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The nonlinear sum- and difference-frequency generation spectroscopies can be probes of molecular chirality
in optically active systems. We present a tensorial analysis of the chirality-specific electric-dipolar sum-
frequency-generation susceptibility and the achiral electric-quadrupolar and magnetic-dipolar nonlinearities
at second order in isotropic media. The chiral and achiral contributions to the sum-frequency signal from the
bulk of optically active solutions of 1,1′-bi-2-naphthol (2,2′-dehydroxy-1,1′-binaphthyl) can be distinguished,
and the former dominates. Ab initio computations reveal the dramatic resonance enhancement that the isotropic
component of the electric-dipolar three-wave mixing hyperpolarizability experiences. Away from resonance
its magnitude rapidly decreases, assunlike the vector componentsit is zero in the static limit. The dispersion
of the first hyperpolarizability is computed by a configuration interaction singles sum-over-states approach
with explicit regard to the Franck-Condon active vibrational substructure for all resonant electronic states.

1. Introduction

Chiro-optical methods are sensitive probes of molecular
stereochemistry that can be applied to biological molecules in
vivo. Conventional optical activity phenomena in linear optics
include circular dichroism and optical rotation. Both measure
the asymmetry in the response of an optically active medium
to left and right circularly polarized light.1 Electric-dipolar and
the generally weaker magnetic-dipolar (and electric-quadrupolar)
transitions underlie these effects; e.g., the rotational strength of
the j r g transition is given by Im[〈g|µb|j〉‚〈j|mb|g〉].

In contrast, the nonlinear optical phenomena of second-
harmonic generation (SHG), and sum- and difference-frequency
generation (SFG, DFG) can give rise to nonlinear optical activity
effects2,3 and chirality specific signals4-6 that arise in the electric
dipole approximation. Intensity differences observed in nonlinear
optical activity can therefore be larger by several orders of
magnitude compared to analogous intensity differences in linear
optical activity measurements.3

Third-order effects that probe chirality in isotropic media have
also been reported;7-9 however, they, similar to the linear optical
effects, again require magnetic-dipolar transitions.

Near resonant electronic sum-frequency generation has
recently been observed in solutions of chiral 1,1′-bi-2-naphthol
(2,2′-dehydroxy-1,1′-binaphthyl, or BN) (see Figure 1) in
tetrahydrofuran (THF).5,6 The chiral specificity of these signals
arises from the isotropic component of the electric-dipolar first
hyperpolarizability,âh. This isotropic component, however, has
no static limit and is even near resonance generally much weaker
compared to a regular nonzero tensor component of the first
hyperpolarizability.10,11We use ab initio sum-over-states com-
putations to compute the relative dispersion of the isotropic and
the vector component of the electric-dipolar sum-frequency-

generation hyperpolarizability for chiral BN. For the experiments
reported to date,5,6 we calculate that the magnitude ofâh is at
least 2-3 orders of magnitude smaller than the magnitude of
the vector component of the first hyperpolarizability,â|. This
leads us to consider higher order multipolar (and surface)
contributions as potential sources of bulk sum- or difference-
frequency generation. A tensorial analysis that explicitly
separates the purely electric dipolar first hyperpolarizability from
hyperpolarizabilities which include one magnetic- or electric-
quadrupolar transition indicates that the chiral and achiral
contributions to the total signal can be discerned based on their
different polarization dependence.6,12 Here we build on our
recent work6 and report complete polarization experiments for
BN.

The dispersion of the second-harmonic-generation hyper-
polarizability for BN has been discussed by Byers et al., who
consider only electronic spectral effects, but note the importance
of vibronic features in the absorption spectrum of BN.13 Recently
Belkin et al. have developed a simple coupled oscillator model
to describe the (electronic) sum-frequency response of BN for
which they find good agreement with experiment.14 Such a
model is attractive as exciton delocalization in BN (C2 geometry)
can account for its chirality. However, the model requires large
excitonic splittings that are not supported by quantum chemical
computations. It also neglects vibrational structure, which is
required to account for the linear absorption spectrum of the
monomer of BN (see Figures 1 and 3), and which is thus

† Part of the special issue “A. C. Albrecht Memorial Issue”.
* Corresponding author. E-mail: pf43@cornell.edu.
‡ Department of Chemistry and Chemical Biology.
§ Department of Applied and Engineering Physics.

Figure 1. Structures of (a) R-(+)-1,1′-bi-2-naphthol and (b) 2-naphthol
(2-hydroxynaphthalene, or 2HN).
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similarly important in the spectrum of BN itself.13,15Considering
the evident importance of vibronic structure in the linear
absorption spectrum of BN, we are compelled to include it in
the description of its resonant nonlinear response. To this end
we describe a general procedure that permits inclusion of
vibrational substructures in the sum-over-states computation of
the first hyperpolarizability. Application of such a procedure
for BN leads us to conclude that the dispersion of the resonant
sum-frequency signal indeed arises from Franck-Condon
progressions of weakly split excitonic states.

2. Dispersion ofâh and â| for BN

The Fourier component of the polarization at the sum
frequency PR

(2)(-ω3;ω1,ω2) induced by two incident fields,
Eâ(ω1), andEγ(ω2), may in the electric dipole approximation
(EDA) be written as

whereω3 ) ω1 + ω2 and where (eee) labels the three electric
dipole transition moments that appear in the expression for the
corresponding hyperpolarizability (see eq 3). The scattering
power at the sum frequency is related to|PR

(2)|2. Higher order
multipolar contributions to eq 1 are ignored in the EDA.

The electric-dipolar susceptibilityøRâγ
(eee) has only one inde-

pendent nonvanishing component in an isotropic medium, the
completely antisymmetricεRâγ ø(eee). It in turn may be related
to the first hyperpolarizability for each molecular speciesê,
present with number densityNê:

whereεRâγ is the Levi-Civita tensor. For clarity we neglect
local field factors. The pseudoscalarâh is only nonzero for chiral
molecules, as it vanishes for any molecule that possesses a center
of inversion, a mirror plane, or a rotation-reflection axis. In
Rayleigh-Schrödinger perturbation theory the sum-over-states
expression for the first hyperpolarizability takes the form16

where the summation is over all intermediate statesk, j, and
wherePI is a permutation operator that simultaneously permutes
the incident optical frequencies and their associated Cartesian
coordinates (ω1, â), and (ω2, γ). The R component of the
transition electric dipole moment〈g|µ̂R|k〉, is written asµgkR,
andµj is the fluctuation dipole operatorµj ) µ̂ - 〈g|µ̂ |g〉.17 By
defining the transition frequency to be the complex quantity
ω̃kg ) ωkg - iΓkg, whereωkg is the real transition frequency

and Γkg is half the width at half the maximum height of the
transition from the ground stateg to the upper levelk, eq 3
may be used near resonance. In Rayleigh-Schrödinger pertur-
bation theory the isotropic component of the first electric-dipolar
hyperpolarizability for sum-frequency generation may be written
as

We also define a vector component of the first hyperpolar-
izability in the direction of the permanent dipole momentµR

(0)

as an approximate measure for the strength of the hyperpolar-
izability components that are likely to be probed by hyper-
Rayleigh scattering, electric-field-induced three-wave mixing,
or second-order nonlinear optical surface experiments. Sum-
mation over repeated indices is implied.

To estimate the relative strength of the chirality-specific sum-
frequency-generation nonlinearityâh, we compute its dispersion
and compare it to that ofâ|.

TheC2 geometry of BN (see Figure 1) is fully optimized in
a restricted Hartree-Fock computation with the correlation
consistent polarized valence double-ú (cc-pVDZ) basis18 in
Gaussian98.19 Since we are interested in the dispersion of the
electric-dipolar first hyperpolarizabilty including near resonance,
we use a configuration interaction singles sum-over-states (CIS-
SOS) procedure to compute the tensor components of the first
hyperpolarizability in eq 3. The first 80 excited states (singlets),
their electric dipole transition moments to the ground state, and
the excited state dipoles are computed at the CIS/cc-pVDZ level
of approximation in Gaussian98.19 For now we do not explicitly
consider vibrational substructure of the electronic transitions;
rather we assume that it can be subsumed by relatively large
phenomenological line-widths (taken to be 1500 cm-1 hwhm
for all transitions). We find that even when accounting for the
absence of vibronic features in the computations, the CIS
calculations do not reproduce the features of BN’s linear
absorption spectrum well. In particular, the lowest excited state
is not captured by the CIS/cc-pVDZ computations and the
energy spacing of the computed excited states is only in fair
agreement with the experimental UV-vis spectrum. Similar
results were obtained for the 631+G(d), 631+G(d,p), and
6311+G(d,p) basis sets. The CIS results suggest that higher
substitutions ought to be included in the configuration interac-
tion. Due to the considerable increase in computational cost such
calculations would require, we nevertheless proceed with the
CIS results and reduce all excitation energies by 1.436 eV such
that the first computed excited state (weak excitonically split
singlet) comes into register with the experimentally observed
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absorption at 336 nm. This ensures that the computed excitonic
states withf ≈ 1.8 lie within ∼10 nm of the experimentally
observed absorption peak at 228 nm. We find that the ab inito
CIS-SOS/cc-pVDZ computed magnitude ofâh at 266 nm and at
345 nm agrees within a factor of∼2 with the experimentally
reported strengths ofâh for BN5,6 (vide infra). Also, the CIS-
SOS/cc-pVDZ second-harmonic generationâzzz

(eee) at 532 nm
for BN is, as one would expect, somewhat weaker (about half
the strength of the weakestâzzz

(eee)) (z | C2) than those of 6,6′-
disubstituted binaphthols measured by hyper-Rayleigh scatter-
ing.20

Figure 2 shows the dispersion of|âh/â|| from a CIS-SOS
/cc-pVDZ computation for R-(+)-1,1′-bi-2-naphthol. It is pos-
sible that by considering the ratio ofâh/â| there is some
cancellation of errors, although the shape of the respective
dispersion curves is unlikely to be correct on resonance for the
aforementioned reasons plus the neglect of vibrational structure.
It is seen that the resonance enhancement of the chiral property
tensorâh is much more dramatic than that of the achiralâ|, or
indeed any other tensor component, as unlikeâ|, âh ) 0 in the
static limit (degenerate incident frequencies).21,22 Due to the
absence of any diagonal contributions to the sum-over-states
in eq 4, the magnitude of the pseudoscalar hyperpolarizability
and henceâh/â| is small (away from resonance) even when the
chiral molecules are highly conjugated such as in the case of
helicenes.23

Given the overall weakness of|âh/â||, it may thus be important
to consider, in addition to the chirality-specific electric-dipolar
three-wave mixing hyperpolarizability from the optically active
bulk, other potential sum-frequency (and difference-frequency)
generators, such as magnetic-dipolar and electric-quadrupolar
bulk nonlinearities and electric-dipolar surface nonlinearities.
A tensorial analysis of such generators is presented in section
4.

First, however, we describe a simple, general procedure to
incorporate vibrational substructure in electronic SOS computa-
tions to better describe the dispersion ofâh near resonance.

3. Modeling Franck-Condon Vibrational Substructure in
Calculations of âh

One quantum chemical approach in the calculation of the
dynamic nonlinear optical response is to generate an electronic
basis set with eigenenergies and a transition moment matrix to
then perform the appropriate sum-over-states using Lorentzian
poles. The widths are often chosen such that they reasonably
account for typical bandwidths of electronic transitions, even
though the widths are (in general) primarily due to Franck-
Condon (F-C) vibrational substructure, and not due to homo-

geneous broadening. This approach (taken in section 2) may
be acceptable for virtual transitions; however, when dealing with
resonant or near resonant transitions,24 as is the case in the SFG
experiments on BN reported to date,5,6 it is important to
incorporate the vibronic structure.

In the following we shall elaborate the vibrational substructure
for two electronic states,a andb, which are to be candidates
for the “two state” resonances (or near resonant transitions) that
are featured in theâh calculations.21 The treatment is readily
extended to include more than two resonant states.

The major contribution toâh in sum-frequency generation of
these two states is a one-photon resonance (or near resonance)
with statea (the lower lying state) and a two-photon resonance
with stateb. The transition moments involved for their contribu-
tion in the second-order polarization are, according to eq 4,µbag,
µbab, andµbbg. The experimental (vibronic) absorption bands from
the ground state into thea and theb states relate directly to
|µbag|2 and |µbbg|2. In general, little is known about theb r a
transition and certainly not its F-C vibrational substructure.
Nevertheless, as we shall see, we can devise a procedure to
reasonably model the vibrational substructure (and band shape)
of this unknown transition, given the abundant experimental
details concerning thea r g andb r g transitions.

We proceed first to decompose the structure of the two main
transitions originating in the ground state as a sum of Lorent-
zians. The vibronic states shall now explicitly become members
of the basis set (spawned from electronic statesa andb) in the
computation ofâh. The remaining members of the basis set are
to be treated as before. The transition moments for the individual
Lorentzian components may be extracted from the fits and the
computations, as, to a good approximation (negligible Herzberg-
Teller coupling), we can assume that the vibronic substructure
changes neither the direction nor the inherent magnitude of the
transition moments. The peak positions, line-widths (from their
best fits), and transition moments for all of the F-C vibrational
substates related to electronic statesa and b, as regards their
link to the ground state, are now known. Theb r a transition
is, however, still undetermined.

We propose that a standard linear one-dimensional displaced
harmonic oscillator model is applied for the F-C vibrational
substructure of the best fit normalized band shapesBarg(ω) and
Bbrg(ω). If one assumes a constant vibrational frequency for
the principal F-C active mode, then the model generates one
dimensionless displacement parameter for each of the two
transitions,Sa andSb. They represent the displacements of the
excited state potential energy curves along the F-C active
normal mode relative to the potential curve in the ground
electronic state.25 Now the unknown band for theb r a
transition could be constructed if one knew the relative
displacement of the potential curves fora and forb. The simple
model would state that the relative displacement is just|Sb -
Sa|. One can then construct aBbra(ω) band, given appropriate
considerations to the bandwidths of the Lorentzian components
(these will follow from those fixed in the two reference bands).
Sinceµbab is available from quantum chemical computations,
one then proceeds as above to recover all necessary components
for a calculation ofâh in which two resonant (or near resonant)
a and b states have their vibrational substructure broken out.

The lowest “two” states (really four given the excitonic
splitting) of BN are obviousa, b candidates for such a study.

Application to 1,1′-Bi-2-naphthol. Structural studies of 1,1′-
bi-2-naphthol predict that the planes of the 2-naphthol (2HN)
groups (see Figure 1) are quasi-orthogonal (with dihedral angles
of (90° to (100°).15,26,27Our quantum chemical computations

Figure 2. Dispersion of the isotropic and vector components of the
first electric-dipolar sum-frequency generation (3ω ) 2ω + ω)
hyperpolarizability for chiral BN.
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(in vacuo) approximately agree with these findings. Hartree-
Fock calculations with the basis sets from section 2 find a
dihedral angle-89° < θ(2 - 1 - 1′ - 2′) < -86° for the
R-enantiomer, andθ ≈ -85° in computations with the semi-
empirical AM1 Hamiltonian. This suggests that there is likely
to be only weak coupling between the two naphthol rings. A
comparison of the UV-vis absorption spectra for 2HN and BN,
seen in Figure 3, shows that the absorption spectrum of BN
indeed resembles that of 2HN. We, however, note that the BN
solutions in the actual SFG experiments (this work and refs 5
and 6) are highly concentrated (∼0.5 M) and that this may give
rise to perturbations not seen in the linear absorption spectrum
or captured by the quantum chemical computations. We
nevertheless proceed by analyzing these experiments by com-
putations on isolated molecules. The subsequently obtained
results warrant this approach.

The ZINDO procedure has been used to accurately model
spectroscopic properties of organicπ-electron chromophores and
the ZINDO-SOS method to compute their nonlinear response.28

For an AM1 optimized geometry of 2HN, a ZINDO computation
in Gaussian9819 locates the first four excited singlet states at
320 nm (withf ) 0.012), at 276 nm (f ) 0.152), at 232 nm (f
) 0.045), and at 228 nm (f ) 1.72), respectively (see also
Pariser-Parr-Pople calculations by Hanazaki and Akimoto15).
Accounting for solvatochromic shifts, these transitions may then
be associated with the three bands observed in the absorption
spectrum of 2HN in Figure 3. Franck-Condon progressions
are clearly observed in the absorption spectrum of 2HN, and
are thus expected to play an equally important role in the
absorption spectrum of BN. The observed splitting of the lowest
lying band of 2HN and BN is≈1100 cm-1.

Additional complexity arises in the spectrum of BN due to
excitonic splitting of the excited states.13,15 For example, the
lowest two singlet states of BN are split by 136 cm-1 with θ )
-85 (f ) 0.055 and 0.006) in a ZINDO-1 (AM1) computation
(and 183 cm-1 for AM1/ZINDO-S). With θ(2 - 1 - 1′ - 2′)
) -100° the computed splitting approximately doubles, and at
-120° it is 474 cm-1. Pariser-Parr-Pople SCF-CI calculations
by Hanazaki et al. find a splitting of 560 cm-1 with θ ) -100
(f ) 0.054 and 0.009),15 whereas Hicks and co-workers compute
an energy difference of 1129 cm-1 (f ) 0.055 and 0.006) for
the same dihedral angle. Such a splitting approaches the
separation of the peaks observed in the absorption spectrum,
but in the absence of F-C structure the observed relative peak
intensities are not accounted for.

Electronic structure calculations can in principle generate the
electronic excited states and their splittings; the vibrational
substructure of the bands, however, needs to be included
separately. Tentative vibrational assignments have been reported
for 2HN and BN.29,30 We proceed by considering the simplest
possible spectral simulation for BN by assuming only the
presence of one F-C active normal mode with fixed vibrational
frequency and line-width. From the absorption spectrum we
obtain a displacement parameter (Sa ) 0.9), the vibrational
energy (νa ) 1250 cm-1), and line-width (590 cm-1), and use
these to model the band shape in BN, where we take the splitting
of the first exciton pair to be 350 cm-1 (approximate average
of the computations including those of ref 15). For simplicity
the F-C progression is truncated after inclusion of the first four
terms. Improved band shapes and closer agreement with
experiment away from the peaks for the linear and nonlinear
response (vide infra) would be obtained by considering all F-C
active normal modes with all terms in the F-C progression and
by considering a convolution with a Gaussian distribution
function to account for inhomogeneous broadening.24 Extension
to a density matrix analysis would in addition allow the
description of pure-dephasing-induced resonances21 and doubly
resonant SFG. Nevertheless, our minimal F-C treatment
approximately describes the absorption band shape in BN, as
is seen in Figure 4b.

Together with a similar F-C analysis for the higher lying
states of BN, we could proceed to model all observed band
shapes to then explicitly include the (resonant) vibronic states
in the basis for the SOS calculation as described in section 3.
However, the sum-frequency dispersion reported by Belkin et
al.5,14 is only two-photon resonant with the lowest band and no
intermediate resonances occur. We therefore only include
vibrational F-C structure for the lowest exciton-split states in
the calculation ofâh. It is seen that the main features of the
experimentally observed spectrum are captured by this simple
model without recourse to large excitonic splittings (see Figure
4a). The purely Lorentzian line-shape analysis causes the
theoretical curves in Figure 4 to be wider away from the peaks
compared with the experimentally observed line shapes. The

Figure 3. UV-vis spectra for BN (upper curve) and 2HN (lower curve)
in ethanol obtained at≈0.1 mM concentrations. Similar spectra were
obtained in THF. The vertical lines represent the relative (ZINDO)
oscillator strengths of the first four excited singlet states of 2HN
(arbitrary units).

Figure 4. (a) Sum-frequencyâh in atomic units.41 Solid dots are from
ref 14 for sum-frequency generation from BN with one laser color fixed
at 1059 nm. The solid lines correspond to scaled ZINDO-SOS (100
states) computations with the inclusion of F-C structure for the first
exciton-split excited state (black line) and without the inclusion of
vibrational structure (dashed line). All ZINDOâh results are scaled such
that they agree with off-resonantâh CIS-SOS/cc-pVDZ computations
which are believed to be more accurate far from resonance. In addition,
the theoretical curves have been scaled by a factor of∼2 to follow
more closely the experimentally observed data. (b) A region of the
UV-vis absorption spectrum of BN (dashed line) and a F-C simulation
(black line) thereof.
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approximate treatment of both the higher lying states and the
F-C series also contributes to deviation of the computed
dispersion ofâh from the experimental data (especially at shorter
wavelengths). Despite these differences, we conclude that due
to Franck-Condon progressions even small excitonic splittings
(<400 cm-1) that fully concur with quantum chemical computa-
tions can give rise to the observed doublet with much wider
peak spacing. In contrast, the coupled oscillator analysis which
ignores F-C structure uses a splitting of 1750 cm-1 for the
lowest singlet state of BN.14

The inclusion of vibrational substructure has altered the shape
of the computed dispersion forâh near resonance; however, its
strength relative to that ofâ|, as shown in Figure 2, is largely
unchanged. We therefore discuss whether higher order multi-
polar contributions could potentially mask any signals that are
due to the chirality-specificâh. It has been reported that certain
beam polarizations allow the achiral multipolar contributions
to be separated from the chiral electric-dipolar signals.5,6 Here
we present a tensorial analysis of the multipolar bulk contribu-
tions for an isotropic medium and report a series of polarization
experiments for BN.

4. Multipolar Contributions to Bulk Sum- and
Difference-Frequency Generation

4.1. Tensorial Analysis.In eq 1 we consider only the electric-
dipolar contribution to the induced nonlinear polarization that
gives rise to sum-frequency generation. If, however, magnetic-
dipolar and electric-quadrupolar terms are included, the total
induced polarization at second order takes the form

whereMγ is the magnetization andQâR is the electric quadrupole
moment per unit volume.

We consider electric-dipolar contributions and the lowest
order correction to the EDA, where one of the field actions is
taken beyond the electric dipole approximation, to include the
gradient of the electric field∇γEδ or a magnetic field action
BR. Consequently, one of the electric-dipolar (e) transition
moments becomes either a magnetic-dipolar (m) transition
moment or an electric-quadrupolar (Q) transition moment in
the susceptibility that is taken beyond the EDA:31

As in the case of the electric-dipolar susceptibility in eq 2, we
are interested in the isotropic components32 of the susceptibilities
in eqs 7-9. We assume transverse waves and obtain

The wave vectorskR change sign under time reversal, and thus
the imaginary part of theø(mee) susceptibilities and the real part
of the øi

(Qee) tensors ensure that the material response is even
under time-reversal symmetry, as is required in the absence of
a static magnetic field.31,33 The magnetic-dipolar and electric-
quadrupolar terms arise in pairs and can thus be combined into
a single effective susceptibility.31 The separate enumeration of
terms in eq 10 should, however, be more amenable to quantum
chemical computations. Selected resonances may also enable
the isolation of either specific electric-quadrupolar or magnetic-
dipolar contributions.34

The isotropic components in eq 10 are related to the molecular
hyperpolarizabilities by

and respective permutations for tensors with (mee), (eme), (Qee),
and (eQe) (also note ref 35). The quantum mechanical expres-
sions for the multipolar hyperpolarizabilities resemble the
electric-dipolar hyperpolarizability (see eq 3) where one transi-
tion electric dipole moment is replaced by a transition magnetic
dipole or a transition electric quadrupole moment.36,37 These
expressions can be used to compute the sum-over-states for
multipolar hyperpolarizabilities.

As is seen in eq 10, it is not possible to distinguish between
magnetic-dipolar and electric-quadrupolar contributions. How-
ever, the chirality-specificø(eee) is probed by polarization
combinations different from those that access the susceptibilities
which are taken beyond the EDA (and different from those that
probe electric-dipolar susceptibilities which originate from the
anisotropy at the cuvette/liquid interface). Thus chiral and achiral
contributions to the signal may be distinguished, and bulk sum-
and difference-frequency generation are essentially background-
free probes of molecular chirality.

4.2. Polarization Experiments for SFG from BN. The
polarization dependence of the chiral and achiral three-wave
mixing susceptibilities follows from eq 10. The electric-dipolar
ø(eee) is multiplied by a Levi-Civita tensor and is thus probed
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in a noncollinear beam geometry by the combination of one S-
and two P-polarized waves (PPS, PSP, or SPP), whereas the
Kroneckerδ’s that multiply the multipolar achiral bulk suscep-
tibilities require that for transverse waves either all fields are
P-polarized or that two fields are S-polarized and one is
P-polarized (PPP, PSS, SPS, or SSP).

To observe SFG from the optically active bulk,âh needs to
be near resonance (vide supra), and in second-order processes
this invariably means that the resonant wave(s) also experience
linear absorption. Phase matching is absent in normally disper-
sive isotropic media and absorption will further reduce the
coherence length (typically<1 µm), such that contributions from
the liquid/cuvette interface (∼â|) may become important. The
molecular arrangement at the interface between two isotropic
media is expected to be symmetric about the surface normal,
and is then probed by the same polarization combinations (PPP,
PSS, SPS, or SSP) that access the achiral bulk contributions.38

Multipolar contributions have been observed in surface nonlinear
optical activity experiments, and their susceptibilities have been
found to be comparable to chiral electric-dipolar susceptibili-
ties.39,40 An all S-polarized field combination is a measure of
the experimental “noise”.

In Figures 5 and 6 we report SFG experiments at 266 nm
from solutions of BN in THF where the polarization of all three
waves is controlled. The polarization of the sum-frequency
signal is fixed (either S in Figure 5 or P in Figure 6) and the
polarization of the input waves is independently rotated. All
experimental data points have been shifted by∼2° to correct

for a systematic offset in the experiments. Signal strengths for
all measurements are relative to those measured with S-polarized
signal and P-polarized incident waves. The solid lines in the
figures show a prediction of the signal’s polarization dependence
from theory that assumes only the presence of the chirality-
specific electric-dipolar nonlinearityø(eee). The data points
closely follow the fits and the dominant contribution to the
observed SFG hence stems from the electric-dipolar bulk
nonlinearity, as is expected near resonance for BN. Our
experiments are at the fixed harmonics of a Ti:sapphire laser
(800, 400, and 266 nm) and we measure similar signal strengths
for chiral 1,1′-bi-2-naphthol and 1,1′-binaphthyl-2,2′-diyl hy-
drogenphosphate solutions.

Further away from resonance the achiral bulk contributions
are likely to become relatively more important. The chiral origin
of the signal can be independently established by a titration as
shown in Figure 7. Small deviations from the theoretical fits
that assume only the presence of an electric-dipolar bulk
response are nevertheless observed. In particular, the S-polarized
signals from S- and P-polarized input beams in (Figure 5) are
>0 and are comparable to those observed from a racemic
mixture of BN. These achiral signals are above the noise level
and have their origin either in electric-dipolar surface nonlin-
earities or arise from the magnetic-dipolar/electric-quadrupolar
bulk susceptibilities. Should one of the beams have a mixed
polarization, then the signal is sensitive to both the chiral and
achiral contributions plus interference terms.12

Figure 5. S-polarized SFG (3ω ) 2ω + ω) observed at 266 nm from chiral BN in THF (solid dots). The input polarizations are varied as
indicated. The solid line is a fit from theory assuming only the presence of the electric-dipolar chirality-specific nonlinearity. Open circles correspond
to measurements from a racemic solution of BN in THF measured at the same concentration.

Figure 6. P-polarized SFG (3ω ) 2ω + ω) observed at 266 nm from
chiral BN in THF (solid dots). The input polarizations are independently
varied in 4° increments from P to S to P. The solid line is a fit from
theory assuming only the presence of the electric-dipolar chirality-
specific nonlinearity.

Figure 7. Titration starting with 0.5 M R-(+)-1,1′-bi-2-naphthol in
THF to which S-(-)-1,1′-bi-2-naphthol (0.5 M in THF) is added until
the solution becomes racemic. At this point some of the racemic solution
is removed, and more S-(-)-1,1′-bi-2-naphthol (0.5 M in THF) is added.
The electric-dipolar SFG is proportional to the square of the concentra-
tion difference of the two enantiomers, ([R]- [S])2, which is plotted
by the solid line.
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5. Conclusions

We discuss the tensorial properties of electric-dipolar and
higher order multipolar (beyond the electric dipole approxima-
tion) nonlinearities in isotropic media. The former may give
rise to background-free signals that depend on the solution being
optically active, whereas the latter exist for all media. Certain
polarization combinations allow the two to be distinguished.
This is demonstrated for sum-frequency-generation experiments
from optically active solutions of 1,1′-bi-2-naphthol in tetrahy-
drofuran.

Quantum chemical CIS-SOS/cc-pVDZ computations of the
dispersion of the vector relative to the (much weaker) isotropic
component of the (electric-dipolar) sum-frequency-generation
hyperpolarizability are reported.

We describe a general methodology that permits the inclusion
of Franck-Condon vibrational substructure of (near) resonant
electronic transitions in sum-over-states computations ofâh.
Application is made to two-photon-resonant sum-frequency
generation from chiral 1,1′-bi-2-naphthol. Inclusion of vibronic
effects are found to be necessary to accurately model the
resonant sum-frequency response of BN.
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