
ASP-DAC ’97
0-89791-851-7$5.00 1997 IEEE

ChipEst-FPGA: A Tool for Chip Level Area and Timing Estimation

of Lookup Table Based FPGAs for High Level Applications

Min Xu Fadi J. Kurdahi

Dept. of Information and Computer Science Dept. of Electrical and Computer Engineering

University of California, Irvine University of California, Irvine
Irvine, CA 92697-3425, U.S.A. Irvine, CA 92697-3425, U.S.A.

Tel: 714-824-8168, Fax: 714-824-4056 Tel: 714-824-8104, Fax: 714-824-2321

e-mail: mxu@ics.uci.edu e-mail: kurdahi@ece.uci.edu

Abstract
The importance of e�cient area and timing estima-

tion techniques for hierarchical design methodology is well-
established in High-Level Synthesis (HLS), since the esti-
mation allows more realistic exploration of the design space,
and hierarchical design methodology matches well with HLS
paradigm. In this paper, we present ChipEst-FPGA, a chip
level estimator for designs implemented using a hierarchi-
cal design methodology for Lookup Table Based FPGAs. In
FPGAs, the wire delay may contribute to a signi�cant por-
tion of the overall design delay.ChipEst-FPGA uses a re-
alistic model which takes the component area/delay as well
as wiring e�ects into account.We tested our ChipEst-FPGA
on several benchmarks and the results show that we can get
accurate area and timing estimates e�ciently.

1 Introduction
The ability to shorten development cycles has made Field

Programmable Gate Arrays(FPGAs) an attractive alterna-
tive to standard cells and Mask Programmed Gate Arrays

(MPGAs) for the realization of Application-Speci�c Inte-

grated Circuits (ASICs). High Level Synthesis (HLS), on
the other hand, is becoming the methodology of choice for

shortening the design time by allowing the user to start

from a behavioral speci�cation. Thus, the marriage of these
two concepts provides an ideal testbed for fast prototyping

starting from an idea to a �nal product.

HLS generates an architecture from a behavioral speci-
�cation subject to constraints on area and delay. Follow-

ing that, the design process of FPGAs can be decomposed

into four major steps as shown in Figure 1(a). Partition-
ing (or technology mapping), placement, routing and

timing optimization.This is a at design approach since

the netlist fed into partitioning is a gate level netlist and

the partitioning is done on the whole netlist (more detailed

discussion can be found in [9]).

Contrast to this at design ow, Figure 1(b) shows a hi-

erarchical HLS design ow targeted for FPGAs. It has an

RT level technology mapping step which partitions the

incoming netlist into RT level components 1 and maps them

onto pre-characterized components or uses layout tools do

the components layout. This way, the structural informa-

tion is preserved in each component.

1we refer to individual registers, counters, adders, muxes,

RAM arrays etc as RT level components.

Constraints

Behavioral description

HLS

no

Placement

Routing

(a)

Contraints
 met?

yes

End

Behavioral description

HLS

Placement

Routing

Pre−
characterized
components

Component
design

RT level technology mapping

(mapping)
Partitioning

noContraints
 met?

yes

End

(b)

Timing optimization Timing optimization

HLS

Behavioral description

Pre−
characterized
components

Component
design

RT level technology mapping

yes

Contraints
 met?

End

Placement

Routing

Chip level
Estimation

no

Constraints

(c)

Figure 1: Flat HLS design ow vs. hierarchical HLS design
ow targeted for FPGAs: (a) at design ow (b) hierarchi-
cal design ow (c) the importance of estimation in a typical
hierarchical HLS design ow.

Maintaining this hierarchy is bene�cial because of the

following reasons. (1) It is easy to do debug, easy to add
or change logic since design changes in one component can

be made without a�ecting the placement and routing of the

rest of the design. (2) It is easy to adapt to di�erent tech-
nology. (3) It is easy to improve the design routability by

grouping and oorplanning the RT components according

to the data ow. It is easy to improve the design's perfor-
mance. (4) It matches well with the HLS design paradigm

since the hierarchy is maintained through out the design

process. (5) With proper binding and component selection,
it is possible to optimize the overall design by selecting dif-

ferent component implementations for di�erent datapath

operations. Thus, multiplications by constants can be re-
placed by simpler components. This o�sets potential short-

comings of simpler HLS-based RT level design paradigms

which assume one implementation style per component.

In the hierarchical HLS design ow targeted for FPGAs,

placement and routing make the design very unpredictable

and the resultant design may violate the constraints. The

reason is that in most FPGA designs, the wire delay, which

is not considered in HLS, may contribute to a signi�cant

portion of the overall design delay. The problem becomes

especially acute when the design process starts at the be-

havioral level using HLS. In this case, a large number of

candidate RTL designs are generated and must be evaluated

to select the best design. Abstract cost measures which do
not consider layout e�ects are likely to result in suboptimal

designs. Thus, the design process may have to go through
several iterations to reach an acceptable solution. Since

placement and routing are usually quite time consuming,

this may o�set any turnaround time advantages of FPGAs
and HLS. Indeed, such common situations have been re-

ported in [1]. To avoid unnecessary iterations and shorten

the design cycle, it is very helpful to have an estimator giv-
ing area and timing estimates quickly before actually going

through the time consuming placement and routing phases

as shown in Figure 1 (c). It is very important that the esti-
mator has a more realistic and accurate model which takes

into account not only component area and timing, but also

wiring e�ects.

Our intended application domain is HLS since this is
where fast and accurate estimation is most needed to sup-

port a high quality rapid prototyping environment. To be

speci�c, we target the Xilinx XC4000 series because of their
popularity. In addition, our tools can be used for design-

ing large systems which span several FPGAs: By coupling

a high level synthesis tool with our estimation tools, it is
possible to explore a large number of system level parti-

tioning alternatives, either interactively or automatically.

An example of such a paradigm is described in the Spec-
Syn system [12]. Finally, our tools can also be used for

manually generated RT level designs to provide an almost

instantaneous feedback to the designer on the quality of a
particular implementation.

2 Overview of Xilinx XC4000
Xilinx XC4000 consists of an array of CLBs embedded

in a con�gurable interconnect structure and surrounded by

con�gurable I/O blocks as shown in Figure 2(a). In later
versions of their CAD tools, Xilinx appears to be moving

towards promoting hierarchical design ow by introducing

Hard Macros, hmgen, and RPMs [10]. By using Hard
Macros or RPMs, the component placement information is

preserved in hard macros.

2.1 XC4000 Con�gurable Logic Blocks
and Lookup Tables

F−LUT G−LUT

H−LUT

a b c d e f g hi

CLB

0 1 0 0 0 1 1 1

000 001 010 011 100 101 110 111

8 to 1 multiplexer

8x1−bit configurable memory
InterconnectIOB

m n p

x
(a) (b) (c)

Figure 2: Xilinx XC4000 architecture (a) XC4000 (b)
abbreviated CLB architecture (c) a LUT implementing
x = mn+ np.

Xilinx XC4000 CLBs mainly consist of two 4-input

LUTs, which are called F-LUT and G-LUT respectively,

and one 3-input LUT, which is called H-LUT as shown in
Figure 2(b). A K-input LUT is a memory that can imple-

ment any Boolean function of K variables. The K inputs

are used to address a 2Kx1-bit memory that stores the truth

table of the Boolean function. All the CLB outputs can be

either direct, inverted or registered.

2.2 XC4000 Programmable Interconnect
Point and Routing Resources

Xilinx XC4000 routing resources are connected by switch

matrices. There are 8 (6 for smaller devices) intersections
containing 6 programmable interconnect points (PIPs)

each. The PIP, shown schematically in Figure 3(c), is a

pass transistor controlled by a con�guration memory cell.

G

G3

C3

F3

G2C2F2Q1

G1

C1

K

F1

F

F4 C4 G4 Q2

SWITCH
MATRIX

SWITCH
MATRIX

SWITCH
MATRIX

SWITCH
MATRIX

CLB

Pip

CLB CLB

CLB CLB

(a) (b) (c)

switch matrix double−length
lines

single−length
lines

configurable
memory cell x

Figure 3: Wiring architecture (a)single length lines
(b)double length lines (c) the XC4000 switch metric, con-
nections and PIP.

XC4000 routing resources include single-length (general-

purpose) lines (SLs), shown in Figure 3(a), double-length
lines (DLs), shown in Figure 3(b) and long lines (LLs).

LLs run the width or the height of the chip with negligible

delay variations. SLs connect every pair of adjacent switch
matrices 2 and DLs by-pass alternate switch boxes 3. Thus,

the wirability of a net is no longer a simple function of its

length and the congestion of its routing region. On the
other hand, since signal delay depends more on the number

of PIPs through which a signal passes than on the length

of the segments, the double-length lines allow a signal to
travel twice the distance in the same amount of time, or to

travel a same distance in half the time as the single length

lines do 4. The delay of a wire is also no longer a simple
function of its length. Nets with the same distance may

have di�erent delays while nets with di�erent distances may

have the same delays [9].

3 Previous Work
Several fast mapping heuristics for LUT based FPGAs

are surveyed in [6]. Such heuristics can be used to obtain
estimation of CLB count. However, techniques for timing

estimation haven't been proposed so far.

Xilinx's [3] Partitioning, Placement and Routing (PPR)

software package has its own built-in estimation tool. This
estimation is very accurate since it performs the actual

mapping using Chortle [4], but the tool does not provide

performance estimation.

Other than Xilinx, Synopsys [5] also provides accurate
area estimation by doing actual mapping. Moreover, it can

provide estimation of the number of logic levels for the de-

sign. Nevertheless, it doesn't take into account wiring delay.

The research presented in [2] empirically examines the
performance of multi-level logic minimization tools for a

2The wire between two adjacent switch matrices is a SL

segment.
3The wire connect every other switch matrices is a DL

segment.
4Experiments show that SL segments and DL segments have

approximately the same delay.

LUT based FPGA technology and suggests that there is

a linear relationship between the number of literals and

the number of routed CLBs. It provides estimation for
both area and timing but the work is only applicable to the

XC3000 series.

CompEst-FPGA [9] presented an area and timing es-
timation for LUT based FPGAs approach. It takes into

account gate area/delay as well as wiring e�ects . It can

handle Xilinx XC4000 estimation.

All those approaches are suitable to estimate compo-
nent level design and chip level design but with at design

methodology. None of them supports a hierarchical design

methodology.

The work presented here is the extension of our work
presented in [9]. It has a realistic and accurate model since

it takes into account not only the component area/delay but

also the wiring e�ects. It mainly handles hierarchical design
methodology for high level applications. Additionally, our

approach is easy to adapt to other Xilinx series such as

XC2000 and XC3000 with minor modi�cations.

4 Chip Estimation
4.1 Problem Statement
Given an RT level description, the goal of Chip Area

Estimation is to predict the area of the chip in terms of

number of CLBs as well as the most appropriate device it
may �t by using the area information of all the RT level

components.

Given an RT level description, the goal of Chip Tim-

ing Estimation is to estimate the performance of the chip
in terms of minimum clock period by using the delay in-

formation of all the RT level components along with the

estimated topology information obtained from Chip Area
Estimation.

4.2 Chip Area Estimation
Our chip level area model uses a slicing tree techniques

derived from [8] for evaluating the area of designs imple-

mented using RT level components.

4.2.1 Component Shape Function

To improve the density of the chip, designers may try

di�erent oorplans by varying the topological placements

of each component. Component shape function represents

the di�erent topological placements in the actual layout and

their corresponding delay information [10].

At the RT level, the shape functions of some compo-
nents can be obtained from our component library which is

a collection of hard macros with shape function and delay

information. The collection of hard macros includes com-
ponents those are frequently used in the design so we pre-

characterized their shape function. Also, it includes vendor

supplied pre-designed components such as hard macros in
Xilinx library etc. For the components whose shape func-

tion is not known a priori, (controller for example), their

shape function can be obtained by invoking the Component

Estimator, CompEst-FPGA, described in [9]. CompEst-

FPGA estimates the area and delay of combinational cir-

cuits described either at the gate level or using boolean

equations. It estimates the outcome of the technology map-

ping, placement, routing, and timing optimization phases

of the design procedure. CompEst has been benchmarked

with respect to a wide variety of gate level designs with

and without post layout optimization. The results indi-

cate that the estimation is not only accurate (10-15% error
in timing estimation and 5% in area estimation), but also

time e�cient, taking 1-2 orders of magnitude less runtime
to evaluate compared to the actual Xilinx design tools.

4.2.2 Chip Level Area Model

A

B

C

D

C D A B

C

D

x

y

A

B

Datapath Controller MemoryMultiplier

x

y

x

y

x

y

x

y

x

y

Figure 4: Constructive/analytical area estimation tech-
nique

The chip level slicing tree technique involves slicing down

to the leaf blocks which consists of either RT level compo-
nents or controller. This constructive approach does not

consume excessive runtime since the number of leaf blocks

are limited to a relatively small number. This technique
is illustrated in Figure 4. The slicing tree is built by re-

cursively partitioning the input design. Because of speci�c

characteristics of FPGA, partitioning objectives have to be
selected accordingly. One of them is minimization of rout-

ing resource consumption. It is mainly accomplished by
devising data objects that will partition in such a way as to

permit the greatest number of signals to traverse the short-

est distances along the fewest routing channels with the
least crossovers. This most often means placing intercon-

nected objects adjacent to each other with related elements

aligned to the routing axes.

Because of the granularity of FPGA (the area is in

terms of CLBs rather than in terms of micron, e.g. the
Xilinx XC4013 has 24 by 24 CLBs rather than thousands

by thousands square microns in the custom design), reduc-

ing unused area is a very important objective. To achieve
this, objects with similar sizes are placed adjacent to each

other because this can minimize the wasted area. Some-

times, this will conict with the objective to put strongly
connected blocks adjacent to each other. We introduce a

cutting edge threshold in our algorithm to trade o� between

area and performance. The cutting edge threshold actually
is a parameter obtained by calculating the average size of

all the blocks to be partitioned, if some block's size exceeds

the cutting edge threshold (that means it is far bigger than

the rest of the blocks, it will be isolated from the rest of the

blocks and be a sub-slice of the current slice. For example

shown in Figure 5(a), the netlist contains 4 components,

Mult needs 60 CLBs, two registers need 16 CLBs each, one

Mux needs 8 CLB. If we only consider the interconnection

between them, we will end up with a 12x12 CLB device
as shown in Figure 5(b), if we consider the cutting edge

threshold, the Mult will be isolated from the rest of the

blocks and be one sub-slice for slice 1234. The result with
the cutting edge threshold is a 10x10 CLB device as shown

in Figure 5(c), we can see that slicing with the cutting edge

threshold produces more area-e�cient result.

13

12X12 CLB

(b) (c)

(a)

1

2

3

4

1234

24

31 2 4

Mult 60CLB

Reg.16CLB

Reg. 16CLB

Mux 8CLB

3

1 2 4

10X10 CLB

4

3

2

1

3

1234

124

4

142

1

Figure 5: An Example:(a) Netlist; (b) Slicing without
the cutting edge threshold;(c) Slicing with the cutting edge
threshold

The shape function of the entire design is computed
by constructively adding the shape function of these leaf

blocks. In addition to the area of leaf blocks, the routing

area used by the nets connecting these blocks also needs
to be accounted for. The adjustment is done by compar-

ing the interconnections between every two sibling blocks

in the slicing tree with the available routing resource bud-
get. The amount of routing needed for connecting the two

blocks can be obtained by estimating the interconnection

count between them.
The available routing resource budget will depends on

the shapes and sizes of the two sibling blocks. In the inter-

vening routing channel between the two sibling blocks, there
are six single-length lines between every pair of adjacent

switch matrices that are parallel to the slice orientation. In

addition, we assume that double-length lines perpendicular
to the slice orientation are also used in that channel, while

the ones parallel to the slicing orientations are reserved for

the parent level in the slicing tree. Thus, the total avail-
able routing budget can be calculated based on the size

of the slicing cut (i.e. the length of the routing channel)

between the two sibling blocks. When the required rout-
ing resources exceed the budget, the size of the composite

block (formed by combining the two sibling blocks) will cor-

respondingly be increased so as to accommodate the extra
routing requirements. Additionally, all the parent blocks in

the slicing tree are correspondingly adjusted as well.

At the end of this phase, we can estimate the area of
the overall chip, according to the number of I/O, we can

predict whether the design can be �tted into one FPGA

device or not, if it can be �tted, we can also predict the
speci�c XC4000 device which will be the best choice. Let

W , H, num io be the estimated width , height, and number

of IOs of the chip respectively, W1, W2, H1, H2, num io1,
num io2 be the width, height and number of IOs of two

consecutive devices: device1, device2 respectively.

if

((W1 < W � W2)AND(H1 < H � H2)

AND(num io1 < num io � num io2)) (1)

then device2 is the best choice.

At this moment, we also have an approximate topology

of the chip which can be used in the subsequent timing

models described next Section 5.

5For more details, the reader is referred to [10]

4.3 Chip Level Timing Estimation
The Chip delay includes component delays, wire segment

delay, and Programmable Interconnection Point(PIP) de-

lay. The Chip timing estimation model includes predict

the pin location on each leaf block, predict wiring delay
and predict chip clock cycle three phases.

4.3.1 Predict the Pin Location on Each Leaf

Block

Given an input RT level design, our chip level area model

described in Section 4.2.2 outputs an approximate oorplan
which provides estimates of the relative locations of the

constituent blocks. To better estimate chip level timing,

pin location must be either known or estimated. On those
blocks which have been pre-designed, the pin location are

known. For other components which have not been laid-out

yet, we must estimate \preferred" location for each pin. lo-
cation can be determined by evaluating the approximate

topology of the design. Chip area estimation process deter-
mines the approximate locations of the blocks in the design

taking routing area into account. For each net, �rst, we

identify the source pin, then we identify load pins and their
associated blocks. By evaluating the mean location of these

blocks, a \preferred" side location of each source pin is �rst

determined. Then, by �nding the shortest Manhattan dis-
tance between each pair of source and destination blocks, a

preferred location of each sink pin can also be determined.

4.3.2 Predict wiring delay

To predict the delay between point A and B, D(A;B), in

Figure 6, the Manhattan distance x and y values (in units

of CLBs) are �rst calculated. Then, a wire type (single-
length line, double-length line and long line) is assigned to

that wire as described in the following section. This decides

the number of PIPs and number of segments between points
A and B. Subsequently, the point-to-point delay (pin-to-pin

delay without fanout e�ects), Dpp(A;B), can then be calcu-

lated. Finally, the delay with fanout e�ects, D(A;B), can
be obtained by adjusting Dpp(A;B) with a fanout factor as

described below.

B

A
long lines

pips

X

X

x

y

double length segment

single length segment

d d dseg pip ll

0.3 0.4 0.18

D (A, B) = #PIP x d + # seg x d pp pip seg

for single/double length lines −−

D (A, B) = d (x + y) pp ll

for long lines −−

point−to−point delay:

Figure 6: Point-to-point delay model and associated pa-
rameters.

To predict the wire type, the algorithm mainly checks
the interconnect wire length x and y respectively. First,

long lines are assigned to all the wires which are longer than

8 CLBs in either direction. Then, single-length lines are
assigned for all wires which are shorter than 2 CLBs. Note

that single-length lines can not be connected to double-

length lines. Thus, if one segment of a wire is assigned to

a single length line, then the other segment of the wire is

also assigned to a single length line if its length is between

2 and 8 CLBs. Finally, double-length lines are assigned to
the rest of the interconnect wires.

From Section 2.2, we know that net length does not nec-
essarily correlate well with the actual delay. Therefore, we

use an empirical model to characterize the delay-vs-wiring-

type relationship. Our empirical model is based on a large
number of observations obtained by using Xilinx's XDM

layout tool to place and route a set of benchmarks and an-
alyzing the delay of each point-to-point connection using

Xdelay, the Xilinx timing analysis tool. We found that it

is satisfactory to approximate the delay as a function of
(1) the number of PIPs it goes through in both X and Y

directions respectively, and (2) the corresponding segment

delays. Let's denote the delay for each PIP in the pro-
grammable switch matrices as dpip, and the delay for each

segment as dseg. Note that we use the same variable dseg for

both single-length and double-length segments since experi-
ments show that their delays are approximately the same 6.

For a 2-point net (A, B), the point-to-point delay will be

the summation of such delays in both X and Y directions.
Let x and y be the Manhattan distances of (A, B) in X and

Y directions respectively (both in units of CLBs). If only

single-length lines are used, they will pass through x+1 and
y+ 1 PIPs, and through x and y segments in the X and Y

directions respectively. Double-length lines need one PIP in

every other CLB and, similarly, for segments on same dis-
tance as single-length line interconnection. Long lines with

same length will not go through any PIPs and eventually

the long line delay is approximated as being proportional to
the wire length. Thus, the point-to-point delay (pin-to-pin

delay) will be:

Dpp(A;B) =

8>>><
>>>:

dseg � x+ dpip � (x+ 1)+
dseg � y+ dpip � (y + 1) for SLs

dseg � b
x

2
c+ dpip � b(

x

2
+ 1)c+

dseg � b
y

2
c+ dpip � b(

y

2
+ 1)c for DLs

dll � (x+ y) for LLs

and the associated parameters are listed in Figure 6.

When the number of fanout of a net is larger than
one, say f , the delay on each sink pin j (j = 1; :::f)

will be a�ected by the delay on the rest of sink pins k

(k = 1; :::f ;k 6= j) on the net. Let i be the source pin,
for each sink pin j (j = 1; :::f). The point-to-point delay

without fanout e�ect, Dpp(i; j), is �rst computed. After-

wards, we denote D(i; j) as the delay with fanout e�ects,

and it can be obtained by adjusting the point-to-pint delay

without fanout e�ects, Dpp(i; j), using the following for-

mula:

D(i; j) = Dpp(i; j) +
1

�

X
k=1;:::f ;k 6=j

Dpp(i; k)

Where, �, a fanout adjustment factor, is experimentally ob-

tained as 2.5. we can see that the fanout delay e�ect at the

chip level is quite big. This is because at the chip level, part
of fanout e�ect could be masked by the components.For ex-

ample in Figure 7, net n fans out from block A to two other

6The model can be easily modi�ed to account for di�erent

delays of single-length and double-length segments, if needed.

blocks, B and C, so its RT level fanout is 2. However, the

net actually feeds 5 CLBs when the design is attened.

Component C

Component A

Component B

n

Figure 7: Fanout E�ects

At the end of this step, we have a netlist which contains
components' delay and the estimates of net delay.

4.3.3 Predict Clock Cycle Length

A typical timing model for digital systems is shown in

Figure 8. The datapath part is composed of datapath logic
blocks and the data registers. Data registers are used to

store data inputs, outputs, and intermediate values in the

data path. Our timing model assumes that the controller
is implemented as a Moore Finite State Machine. A Moore

controller consists of two combinational logic blocks: the

next state logic and the output logic, one or more con-
trol registers store the current state information. The data

path consists of combinational logic blocks (composed of

functional units and muxes) bounded by data registers 7.

Data register

Data register

DataPath
 Logic

DataPath

Control
Signals

Controller

Next State
 Logic

Output
 Logic

Status
Signals

State register

Figure 8: Typical Timing Model for a Digital System

Thus, the overall system can be modeled as a network of

combinational logic blocks separated by registers. In this

case, the worst case register-to-register delay is estimated

and is output as a lower bound on the clock period for single

phase clocking.

The total execution time of a design is given as the num-

ber of time steps times the clock period. The number of

time steps is determined by scheduling and allocation and
is known once the RT level design is generated. The mini-

mum possible clock period is determined by the worst case

register-to-register delay. Note that our timing models are
kept simple due to runtime e�ciency constraints. Our goal

here is not to provide accurate timing analysis of the de-

sign. Rather, the aim is to provide the higher level tools

7This assumption, however, does not a�ect the validity of the

overall approach since it is possible to substitute di�erent timing

models for other types of controllers should that be necessary.

with an early assessment of design cost and performance.

However, the designer can easily apply more accurate tim-

ing analysis models using the delay estimates of the var-
ious blocks and interconnections which are produced by

ChipEst-FPGA (i.e. a forward annotated RT level netlist).

5 Experimental Results
In order to benchmark the accuracy of our ChipEst-

FPGA, we used six benchmark designs: (1) the AMD 2901

cpu with a bitwidth of 4, (2) RISC microprocessor Zot1 [7]
with 15 instructions and data path bitwidth is also 4, (3)

The Di�erential Equation Example (HAL), (4) the Elliptic

Filter [11] which with a bitwidth of 4 and 13 time steps. (5)
and (6) are Fuzzy logic examples derived from [1]. Alto-

gether, the RT-level implementations spanned a reasonably

large set of design variation that are likely to be consid-
ered during high level design. The FPGA chips vary from

XC4005 (with 12x12 CLBs) to XC4010 (with 20x20 CLBs).

All the RT-level implementations were written in VHDL.

For components that can be pre-characterized, we can ob-

tain their layout and timing information from the library.
The layout and timing information for the remaining of

components either (1) by invoking our area and timing es-

timation described in [9] or (2) by actually implementing
the components. Clearly, the accuracy of the chip level

estimation will vary if procedure (1) is followed, but the

overall estimation procedure will be more runtime e�cient
since uncharacherized components such as controller can be

estimated \on-the-y" by CompEst-FPGA. Since we are

interested in benchmarking the chip level estimation proce-
dure at this point, we use procedure (2) by designing each

component as shown in [9] rather than run CompEst-FPGA
(Procedure (1)) to get the actual layout and timing infor-

mation.

The Chip level design is �nished by instantiating com-

ponents as hard macros with speci�c layout and timing in-

formation. Once we got the chip xnf �les, again, they are
fed into xilinx ppr and Xdelay are used to get the delay for

the whole chip. Because of the non-deterministic nature of

ppr, the designer tends to run ppr many times with di�er-
ent seeds and select the best one (in the experiments we

ran, the worst delay varied from 4.4% to 20.9% percent o�

the best case in ten runs). To be fair, we also pick the lay-

out with best performance to compare with our estimated

results. In our experiments, ppr and Xdelay are run 10-20

times with di�erent seeds and the best design is selected for
comparison.

In order to assess the accuracy of our chip level estima-
tion, we feed same RT level VHDL �le into our ChipEst-

FPGA to produce estimates of the chip area and delay using

the models described in previous sections.

The estimation results are shown in Figure 9. First, we

note that our area estimates are very accurate. Our esti-
mation accurately predicted the exact device type needed

every time. For performance estimation, there was some

di�erences between estimated and measured values. These
di�erences can be attributed to the following factors: (1)

di�erences between estimated and �nal placements; (2) dif-

ferences between routing rule assignment and �nal routing;
(3) inaccuracies in the wiring delay model. Our ChipEst-

FPGA can produce highly accurate estimates within very

short runtime. The average estimation error for perfor-

mance is about 5.1%, while the worst case error is 18.7%.

Even when one run of ppr/Xdelay is assumed, our estima-

tion is still at least an order of magnitude faster to obtain
than the actual layout process. This clearly indicates that

our tool can be e�ciently used to provide fast and accurate
feedback to synthesis tools, allowing them to make better

informed design decisions.

AMD 2901

Zot1

HAL

EF19

Fuzzy1

XC4006
(16x16)

XC4005
(14x14)

XC4006
(16x16)

XC4010
(20x20)

XC4006
(16x16)

XC4005
(14x14)

XC4006
(16x16)

XC4010
(20x20)

XC4008
(18x18)

XC4006
(16x16)

XC4008
(18x18)

XC4006
(16x16)

40

51

32

66

76

77

40

51

32

66

76

77

181.7 181.1

99.5

173.9

489.6 482.2

286.6 272.1

287.5 281.8

+0.4

+18.7

−1.5

−4.8

118.1

179.1 +3.0

−2.0Fuzzy2

design
Benchmark Measured

device
(area CLB)

Estimated
device

Measured
IOs

Estimated
IOs

Measured
clock cycle

(ns)

Estimated
clock cycle

(ns)

% error
(cycle time)

Estimation

(s)

PPR/

(s)

Average
% error

5.2

5.5

10.8

3.8

6

1.8 8340

319

327

1835

413

566

Xdelay(2)run time(1)

(1) CPU run time.
(2) reported by ppr and xdelay.

5.1

Figure 9: Experimental Results

6 Conclusion
We presented a set of area and delay estimation tech-

niques to support a hierarchical design model for Lookup

Table Based FPGAs. The overall approach was bench-
marked and found to be accurate. Future work will con-

centrate on linking the estimation model to synthesis so

that better quality designs can be produced.

7 References

[1] D.D. Gajski, L. Ramachandran, P. Fung, S. Narayan and

F. Vahid, \100-hourDesign Cycle: A Test Case," Proc. Euro

DAC, 1994
[2] M.D.F. Schlag, P.K. Chan, and J. Kong, \Empirical Eval-

uation of multilevel Logic Minimization Tools for a Field-

Programmable Gate Array Technology", Technical Report.
University of California, Santa Cruz, 1991.

[3] Xilinx, \XACT Development System: Libraries Guide," Xil-
inx, 1994.

[4] R.J. Francis, J. Rose, Z. Vranesic, \Chortle: A Tech-

nology Mapping Program for Lookup Table-Based Field-

Programmable Gate Arrays," Proc. 27th DAC, June 1990.
[5] Xilinx, \XACT Xilinx Synopsys Interface FPGA User

Guide," Xilinx, 1995.
[6] Robert J. Francis, \A Tutorial on Logic Synthesis for

Lookup-Table Based FPGAs," Proc. ICCAD 92, 1992.
[7] D. Craig, M. Pontius, \The Zot1 Microprocessor imple-

mented on an FPGA," UCI course project report, 1994.
[8] X. Chen and M. L. Bushnell, \A module area estimator for

vlsi layouts," Proc. 25th Design Automation Conf., pp. 54-
59, IEEE/ACM, 1988.

[9] M. Xu, F.J. Kurdahi, \Area and Timing Estimation for

Lookup Table Based FPGAs," Proceeding of European De-
sign & Test Conference, 1996

[10] M. Xu, F.J. Kurdahi, \Chip Level Area and Timing Esti-

mation for Lookup Table Based FPGAs," Technical Report
#95-31, UCI, Aug.1995.

[11] S.Y. Kung, H. J. Whitehouse, and T. Kailath, \VLSI and

Modern Signal Processing." Prentice Hall, 1985.
[12] D.D. Gajski and F. Vahid. \A system design methodology:

Executable-speci�cation re�nement." Proc. of the European
Conference on Design Automation (EDAC), 1994.

