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1 Introduction

Partially-massless fields constitute a novel class of fields that appears in the presence of
a non-vanishing cosmological constant [1–3] (see also [4–9]). They appear as fields whose
mass take special values for which the corresponding action acquires a gauge symmetry of
higher-derivative type, and hence propagate an intermediate number of degrees of freedom
between those of a genuine massless field (subject to single-derivative gauge invariance),
and a genuine massive field (without any gauge symmetry).

Partially-massless fields are unitary in de Sitter space and may have phenomenological
applications (see e.g. [10, 11] and references therein). Despite being non-unitary around
anti-de Sitter spacetime, partially-massless fields are nevertheless of interest,1 if only because
they are dual to partially-conserved currents, that is, currents which are annihilated after
taking several divergences [12]. These kinds of currents naturally appear in free conformal
field theories of higher-derivative scalar fields, i.e. scalar fields subject to polywave equations
of the type �`φ = 0, with ` > 1 [13], which are known to describe special RG fixed points
called ‘multi-critical isotropic Lifshitz points’ [14]. The holographic dual of this theory
would be a theory of both massless and partially-massless fields of arbitrary spin in anti-de
Sitter space, which has been studied in [13, 15, 16] (see also [17–20] for works on the
corresponding higher spin algebras), but not worked out in full details yet. One reason
is that holographic duals of vector models feature severe nonlocalities that invalidate the
usual field theory methods to construct them [21–24].

Nevertheless, cubic interactions for partially-massless fields of any spins have been
studied [25–27], but complete interacting theories featuring partially-fields in the spectrum
are still lacking. Particular attention has been given to the problem of finding gravitational
interactions and constructing what one might want to call a theory of partially-massless

1Note that partially-massless fields have also been of interest recently in the context of inflation [10, 11].
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gravity, i.e. an interacting theory of a massless and a partially-massless spin-2 field. Unfor-
tunately, the search for such a non-linear theory led to several no-go theorems, whether it
is in relation with massive and/or bimetric gravity [28–32], with conformal gravity [33, 34],
or on general grounds [35, 36]. A notable exception is the recent work [37], wherein an
interacting theory of a multiplet of spin-2 partially-massless fields has been proposed.

All of the aforementioned results were obtained by working with symmetric rank-s
tensors to describe partially-massless fields of spin-s. In this paper, we introduce a new
description of partially-massless fields in 4d, inspired by twistor theory and the description
of massless fields given in [38, 39], based on a pair of a 1-form and a 0-form which are also
SL(2,C) spin-tensors (see also [40–42] for a pure connection formulation of gravity, which is
closely related). In terms of these new field variables, the free action for partially-massless
takes a fairly simple form, and more importantly, one can construct complete interacting
theories featuring partially-massless fields. We will illustrate this last fact by spelling out a
partially-massless higher spin extension of self-dual Yang-Mills, which is a generalisation
of the higher spin extension discussed in [39], and a theory featuring current interactions
between a couple of massless fields with a partially-massless one, which is complete at the
cubic order.

The organisation of this paper is as follows: in section 2, we briefly recall the metric- and
frame- like description of free partially-massless fields before introducing a new description
based on two-component spin-tensors, in section 3 we present two simple examples of fully
interacting theories featuring partially-massless fields, and we end up by some concluding
remarks in section 4.

2 Free partially-massless fields, old and new

Metric-like approach. Free fields are known to be in one-to-one with irreducible repre-
sentations of the spacetime isometry group. For de Sitter (dS) space in (d+ 1)-dimensions,
the isometry algebra is so(1, d + 1), whereas for anti-de Sitter (AdS) space in (d + 1)-
dimensions, it is so(2, d). We will hereafter denote these algebras collectively by gΛ. One
new feature of the representation theory of (anti-)de Sitter algebras, as compared to that
of the Poincaré algebra, is that they admit irreducible representations which are realized as
fields propagating an intermediate number of degrees of freedom between that of a massless
field and that of a massive one, for a fixed value of the spin [1–3]. Consequently, these
fields are called partially-massless (PM). A spin-s partially-massless field of depth-t, with
1 ≤ t ≤ s, can be represented by a rank-s symmetric tensor Φa1...as ≡ Φa(s) that is subject to2

δξΦa(s) = ∇a . . .∇a︸ ︷︷ ︸
t times

ξa(s−t) + . . . , (2.1)

where the dots denote lower order derivatives terms. In other words, the depth of a partially-
massless field is nothing but the number of derivatives in its gauge transformation, and

2In trying to save letters we abbreviate a group of symmetric indices a1 . . . as as a(s) and, more generally,
denote all indices to be symmetrized by the same letter.
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the massless case corresponds to t = 1 in our convention. Omitting the transversality and
tracelessness constraints for Φ and ξ, the equations of motion reduce to

(�−m2) Φa(s) = 0 , m2 = −Λ
(
(d+ s− t− 1)(s− t− 1)− s

)
, (2.2)

where, as for the massless case, the mass-like term is proportional to the cosmological
constant and depends on the spin-s, depth-t and spacetime dimension d+ 1. The mass-like
term is fixed by the gauge symmetry. While equations of motion are simple, the action
requires an intricate pattern of auxiliary fields3 [8].

Frame-like approach. The frame-like description of partially-massless fields was devel-
oped in [44], see also [45] for the specialization to 4d and [46–49] for purely massless higher
spin fields.4 The key idea is to consider a (generalized) connection of the (anti-)de Sitter
algebra WY, i.e. a one-form that takes values in a finite-dimensional representation Y of
the algebra that is not necessarily the adjoint one. The simplest case is the adjoint itself,

[56], for which the connection WA,B contains5 two one-forms valued in finite-dimensional
representations of the Lorentz subalgebra so(1, d), namely the vielbein ea = W a,• and
the spin-connection ωa,b = W a,b. In order to describe a spin-s depth-t partially-massless
field, one should consider a 1-form W taking values in the finite-dimensional irreducible
representation Ys,t = s− 1

s− t . Upon decomposing it with respect to the Lorentz algebra,
one gets a lot of auxiliary fields,

WYs,t = {ωa(s−k),b(s−m)} , with k ∈ {1, 2, . . . , t} , m ∈ {t, t+ 1, . . . , s} . (2.3)

It is easy to construct a gauge-invariant curvature R forW , namely one simply defines it to be

R[W ] = ∇W + ea ∧ ρ(Pa)W , (2.4)

where ρ is the representation Y of the (anti-)de Sitter algebra.6 This curvature is invariant
under the gauge transformations generated by a 0-form ξ valued in the same representation Y,

δξW = ∇ξ + ea ρ(Pa) ξ , (2.5)

on an (anti-)de Sitter background, i.e. defined by a vielbein ea and spin-connection $a,b

obeying
∇ea = 0 , Rab − e[a ∧ eb] = 0 , (2.6)

3This is due to the fact that partially-massless fields are closer to the massive ones. For a massive spin-s
field one has to impose transversality on top of the Klein-Gordon equation, which starting from s = 2
requires auxiliary fields [43].

4Note that the frame-like description of fields arbitrary mixed-symmetry, both massless and partially-
massless, has been worked out, see e.g. [50–55].

5Indices A, B, . . . = 0, . . . , d+1 are of gΛ and we can decompose them as A = a, •, where indices a, b, c, . . .

are of the Lorentz algebra.
6This expression can be thought of as originating from the curvature F [A] = dA + 1

2 [A, A] of a connection
A taking values in the algebra gΛ Aρ Y, which is the semi-direct sum of the (anti-)de Sitter algebra gΛ with
the representation Y, considered as an Abelian subalgebra. The component of this curvature taking values
in gΛ is the usual curvature of the (A)dS algebra, and is assumed to vanish here, while the component in Y
reproduces the above formula.

– 3 –



J
H
E
P
0
5
(
2
0
2
3
)
1
3
6

where ∇ is the covariant derivative induced by $ and Ra,b = d$a,b + $a
c ∧ $c,b is its

usual Lorentz curvature 2-form. Note in particular that the second piece of this gauge
transformations, the one generated by the action of the transvection generators, is algebraic
(it is given by symmetrization and contraction of the background vielbein with the gauge
parameters, and does not involve any derivatives).

For instance, a partially-massless spin-2 field is described in this language by a connec-
tion, taking values in Y = , the fundamental (or vector) representation of the (anti-)de
Sitter algebra gΛ. Such a connection has components W = {wa, w}, i.e. it is composed
of two 1-forms, valued in the vector and scalar representation of the Lorentz algebra
respectively. Their curvature simply read

Ra = ∇wa + ea ∧ w , R = ∇w − ea ∧ wa , (2.7)

while the gauge transformations are given by

δξ,εw
a = ∇ξa + ea ε , δξ,εw = ∇ε− ea ξa , (2.8)

where ξa and ε are the two 0-form gauge parameters. Let us briefly review how one can
recover the metric-like formulation discussed previously [44, section 5.1]. First, note that
one can gauge-fix to zero the component w upon using its gauge symmetry generated by ξa.
The residual gauge transformations (i.e. which preserve the gauge choice w = 0) are those
generated by ε and ξa = −∇aε, i.e.

δεwa|b = −∇a∇b ε+ ηab ε , (2.9)

where wb|a = eµb w
c
µ ηac. Imposing that the curvature R of w vanishes in the gauge w = 0

implies that the antisymmetric part of wa|b vanishes,

R|w=0 = 0 ⇒ w[a|b] = 0 . (2.10)

This is a first sign that one can recover the symmetric rank-2 tensor subject to a two-
derivative gauge transformation, which encodes the PM spin-2 field in the metric-like
formulation, as the symmetric part of the 1-form wa. Inspecting the Bianchi identities for
the curvature Ra, one finds that its only possible non-trivial component is encoded by a
hook, so that one can impose

Ra = eb ∧ ecCab,c , (2.11)

where Cab,c is a 0-form which takes values in the irrep of the Lorentz algebra. The
above example is representative of the frame-like description of partially-massless field: for
a spin-s and depth-t field, one can impose the zero-curvature equations

Ra(s−m),b(s−n) = 0 , m 6= 1 and n 6= t , (2.12)

and
Ra(s−1),b(s−t) = Ca(s−1)c,b(s−t)d ec ∧ ed , (2.13)

where C is a 0-form, that can be thought of as a partially-massless version of the Weyl tensor.
The metric-like partially-massless field can be found in the connection ea(s−1) valued in
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the totally symmetric irrep of the Lorentz algebra, and the above zero-curvature equations
expresses the intermediate/auxiliary connections ωa(s−1),b(m) with m = 1, . . . , s− t− 1 as
m derivatives of the PM field, while the last equation equates the 0-form C to a particular
traceless projection of s− t+ 1 derivatives of the PM field.

One can build a gauge-invariant action from the above curvature, however, this action
exhibits an intricate pattern involving the ‘auxiliary connections’ [44]. Let us specialize this
construction to 4d, where it is advantageous to use the two-component spinor language.

Twistor-inspired/chiral approach. The advent of twistor theory lead to a new geo-
metrical understanding of massless fields in 4d in terms of holomorphic structures on a 3d
complex manifold that is twistor space [38, 57, 58] (see also the textbooks [59–62] and, for
instance, the recent review [63]). Although we will not use directly twistor theory in our
description of partially-massless fields, it is very much inspired by it, and is a straightforward
extension of the approach proposed for massless fields in [38, 39].

At the algebraic level, this relies on the low dimensional isomorphism sl(2,C) ∼= so(1, 3).
The latter relates a Lorentz vector V a to a sl(2,C)-bi-spinor V AA′ , where both A = 1, 2 and
A′ = 1, 2 are two-component spinor indices. More generally, finite-dimensional irreducible
representations of so(1, 3), which are mixed-symmetric traceless tensor T a(m),b(n) correspond
to a spin-tensor carrying two groups of m+ n and m− n totally symmetrized (un)primed
indices,

T a(m),b(n) ←→
(
TA(m+n),A′(m−n), TA(m−n),A′(m+n)) . (2.14)

As usual, in the Lorentzian signature the two spin-tensors are complex conjugate of each
other. In the Euclidian or split signature, they are independent real spin-tensors. Unprimed
spinor indices are raised and lowered with the invariant tensor εAB and its inverse εAB, in
the sense that εAC εBC = δAB, via

ξA = εAB ξB , ξB = ξA εAB , (2.15)

and similarly for primed indices. In this two-component spinor language, the gΛ-connection
consists of a vierbein eAA′ , the self-dual part of the spin-connection ωAA, and its anti-self-
dual part ωA′A′ . The zero-curvature equations for this connection are given by

RAA = HAA , RA′A′ = HA′A′ , ∇eAA′ = 0 , (2.16)

with

RAA := dωAA + ωAB ∧ ωBA , RA′A′ := dωA′A′ + ωA′B′ ∧ ωB
′
A′ , (2.17)

are the self-dual and anti-self-dual parts of the Lorentz curvature 2-form, and where we
introduced the two-forms

HAA := eAB′ ∧ eAB
′
, HA′A′ := eBA′ ∧ eBA′ , (2.18)

which define a basis of self-dual and anti-self-dual 2-forms respectively. There is also the
3-form basis, defined as

êAA′ := HAB ∧ eBA′ . (2.19)

– 5 –
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In particular, the 2-forms HAA and HA′A′ verify

HAB ∧HA′B′ = 0 , (2.20)

and the identities

HAA ∧ eAB′ = 0 ⇒ HAA ∧HAB = 0 , (2.21)

which will be useful later on (for more details, see e.g. [64]).
It was shown in [39] that for massless fields, we can take the self-dual parts of the very

‘last’ spin-connection (by which we mean the component of the gΛ-connection valued in the
‘biggest’ Lorentz Young diagram, that is, the Young diagram with the same shape as the
one labelling the gΛ-irrep) and of the Weyl tensor as our dynamical variables. Indeed, we
will show that this leads to a simple action. In tensor language, the last spin-connection
for a spin-s and depth-t partially-massless field is a one-form ωa(s−1),b(s−t) and the Weyl
tensor is of the form Ca(s),b(s−t+1), where the indices merely indicate the symmetry type of
a tensor. In the spinorial language, the self-dual components of these two fields are thus

ωA(2s−t−1),A′(t−1) ΨA(2s−t+1),A′(t−1) , (2.22)

and their anti-self-dual cousins can be obtained via t→ 2s− t for ω and t→ 2s− t+ 2 for
Ψ. The chiral approach deals with one pair of such fields and ignores the duals thereof. In
particular, for the spin-2 field of depth t = 2, i.e. a partially-massless graviton, we find ωA,A′

and ΨA(3),A′ . In the spin-s case, the decomposition of ω into irreducible spin-tensors reads

ωA(2s−t−1),A′(t−1) = eAB′ ΦA(2s−t−2),A′(t−1)B′ + eB
A′ ΦA(2s−t−1)B,A′(t−2)

+ eBB′ΦA(2s−t−1)B,A′(t−1)B′ + eAA
′ΦA(2s−t−2),A′(t−2) ,

(2.23)

where Φ are 0-forms. Two of these components are unphysical and can be gauged away,
since the gauge transformation of ω reads

δξ,ηω
A(2s−t−1),A′(t−1) = ∇ξA(2s−t−1),A′(t−1)

+ eAA
′
ηA(2s−t−2),A′(t−2) + eAB′ η

A(2s−t−2),A′(t−1)B′ ,
(2.24)

and contains both a differential part (the first term), and an algebraic part (the second and
third terms). The latter, hereafter referred to as a shift symmetry, can therefore be used
to gauge away the first and fourth terms in the irreducible decomposition (2.23). After this
gauge fixing, the connection ω is given by

ωA(2s−t−1),A′(t−1) = eB
A′ ΦA(2s−t−1)B,A′(t−2) + eBB′ΦA(2s−t−1)B,A′(t−1)B′ , (2.25)

and is subject to the residual gauge symmetry

δΦA(2s−t),A′(t−2) = ∇AB′ ξA(2s−t−1),A′(t−2)B′ , (2.26a)
δΦA(2s−t),A′(t) = ∇AA′ξA(2s−t−1),A′(t−1) , (2.26b)

expressed in terms of its two irreducible components. Note that the gauge symmetry (2.24)
is nothing but the two-component spinor translation of the gauge symmetry (2.5) in the
frame-like approach, and in particular, the shift symmetry here is simply the algebraic part
of the gauge symmetry of the ‘last connection’.

– 6 –
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Action. We propose the following action

Ss,t[ω,Ψ] =
∫

ΨA(2s−t+1),A′(t−1)HAA ∧∇ωA(2s−t−1),A′(t−1) , (2.27)

for the description of a spin-s partially-massless field of depth-t. This action is invariant
under the gauge symmetries (2.24) thanks to the property (2.21) of the background. Notice
also that this action is of presymplectic AKSZ-type [65], which is not that surprising
considering that the frame-like action for Gravity [66] and Conformal/Weyl Gravity [67]
are also of this type, and that the relevance of this approach for higher-spin theories is
established [68, 69].

Another noteworthy feature of the above action is that it is not manifestly real in the
Lorentzian signature, as is the well-known cases of (self-dual) Yang-Mills theory [70] and
gravity [40–42] that can be formulated in terms of chiral field variables. Nevertheless, it
is worth mentioning that the use of chiral field variables does not imply that the theory
is actually chiral (parity-violating) or non-unitary. This is always true for free theories
that have the same degrees of freedom as their non-chiral relatives. The free action of [70]
corresponds to s = 1, t = 1 of (2.27).

The equations of motion obtained from (2.27) are

HAA ∧∇ωA(2s−t−1),A′(t−1) = 0 , HAA ∧∇ΨA(2s−t+1),A′(t−1) = 0 . (2.28)

There are two noteworthy cases: t = 1 which corresponds to massless fields, and in which
case the above action reproduces the one proposed in [39], and t = s, which corresponds
to maximal depth partially-massless fields, and for which the spin-connection is balanced
(meaning it has the same number of primed and unprimed indices, as opposed to the
massless case where it is completely unbalanced).

These equations can be taken as a starting point to build a free differential algebra
(FDA) formulation of partially-massless fields, see [44, 45, 52, 53, 55, 71]. Indeed, they can
be read as expressing the fact that the first derivatives of ω and Ψ are in the kernel of
an operator determined by the background self-dual 2-form HAA (symmetrization for ω,
contraction for Ψ). These operators are nothing but components of the presymplectic form
used to build the action (2.27). The FDA is obtained by parametrizing ∇ω and ∇Ψ as the
most general elements in the kernel of this presymplectic form, i.e.

∇ωA(2s−t−1),A′(t−1) = eA
B′ ωA(2s−t−2),A′(t−1)B′ + eAA′ ωA(2s−t−2),A′(t−2) , (2.29a)

∇ΨA(2s−t+1),A′(t−1) = eBA′ ΨA(2s−t+1)B,A′(t−2) + eBB
′ ΨA(2s−t+1)B,A′(t−1)B′ , (2.29b)

and imposing that the resulting equations are integrable. Typically, this condition leads to
constraints on the first derivatives of the components of the elements in the kernel of the
symplectic form, and one should repeat the procedure (i.e. find the most general form of
the first derivatives of these new fields compatible with integrability, thereby introducing
new fields, and imposing once more the integrability of this equation, etc . . . ). See e.g. [65]
or [69, section 4] for a review. The outcome of this procedure is to build two modules of
the (A)dS algebra gΛ:
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#A′

#A

one-forms, ω

zero-forms, C

ωA(t−1),A′(2s−t−1)

CA(t−1),A′(2s−t+1)

CA(2s−t+1),A′(t−1)

ωA(2s−t−1),A′(t−1)

2s

2s− t + 1

2s− t− 1

2s− 2t

2s− t + 1 2s

2s− t− 1
2s− 2t

Figure 1. A diagram to show fields/coordinates involved into the description of partially-massless
higher spin fields. Along the horizontal/vertical axe, we have the number of unprimed/primed
indices on a spin-tensor. Components of the 1-form connection are represented by green circles,
while the 0-forms (the Weyl tensor and its descendants) are represented by red rectangles. By
descendants we mean the on-shell nontrivial derivatives of the Weyl tensor, which are associated
with the coordinates on the on-shell jet space [60].

• A finite-dimensional one, which is spanned by the 1-forms ωA(2s−m−n),A′(n−m) and
their complex conjugate, with 1 ≤ m ≤ t and t ≤ n ≤ s. This corresponds to the
gΛ-module s− 1

s− t
used in the frame-like formulation;

• An infinite-dimensional one, spanned by the 0-forms ΨA(2s−t+m+n),A′(t−m+n) with
n ≥ 0 and 1 ≤ m ≤ t, which corresponds to the derivatives of the self-dual Weyl
tensors unconstrained by equations of motion or Bianchi identities.

The pattern of connections, and descendants of the Weyl tensor, for a fixed spin-s and
depth-t is illustrated in figure 1 and was already detailed in [44] (see also [50–55, 71]), while
the pattern of pairs made of a connection one-form and a Weyl tensor zero-form, for a fixed
spin-s and different values of the depth-t is displayed in figure 2.

Let us dwell a little on the maximal depth case t = s. In vector language, the last
connection decomposes as

ωa(s−1) ' s ⊕ s− 1 ⊕ s− 2 (2.30)

under the Lorentz group, and is subject to the algebraic symmetry

δεω
a(s−1) = e{a εa(s−2)} , (2.31)

– 8 –



J
H
E
P
0
5
(
2
0
2
3
)
1
3
6

#A′

#A

one-forms, ω

zero-forms, C

ωA(t−1),A′(2s−t−1)

CA(t−1),A′(2s−t+1)

CA(2s−t+1),A′(t−1)

ωA(2s−t−1),A′(t−1)

Figure 2. For a given spin-s, the fields grouped horizontally/vertically correspond to chiral/anti-
chiral description of depth-t partially-massless fields. There are two descriptions for each admissible
s, and t. The group on each of the axes describes massless fields in terms of (anti-)chiral variables.
It is clear that extrapolation of one description beyond t > s does give the other one.

where {. . . } denotes the traceless projection of symmetrized indices. This algebraic symmetry
removes the trace part s− 2 in the irreducible decomposition of ωa(s−1). It may however be
surprising at first glance that in the two-component spinor language, one has two parameters
for the algebraic symmetry of ω, namely ηA(s−2),A′(s−2) and ηA(s−2),A′(s). The first one
simply corresponds to ε, converted in spinor language, but the second one appears to have
no counterpart in the vector language. This is not accidental: in fact, this additional
parameter has the same symmetry has the anti-self-dual part of the hook component of ω,
and its rôle is simply to remove it. This is consistent with the fact that, in spinor language,
ω has two irreducible components, corresponding respectively to symmetric rank-s tensor
and the self-dual part of a hook tensor, and is also in accordance with the counting of
degrees of freedom detailed below. Such additional symmetry is also present in the FDA
form [45, 71] of Zinoviev’s description of partially-massless fields [8, 72].

Massless spinning fields, described as in [38, 39], can propagate on self-dual backgrounds.
This is due to the fact that the fields ΨA(2s) and ωA(2s−2) do not have any primed indices,
hence, ∇2ξA(2s−2) ≡ 0 on a self-dual background, which ensures the gauge invariance of
the action. However, partially-massless fields are always described by mixed spin-tensors,
i.e. have both primed and unprimed indices. The action (2.27) as well as the equations
of motion (2.28) remain consistent in Minkowski space, the difference being that the
corresponding solution space is not an irreducible representation of the Poincaré group (see
e.g. [50, 51, 54, 55, 73]).

– 9 –
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Degrees of freedom. Let us justify the main claim of the previous paragraphs, which is
that the action (2.27) does describe a partially-massless spin-s and depth-t field in 4d. To
do so, we will show that the solutions of the resulting equations of motion propagate the
correct number of degrees of freedom, namely 2t (irrespectively of the spin). In our case,
the equations of motion are first order differential equations for the fields Ψ and ω. The
number of physical degrees of freedom propagated by an arbitrary field, which is a solution
of an involutive system of equations, is given by the formula [74]

Ndof = 1
2

∞∑
k=0

k (ek − ik − gk) , (2.32)

where ek is the number of equations of order k in the system, ik number of (gauge) identities
of k-th order, and gk is the number of gauge symmetry generators of order k (here, the
order is the number of derivatives). Let us recall that an involutive system of order n is
defined in [74] as a system of equations such that any differential consequence of these
equations, of order n or less, is already a part of the system. In our case, the equation of
motion for the field Ψ is given by,

HAA ∧∇ΨA(2s−t+1),A′(t−1) ∝ êAB′∇AB
′ ΨA(2s−t+1),A′(t−1) = 0 , (2.33)

where êAB′ are the basis 3-forms introduced in (2.19) above. Using it, we can write down
the set of independent equations of motion as

EA(2s−t),A′(t−1)|B′ = ∇BB
′ ΨBA(2s−t),A′(t−1) = 0 , (2.34)

and easily count that these are e1 = 2t(2s− t+ 1) equations of first order. The field Ψ does
not have any gauge symmetry, hence gk = 0 for all k. Now since the field ω has a first order
gauge symmetry, the Ψ-field after integrating by parts in the action, satisfy the Bianchi
identity of second order. Explicitly, this identity is given by,

∇FF ′EFA(2s−t−1),F ′A′(t−1) = 0 , (2.35)

which consists in i2 = t (2s− t) identities of the second order. Thus, the number of physical
degrees of freedom described by the field Ψ is

Ndof(Ψ) = 1
2
[
2t(2s− t+ 1)− 2t(2s− t)

]
= t . (2.36)

Similarly, the equations of motion for the field ω read

HAA ∧∇ωA(2s−t−1),A′(t−1) = HAA ∧ eDD′∇DD
′
ωA(2s−t−1),A′(t−1) = 0 , (2.37)

and, upon using the decomposition of ω into its irreducible components,

ωA(2s−t−1),A′(t−1) = eAB′ ΦA(2s−t−2),A′(t−1)B′ + eB
A′ ΦA(2s−t−1)B,A′(t−2)

+ eBB′ΦA(2s−t−1)B,A′(t−1)B′ + eAA
′ΦA(2s−t−2),A′(t−2) ,

(2.38)

takes the form

∇AF
′ ΦA(2s−t),F ′A′(t−1) +∇AA′ΦA(2s−t),A′(t−2) = 0 . (2.39)
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These are e1 = t (2s− t+ 2) equations of first order. The gauge transformations are of first
order, and generated by g1 = t (2s− t) parameters. Since there are no additional identities,
the number of degrees of freedom propagated by ω is

Ndof(ω) = 1
2
[
(2s− t+ 2)t− (2s− t)t

]
= t , (2.40)

and hence Ψ and ω contain, in total, 2t physical degrees of freedom. In particular, for
massless field (t = 1), we recover 2 degrees of freedom, as expected, while for the partially-
massless graviton (t = 2), we find 4 degrees of freedom, in conformity with expectations.7

Note that the counting of degrees of freedom presented here applies for any values of t.
In particular, when t > s, we see that the number of degrees of freedom keeps increasing and
is larger than the one expected for a spin-s field of any depth. This is another indication
that, despite the fact that the pairs of fields (ω,Ψ) can still be considered for t > s, and
the action (2.27) still makes sense, their interpretation remains elusive and should not be
related to PM fields (our proposal is that it gives two massive fields, see appendix A).

3 Interactions

Since we have a well-defined free action, the next task is to look for interacting theories.
In this section, we will consider two simple types of possible interactions using the new
description presented in this paper.

3.1 Yang-Mills interactions

First, we will consider Yang-Mills interactions for partially-massless fields, which are
straightforward generalization of the higher spin extension of self-dual Yang-Mills theory
introduced in [39], and recently revisited in [75–78], see also [79]. This type of interaction
is obtained by first extending the spin-connection ωA(2s−t−1),A′(t−1) and the Weyl tensor
ΨA(2s−t+1),A′(t−1) of a partially-massless spin-s and depth-t field to take values in a Lie
algebra g equipped with an ad-invariant bilinear form8 that we will denote by (((−,−))). Next,
we can pack up together the spin-connections for partially-massless fields of all spin and
depth into a single 1-form,

ω =
∞∑
s=1

s∑
t=1

ωs,t(x|y) , ωs,t(x|y) :=
ωA(2s−t−1)A′(t−1)

(2s− t− 1)!(t− 1)! y
A . . . yA yA

′
. . . yA

′
, (3.1)

whose curvature is defined by the usual formula

F = ∇ω + 1
2 [ω, ω] , (3.2)

where the bracket above should be understood as the C[y, y]-linear extension of the Lie
bracket of the Yang-Mills algebra g. More concretely, the Lie bracket of ω with itself is

7The same counting of degrees of freedom is suggested by the first step (2.29) towards the FDA form of
the equations.

8Recall that a bilinear form is called ad-invariant if it verifies ((([x, y], z))) = (((x, [y, z]))) for any elements
x, y, z ∈ g.
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given by
[ω, ω]s,t =

∑
s1+s2=s+1
t1+t2=t+1

[ωs1,t1 , ωs2,t2 ] , (3.3)

where the subscript (s, t) denotes the component of degree 2s− t− 1 in y and t− 1 in y.
Packing up in a similar way the differential gauge parameters associated with each spin-
connection into a 0-form ξ, we can define an extension of the free gauge symmetry (2.24) via

δξω = ∇ξ + [ω, ξ] , δξΨ = [Ψ, ξ] , (3.4)

under which the curvature transforms according to

δξF = ∇2ξ + [F, ξ] , (3.5)

where the first term can be re-written as

∇2ξ = (HA
B yA ∂B +HA′

B′ yA
′
∂B′) ξ . (3.6)

Similarly, we can pack up the shift symmetry parameters into a single 0-form η, and write it as

δηω = eAA′ y
A (yA′ + ∂A

′) η , (3.7)

so that the curvature transforms as

δηF = −eAA′ yA (yA′ + ∂A
′) (∇η + [ω, η]) , (3.8)

since the vierbein is torsionless and does not take values in the Lie algebra g. We will
consider the action

SPMYM [ω,Ψ] = 〈Ψ | 1
2 HAA y

AyA ∧ F 〉

:=
∑

1≤t≤s

1
(2s−t−1)!(t−1)!

∫
(((ΨA(2s−t+1),A′(t−1), HAA ∧ FA(2s−t−1),A′(t−1)))) ,

(3.9)
which defines a complete interacting theory for partially-massless fields. The interactions
are of Yang-Mills type. This action is invariant under shift symmetry since its variation
under this transformation will produce a term HAA ∧ eAB′ = 0, as can be seen from (3.8).
Its variation under the gauge transformations (3.4) is given by

δξSPMYM = 〈[Ψ, ξ] | 1
2 HAA y

AyA ∧ F 〉+ 〈Ψ | 1
2 HAA y

AyA ∧ (∇2ξ + [F, ξ])〉 = 0 , (3.10)

and vanishes due to the fact that the term ∇2ξ produces HAA ∧HAB = 0 = HAA ∧HA′B′

according to (3.6), and the two remaining terms cancel one another due to the ad-invariance
of the bilinear form on g.
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3.2 Current interactions

Consider the functional

Sint[ω,Ψ] =
∫
TA(2s−t),A′(t)(Ψ)ωA(2s−t−1),A′(t−1) êAA′ (3.11)

where the spin-tensor TA(2s−t+1),A′(t)(Ψ) is a 0-form built out of Weyl tensors of some
(partially-)massless fields (of possibly different spins and depths), which verifies

∇BB′TA(2s−t)B,A′(t−1)B′(Ψ) ≈ 0 , (3.12)

where the symbol ≈ signifies that the spin-tensor T (Ψ) is divergenceless only on-shell. This
term is invariant under the shift symmetry, as a consequence of the fact that

eAA′ ∧ êBB′ = −1
4 εAB εA′B′ vol ⇒ eAA′ ∧ êAB′ = 0 , (3.13)

where ‘vol’ denotes a volume form on the background, and the fact that Ψ is assumed to be
inert under this symmetry. Under the differential gauge symmetry, the variation of this
term reads

δξSint[ω,Ψ] =
∫
TA(2s−t),A′(t)(Ψ)∇ξA(2s−t−1),A′(t−1) êAA′ (3.14a)

= −
∫
∇BB′ TA(2s−t),A′(t)(Ψ) ξA(2s−t−1),A′(t−1) eBB′ êAA′ (3.14b)

= 1
4

∫
∇BB′TA(2s−t−1)B,A′(t−1)B′(Ψ) ξA(2s−t−1),A′(t−1) vol ≈ 0 , (3.14c)

and vanishes on-shell. It therefore provides a good starting point to construct interactions
for partially-massless fields.

Indeed, divergenceless spin-tensors are fairly easy to construct out of the Weyl tensors
of a pair of massless fields. Consider for instance the Bel-Robinson tensor

Tabcd = 1
4 (CapbqCcpdq + ∗Capbq ∗ Ccpdq) , (3.15)

where Cabcd is the gravitational Weyl tensor and ∗ is the Hodge dual operator, i.e. ∗Cabcd =
εab

pqCpqcd. This tensor is divergenceless as a consequence of Einstein’s equation in vacuum.
In spinor notations, this tensor takes an especially simple form, namely it is given by the
product of the self-dual and anti-self-dual Weyl tensor,

TA(4),A′(4) = ΨA(4) ΨA′(4) , (3.16)

and suggests the generalization (see [80] for a complete set of currents)

TA(2s1),A′(2s2) = ΨA(2s1) ΨA′(2s2) , (3.17)

given by the product of the Weyl tensors of two massless fields of spin s1 and s2. This
spin-tensor will be divergence-free as a consequence of the equation of motion

∇BB′ ΨA(2s1−1)B ≈ 0 , ∇BB
′ ΨA′(2s2−1)B′ ≈ 0 , (3.18)

for these Weyl tensors.
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We will consider the one-parameter family of actions

S[ω,Ψ] = Sfree[ω,Ψ] + αSint[ω,Ψ] , α ∈ C , (3.19)

whose first piece,

Sfree[ω,Ψ] =
∫

ΨA(2s−t)HAA ∧∇ωA(2s−t−2) + ΨA′(t)HA′A′ ∧∇ωA′(t−2)

+ ΨA(2s−t+1),A′(t−1)HAA ∧∇ωA(2s−t−1),A′(t−1) ,
(3.20)

is the sum of the free actions for the massless fields of spin s− t
2 and t

2 as well as for the
partially-massless field of spin-s and depth-t, and the second piece is the current interaction

Sint[ω,Ψ] =
∫

ΨA(2s−t) ΨA′(t) êAA′ ∧ ωA(2s−t−1),A′(t−1) (3.21)

made out of the current associated with the previous pair of massless fields and the partially-
massless field. Note that we will restrict ourselves to bosonic fields, and hence will assume
that t is even. As already argued before, all of these pieces are invariant under shift
symmetry. Moreover, the free action is invariant under the differential gauge symmetry

δεωA(2s−t−2) = ∇εA(2s−t−2) , δεωA′(t−2) = ∇εA′(t−2) , (3.22)

for the massless fields, and

δξωA(2s−t−1),A′(t−1) = ∇ξA(2s−t−1),A′(t−1) , (3.23)

for the partially-massless field. Under this last gauge transformation, the variation of the
current interaction term reads

δξSint[ω,Ψ] =
∫
∇(ΨA(2s−t) ΨA′(t)) êAA′ ξA(2s−t−1),A′(t−1) , (3.24)

and vanishes only on-shell as explained before. It can be compensated off-shell by deforming
the gauge symmetry of the pair of massless fields as follows,

δξωA(2s−t−2) = +3
2 αΨA′(t) eBA′ ξA(2s−t−2)B,A′(t−1) , (3.25a)

δξωA′(t−2) = −3
2 αΨA(2s−t) eA

B′ ξA(2s−t−1),A′(t−2)B′ , (3.25b)

i.e. with terms depending on the gauge parameter of the partially-massless field. The
variation of the free actions for the massless fields under this modification of their gauge
symmetry then reads

δξSfree[ω,Ψ] = −3
2 α

∫
∇ΨA(2s−t) ΨA′(t)HAA e

B
A′ ξA(2s−t−2)B,A′(t−1)

+3
2 α

∫
ΨA(2s−t)∇ΨA′(t)HA′A′ eA

B′ ξA(2s−t−1),A′(t−2)B′ ,
(3.26)

which, upon using

HAA e
B
A′ = +2

3 êAA′ δ
B
A , HA′A′ eA

B′ = −2
3 êAA′ δ

B′
A′ , (3.27)
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can be brought to the form

δξSfree[ω,Ψ] = −α
∫
∇ (ΨA(2s−t) ΨA′(t)) êAA ξA(2s−t−1),A′(t−1) , (3.28)

so that the full action (3.19) is gauge invariant. Note that the deformations (3.25) of the
gauge symmetries are Abelian, which is not the case for the current interactions in the non-
chiral formulation. A straightforward generalization of these current interactions is to take
advantage of other conserved currents that involve derivatives, see e.g. [80]. Schematically
they read J2s1+k,2s2+k ∼ Ψ2s1∇kΨ2s2 . In all these cases, except for s1 = s2 = 0, the action
does not require any higher order corrections.

Note also that this type of interaction is simply a Noether coupling, which is similar to
the one explored in [37]. The spectrum of the two resulting theories are however different:
here, we find interactions between a partially-massless field of spin-s and even depth-t, and
two massless fields of spin s− t

2 and t
2 , whereas the interacting theory constructed in [37]

involves only partially-massless spin-2 fields.

4 Discussion and conclusions

We have studied the simplest types of interactions: Yang-Mills and current ones. It would be
interesting to classify all possible interactions within the new approach to partially-massless
fields advocated in the present paper. For example, there should exist partially-massless
theories featuring gravitational interactions. Another important omission is to have genuine
non-Abelian higher spin higher derivative interactions. Such interactions, as different from,
say, the Yang-Mills ones, introduce nontrivial constraints that fix the spectrum of a theory
together with all the couplings.

The elephant in the room is twistor theory, which played an important, but silent,
rôle in the paper. Indeed, the twistor approach directly leads to field variables ΨA(2s)

and ωA(2s−2) for massless fields [38]. This was the starting point of our generalization to
partially-massless fields. However, the original twistor formulation of partially-massless
fields seems to be missing at the moment. It would be interesting to bridge this gap.

At least for the purely massless case there exists a complete, local higher spin gravity —
Chiral Theory [81–84], which in addition to Yang-Mills and gravitational interactions incor-
porates genuine higher spin interactions. The theory admits any value of the cosmological
constant, including zero. As was shown in [85], Chiral Theory has two contractions where
the scalar field can be dropped while either Yang-Mills or gravitational interactions are
kept (no genuine higher spin interactions are present). These two contractions have simple
covariant actions [39] and twistor origin [75–77]. Within AdS/CFT duality, Chiral Theory
should be dual to a subsector of Chern-Simons matter theories [86].

In view of the facts collected here-above, it looks plausible that there exist (Chiral)
higher spin gravities with partially-massless fields in the spectrum [86]. These theories
should admit contractions that feature either Yang-Mills or gravitational interactions, the
former of which are considered in the present paper. Within AdS/CFT duality, such theories
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should be dual to a subsector of isotropic (Chern-Simons) Lifshitz CFT’s [13], i.e. of vector
models with higher-derivative kinetic terms.9

Lastly, it would be interesting to explore a family of deformations of the actions proposed
in the paper via the Ψ2-terms. Such deformation mimics the well-known result on how
Yang-Mills theory can be represented as a deformation of the self-dual Yang-Mills theory [70]:
ΨF (ω)-type actions need to be completed with Ψ2-terms. This idea can be interesting
already for free fields, resulting in a new second order action for partially-massless fields,
which is still simpler than its cousins in terms of non-chiral field variables. For massless fields
the Ψ2-deformation was also shown to give higher spin theories with nontrivial scattering
already in flat space [77].
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A Beyond maximal depth

As is clear from the discussion in section 2, the action (2.27) and equations of motion (2.28)
are formally well-defined beyond the maximal depth t = s. Moreover, the number of physical
degrees of freedom still follows the 2t-track. While it is beyond the scope of the present
paper to analyze the t > s case in detail, let us make few remarks.

For t = s+ 1, we are presented with the puzzle that the 0-form ΨA(s),A′(s) is balanced,
and hence in vector language corresponds to a symmetric tensor. It therefore cannot be
related to any Weyl tensor, since the latter are always valued in two-row diagrams. For
t = s+2, . . . , 2s−1, let us define t = 2s−τ , with τ = 1, . . . , s−2, so that the pairs of fields in
these cases take the forms (ωA(τ−1),A′(2s−τ−1),ΨA(τ+1),A′(2s−τ−1)). In this parametrization,
the 1-form ω seems like the anti-self-dual part of the last connection for a spin-s field of
depth-τ , but the 0-form does not have the required symmetry to be considered as the
corresponding Weyl tensor. This can be traced back to the fact that we used the self-dual
basis 2-forms HAA in the action to contract the 0-form Ψ. Consequently, the number of
unprimed indices in ω and Ψ differs by 2, but when crossing the boundary t = s + 1,
this difference is now the source of the mismatch between the pairs of indices for them
to be identified with the anti-self-dual part of the last connection and Weyl tensor for a
partially-massless field.

9Chern-Simons extension of these models have not been explored so far. It also remains unclear if the 3d

bosonization duality can be extended to these models.
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More importantly, the equations of motion obtained in these cases do not describe the
propagation of a partially-massless field: one can check that the first few descendants of
the Weyl tensor which are not constrained by Bianchi identities do not generate the usual
module of a PM anti-self-dual Weyl tensor. Indeed, consider a 0-form ΨA(t−1),A′(2s−t+1)

where the parametrization of its indices suggests that it corresponds to the anti-self-dual
part of the Weyl tensor of a spin-s and depth-t PM field, subject to the equation of motion

HBB∇ΨA(t−3)BB,A′(2s−t−1) ≈ 0 . (A.1)

Then, one finds

∇ΨA(t−1),A′(2s−t+1) = eBA′ ΨA(t−1)B,A′(2s−t) + eBB
′ ΨA(t−1)B,A′(2s−t+1)B′ , (A.2)

instead of

∇ΨA(t−1),A′(2s−t+1) = eA
B′ ΨA(t−2),A′(2s−t+1)B′ + eBB

′ ΨA(t−1)B,A′(2s−t+1)B′ , (A.3)

as would be expected for the anti-self-dual part of a spin-s and depth-t Weyl tensor. One
can notice that, though the second term on the right hand side of these two expressions are
identical, the first one is not. In vector language, the expected spectrum of 0-forms is given
by Young diagrams of the Lorentz group of the form

s n
s− t+ 1 m

, (A.4)

with n ≥ 0 and m = 0, . . . , t− 1. This simply corresponds to the fact that the derivatives
of the Weyl tensor that are unconstrained by equations of motion and Bianchi identities
are those projected in the first two rows of the Weyl tensor Young diagram (in arbitrary
number in the first row, or only up to t− 1 in the second row). The equation (A.2) is not
compatible with this because the two 0-forms appearing on the right hand side correspond
to the diagrams

s
s− t ×

s
s− t+ 1

(A.5)

so that in particular, the first diagram is unexpected (see [44, 71]), due to the fact that a
box has been removed in the second row (crossed hereabove) instead of being added. Due
to this early departure in the descendants of Ψ, the whole module generated by the infinite
tower of 0-form required to build an FDA will not correspond to that of a PM Weyl tensor.
Once again, this can be traced back to the fact that the expected equations (A.3) is the
parametrization of a generic element in the kernel of the symplectic form determined by
HA′A′ , i.e. it is a solution of HB′B′ΨA(t−1),A′(2s−t−1)B′B′ ≈ 0.

A possible scenario would be that this system, for t = s + k and k = 1, . . . , s − 1,
describes a reducible representation of gΛ, composed of two massive fields of spin-s and
k− 1. A trivial, but necessary, check is that the counting of degrees of freedom is consistent,
since 2t = 2s+ 1 + 2(k − 1) + 1. A more significant hint, which motivates our conjecture, is
that the spectrum of 0-forms in this case, represented in figure 3, agrees with this proposal.
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#A′

#A

2s

2ss + k + 1s− k + 1

Figure 3. In blue, the region covered by descendants of ΨA(s−k+1),A′(s+k−1), in red the descendants
of ΨA(s+k−1),A′(s−k+1) and in gray the overlap between these two regions.

Indeed, when the depth t goes beyond s, the two strips of 0-forms start overlapping. The
whole region covered by these strips corresponds to the spectrum of 0-forms of a massive
spin-s field [71], when each 0-form appears with multiplicity 1. The overlapping region
could similarly be interpreted as the collection of 0-forms describing a massive spin-(k − 1)
field, due to the width of this strip, but that would be represented by spin-tensors of higher
ranks than expected. In other words, this massive spin-(k − 1) field could appear in our
system as a spin-tensor, which, due to some equation of motion, should be expressed as
derivative of a lower rank spin-tensor, the latter being the genuine massive spin-(k − 1)
field. Note that this is to be taken, for the time being, only as a proposal since proving
rigorously the above statement would go beyond the scope of this paper, and is left for
potential future work.
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