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Chio’s-like method for calculating the rectangular
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Abstract. In this paper, we present an approach for the calculation of rectangular determinants,
where in addition to the mathematical formula, we also provide a computer algorithm for their
calculation. Firstly, we present a method similar to Sarrus method for calculating the rectangular
determinant of the order 2 × 3. Secondly, we present an approach for calculating the rectangular
determinants of order m×n by adding a row with all elements equal to one (1) in any row, as well
as an application of Chio’s rule for calculating the rectangular determinants. Thirdly, we find the
time complexity and comparison of the computer execution time of calculation of the rectangular
determinant based on the presented algorithms and comparing them with the algorithm based on
the Laplace method.
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1. Rectangular determinants definition

Let A be m× n a rectangular matrix:

Am×n =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 , (1)

its determinant, where m ≤ n is the sum (See: [2, 6]):
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det(Am×n) = |Am×n| =

∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

∣∣∣∣∣∣∣∣∣
=

∑
1<j1<···<jm<n

(−1)r+s

∣∣∣∣∣∣∣∣∣
a1j1 a1j2 · · · a1jn
a2j1 a2j2 · · · a2jn

...
...

. . .
...

amj1 amj2 · · · amjm

∣∣∣∣∣∣∣∣∣ , (2)

where r = 1 + · · ·+ m, s = j1 + · · ·+ jm. If m > n, then det(Am×n) = det(Am×n)T .
This determinant has many known standard characteristics, such as the validity of

overall row expansion of Laplace method. It is a symmetric multi-linear function with
respect to rows.

It is shown that this determinant has the extension of Laplace along rows that is valid
for each 1 ≤ i ≤ m [7]:

det(Am×n) =

n∑
j=1

(−1)i+jaijA
i
j , (3)

where Ai
j is the minor of the element aij .

In the following, the computer algorithm used to calculate rectangular determinants
using Laplace expansion is presented. The algorithm is based on the Rezaifer’s algorithm
used to calculate square determinants using the Laplace method [8].

Algorithm 1.1: Recursive algorithm det Laplace for Laplace method to calculate
rectangular determinants

Step 1: Insert the rectangular determinant A
Step 2: Determine the order of rectangular determinant m× n

[m,n] = size(A);
Step 3: Calculate rectangular determinants using Laplace Method

Initialize d = 0;
Create Loop for i from 1 to n

d = d + (−1)∧(1 + i) ∗A(1, i) ∗ det Laplace(A(2 : m, [1 : i− 1 i + 1 : n]));
end

Step 4: Display the result of the determinant

2. Main results

Proposition 2.1: For a rectangular determinant of order 2×3 the following Sarrus-like
formula holds:
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∣∣∣∣a11 a12 a13
a21 a22 a23

∣∣∣∣ =

+ + +∣∣∣∣a11a21

a12
a22

a13
a23

a11
a21

∣∣∣∣
− − −

= a11a22 + a12a23 + a13a21 − a12a21 − a13a22 − a11a23. (4)

Proof: The proof follows immediately from the definition of rectangular determinant.
�

In the following is presented a computer algorithm to calculate rectangular determi-
nants of order 2× 3 based on Proposition 2.1.

Algorithm 2.1: Proposition 2.1 method to calculate rectangular determinants of
order 2× 3

Step 1: Insert the rectangular determinant of order 2× 3
Step 2: Expand determinant horizontally add first column after the last column

A = [A A(1 : n− 1, 1 : 1)];
Step 3: Exchange first row with the second row of expanded determinant

B = flip(A);
Step 4: Calculate expanded determinants using Proposition 2.1

Initialize: c = 0, d = 0;
Create Loop for i from 0 to 2

Initialize: a = 1, b = 1;
Create Loop for j from 0 to 1

a = a ∗A(j + 1, i + j + 1);
b = b ∗B(j + 1, i + j + 1);

end
c = c + a;
d = d + b;

end
Step 5: Calculate the final result of rectangular determinant

e = c− d;
Step 6: Display the result of the determinant

The following example shows an application of Proposition 2.1 for calculation of the
area of a given triangle.

Example 2.1 Calculate the area of the triangle given in the following figure.
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S =
1

2
· |
∣∣∣∣x1 x2 x3
y1 y2 y3

∣∣∣∣ | = 1

2
· |
∣∣∣∣−1 4 2

1 2 4

∣∣∣∣ | = 1

2
· |

+ + +∣∣∣∣−1
1

4
2

2
4
−1
1

∣∣∣∣
− − −

|

=
1

2
· |(−1) · 2 + 4 · 4 + 2 · 1− 1 · 4− 2 · 2− 4 · (−1)|

=
1

2
· | − 2 + 16 + 2− 4− 4 + 4| = 1

2
· |12| = 6

The following Theorem concerns the calculation of the rectangular determinants of
order m × n, adding a row with all elements equal to one, the special case can be used
to convert the rectangular determinant of order (n− 1)× n to the square determinant of
order n× n.

Theorem 2.1: For a rectangular determinant of order m × n the following formula
holds:
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∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

∣∣∣∣∣∣∣∣∣
m×n

= (−1)(m+1)+i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n
...

...
. . .

...
1 1 · · · 1

ai+1,1 ai+1,2 · · · ai+1,n
...

...
. . .

...
am1 am2 · · · amn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(m+1)×n

, (5)

where 1 ≤ i ≤ m + 1, and m + n is odd.
Proof: The proof follows immediately from formula 18 in [10] (or Ex. v, 32 in [2]),

and property 5 in [6]. �
In the following is presented a computer algorithm for calculating rectangular deter-

minants of order m× n based on Theorem 2.1, adding one row of all elements equal to 1
in any row.

Algorithm 2.2: Theorem 2.1 method to calculate rectangular determinants of order
m× n

Step 1: Insert the rectangular determinant A
Step 2: Determine the order of rectangular determinant m× n

[m,n] = size(A);
Step 3: Create a row of order 1× n with all elements equal to 1

X(1 : n) = 1
Step 4: Insert where to add the 1× n row with all elements equal to 1

Insert k;
Step 5: Create rectangular determinant of order (m+1)×n from given determinant

and the row with all elements equal to 1
B = [A(1 : k − 1, 1 : n);X;A(k : m, 1 : n)];

Step 6: Calculate the final result of created determinant
d = (−1)∧(m + 1 + k) ∗ det Laplace(B); //Rectangular or square determinant

Step 7: Display the result of the determinant

In the following it is given an example, in which the row containing all elements equal
to 1 is placed in the third row.

Example 2.2: Let be given a rectangular matrix of order 4× 5. Its determinant can
be calculated based on Theorem 2.1:

∣∣∣∣∣∣∣∣
3 5 −6 1 4
−2 4 9 2 −4
5 7 1 −3 6
6 −9 5 −4 1

∣∣∣∣∣∣∣∣ = (−1)(4+1)+3

∣∣∣∣∣∣∣∣∣∣
3 5 −6 1 4
−2 4 9 2 −4
1 1 1 1 1
5 7 1 −3 6
6 −9 5 −4 1

∣∣∣∣∣∣∣∣∣∣
= 3970
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Theorem 2.2 (Chio’s-like method for rectangular determinants): For a rect-
angular determinant of order m × n, in cases for 2 × 3, 2 × 4 and 3 × 4, the following
formula holds:

∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

∣∣∣∣∣∣∣∣∣
m×n

=

∣∣Ac

∣∣
am−211

+ (−1)m

∣∣∣∣∣∣∣∣∣
a12 a13 · · · a1n
a22 a23 · · · a2n
...

...
. . .

...
am2 am3 · · · amn

∣∣∣∣∣∣∣∣∣
m×(n−1)

, (6)

where:

∣∣Ac

∣∣ =

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ · · ·
∣∣∣∣a11 a1n
a21 a2n

∣∣∣∣
...

. . .
...∣∣∣∣a11 a12

am1 am2

∣∣∣∣ · · · ∣∣∣∣a11 a1n
am1 amn

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣
(m−1)×(n−1)

(7)

and a11 6= 0.
Proof: In the following we will prove the Theorem 2.2 for the rectangular determinant

of order 2× 3. First we multiply the elements of the second row by a11 6= 0:

A =

∣∣∣∣a11 a12 a13
a21 a22 a23

∣∣∣∣
2×3

=
1

a11
·
∣∣∣∣ a11 a12 a13
a11a21 a11a22 a11a23

∣∣∣∣
2×3

=
1

a11
·
∣∣∣∣a11 a12 a13

0 a11a22 − a21a12 a11a23 − a21a13

∣∣∣∣
2×3

=
1

a11
·

∣∣∣∣∣∣
a11 a12 a13

0

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ ∣∣∣∣a11 a13
a21 a23

∣∣∣∣
∣∣∣∣∣∣
2×3

=
a11
a11
·

Ac︷ ︸︸ ︷∣∣∣∣∣∣∣∣a11 a12
a21 a22

∣∣∣∣ ∣∣∣∣a11 a13
a21 a23

∣∣∣∣∣∣∣∣
1×2
− a12

a11
·
∣∣∣∣0 ∣∣∣∣a11 a13

a21 a23

∣∣∣∣∣∣∣∣
1×2

+
a13
a11
·
∣∣∣∣0 ∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣∣∣∣
1×2

Ac +
a12
a11
·
∣∣∣∣a11 a13
a21 a23

∣∣∣∣
2×2
− a13

a11
·
∣∣∣∣a11 a12
a21 a22

∣∣∣∣
2×2

= Ac +
a12
a11
· (a11a23 − a21a13)−

a13
a11
· (a11a22 − a21a12)

= Ac + a12a23 −Red
a12a13a21

a11
− a13a22 + Red

a12a13a21
a11

= Ac +

∣∣∣∣a12 a13
a22 a23

∣∣∣∣
2×2
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=
1

a011
·Ac + (−1)2

∣∣∣∣a12 a13
a22 a23

∣∣∣∣
2×2

.

For order 2× 4, we have as follows:∣∣∣∣a11 a12 a13 a14
a21 a22 a23 a24

∣∣∣∣
2×4

=
1

a11

∣∣∣∣ a11 a12 a13 a14
a11a21 a11a22 a11a23 a11a24

∣∣∣∣
2×4

=
1

a11

∣∣∣∣a11 a12 a13 a14
0 a11a22 − a21a12 a11a23 − a21a13 a11a24 − a21a14

∣∣∣∣
2×4

=
1

a11

∣∣∣∣∣∣
a11 a12 a13 a14

0

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ ∣∣∣∣a11 a13
a21 a23

∣∣∣∣ ∣∣∣∣a11 a14
a21 a24

∣∣∣∣
∣∣∣∣∣∣
2×4

=
a11
a11
·

Ac︷ ︸︸ ︷∣∣∣∣∣∣∣∣a11 a12
a21 a22

∣∣∣∣ ∣∣∣∣a11 a13
a21 a23

∣∣∣∣ ∣∣∣∣a11 a14
a21 a24

∣∣∣∣∣∣∣∣
1×3
− a12

a11
·
∣∣∣∣0 ∣∣∣∣a11 a13

a21 a23

∣∣∣∣ ∣∣∣∣a11 a14
a21 a24

∣∣∣∣∣∣∣∣
1×3

+
a13
a11
·
∣∣∣∣0 ∣∣∣∣a11 a12

a21 a22

∣∣∣∣ ∣∣∣∣a11 a14
a21 a24

∣∣∣∣∣∣∣∣
1×3
− a14

a11
·
∣∣∣∣0 ∣∣∣∣a11 a12

a21 a22

∣∣∣∣ ∣∣∣∣a11 a13
a21 a23

∣∣∣∣∣∣∣∣
1×3

= Ac −
a12
a11

(
0−

∣∣∣∣a11 a13
a21 a23

∣∣∣∣+

∣∣∣∣a11 a14
a21 a24

∣∣∣∣)+
a13
a11

(
0−

∣∣∣∣a11 a12
a21 a22

∣∣∣∣+

∣∣∣∣a11 a14
a21 a24

∣∣∣∣)

−a14
a11

(
0−

∣∣∣∣a11 a12
a21 a22

∣∣∣∣+

∣∣∣∣a11 a13
a21 a23

∣∣∣∣)

= Ac−
a12
a11

(0−a11a23+a21a13+a11a24−a21a14)+
a13
a11

(0−a11a22+a21a12+a11a24−a21a14)

−a14
a11

(0− a11a22 + a21a12 + a11a23 − a21a13)

= Ac+a12a23−Red
a12a13a21

a11
−a12a24+Green

a12a14a21
a11

−a13a22+Red
a12a13a21

a11
+a13a24−Blue

a13a14a21
a11

+a14a22

−Green
a12a14a21

a11
−a14a23+Blue

a13a14a21
a11

= Ac+a12a23−a12a24−a13a22+a13a24+a14a22−a14a23

= Ac + (a12a23 − a13a22)− (a12a24 − a14a22) + (a13a24 − a14a23)
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= Ac +

∣∣∣∣a12 a13
a22 a23

∣∣∣∣− ∣∣∣∣a12 a14
a22 a24

∣∣∣∣+

∣∣∣∣a13 a14
a23 a24

∣∣∣∣ = Ac + (−1)2
∣∣∣∣a12 a13 a14
a22 a23 a24

∣∣∣∣
2×3

.

For order 3× 4, we have as follows:

A =

∣∣∣∣∣∣
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

∣∣∣∣∣∣
3×4

=
1

a211

∣∣∣∣∣∣
a11 a12 a13 a14

a11a21 a11a22 a11a23 a11a24
a11a31 a11a32 a11a33 a11a34

∣∣∣∣∣∣
3×4

.

Based on the properties of determinants, we can multiply one row with one element
and add/subtract the other row:

A =
1

a211

∣∣∣∣∣∣
a11 a12 a13 a14
0 a11a22 − a12a21 a11a23 − a13a21 a11a24 − a14a21
0 a11a32 − a12a31 a11a33 − a13a31 a11a34 − a14a31

∣∣∣∣∣∣
3×4

=
1

a211

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 a14

0

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ ∣∣∣∣a11 a13
a21 a23

∣∣∣∣ ∣∣∣∣a11 a14
a21 a24

∣∣∣∣
0

∣∣∣∣a11 a12
a31 a32

∣∣∣∣ ∣∣∣∣a11 a13
a31 a33

∣∣∣∣ ∣∣∣∣a11 a14
a31 a34

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
3×4

.

Based on Laplace’s method, we expand the last determinant according to the first row.

=
a11
a211
·

Ac︷ ︸︸ ︷∣∣∣∣∣∣∣∣∣∣

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ ∣∣∣∣a11 a13
a21 a23

∣∣∣∣ ∣∣∣∣a11 a14
a21 a24

∣∣∣∣
∣∣∣∣a11 a12
a31 a32

∣∣∣∣ ∣∣∣∣a11 a13
a31 a33

∣∣∣∣ ∣∣∣∣a11 a14
a31 a34

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
2×3

− a12
a211
·

∣∣∣∣∣∣∣∣∣∣
0

∣∣∣∣a11 a13
a21 a23

∣∣∣∣ ∣∣∣∣a11 a14
a21 a24

∣∣∣∣
0

∣∣∣∣a11 a13
a31 a33

∣∣∣∣ ∣∣∣∣a11 a14
a31 a34

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
2×3

+
a13
a211
·

∣∣∣∣∣∣∣∣∣∣
0

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ ∣∣∣∣a11 a14
a21 a24

∣∣∣∣
0

∣∣∣∣a11 a12
a31 a32

∣∣∣∣ ∣∣∣∣a11 a14
a31 a34

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
2×3

− a14
a211
·

∣∣∣∣∣∣∣∣∣∣
0

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ ∣∣∣∣a11 a13
a21 a23

∣∣∣∣
0

∣∣∣∣a11 a12
a31 a32

∣∣∣∣ ∣∣∣∣a11 a13
a31 a33

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
2×3

=
1

a11
Ac −

a12
a211
·

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣a11 a13
a21 a23

∣∣∣∣ ∣∣∣∣a11 a14
a21 a24

∣∣∣∣
∣∣∣∣a11 a13
a31 a33

∣∣∣∣ ∣∣∣∣a11 a14
a31 a34

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
2×2

+
a13
a211
·

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ ∣∣∣∣a11 a14
a21 a24

∣∣∣∣
∣∣∣∣a11 a12
a31 a32

∣∣∣∣ ∣∣∣∣a11 a14
a31 a34

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
2×2
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−a14
a211
·

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ ∣∣∣∣a11 a13
a21 a23

∣∣∣∣
∣∣∣∣a11 a12
a31 a32

∣∣∣∣ ∣∣∣∣a11 a13
a31 a33

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
2×2

=
1

a11
Ac−a12a23a34+

a12a14a23a31
a11

+Red
a12a13a21a34

a11
−Green

a12a13a14a21a31
a211

+a12a24a33−Blue
a12a14a21a33

a11

−browna12a13a24a31
a11

+Green
a12a13a14a21a31

a211
+a13a22a34−Orange

a13a14a22a31
a11

−Red
a12a13a21a34

a11
+Green

a12a13a14a21a31
a211

−a13a24a32+Purple
a13a14a21a32

a11
+brown

a12a13a24a31
a11

−Green
a12a13a14a21a31

a211
−a14a22a33+Orange

a13a14a22a31
a11

+Blue
a12a14a21a33

a11
−Green

a12a13a14a21a31
a211

+a14a23a32−Purple
a13a14a21a32

a11
−a12a14a23a31

a11
+Green

a12a13a14a21a31
a211

=
1

a11
Ac − (a12a23a34 + a13a24a32 + a14a22a33 − a14a23a34 − a13a22a34 − a12a24a32)

=
1

a11
Ac + (−1)3

∣∣∣∣∣∣
a12 a13 a14
a22 a23 a24
a32 a33 a34

∣∣∣∣∣∣
3×3

.

The proof is complete. �
In the following is presented an algorithm based on Theorem 2.2. As we have compu-

tationally tested, we have seen that the algorithm holds also for any determinant of order
m× n .

Algorithm 2.3: Recursive algorithm det Chio for Theorem 2.2 (Chio’s-like) method
to calculate rectangular determinants of order m× n

Step 1: Insert the rectangular determinant A
Step 2: Determine the order of rectangular determinant m× n

[m,n] = size(A);
Step 3: Checking if A(1,1) is equal to 0

if A(1, 1) = 0
Exchange rows to find nonzero element

Step 4: Calculating sub matrices
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Initialize B = 0;
Create Loop for i from 1 to m-1

Create Loop for j from 1 to n-1
B(i, j) = A(1, 1) ∗A(i + 1, j + 1)−A(1, j + 1) ∗A(i + 1, 1)

end
end

Step 5: Calculate the final result of rectangular determinant
d = 1/A(1, 1)∧(m− 2) ∗ det Chio(B) + (−1)∧m ∗ det Chio(A(1 : m, 2 : n));

Step 6: Display the result of the determinant

Remark 2.1: We have computationally tested Algorithm 2.3 for orders 3× 4, 3× 5,
, 499 × 501 and 500 × 501, and compared with the Algorithm 1.1 (Laplace). For m = n
the Chio’s Theorem holds (See: [1, 3]).

In the following, it is given an example of the calculation of a rectangular determinant
based on Chio’s-like formula and the result are compared with those obtained by Laplace
method.

Example 2.3: Let us calculate the following determinant∣∣∣∣∣∣
2 −5 1 4 3
1 3 −2 1 4
−4 2 1 3 1

∣∣∣∣∣∣
3×5

Solution:
1. Chio’s-like formula:

∣∣∣∣∣∣
2 −5 1 4 3
1 3 −2 1 4
−4 2 1 3 1

∣∣∣∣∣∣
3×5

=
1

2

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣2 −5
1 3

∣∣∣∣ ∣∣∣∣2 1
1 −2

∣∣∣∣ ∣∣∣∣2 4
1 1

∣∣∣∣ ∣∣∣∣2 3
1 4

∣∣∣∣
∣∣∣∣ 2 −5
−4 2

∣∣∣∣ ∣∣∣∣ 2 1
−4 1

∣∣∣∣ ∣∣∣∣ 2 4
−4 3

∣∣∣∣ ∣∣∣∣ 2 3
−4 1

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
2×4

+(−1)3

∣∣∣∣∣∣
−5 1 4 3
3 −2 1 4
2 1 3 1

∣∣∣∣∣∣
3×4

=
1

2

∣∣∣∣ 11 −5 −2 5
−16 6 22 14

∣∣∣∣
2×4
−

∣∣∣∣∣∣
−5 1 4 3
3 −2 1 4
2 1 3 1

∣∣∣∣∣∣
3×4

= −126

2
− 104 = −167

2. Laplace method: ∣∣∣∣∣∣
2 −5 1 4 3
1 3 −2 1 4
−4 2 1 3 1

∣∣∣∣∣∣
= (−1)1+1 · 2 ·

∣∣∣∣3 −2 1 4
2 1 3 1

∣∣∣∣+ (−1)1+2 · (−5) ·
∣∣∣∣ 1 −2 1 4
−4 1 3 1

∣∣∣∣
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+(−1)1+3 · 1 ·
∣∣∣∣ 1 3 1 4
−4 2 3 1

∣∣∣∣+ (−1)1+4 · 4 ·
∣∣∣∣ 1 3 −2 4
−4 2 1 1

∣∣∣∣+ (−1)1+5 · 3 ·
∣∣∣∣ 1 3 −2 1
−4 2 1 3

∣∣∣∣
= 2 · (−17) + 5 · (−9) + 25− 4 · 44 + 3 · 21 = −34− 45 + 25− 176 + 63 = −167

Corollary 2.1: For a rectangular determinant of order mn, in cases for 2 × 3, 2 × 4
and 3× 4 the following formula holds:

∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n
...

...
. . .

...
ak1 ak2 · · · akn
...

...
. . .

...
am1 am2 · · · amn

∣∣∣∣∣∣∣∣∣∣∣∣
m×n

=
(−1)k−1

am−2k1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣ak1 ak2
a11 a12

∣∣∣∣ · · ·
∣∣∣∣ak1 akn
a11 a1n

∣∣∣∣
...

. . .
...∣∣∣∣ ak1 ak2

ak−1,1 ak−1,2

∣∣∣∣ · · · ∣∣∣∣ ak1 akn
ak−1,1 ak−1,n

∣∣∣∣
∣∣∣∣ ak1 ak2
ak+1,1 ak+1,2

∣∣∣∣ · · · ∣∣∣∣ ak1 akn
ak+1,1 ak+1,n

∣∣∣∣
...

. . .
...∣∣∣∣ak1 ak2

am1 am2

∣∣∣∣ · · ·
∣∣∣∣ak1 akn
am1 amn

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(m−1)×(n−1)

+(−1)m+k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ak2 ak3 · · · akn
a12 a13 · · · a1n
...

...
. . .

...
ak−1,2 ak−1,3 · · · ak−1,n
ak+1,2 ak+1,3 · · · ak+1,n

...
...

. . .
...

am2 am3 · · · amn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
m×(n−1)

, (8)

where, 1 ≤ k ≤ m, and ak1 6= 0.
Proof: Proof of Corollary 2.1 is derived from Theorem 2.2 and property of interchang-

ing two rows, property 5 by interchanging the rows of the matrix in [6].
Note 2.1: In special cases when a11 is equal to zero, then Corollary 2.1 is applied,

in the case when all elements of the first column are equal to 0, then the first column is
eliminated and the sign before the determinant changes when m - (number of rows) is odd.

In the following is presented an algorithm based on Corollary 2.1.

Algorithm 2.4: Recursive algorithm det Chio Cor for Corollary 2.1 (Chio’s-like)
method to calculate rectangular determinants of order m× n
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Step 1: Insert the rectangular determinant A
Step 2: Determine the order of rectangular determinant m× n

[m,n] = size(A);
Step 3: Select the row k of pivot element
Step 4: Checking if A(k,1) is equal to 0

if A(k, 1) = 0
Message: Select another k
Repeat Step 4

Step 5: Create modified matrix
if k <= 0 || k > m + 1

B=A
else

B=[A(k,:);A(1:k-1, 1:n);A(k+1:m, 1:n)]
Step 6: Calculating sub matrices

Initialize C=0;
Create Loop for i from 1 to m− 1

Create Loop for j from 1 to n− 1
C(i, j) = B(1, 1) ∗B(i + 1, j + 1)−B(1, j + 1) ∗B(i + 1, 1)

end
end

Step 7: Calculate the final result of rectangular determinant
d = (−1)∧(k−1)∗(1/A(k, 1)∧(m−2)∗det Chio Cor(C)+(−1)∧m∗det Chio Cor(B(1 :

m, 2 : n)))
Step 8: Display the result of the determinant

Example 2.4: Find the volume of the prism given in the following figure.
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V =
1

2
· |

∣∣∣∣∣∣
x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

∣∣∣∣∣∣ | = 1

2
· |

∣∣∣∣∣∣
−1 4 2 −1
1 2 4 1
0 0 0 4

∣∣∣∣∣∣ |

=
1

2
·|(−1)2−1

13−2

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣ 1 2
−1 4

∣∣∣∣ ∣∣∣∣ 1 4
−1 2

∣∣∣∣ ∣∣∣∣ 1 1
−1 −1

∣∣∣∣
∣∣∣∣1 2
0 0

∣∣∣∣ ∣∣∣∣1 4
0 0

∣∣∣∣ ∣∣∣∣1 1
0 4

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
+(−1)3+2−1

∣∣∣∣∣∣
2 4 1
4 2 −1
0 0 4

∣∣∣∣∣∣ | = 1

2
·|
∣∣∣∣6 6 0
0 0 4

∣∣∣∣−48|

=
1

2
· |24− 24− 48| = 1

2
· | − 48| = 24

3. Time complexity and execution time comparison of rectangular
determinants calculation

For Algorithm 1.1, based on Laplace method, the time complexity is as follows [4, 9]:
- Loop of row expansion is O(n);
- Creation of minor matrix is O(n);
- Recursion is O((n− 1)!).

The asymptotic time complexity of the Algorithm 1.1 is O((n−1)! ·max(n, n) = O(n!).
Time complexity of square determinant calculation of LU Decomposition Algorithm is

as follows [9, 11]:
- Swapping rows is O(n2);
- First loop is O(n3), since:

+ Loop i (Rows) is O(n);
+ Loop j (Columns) is O(n); and
+ Loop k (Elements subtraction) is O(n);

- Second loop (pivot multiplication) is O(n).
The asymptotic time complexity of LU Decomposition Algorithm is O(max(n2, n3, n) =

O(n3).
Since the Algorithm 2.2 increases the number of rows for one, then time complexity

of Algorithm 2.2 is same as Algorithm 1.1 using Laplace method. For special case of
order (n−1)×n transforming to square determinant, and since time complexity of square
determinants is O(n3) (LU decomposition), therefore for this case time complexity of
Algorithm 2.2 is O(n3).

Regarding the time complexity of Algorithms 2.3 and 2.4 is as follows:
- Nested loop is O(m · n), since:

+ Loop i (Rows) is O(m); and
+ Loop j (Columns) is O(n);

- Creation of block matrices of order 2× 2 is O(m · n);
- Recursion is O(m− 1).
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The asymptotic time complexity of the Algorithms 2.3 and 2.4 is O((m− 1) ·max(m ·
n, n)) = O(m2 · n).

For additional algorithm complexity analysis see [5].
As can be seen from the time complexity of Algorithms 1.1, 2.2, 2.3 and 2.4, one

can conclude that the algorithm based on Laplace-based method is slower than other
algorithms. While, comparing the Algorithm 2.2 (for special case of order (n − 1) ×
n with Algorithms 2.3 and 2.4, one can concluded that the execution time should be
approximately the same as closely as m is to n.

Regarding the execution time of the rectangular determinant calculation, a computer
with the following characteristics is used:

Table1: Computer characteristics used to simulate the calculation of determinants.

Name: Dell

Model: Vostro 15-3578

CPU: Intel Core i7-8th gen 8550U 1.80 GHZ

RAM: 8 GB DDR4

GPU:
FULL HD Display 15.6”
1920x1080, AMD Radeon (TM) 520, 2048 MB GDDR5

HDD: 480 GB SSD

While software used for this simulation are presented in Table 2.
Table 2: Computer tools used for determinant calculation simulation:

OS Windows 10 Pro 64-bit, Version 1803 (OS Build 17134.765

Software MATLAB, Version 9.0.0321247 (R2016a), 64-bit (win64)

In this paper we have realized three comparisons of execution time of rectangular
determinant calculation:

(i) First comparison is between Theorem 2.1 (adding a row with all elements equal to 1),
Theorem 2.2 (Chio’s like method) and Laplace method, for rectangular determinant
of order (n− 1)× n, the results are presented in seconds in Table 3;

(ii) Second comparison is between Theorem 2.2 (Chio’s like method) and Laplace
method, for rectangular determinant of order m × n, m = 10, n from 11 to 25,
the results are presented in seconds in Table 4;

(iii) Third comparison is between Theorem 2.2 (Chio’s like method) and Laplace method,
for rectangular determinant of order m× n, m from 5 to 19, n = 20, the results are
presented in seconds in Table 5;

For the first comparison it is generated a random matrix of order (n− 1)× n and tic
toc is used to calculate the execution time, the MATLAB function is presented in the
following:



A. Salihu, F. Marevci / Eur. J. Pure Appl. Math, 14 (2) (2021), 431-450 445

Function 3.1: First comparison for order (n− 1)× n

n = Order of determinant
A = rand(n− 1, n);
disp(’ ’)
disp(’Rectangular determinant of order (n−1)×n calculation adding one row with

all elements equal to 1’)
tic

d1 = det 1(A)
toc
disp(’ ’)
disp(’Rectangular determinant of order (n − 1) × n calculation using Chios-like

method’)
tic

d2 = det Chio(A)
toc
disp(’ ’)
disp(’Rectangular determinant of order (n − 1) × n calculation using Laplace

method’)
tic

d3 = det Laplace(A)
toc

Results are presented in seconds in Table 3.
Table 3: Rectangular determinant calculation comparison between Theorem 2.1, The-

orem 2.2 and Laplace method:
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2*Det. Order Theorem 2.1 Theorem 2.2 Laplace Comparison
1 2 3 2-1 3-1 3-2

9× 10 0.0004 0.0010 0.0020 0.0006 0.0016 0.0010

10× 11 0.0007 0.0019 0.0021 0.0012 0.0014 0.0002

19× 20 0.0003 0.0006 0.0041 0.0003 0.0038 0.0035

20× 21 0.0010 0.0010 0.0059 0.0000 0.0049 0.0049

29× 30 0.0003 0.0009 0.0141 0.0006 0.0138 0.0132

30× 31 0.0006 0.0012 0.0151 0.0006 0.0145 0.0139

39× 40 0.0007 0.0024 0.0279 0.0017 0.0272 0.0255

40× 41 0.0006 0.0015 0.0317 0.0009 0.0311 0.0302

49× 50 0.0004 0.0018 0.0518 0.0014 0.0514 0.0500

50× 51 0.0006 0.0019 0.0593 0.0013 0.0587 0.0574

59× 60 0.0007 0.0041 0.0997 0.0034 0.0990 0.0956

60× 61 0.0007 0.0030 0.1074 0.0022 0.1067 0.1045

69× 70 0.0024 0.0066 0.3043 0.0043 0.3019 0.2977

70× 71 0.0008 0.0070 0.2967 0.0062 0.2959 0.2897

79× 80 0.0010 0.0092 0.4361 0.0082 0.4351 0.4269

80× 81 0.0009 0.0076 0.4657 0.0067 0.4648 0.4581

89× 90 0.0010 0.0086 0.6169 0.0077 0.6160 0.6083

90× 91 0.0011 0.0089 0.6351 0.0078 0.6340 0.6262

99× 100 0.0008 0.0125 0.8656 0.0116 0.8648 0.8531

100× 101 0.0009 0.0125 0.8861 0.0116 0.8852 0.8736

149× 150 0.0025 0.0253 3.2421 0.0228 3.2396 3.2168

150× 151 0.0010 0.0266 3.4131 0.0256 3.4121 3.3865

199× 200 0.0007 0.0566 10.0962 0.0559 10.0955 10.0395

200× 201 0.0026 0.0553 9.9452 0.0527 9.9426 9.8899

249× 250 0.0018 0.0962 32.5930 0.0945 32.5912 32.4967

250× 251 0.0030 0.0935 31.6585 0.0905 31.6556 31.5650

299× 300 0.0036 0.1686 65.4817 0.1651 65.4781 65.3131

300× 301 0.0035 0.1787 64.7036 0.1752 64.7001 64.5249

As can be seen in Table 3, there are some cases when the execution time of algorithms
based on Theorem 2.1 and Theorem 2.2, shows that higher order of determinants are
executed faster than lower order determinants. This is due to a very short period of
execution time and the computer process priority and resource allocation (since execution
was on windows environment).

For the second comparison we generated a random matrix of order 10 × n, for 11 ≤
n ≤ 25 and tic toc is used to calculate execution time, the MATLAB function is presented
in the following:

Function 3.2: Second comparison for order 10× n, for 11 ≤ n ≤ 25
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m=10
n = Number of columns
A = rand(m,n);
disp(’ ’)
disp(’Rectangular determinant of order 10 × n, for 11 ≤ n ≤ 25 calculation using

Chios-like method’)
tic

d1 = det Chio(A)
toc
disp(’ ’)
disp(’Rectangular determinant of order 10 × n, for 11 ≤ n ≤ 25 calculation using

Laplace method’)
tic

d2 = det Laplace(A)
toc

Results are presented in seconds in Table 4.
Table 4: Rectangular determinant calculation comparison between Theorem 2.2 and

Laplace method, m=10, n from 11 to 25:

2*Det. Order Theorem 2.2 Laplace Comparison
1 2 2-1

10× 11 0.0010 0.0032 0.0021

10× 12 0.0009 0.0074 0.0064

10× 13 0.0051 0.0221 0.0170

10× 14 0.0082 0.0666 0.0584

10× 15 0.0206 0.1834 0.1627

10× 16 0.0494 0.4661 0.4166

10× 17 0.1225 1.1035 0.9810

10× 18 0.3933 3.6824 3.2891

10× 19 0.8419 7.7522 6.9102

10× 20 1.6791 15.5346 13.8555

10× 21 3.1759 29.8277 26.6518

10× 22 5.7377 60.5595 54.8218

10× 23 10.1708 98.7320 88.5612

10× 24 17.7038 196.3848 178.6810

10× 25 29.4464 291.9469 262.5005

For the third comparison is used to generate a random matrix of order m × 20, for
5 ≤ m ≤ 19 and tic toc is used to calculate the execution time, the MATLAB function is
presented in the following:

Function 3.3: Third comparison for order m× 20, for 5 ≤ m ≤ 19
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m=10
n = Number of columns
A = rand(m,n);
disp(’ ’)
disp(’Rectangular determinant of order m × 20, for 5 ≤ m ≤ 19 calculation using

Chios-like method’)
tic

d1 = det Chio(A)
toc
disp(’ ’)
disp(’Rectangular determinant of order m × 20, for 5 ≤ m ≤ 19 calculation using

Laplace method’)
tic

d2 = det Laplace(A)
toc

Results are presented in seconds in Table 5.
Table 5: Rectangular determinant calculation comparison between Theorem 2.2 and

Laplace method, m from 5 to 19, n=20:

2*Det. Order Theorem 2.2 Laplace Comparison
1 2 2-1

5× 20 0.1177 0.4406 0.3229

6× 20 0.2762 1.4091 1.1329

7× 20 0.5743 3.6031 3.0288

8× 20 0.9602 7.2210 6.2608

9× 20 1.4076 11.8139 10.4063

10× 20 1.6498 15.7704 14.1206

11× 20 1.6005 16.9290 15.3285

12× 20 1.4516 21.1123 19.6607

13× 20 0.8583 10.3589 9.5006

14× 20 0.4422 5.9305 5.4883

15× 20 0.1862 2.6365 2.4503

16× 20 0.6209 0.9372 0.3163

17× 20 0.0183 0.2529 0.2346

18× 20 0.0052 0.0557 0.0505

19× 20 0.0011 0.0048 0.0038

4. Conclusion

In this paper, we have presented a method for calculating 2 × 3 order of rectangular
determinants, which is similar to the Sarus’s method. We also presented the respective
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computer algorithm.
In addition, we have presented the possibility of adding a row with all elements equal

to 1 in any row, based on the definition of Cullis/Radic, as well as the properties of de-
terminants for interchanging two rows of rectangular determinant. As a special case we
considered the case when the order of the determinant is (n− 1)× n which can be trans-
formed into square determinants. We also have presented the corresponding algorithm
(See: Theorem 2.1 and Algorithm 2.2).

Regarding the Chio’s-like method for calculating rectangular determinant, it is pre-
sented a Theorem 2.2, which is proven for orders 2×3, 2×4 and 3×4, while the computer
algorithm is presented in Algorithm 2.3 and holds for determinants of order m × n, con-
sidering cases when pivot element is equal to zero. Then we have obtained Corollary 2.1
where as a pivot element can be used any of the elements of first column. In cases when
all elements of the first column are zero, if the number of rows is odd, the first column
can be eliminated considering sign change.

Based on the time complexity of the presented algorithms, the algorithm based on
Laplace method has time complexity of O(n!), the algorithm based adding a row of all
elements equal to 1 (transforming rectangular determinant of order (n − 1) × n, to the
square determinant of order n× n) has time complexity same as square determinant that
is O(n3). The time complexity of algorithm based on Chio’s-like method is O(m2 · n).
Based on the comparison of time complexity of these algorithms one can conclude that
the slowest algorithm is based on Laplace method, and other algorithms are approximately
the same, depending on how close is m to n.

In the third part of the paper, we have compared the computational speed of the
rectangular determinants by different methods. The first comparison is made for the
rectangular determinants of the order (n − 1) × n, between Theorem 2.1, by adding a
row of all elements equal to 1 in any row (Algorithm 2.2), Theorem 2.2, based on Chio’s-
like method (Algorithm 2.3) and the Laplace method (Algorithm 1.1). From the analysis
of the obtained results, we have noticed that Algorithm 2.2 is more effective than the
other two algorithms. This algorithm has a very small advantage over Algorithm 2.3
since the time complexity of both Algorithms 2.2 and 2.3 is approximately the same,
and there is seen significant advantage over Algorithm 1.1, the most obvious advantage is
observed in determinants of higher orders, since the time complexity of Laplace method
is O(n!) and much higher than O(n3). From this comparison a significant advantage was
observed between Algorithm 2.3 compared to Algorithm 1.1, which is obvious also based
on time complexity. Similarly a significant difference was observed in the higher orders
determinants.

The second comparison is made for the orders of rectangular determinants ranging from
10× 11 to 10× 25, between Algorithm 2.3 and Algorithm 1.1. Also in this comparison, an
obvious advantage was observed regarding the computational speed of the calculation of
the rectangular determinant of Algorithm 2.3 compared to Algorithm 1.1, especially the
significant difference was observed in the higher orders of columns.

The last comparison in this paper is to compare the speed of calculation of rectangular
determinants by Algorithm 2.3 and Algorithm 1.1, for orders from 5 × 20 up to 19 × 20.
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In this regard, it has been observed an obvious advantage of the computational speed
of rectangular determinants calculation with Algorithm 2.3 compared to Algorithm 1.1.
Unlike the previous comparisons, here we have noticed that a higher difference is when
the number of columns is approximate twice the number of rows. This occurs because the
highest possible value of combinations n choose k is attained when k is half of the n.
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