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1 Introduction and discussion

Three dimensions is quantum field theorist’s paradise. On the one hand it is easy to build

simple asymptotically free field theories which flow to interacting fixed points, and on the

other we have a lot of control over many such models. This is to be contrasted with the sit-

uation in higher dimensions, where the number of interesting models in the IR with simple

UV Lagrangians decreases, and in lower dimensions, where many subtle effects pertaining

to the vacuum structure appear. Moreover, in principle, models in three dimensions can

be engineered as effective descriptions of real-world condensed matter systems in a lab.

The situation is particularly beneficial with supersymmetric theories, where we have

a plethora of exact computations we can perform for N = 2 supersymmetric cases (see

e.g. [1–3]). Recently even models with N = 1 supersymmetry have led to exact results [4–

8]. Moreover, the progress with understanding the supersymmetric models and also the

large-N models, as summarized in [9], has led to a remarkable progress in understanding

non supersymmetric Chern-Simons theories, see e.g. [10].

In this note we stay in the N = 2 supersymmetric domain and discuss some effects

motivated by recent progress with less supersymmetric theories. In particular, a very in-

teresting model, which modulo contact terms we will call Tx, has been conjectured to

have two descriptions [6, 7]. One with manifest SU(3) global symmetry and N = 1 su-

persymmetry, which enhances to N = 2 in the IR. The other as an N = 2 theory with

U(1)× SU(2) global symmetry enhancing to SU(3) in the IR. The fact that the symmetry

enhances to SU(3) was also obtained from geometric considerations in the context of the
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3d/3d correspondence [11] in [12, 13]. We will suggest here a third description (from which

yet another can be derived using a by now well-known IR duality [14, 15]) which has both

N = 2 supersymmetry and SU(3) global symmetry in the UV. The description is an SU(3)

Chern-Simons model with level 5/2 and a single chiral field in the bi-fundamental repre-

sentation of the gauge and flavor SU(3), supplemented by a baryon superpotential. We

will give evidence for the duality by comparing the superconformal index and three-sphere

partition function of this model and of the description with non manifest flavor symmetry

but manifest supersymmetry.

In the second part of the note we will construct theories which do not have any con-

tinuous symmetries by gauging with Chern-Simons terms the diagonal global symmetry

of several Tx models. As the model Tx has only matter charged in representations with

N -ality zero under SU(3), both gauging SU(3) and SU(3)/Z3 is possible. In three di-

mensions the latter possibility leads to models with Z3 zero-form global symmetry. This

is to be contrasted with four dimensions where such a choice of global structure affects

the spectrum of line operators as it affects one-form symmetries. See [16] and [17] for

recent discussions. The operators which are charged under such discrete symmetries in

three dimensions are gauge-invariant monopoles. We will mainly focus on the case with

SU(3)/Z3 gauging and construct theories which have discrete global symmetry. For several

examples of lowest possible values of Chern-Simons levels and low number of copies we

conjecture that such theories are dual to Wess-Zumino models with N = 2 supersymmetry

and cubic superpotential interactions. Note that these interactions preserve a Z3 symme-

try. Performing the gauging with SU(3) will result in such duals with the Z3 symmetry

gauged. The main evidence we give for the conjectured dualities is again by comparing the

supersymmetric indices.

We observe several other interesting features from our results. For instance, taking

four copies of Tx and gauging SU(3) with level two we obtain evidence that the model

is dual to Tx with the SU(3) symmetry emerging in IR. Another observation is that

the basic monopole operators in many examples we study here are counted by Catalan

numbers, and it would be interesting to understand whether mirror models with such

property, that is Catalan numbers counting operators built from fundamental fields, can be

considered. Finally, SU(3) plays a special role in our construction. This is mainly because

it is easy to construct SU(3)-invariant relevant superpotential with matter in fundamental

representations. The group SU(3) plays a special role in four-dimensional N = 1 field

theories as well, where the fact that baryons are marginal can lead to large conformal

manifolds [18, 19]. Recently such theories were related to compactifications on Riemann

surfaces of a certain minimal SCFT in six dimensions [20]. It would be interesting to

understand whether the constructions we consider here are useful in that context too.

2 The model Tx

We start by reviewing the known definitions of model Tx and conjecturing a definition with

both global symmetry and supersymmetry manifest in the UV theory.
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Figure 1. We will denote the theory Tx by such a graph and use it as a building block gauging

either SU(3) or SU(3)/Z3 symmetry with some Chern-Simons level.

2.1 Description A: manifest global symmetry

The first description has N = 1 supersymmetry and manifest SU(3) global symmetry. This

is simply a Wess-Zumino model of eight real superfields with superpotential,

dacbχ
aχbχc . (2.1)

Here dabc = TrTa{Tb , Tc} with Ta the generators of SU(3). It was conjectured in [6, 7]

that the supersymmetry of this model enhances to N = 2 and a continuous R-symmetry

emerges in the IR CFT.

2.2 Description B: manifest supersymmetry

A second description is the one which has emergent global symmetry but explicit super-

symmetry. We will denote this description by Tx. Different descriptions might differ by

contact terms and to be precise when referring to model Tx we will refer to the model

discussed in this section. The fact that we have manifest N = 2 supersymmetry allows us

to utilize various localization techniques to study it [21].

The model is an N = 2 supersymmetric U(1) gauge theory with two chiral fields with

the same charge under the U(1). We choose the charge to be one. The global symmetry

that we can identify in the Lagrangian is an SU(2) rotating the two chiral fields, on top of

which we have the topological U(1) symmetry the monopole operators are charged under.

It was claimed in [6, 7] that the symmetry here enhances to SU(3) with the fundamental

given by the following decomposition into SU(2) ×U(1),

3 = 2−1 + 12 . (2.2)

This can be easily seen by computing the supersymmetric index of the model. The index

is the following measure of the spectrum of local operators:

I = Tr
S

2

[

(−1)2J3q
1

2
(∆+J3)

∏

a

veaa
∏

b

f qb
b

]

. (2.3)

Here J3 is the generator of the SU(2) rotation isometry of S2, ∆ is the conformal dimension,

ea are charges under the a-th Cartan generator of the global symmetry group, and finally

the trace is taken in radial quantization. The fugacities fb are for abelian discrete symme-

tries Znb
and thus are nb-th roots of unity, while qb label the elements of the discrete groups.

We will use in this paper the notations of the index of [22] (which are explained in [23]).

For a review on the derivation of the index expressions the reader can consult [2]. The
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index is a function of fugacities for different symmetries and fluxes for global symmetries

through S
2.

Without turning on fluxes through the sphere for the global symmetry, the index is

given by

I(b, w) =
∞
∑

m=−∞

wm

∮

dh

2πih
I(hb;m; r) I(hb−1;m; r) . (2.4)

Here h is the U(1) gauge symmetry fugacity, b that of the Cartan of SU(2), w of the

topological U(1), I the index of a chiral field which is given by

I(z;n; r) =
(

q
1−r
2 z−1

)

|n|
2

∞
∏

l=0

1− (−1)nz−1q
|n|
2
+ 1

2
r+l

1− (−1)nzq
|n|
2
+1− 1

2
r+l

. (2.5)

We take r to be the R-charge. The fugacity z is for the U(1) symmetry under which the

chiral field is charged and n is the flux through S
2 for this symmetry. Note that the flux

has to be properly quantized. The signs in the expressions appear as J3. For an object

of electric charge e in the presence of a magnetic monopole with charge m, J3 is shifted

by e ·m (see the discussion in [11]). The signs are important in general and we follow the

notations of [22]. The index of Tx was analyzed in [13] and here we will discuss some points

which will be important for us. Evaluating the index one obtains,

I(b, w) = 1− (2 + b2 + b−2 + (b+ b−1)(w + w−1))q

−(3 + b2 + b−2 + (b+ b−1)(w + w−1))q2 + · · · . (2.6)

The term at order q should count marginal operators minus conserved currents [24, 25], and

we see this is consistent with having no marginal operators and a current in the adjoint of

SU(3). The character of the adjoint is obtained upon taking b = z
−1/2
1 z−1

2 and w = z
−3/2
1

with zi parametrizing the Cartan of SU(3) such that
∏3

l=1 zl = 1.

For this theory the choice of R-symmetry for the chiral fields is a gauge symmetry

and thus all choices should be equivalent. There is a small subtlety with this statement as

we also have a Fayet-Iliopoulos parameter which is the mass for the topological symmetry.

In presence of such a term, starting from some choice of R-symmetry and performing a

gauge transformation that changes this assignment we produce a contact term between

the R-symmetry and the topological one. Only for a particular choice of the contact term,

for a given value of the R-symmetry, the theory will enjoy an SU(3) symmetry. Let us

exemplify this with the index computation. The index in the presence of fluxes for the

global symmetry is,

I(zl;n, n̂) =
∑

m∈Z

wm

∮

dh

2πih
hn I(hb;m+ n̂; r) I(hb−1;m− n̂; r)

∣

∣

∣

∣

w=z
−3/2
1

, b=z
−1/2
1

z−1

2

. (2.7)

Here n is the flux of the U(1) topological symmetry and n̂ that of the Cartan of the SU(2)

symmetry. Note that changing the R-symmetry to R → R + 2αQ with Q being charge

under U(1), amounts to redefining for the chiral fields h → qαh. Without the FI parameter
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this has no effect on the index but with it we produce a term of the form q−αn. This looks

as a contact term between R-symmetry and the topological symmetry.

The flux can be written, following the map of fugacities we derived here, in terms of

the fluxes for the Cartan of SU(3),

(n , n̂) =

(

−
3

2
m1 , −

1

2
m1 −m2

)

. (2.8)

The index computed with arbitrary values of fluxes should be invariant under the action

of the Weyl symmetry of SU(3), that is

Ix(zi;mi) := I(zl;n, n̂)|n=− 3

2
m1, n̂=− 1

2
m1−m2

,

Ix(zi;mi) = Ix(zσ(i);mσ(i)) , σ ∈ S3 . (2.9)

Here m3 = −m1 − m2 and z3 = z−1
1 z−1

2 . By computing the index we find that there is

invariance if the R-charge is 1/3 and there is no contact term. We can change the R-charge

but then we will need to add a contact term between R-symmetry and the topological

symmetry.

Another interesting issue is the following subtlety. Note that, according to the way

we define the theory, the magnetic monopole charges for SU(2) and for the topological

U(1) are integers. However, if the symmetry enhances to SU(3) we should be able to turn

on integer fluxes for the latter as well. According to (2.8), an odd m1 flux would imply

half-integer n and n̂ fluxes. To deal with this, whenever we turn on an odd m1 we need to

shift the lattice of fluxes for the gauge symmetry by a half.1 That is,

Ix(zi;mi) =
∑

m∈Z+ 1

2
(m1mod 2)

wm

∮

dh

2πih
h−

3

2
m1I

(

hb;m−
1

2
m1 −m2;

1

3

)

· I

(

hb−1;m+
1

2
m1 +m2;

1

3

)∣

∣

∣

∣

w=z
−3/2
1

, b=z
−1/2
1

z−1

2

. (2.10)

Computing the index, without refining with fugacities for the global symmetry, we obtain:

Ix(1; 0) = 1− 8q − 9q2 + 18q3 + 46q4 + · · · . (2.11)

Further, as we know from description A and as can be inferred from the index computation,

the N -ality of all SU(3) representations of states in the theory is 0. This means that we

can also turn on fluxes for SU(3) which are shifted by multiples of 1/3. The content of the

model thus allows gauging of both SU(3) and SU(3)/Z3.

2.3 Description C: manifest global symmetry and supersymmetry

We consider a Wess-Zumino model with nine N = 2 chiral superfields organized into a bi-

fundamental chiral Qij of two SU(3) symmetries, and a superpotential given by the baryon2

W = ǫilmǫjkcQijQlcQmk . (2.12)

1See [26] for a similar discussion in the context of N = 4 theories. Another way to phrase this is that

the group rotating the chirals is U(2) = (SU(2)×U(1))/Z2 and thus if we gauge the U(1) we can have half

integer flux for SU(2) as long as U(1) has half integer flux.
2Such theories in three dimensions flow to interacting SCFT’s, e.g. they have intricate conformal mani-

folds (see [27]).
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Figure 2. The theory T
(2)
x which is dual to Tx with a contact term for the SU(3) global symmetry.

We turn on a baryonic superpotential for the chiral field which preserves the non-abelian symmetry.

Here we parametrize the gauge node by N of SU(N) and by the level k of the Chern-Simons

term as Nk.

We then gauge one of the SU(3) symmetries with a level-5/2 Chern-Simons term. For

smaller values of the level the theory will be “bad”, that is the partition function will not

be well-defined. This might signal either spontaneous breakdown of supersymmetry, or

wrong R-symmetry assignments as in [28]. Moreover we need half-integer Chern-Simons

level, for otherwise the theory would have a parity anomaly.

The model has manifest SU(3) symmetry and N = 2 supersymmetry and we conjecture

it is dual to Tx. As a check one can compute the supersymmetric index and find that at

least in expansion in fugacities it matches precisely with the index of Tx. Importantly, the

two models have a relative contact Chern-Simons term for the global SU(3) symmetry at

level one. To see this we can compute the index in presence of a background monopole flux

for the SU(3) symmetry. For example, taking the flux to be (m1,m2,m3) = (1,−1, 0) we

obtain, for the model Tx:

q1/2
(

z
−1/2
1 z

−5/2
2 + z

1/2
1 z

5/2
2

)

− q
(

z
1/2
1 z

−1/2
2 + z

1/2
2 z

−1/2
1

)

+ · · · . (2.13)

For the SU(3) gauge theory we obtain instead:

q1/2
(

z
1/2
1 z

−7/2
2 + z

3/2
1 z

3/2
2

)

− q
(

z
1/2
1 z

−1/2
2 + z

−3/2
2 z

3/2
1

)

+ · · · . (2.14)

Since the Chern-Simons term contributes z
k(2m1+m2)
1 z

k(2m2+m1)
2 to the index, where

(m1,m2,−m1 − m2) is the flux and k the level, we can see that the two above expres-

sions differ by a factor of z1z
−1
2 , which comes from a background Chern-Simons term at

level one. We stress that this model has manifest symmetry and supersymmetry to be

contrasted with the other descriptions.3

The SU(N) gauge theories with matter in fundamental representations in three di-

mensions have known duals which descend from dualities in four dimensions and real mass

deformations thereof [23, 29]. One can use such dualities to obtain other descriptions with

manifest symmetry. For example, following [14] (see also [30]), we know that N = 2 U(3)

at level 5/2 with three fundamental chirals is dual to a U(1) gauge theory at level −5/2

with three fundamental chirals. Importantly there are also contact terms, one of which is a

Chern-Simons term at level one for the topological symmetry. We can gauge the topologi-

cal symmetry of the pair by putting the Chern-Simons term for the topological symmetry

3However, because of the Chern-Simons term this description does not have manifest time reversal

symmetry with the two other descriptions manifestly invariant. We thank Kazuya Yonekura for pointing

this fact out to us.
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on the U(1) side. The U(3) model then becomes the SU(3) theory we consider [31], and

on the dual side (because of the contact term) we are left with a U(1) gauge theory. The

baryonic symmetry of the SU(3) theory maps to the topological symmetry on the dual

side; turning on a baryonic superpotential amounts to a monopole superpotential on the

U(1) side.4 The reader can consult [15] for this duality and we work out the details in the

appendix. We moreover use it to verify the equality of S3 partition functions of the new

description and description B. This is an independent check of the duality.

Let us note that we can consider a generalization of the model by increasing the Chern-

Simons level, though we do not have any claim for duality for higher levels. We consider

gauging with arbitrary CS term at level k = l+ 1
2 , with integer l bigger than one. All such

models have SU(3) global symmetries and no N = 2 marginal or relevant deformations.

We will denote such models as T
(l)
x , so that T

(2)
x is dual to Tx (adding contact terms).

Increasing l the monopoles will obtain higher charges meaning the gauge sector will have

weaker coupling. The index for several values of l is:

l = 2 : 1− 8q − 9q2 + 18q3 + 46q4 + · · · ;

l = 3 : 1− 8q + 9q2 + 53q3 + 28q4 + · · · ;

l = 4 : 1− 8q + 9q2 + 43q3 − 9q4 + · · · . (2.15)

The −8 at order q is the contribution of the conserved currents of the SU(3) global sym-

metry. For higher values of the Chern-Simons level the first terms in the expansion of the

index are as for l = 4 and the difference appears at higher powers of q, as it comes from

gauge-invariant dressed monopole operators (whose charges scale with the level).

3 Gluing the Tx together and N = 2 mirror duality

We can consider gluing together several copies of Tx by gauging the diagonal SU(3) or

SU(3)/Z3 symmetry with a Chern-Simons term. As the model Tx does not have any

marginal or relevant deformations for large enough values of the level of the Chern-Simons

term or large enough number of copies, the resulting models will also have no relevant

or marginal deformations as the charges of the monopoles of the gauge group increase

with the level and the amount of matter. For too low a number of copies and too low

a level, the theories are bad in the sense that the partition functions do not converge.

However, for high enough levels and number of copies the theories are sensible and might

have interesting low-dimension operators. We have studied the models with minimal levels

and number of copies possible and in what follows we will report on few examples where

we could recognize a dual description. We find three examples with the theories dual to

simple N = 2 Wess-Zumino models with cubic interactions.5 We will moreover discuss a

dual of Tx itself which can be obtained via such a construction. The main check we will

4Monopole superpotentials were first discussed in the context of dualities in [32]. See [33–36] for many

recent examples of models with monopole superpotentials.
5In [13], motivated by geometric considerations, the authors considered gauging subgroups of SU(3) for

a single Tx.
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Figure 3. The dual of theory Tx with SU(3)/Z3 gauged at level k = 7/2. The theory is dual to a

chiral field with cubic superpotential. The double circle denotes SU(3)/Z3 gauging with the single

circle denoting an SU(3) gauge model.

refer to is the equality of indices. We have verified such equalities in a series expansion in

q to several non-trivial orders, but do not have a proof of the identities.

3.1 Single Tx with SU(3)/Z3 gauged dual to WZ with one chiral field

Let us consider gauging the SU(3)/Z3 symmetry of a single copy of Tx. The model then will

have no continuous global symmetry and will have Z3 symmetry. With low level of Chern-

Simons term the theory is bad, and the lowest level for which we find that the partition

function converges is 9/2. We also find that the index of this model agrees with the index

of a single chiral field with cubic superpotential. We conjecture then that Tx with SU(3)

gauged at level 9/2 is a Wess-Zumino model of one chiral field with cubic superpotential.

The index is given by,6

1

6

2
∑

l=0

gl
∑

m1,m2∈Z+ l
3

∮

dz1
2πiz1

dz2
2πiz2

∏

i 6=j

q−
|mi−mj |

4

(

1− (−1)mi−mjq
|mi−mj |

2

zi
zj

)

·(z2m1+m2

1 z2m2+m1

2 )9/2 Ix(zi;mi) = I

(

g−1; 0;
2

3

)

. (3.1)

Here g is a third root of unity, i.e. a fugacity for the Z3 symmetry. The operators charged un-

der the discrete symmetry are gauge-invariant monopole operators with fractional charge.7

The theory with gauged SU(3) symmetry is then dual to the Z3 gauging of the Wess-Zumino

model, i.e.

1

6

∑

m1,m2∈Z

∮

dz1
2πiz1

dz2
2πiz2

∏

i 6=j

q−
|mi−mj |

4

(

1− (−1)mi−mjq
|mi−mj |

2

zi
zj

)

·(z2m1+m2

1 z2m2+m1

2 )9/2 Ix(zi;mi) =
1

3

2
∑

j=0

I

(

e
2πij
3 ; 0;

2

3

)

. (3.2)

6For a discussion of gauging of SU(N)/ZN symmetries in the index see e.g. [26]. The index in three

dimensions can be obtained as the limit of the lens index in four dimensions [37] which depends in a non-

trivial way on the global structure of the gauge group [38]. The differences in monopole operators appearing

for different global structures are relatives of differences in line operators, see [17] for a recent discussion in

four dimensions.
7Weighting different sectors by the discrete symmetry is a three-dimensional avatar of weighting different

sectors in the lens index in four dimensions [38].
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Figure 4. The theory Tx with SU(3)/Z3 gauged at level k = 9/2. The theory is dual to a chiral

field with cubic superpotential. The double circle denotes the SU(3)/Z3 gauging. The different

level here and in the previous figure is because the duality involves a relative contact term.

We can use description C to write a quiver (see figure 2), and as descriptions B and C have

a relative Chern-Simons contact term for the SU(3) symmetry, the level of the SU(3)/Z3

Chern-Simons term we need to add is 7/2.

Note that the mirror dual of a free chiral field is well-known, and is given by a U(1)

gauge theory with level half Chern-Simons term plus a single chiral field. The topological

symmetry is dual to the U(1) baryonic symmetry rotating the chiral field. We need to

turn on a cubic superpotential to break this symmetry, which on the gauge theory side

translates to a monopole superpotential. Thus this provides yet another dual of the model

we build by gauging the SU(3)/Z3 symmetry of Tx.

3.2 Five glued Tx dual to WZ with five chiral fields

We consider gauging a diagonal SU(3)/Z3 symmetry of five copies of Tx at level 3/2. The

index is equal to the one of the Wess-Zumino model with five chiral fields and a general

cubic superpotential,

W =
5

∑

i,j,l=1

λijlΦiΦjΦl . (3.3)

The index is

1

6

2
∑

l=0

gl
∑

m1,m2∈Z+ l
3

∮

dz1
2πiz1

dz2
2πiz2

∏

i 6=j

q−
|mi−mj |

4

(

1− (−1)mi−mjq
|mi−mj |

2

zi
zj

)

·(z2m1+m2

1 z2m2+m1

2 )
3

2Ix(zi;mi)
5 = I

(

g−1; 0;
2

3

)5

. (3.4)

This suggests that gauging five copies of Tx with SU(3)/Z3 at level 3/2 is dual to a Wess-

Zumino model of five chiral fields. The model has a Z3 global symmetry which we can

gauge. The precise statement of the conjecture is that the two models flow to the same

conformal manifold on a generic point of which we have a Z3 symmetry explicitly visible

in both theories. For special values of the couplings, on one of the sides some additional

discrete symmetries might appear; this, as usual in dualities, might or might not be visible

on the dual side.

3.3 Eight glued Tx dual to WZ with fourteen chiral fields

We consider gauging a diagonal SU(3)/Z3 symmetry of eight copies of Tx at level zero. The

index is equal to the one of a Wess-Zumino model with fourteen chiral fields and a general

– 9 –
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2

Figure 5. The theory of five copies of Tx with SU(3)/Z3 gauged at level k = 3/2, dual to a WZ

model of five chiral fields.

30

Figure 6. The theory of eight copies of Tx with SU(3)/Z3 gauged at level zero, dual to a WZ

model with fourteen chiral fields.

cubic superpotential,

W =
14
∑

i,j,l=1

λijlΦiΦjΦl . (3.5)

The index is

1

6

2
∑

l=0

gl
∑

m1,m2∈Z+ l
3

∮

dz1
2πiz1

dz2
2πiz2

∏

i 6=j

q−
|mi−mj |

4

·

(

1− (−1)mi−mjq
|mi−mj |

2

zi
zj

)

Ix(zi;mi)
8 = I

(

g−1; 0;
2

3

)14

. (3.6)

This suggests that gauging eight copies of Tx with SU(3)/Z3 at level zero is dual to a

Wess-Zumino model of fourteen chiral fields. As in the above example here again the claim

of the conjecture is that the two models flow to the same conformal manifold.

In this case the S
3 partition function is converging fast enough, so we can evaluate it

– 10 –
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32

Figure 7. Model of four copies of Tx with SU(3)/Z3 gauged at level two, dual to Tx itself.

in both dual frames. The S
3 partition function of Tx is

Zx(m1,m2) =

∫ ∞

−∞

dσe2πiσ(−
3

2
m1)el(

2

3
+iσ−i 1

2
m1−im2)+l( 2

3
+iσ+i 1

2
m1+im2) . (3.7)

Here l(m) is the l-function of Jafferis [39] and mi are real masses for the SU(3) symmetry.

The duality implies that

1

2

∫ ∞

−∞

dσ1

∫ ∞

−∞

dσ2
∏

i 6=j

|2sinhπ(σi − σj)|Zx(σ1, σ2)
8 =

[

el(
1

3
)
]14

. (3.8)

Note that the half in front of the integral is 1/3!, the dimension of the Weyl group, times 3,

coming from the fact that the gauging is of SU(3)/Z3. (See [40] for similar factors in class

S computations.) We find that the equality indeed holds, and the numerical evaluation

yields 0.01706 for the first five digits. This is an independent check of the duality.

For eight and more copies of Tx glued there is no need for Chern-Simons terms for the

partition functions to converge; thus we can assume that these describe SCFT’s and we

identified the R-symmetry correctly. The index of these models with s copies of Tx and

SU(3)/Z3 gauged is given by, for s = 8, 10, 12, 14, 16,

1 + C s
2
q

s/2−3

3 + · · · . (3.9)

Here Cn is the n-th Catalan number, (2n)!/((n+1)!n!). The operators contributing to the

leading order are gauge-invariant dressed monopole operators. As we have just seen, in the

s = 8 case we have a dual description where the basic operators come from chiral fields and

it is interesting to understand whether there are duals for higher values of s such that the

basic operators do not come from monopoles, a question we leave for future investigation.

For higher values of s the index starts with q2. We can therefore deduce that there are

states associated with monopole operators which are counted by the Catalan number, and

at q2 other states appear. The number of new states at q2, which for high enough s is all

the states, is s(s− 3)/2.

– 11 –



J
H
E
P
1
1
(
2
0
1
8
)
0
2
5

3.4 Four glued Tx dual to Tx

We consider gauging a diagonal SU(3)/Z3 symmetry of four copies of Tx at level two. The

index is equal to the (unrefined) index of a single Tx:

1

6

2
∑

l=0

gl
∑

m1,m2∈Z+ l
3

∮

dz1
2πiz1

dz2
2πiz2

∏

i 6=j

q−
|mi−mj |

4

(

1− (−1)mi−mjq
|mi−mj |

2

zi
zj

)

·(z2m1+m2

1 z2m2+m1

2 )2 Ix(zi;mi)
4 = Ix(1; 0) . (3.10)

Note that this turns out to be independent of g, and the same as the index for a gauged

SU(3). This suggests that gauging four copies of Tx with SU(3)/Z3 at level 2 is dual to Tx.

The model has a Z3 symmetry which is identified with the center of the SU(3) symmetry

of Tx. Given that only representations with zero N -ality appear, we do not observe it in

the computation. From the above equality of the indices we deduce that the contribution

to the index of the gauge theory side at order q is −8. This implies [24, 25] that the IR

fixed point has a flavor symmetry of dimension eight which is consistent with the flavor

symmetry enhancing to SU(3) in the IR. In fact, assuming that we have identified the

R-symmetry correctly (to which we do not observe any counter-evidence), this is a proof

that symmetry enhances.
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A U(1) SQED with monopole superpotential dual of Tx with manifest

symmetry and supersymmetry

We start with a U(1) theory at Chern-Simons level −5/2 and three chiral fields with charge

one. We give R-charge zero to the chiral fields for concreteness. The theory has SU(3)

symmetry rotating the fields and a topological U(1). According to [14] this model is dual

to a U(3) gauge theory with three fundamental flavors and level 5/2 Chern-Simons term.

The R-charge of the fields is one. We also have a level-one relative contact term for the

topological symmetry, a level-one relative Chern-Simons term for SU(3), and a level-3/2

relative mixed Chern-Simons term for the topological U(1) and the R-symmetry. We put

all the contact terms on the U(1) side of the duality; the duality implies e.g. that the index

of the U(3)5/2 theory with three fundamental fields is equal to

w−nq−
3

4
n
∑

m∈Z

wm

∮

dz

2πiz
znz−

5

2
m

3
∏

j=1

I(zzj ;m; 0) . (A.1)
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We have turned on a magnetic flux n for the topological symmetry. Now we can gauge

the topological U(1) symmetry. Since on the U(3) side we do not have any contact terms,

we will obtain an SU(3) gauge theory at level 5/2 and three fundamental chiral fields. On

the dual side we perform the analysis using the index. The gauging of the topological

symmetry gives

∑

n∈Z

cn
∮

dw

2πiw



w−nq−
3

4
n
∑

m∈Z

wm

∮

dz

2πiz
znz−

5

2
m

3
∏

j=1

I(zzj ;m; 0)





=
∑

n∈Z

cnq−
3

4
n

∮

dz

2πiz
z−

3

2
n

3
∏

j=1

I(zzj ;n; 0) . (A.2)

Here we performed the integral over w which identified the flux of the original gauge sym-

metry m with the flux of the topological symmetry n. The fugacity c is for the topological

symmetry of the new U(1) gauge symmetry. This is dual to −1/3 the baryonic symmetry

on the SU(3) gauge theory side. We can evaluate this index to be

1− 9q + (c−1 − 10c)q
3

2 − 18cq
5

2 + (44 + c−2)q3 + · · · . (A.3)

Here the 9 at order q is the conserved current for the baryonic U(1) and for the SU(3).

The term with weight c−1 at order q
3

2 is the baryon on the SU(3) side. Remember that the

R-charge of the quarks on the SU(3) side is one and thus this is precisely how the baryon

contributes. On the U(1) side as this state is charged under the topological symmetry it

comes from the monopoles. Now we need to turn on the baryonic superpotential. This

amounts on the U(1) side to a monopole superpotential. In the index we need to set c−1q
3

2

to q. The index then becomes,

∑

n∈Z

q−
1

4
n

∮

dz

2πiz
z−

3

2
n

3
∏

j=1

I(zzj ;n; 0) =
∑

n∈Z

∮

dz

2πiz
z−

3

2
n

3
∏

j=1

I

(

zzj ;n;−
1

3

)

. (A.4)

This is just the index of a U(1) gauge theory at level −3/2 plus three charge-one fields

with R-charge −1/3, and a monopole superpotential. The claim is that the latter is dual

to an SU(3) model at level 5/2 with three fundamental fields with R-charge one. This is

nothing but Tx up to contact terms. The index above is

1− 8q − 9q2 + 18q3 + 46q4 + · · · . (A.5)

This agrees with the computations done in the Tx model in an expansion in fugacities.

Computing the index, refined with the fugacities and magnetic fluxes for the global sym-

metry, we can deduce that the model discussed here has a level minus one contact term

for the SU(3) symmetry relative to Tx. We can refine the index with fluxes for SU(3) and

discover that there is a relative Chern-Simons contact term for that symmetry at level one.

The U(1) description with the monopole superpotential is simple enough to allow for

a numerical evaluation of the S
3 partition function. We have checked extensively that the
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latter agrees with that of Tx as a function of the real mass parameters for the SU(3) flavor

symmetry. The precise equality is

Zx(m1,m2) = e2πi(m
2

1
+m2

2
+m1m2)e

πi19
12

∫ ∞

−∞

dσe−
3

2
πi(σ+iǫ)2eπ(σ+iǫ)e

∑
3

j=1
l(1+i(σ+iǫ+mj)) .

(A.6)

Here Zx is the partition function of Tx which was given in (3.7). The parameter ǫ is an

arbitrarily small positive real number which lifts the contour of integration slightly above

the real axis in the complex plane. This is necessary to avoid poles whenever σ = −mi. The

parameters mi are real masses for SU(3) and satisfy
∑3

l=1ml = 0. The two exponentials

in front of the integral are contact terms, with the first being at level one for the SU(3)

symmetry and second for the R-symmetry. We also stress that the equality of the partition

function of the description we discuss here and description C is a mathematical identity

following from [30].8 Therefore checking its equality with Tx is equivalent to checking the

equality of description C with Tx.
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