i = [xce

i ;xp1
i ;xp2

i ]. (2)

Then, the representation of characters xc =
{xc

1, ...,x
c
M} will be directly fed into our model.
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3.1.2 Word-level Representation

Although our model takes character sequences as

direct inputs, in order to fully capture word-level

features, it also needs the information of all poten-

tial words in the input sentences. Here, a potential

word is any character subsequence that matches

a word in a lexicon D built over segmented large

raw text. Let wb,e be such a subsequence start-

ing from the b-th character to the e-th character.

To represent wb,e, we use the word2vec (Mikolov

et al., 2013) to convert it into a real-valued vector

xw
b,e ∈ R

dw .

However, the word2vec method maps each

word to only one single embedding, ignoring the

fact that many words have multiple senses. To

tackle this problem, we incorporate HowNet as an

external knowledge base into our model to repre-

sent word senses rather than words.

Hence, given a word wb,e, we first obtain all

K senses of it by retrieving the HowNet. Using

Sense(wb,e) to denote the senses set of wb,e, we

then convert each sense sen
(wb,e)
k ∈ Sense(wb,e)

into a real-valued vector xsen
b,e,k ∈ R

dsen through

the SAT model (Niu et al., 2017). The SAT model

is on the basis of the Skip-gram, which can jointly

learn word and sense representations. Finally, the

representation of wb,e is a vector set denoted as

xsenb,e = {xsen
b,e,1, ...,x

sen
b,e,K}.

In the next section, we will introduce how our

model utilizes sense embeddings.

3.2 Encoder

The direct input of the encoder is a character se-

quence, together with all potential words in lexi-

con D. After training, the output of the encoder is

the hidden state vectors h of an input sentence. We

introduce the encoder with two strategies, includ-

ing the basic lattice LSTM and the multi-graind

lattice (MG lattice) LSTM.

3.2.1 Basic Lattice LSTM Encoder

Generally, a classical LSTM (Hochreiter and

Schmidhuber, 1997) unit is composed of four ba-

sic gates structure: one input gate ij controls

which information enters into the unit; one output

gate oj controls which information would be out-

putted from the unit; one forget gate fj controls

which information would be removed in the unit.

All three gates are accompanied by weight matrix

W . Current cell state cj records all historical in-

formation flow up to the current time. Therefore,

the character-based LSTM functions are:























icj = σ(Wix
c
j + Uih

c
j−1 + bi),

oc
j = σ(Wox

c
j + Uoh

c
j−1 + bo),

f c
j = σ(Wfx

c
j + Ufh

c
j−1 + bf ),

c̃cj = tanh(Wcx
c
j + Uch

c
j−1 + bc),

(3)

ccj = f c
j ⊙ ccj−1 + icj ⊙ c̃cj , (4)

hc
j = oc

j ⊙ tanh(ccj), (5)

where σ() means the sigmoid function. Hence, the

current cell state cj will be generated by calcu-

lating the weighted sum using both previous cell

state and current information generated by the cell

(Graves, 2013).

Given a word wb,e in the input sentence which

matches the external lexicon D, the representation

can be obtained as follows:

xw
b,e = ew(wb,e), (6)

where b and e denotes the start and the end of

the word, and ew is the lookup table . Under this

circumstance, the computation of ccj incorporates

word-level representation xw
b,e to construct the ba-

sic lattice LSTM encoder. Further, a word cell cwb,e
is used to represent the memory cell state of xw

b,e .

The computation of cwb,e is:











iwb,e = σ(Wix
w
b,e + Uih

c
b + bi),

fw
b,e = σ(Wfx

w
b,e + Ufh

c
b + bf ),

c̃wb,e=tanh(Wcx
w
b,e + Uch

c
b + bc),

(7)

cwb,e = fw
b,e ⊙ ccb + iwb,e ⊙ c̃wb,e, (8)

where iwb,e and fw
b,e serve as a set of word-level in-

put and forget gates.

The cell state of the e-th character will be cal-

culated by incorporating the information of all the

words that end in index e, which is wb,e with

b ∈ {b′|wb′,e ∈ D}. To control the contribution

of each word, an extra gate icb,e is used:

icb,e = σ(Wxc
e + Ucwb,e + bl). (9)

Then the cell value of the e-th character is com-

puted by:

cce =
∑

b∈{b′|wb′,e∈D}

αc
b,e ⊙ cwb,e +αc

e ⊙ c̃ce, (10)



4381

where αc
b,e and αc

e are normalization factors, set-

ting the sum to 1:

αc
b,e=

exp(icb,e)

exp(ice)+
∑

b′∈{b′′|wb′′,e∈D}
exp(icb′,e)

, (11)

αc
e=

exp(ice)

exp(ice)+
∑

b′∈{b′′|wb′′,e∈D}
exp(icb′,e)

. (12)

Finally, we use Eq. 5 to compute the final hid-

den state vectors hc
j for each character of the se-

quence. This structure is also used in Zhang and

Yang (2018).

3.2.2 MG Lattice LSTM Encoder

Although the basic lattice encoder can explicitly

leverages character and word information, it could

not fully consider the ambiguity of Chinese. For

instance, as shown in Figure 2, the word w2,3 (杜

鹃) has two senses: sen
(w2,3)
1 represents ’azalea’

and sen
(w2,3)
2 represents ’cuckoo’, but there is only

one representation for w2,3 in the basic lattice en-

coder, which is xw
2,3.

To address this shortcoming, we improve the

model by adding sense-level paths as external

knowledge to the model. Hence, a more compre-

hensive lexicon would be constructed. As men-

tioned in 3.1, the representation of the k-th sense

of the word wb,e is xsen
b,e,k.

For each word wb,e which matches the lexicon

D, we will take all its sense representations into

the calculation. The computation of the k-th sense

of word wb,e is:











isenb,e,k = σ(Wix
sen
b,e,k + Uih

c
b + bi),

f sen
b,e,k = σ(Wfx

sen
b,e,k + Ufh

c
b + bf ),

c̃senb,e,k=tanh(Wcx
sen
b,e,k+Uch

c
b+bc),

(13)

csenb,e,k = f sen
b,e,k ⊙ ccb + isenb,e,k ⊙ c̃senb,e,k, (14)

where csenb,e,k represents the memory cell of the k-

th sense of the word wb,e. Then all the senses

are merged into a comprehensive representation to

compute the memory cell of wb,e, which is denoted

as csenb,e :

csenb,e =
∑

k

αsen
b,e,k ⊙ csenb,e,k, (15)

αsen
b,e,k=

exp(isenb,e,k)

K
∑

k′
exp(isenb,e,k′)

, (16)

where isenb,e,k is an extra gate to control the contri-

bution of the k-th sense, and is computed similar

as Eq. 9.

In this situation, all the sense-level cell states

will be incorporated into the word representation

csenb,e , which could better represent the polysemous

word. Then, similar to Eq. 9 - 12, all the recurrent

paths of words ending in index e will flow into the

current cell cce:

cce=
∑

b∈{b′|wd
b′,e

∈D}

αsen
b,e ⊙ csenb,e +αc

e ⊙ c̃ce. (17)

Finally, the hidden state h are still computed by

Eq. 5 and then sent to the relation classifier.

3.3 Relation Classifier

After the hidden state of an instance h ∈ R
dh×M

is learnt, we first adopt a character-level attention

mechanism to merge h into a sentence-level fea-

ture vector, denoted as h∗ ∈ R
dh . Here, dh indi-

cates the dimension of the hidden state and M is

the sequence length. Then, the final sentence rep-

resentation h∗ is fed into a softmax classifier to

compute the confidence of each relation.

The representation h∗ of the sentence is com-

puted as a weighted sum of all character feature

vectors in h:

H = tanh(h), (18)

α = softmax(wTH), (19)

h∗ = hαT , (20)

where w ∈ R
dh is a trained parameter and α ∈

R
M is the weight vector of h.

To compute the conditional probability of each

relation, the feature vector h∗ of sentence S is fed

into a softmax classifier:

o = Wh∗ + b, (21)

p(y|S) = softmax(o), (22)

where W ∈ R
Y×dh is the transformation matrix

and b ∈ R
Y is a bias vector. Y indicates the total

number of relation types, and y is the estimated

probability for each type. This mechanism is also

applied to (Zhou et al., 2016).

Finally, given all (T ) training examples

(S(i), y(i)), we define the objective function using

cross-entropy as follows:

J(θ) =

T
∑

i=1

log p(y(i)|S(i), θ), (23)
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where θ indicates all parameters of our model.

To avoid co-adaptation of hidden units, we ap-

ply dropout (Hinton et al., 2012) on the LSTM

layer by randomly removing feature detectors

from the network during forward propagation.

4 Experiments

In this section, we conduct a series of experiments

on three manually labeled datasets. Our models

show superiority and effectiveness compared with

other models. Furthermore, generalization is an-

other advantage of our models, because there are

five corpora used to construct the three datasets,

which are entirely different in topics and manners

of writing. The experiments will be organized as

follows:

(1) First, we study the ability of our model to

combine character-level and word-level informa-

tion by comparing it with char-based and word-

based models;

(2) Then we focus on the impact of sense rep-

resentation, carrying out experiments among three

different kinds of lattice-based models;

(3) Finally, we make comparisons with other

proposed models in relation extraction task.

4.1 Datasets and Experimental Settings

Datasets. We carry out our experiments on

three different datasets, including Chinese San-

Wen (Xu et al., 2017), ACE 2005 Chinese corpus

(LDC2006T06) and FinRE.

The Chinese SanWen dataset contains 9 types of

relations among 837 Chinese literature articles, in

which 695 articles for training, 84 for testing and

the rest 58 for validating. The ACE 2005 dataset

is collected from newswires, broadcasts, and we-

blogs, containing 8023 relation facts with 18 re-

lation subtypes. We randomly select 75% of it to

train the models and the remaining is used for eval-

uation.

For more diversity in test domains, we manu-

ally annotate the FinRE dataset from 2647 finan-

cial news in Sina Finance 2, with 13486, 3727 and

1489 relation instances for training, testing and

validation respectively. The FinRE contains 44

distinguished relationships including a special re-

lation NA, which indicates that there is no relation

between the marked entity pair.

Evaluation Metrics. Multiple standard evalu-

ation metrics are applied in the experiments, in-

2https://finance.sina.com.cn/

Hyper-parameter value

learning rate 0.0005

dropout probability 0.5

char embedding size 100

lattice embedding size 200

position embedding size 5

LSTM hidden 200

regularization 1e-8

Table 1: Hyper-parameters

cluding the precision-recall curve, F1-score, Pre-

cision at top N predictions (P@N) and area un-

der the curve (AUC). With comprehensive evalua-

tions, models can be estimated from multiple an-

gles.

Parameter Settings. We tune the parameters

of our models by grid searching on the validation

dataset. Grid search is utilized to select optimal

learning rate λ for Adam optimizer (Kingma and

Ba, 2014) among {0.0001, 0.0005, 0.001, 0.005, }
and position embedding dp in {5, 10, 15, 20}.

Table 1 shows the values of the best hyper-

parameters in our experiments. The best models

were selected by early stopping using the evalu-

ation results on the validation dataset. For other

parameters, we follow empirical settings because

they make little influence on the whole perfor-

mance of our models.

Models FinRE SanWen ACE

Word-

based

Word-baseline 41.23 54.26 64.43

+char CNN 41.60 56.62 68.86

+char LSTM 42.20 57.92 69.81

Char-

based

Character-baseline 40.50 60.34 71.52

+softword 41.42 60.69 69.81

+bichar 40.52 61.34 71.86

+softword + bichar 42.03 61.75 72.63

Ours
Basic Lattice 47.41 63.88 77.12

MG Lattice 49.26 65.61 78.17

Table 2: F1-scores of word-baselines, character base-

lines and lattice-based models on all datasets.

4.2 Effect of Lattice Encoder.

In this part, we mainly focus on the effect of

the encoder layer. As shown in Table 2, we

conducted experiments on char-based, word-based

and lattice-based models on all datasets. The

word-based and character-based baselines are im-

plemented by replacing the lattice encoder with

a bidirectional LSTM. In addition, character and

word features are added to these two baselines re-

spectively, so that they can use both character and

word information. For word baseline, we utilize
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Datasets ACE-2005 SanWen FinRE

P@N 100 200 300 Mean 100 200 300 Mean 100 200 300 Mean

Basic Lattice 99.01 94.03 94.68 95.91 96.04 90.05 89.04 91.71 97.03 92.04 90.70 93.26

Basic Lattice (SAT) 97.03 97.01 96.01 96.69 93.07 93.03 91.36 92.49 98.02 93.03 90.70 93.92

MG Lattice 98.02 97.51 96.01 97.18 94.06 93.03 90.70 92.60 100.0 92.54 89.70 94.08

Table 3: Precision@N of lattice-based models on all datasets.

an extra CNN/LSTM to learn hidden states for

characters of each word (char CNN/LSTM). For

char baseline, bichar and softword (word in which

the current character is located) are used as word-

level features to improve character representation.

The lattice-based approaches include two

lattice-based models, and both of them can explic-

itly leverage both character and word information.

The basic lattice uses the encoder mentioned in

3.2.1, which can dynamically incorporate word-

level information into character sequences. For

MG lattice, each sense embedding will be used to

construct an independent sense path. Hence, there

is not only word information, but also sense infor-

mation flowing into cell states.

Figure 3: Precision-recall curves for three lattice-based

models on ACE-2005.

Results of word-based model. With automatic

word segmentation, the baseline of the word-based

model yields 41.23%, 54.26% and 64.43% F1-

score on three datasets. The F1-scores are in-

creased to 41.6%, 56.62 and 68.86% by adding

character CNN to the baseline model. Compared

with the character CNN, character LSTM repre-

sentation gives slightly higher F1-scores, which

are 42.2%, 57.92%, and 69.81% respectively.

The results indicate that character information

will promote the performance of the word-based

model, but the increase in F1-score is not signifi-

cant.

Results of character-based model. For the

character baseline, it gives higher F1-scores com-

pared with the word-based methods. By adding

soft word feature, the F1-scores slightly increase

on FinRE and SanWen dataset. Similar results

are achieved by adding character-bigram. Ad-

ditionally, a combination of both word features

yields best F1-scores among character-based mod-

els, which are 42.03%, 61.75%, and 72.63%.

Results of lattice-based model. Although we

take multiple strategies to combine character and

word information in baselines, the lattice-based

models still significantly outperform them. The

basic lattice model improves the F1-scores of

three datasets from 42.2% to 47.35%, 61.75% to

63.88% and 72.63% to 77.12% respectively. The

results demonstrate the ability to exploit charac-

ter and word sequence information of the lattice-

based model. Comparisons and analysis of the

lattice-based models will be introduced in the next

subsection.

4.3 Effect of Word Sense Representations

In this section, we will study the effect of word

sense representations by utilizing sense-level in-

formation with different strategies. Hence, three

types of lattice-based models are used in our ex-

periments. First, the basic lattice model uses

word2vec (Mikolov et al., 2013) to train the word

embeddings, which considers no word sense infor-

mation. Then, we introduce the basic lattice (SAT)

model as a comparison, for which the pre-trained

word embeddings are improved by sense informa-

tion (Niu et al., 2017). Moreover, the MG lattice

model uses sense embeddings to build indepen-

dent paths and dynamically selects the appropriate

sense.

The results of P@N shown in Table 3 demon-

strate the effectiveness of word sense representa-

tions. The basic lattice (SAT) gives better perfor-

mance than the original basic lattice model thanks

to considering sense information into word em-

beddings. Although the basic lattice (SAT) model

reaches better overall results, the precision of the
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(a) Results on FinRE (b) Results on SanWen (c) Results on ACE-2005

Figure 4: Precision-recall curves of BLSTM, Att-BLSTM, CNN, PCNN, PCNN+ATT, Basic lattice and MG lattice

on all datasets. All models (except the Basic and MG lattice) are character-based.

top 100 instances is still lower than the lattice-

basic model. Compared with the other two mod-

els, MG lattice shows superiority in all indexes

of P@N, achieving the best results in the mean

scores.

To compare and analyze the effectiveness of

all lattice-based models more intuitively, we re-

port the precision-recall curve of the ACE-2005

dataset in Figure 3 as an example. Although the

basic lattice (SAT) model obtains better overall

performance than the original basic lattice model,

the precision is still lower when the recall is low,

which corresponds to the results in Table 3. This

situation indicates that considering multiple senses

only in the pre-trained stage would add noise to the

word representations. In other words, the word

representation tends to favor the commonly used

senses in the corpora, which will disturb the model

when the correct sense of the current word is not

the common one. Nevertheless, the MG lattice

model successfully avoids this problem, giving the

best performance in all parts of the curve. This re-

sult indicates that the MG lattice model is not sig-

nificantly impacted by the noisy information be-

cause it can dynamically select the sense paths in

different contexts. Although MG lattice model

shows effectiveness and robustness on the over-

all results, it is worth noting that the improvement

is limited. The situation indicates that the utiliza-

tion of multi-grained information could still be im-

proved. A more detailed discussion is in Section

5.

4.4 Final Results

In this section, we compare the performance of the

lattice-based model with various proposed meth-

ods. The proposed models we selected are as fol-

Models
FinRE SanWen ACE-2005

AUC F1 AUC F1 AUC F1

BLSTM 28.80 42.87 50.21 61.04 60.40 70.03

Att-BLSTM 27.81 41.48 50.42 59.48 61.85 70.69

CNN 27.12 41.47 47.81 59.42 64.49 72.41

PCNN 30.49 45.51 48.26 61.00 66.10 74.33

PCNN+Att 31.89 46.13 50.41 60.55 65.79 73.17

Basic Lattice 36.58 47.41 56.88 63.88 70.51 77.12

MG Lattice 38.74 49.26 57.33 65.61 72.28 78.17

Table 4: AUC and F1-scores of BLSTM, Att-BLSTM,

CNN, PCNN, PCNN +Att, Basic lattice and MG lattice

on all datasets. All models (except the Basic and MG

lattice) are character-based.

lows:

CNN (Zeng et al., 2014) proposes a CNN model

for relation extraction.

PCNN (Zeng et al., 2015) puts forward a piece-

wise CNN model with multi-instance learning.

BLSTM (Zhang and Wang, 2015) proposes a

bidrectional LSTM model for relation extraction.

Att-BLSTM (Zhou et al., 2016) is a bidrec-

tional LSTM model with word-level attention

mechanism. 3

PCNN+ATT (Lin et al., 2016) improves PCNN

model with selective attention mechanism.

We conduct experiments on both character-

based and word-based versions of the five mod-

els mentioned above. The results show that the

character-based versions perform better than the

word-based versions for all models on all datasets.

Consequently, we only use the character-based

version of the five selected models in the following

experiments.

3For the sake of fairness, we add position embeddings
to both BLSTM and Att-BLSTM, which are not used in the
original papers.
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For comprehensive comparison and analysis,

we report precision-recall curves in Figure 4 and

F1-scores and AUC in Table 4. From the re-

sults, we can observe that: (1) Lattice-based mod-

els significantly outperform other proposed mod-

els on datasets from different domains. Thanks to

the polysemy information, the MG lattice model

performs best among all models, showing supe-

riority and effectiveness on the Chinese RE task.

The results indicate that sense-level information

could enhance the ability to capturing deep se-

mantic information from text. (2) The gap be-

tween the basic lattice model and the MG lat-

tice model becomes narrow on the dataset FinRE.

The reason for this phenomenon is that FinRE is

constructed from financial report corpus, and the

words of financial reports are often rigorous and

unambiguous. (3) In comparison, the PCNN and

PCNN+ATT models perform worse in the SanWen

and ACE datasets. The reason is that there are po-

sitional overlaps between entity pairs in these two

datasets, making PCNN unable to take full advan-

tage of the piece-wise mechanism. The results in-

dicate that the PCNN-based methods have a high

dependence on the form of the dataset. In com-

parison, our models show robustness on all three

datasets.

5 Conclusion and Future Work

In this paper, we propose the MG lattice model

for Chinese relation extraction. The model in-

corporates word-level information into character

sequences to explore deep semantic features and

avoids the issue of polysemy ambiguity by intro-

ducing external linguistic knowledge, which is re-

garded as sense-level information. We compre-

hensively evaluate our model on various datasets.

The results show that our model significantly out-

performs other proposed methods, reaching the

state-of-the-art results on all datasets.

In the future, we will attempt to improve the

ability of the MG Lattice to utilize multi-grained

information. Although we have used word, sense

and character information in our work, more level

of information can be incorporated into the MG

Lattice. From coarse to fine, sememe-level in-

formation can be intuitively valuable. Here, se-

meme is the minimum semantic unit of word

sense, whose information may potentially assist

the model to explore deeper semantic features.

From fine to coarse, sentences and paragraphs

should be taken into account so that a border range

of contextual information can be captured.
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