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Chiral bosons through linear constraints
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We study in detail the quantization of a model which apparently describes chiral bosons. The
model is based on the idea that the chiral condition could be implemented through a linear constraint.
We show that the space of states is of an indefinite metric. We cure this disease by introducing ghost
fields in such a way that a Becchi-Rouet-Stora-Tyutin symmetry is generated. A quartet algebra is
seen to emerge. The quartet mechanism, then, forces all physical states, except the vacuum, to have
a zero norm.

PACS number(s): 11.10.Ef, 03.70.+k

It has been stated in the literature [1,2] that the two-
dimensional Lorentz-invariant model [3]

8„8"p+(g"" —~"")B,A„= 0,
(g"" —~"")D„io= 0,
(g"" —e"")B„A„=0,

(2a)
(2b)
(2c)

one sees that not only y but also A& are chiral fields. The
fact that the Lagrange multipliers A& become dynamical
was first noticed by Siegel [4].

Within the Hamiltonian formulation, the model is
specified by the canonical Hamiltonian

Hp —— dz II z y' z,
together with the second-class constraints

Ti(z)—:pp(z) = 0,
T2(z)—:A+(z) —II(z) + p'(z) - 0,

(4a)
(4b)

where II and p~ are the canonical conjugate momenta of
p and A+ = Ao+ Ai, respectively. Furthermore, y' (j) is
shorthand notation for clip (Bop). The above constraints
allow for the elimination of the sector A+, pp from phase
space. The reduced phase space is then spanned by the
variables y and II whose Dirac brackets [5] are, as they

describes chiral bosons, namely, a field satisfying the
equation 19 y = (cIo —Bi)p = 0. The procedure for con-
structing the Lagrangian (1) is rather obvious; the chiral
condition has been "linearly" added to the Lagrangian of
a free massless scalar field through the Lagrange multi-
plier A&. However, from the equations of motion deriving
from (1),

must be [6], equal to the corresponding Poisson brackets.
Hence, when formally quantized according to the Dirac-
brackets procedure [5], the theory appears to describe a
single chiral field [1].

In this paper we study in detail the particle content
of the model. As we shall see, the metric of the space
of states is not positive definite. We cure this problem
by adding ghosts to the original Lagrangian so that a
Becchi-Rouet-Stora- Tyutin (BRST) symmetry emerges.
We demonstrate, afterwards, that the original fields and
the ghosts obey a quartet algebra 7]. Then, the quartet
mechanism [7], when applied to this case, leads to the
conclusion that the only surviving state of positive norm
is the vacuum state. Thus the model is appropriate to
describe neither chiral bosons nor any other quantum
excitation.

As pointed out in Ref. [1], the quantum equations of
motion obeyed by the fields p and II are cl p = 0 and

II = 0. These equations and the canonical equal-time
commutation relations are solved by (z+—:z + z )

dp[e '" a(p) + e'" at(p)],
+2m p

II(z+) = dp[e '" b(p) + e'" bt(p)],
/2z 0

~(z+) =

with

[ (p) b (p')] = —[b(p) (p')] = b(p —p') (7)

as the only nonvanishing commutators.
The normal-ordered quantum counterpart of the clas-

sical Hamiltonian Hp is

dpp[a (p)b(p) —b (p) (p)l.
0

To make explicit that the space of states we are dealing
with is of indefinite metric, we introduce the operators

A = (a+ ib),= 1
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1B—= (a —ib),
2

(10)
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dp p[At(p)A(p) —B (p)B(p)].
0

(12)

The lack of boundedness of Ho at the classical level re-
flects itself, at the quantum level, through the appearance
of states of negative norm.

To cure the disease represented by the states of nega-
tive norm, we bring into the theory the real Grassmann
fields C„(z) and C(z). This is done by adding to L the
ghost Lagrangian

which are easily seen to obey the commutation relations

[A(p), At(p')] = —[B(p), Bt(p')] = b(p —p'). (ll)
It is now clear that all states obtained by applying to the

vacuum the operator Bt an odd number of times are of
negative norm. In terms of A and B the Hamiltonian
assumes the standard form

are solved by

C(z+) = dp[e '" d(p) + e'"* dt(p)],
~2m

(17)

C+(z+) =
27r

dp[e '~ d(p) + e'" dt (p)], (18)

where the nonvanishing anticommutators are

(d(p) d~(p')) = (d (p) d(p')f = b(p p')- (19)

By replacing (17) and (18) in Hz~ one arrives at

H~~ = dp p [dt(p)d(p) + dt(p)d(p)],
0

(2o)

where the normal-ordering prescription has been used.
After attributing ghost number —1 and +1 to C and C+,
respectively, one finds that

Q~ =iCO C+, (13)

where C+ = Co+Cq. One can corroborate that ZT = l'.+
gz is invariant under the global nilpotent transformation

iN~ = dp[dt(p)d(p) —dt(p)d(p)],
0

(21)

by(z) =ie C+(z),
bA~(z) =ie 0+C+(z),
bC+(z) = 0,

Z

bC(z) = ie A+(z)———e 8+y(z).
2

(14a)
(14b)
(14c)

(14d)

Ho~ = i d~ C ~ C+' ~

and the second-class constraints

&i'(z) —= p(z) = o,
T (z) —= p (z) —iC(z) = 0,

(16a)
(16b)

define the dynamics of the ghost fields in the Hamiltonian
framework. Here, p and p are the canonical conjugate
momenta of C and C+, respectively. Clearly, the sector
C, p can be be eliminated from phase space, although,
following common practice, we shall keep C+ and C as
the canonical variables spanning the ghost sector of the
reduced phase space. As required [6], the Dirac brack-
ets involving C+ and C equal the corresponding general-
ized Poisson brackets. The quantum counterpart of Ho~

is obtained from (15) after appropriate symmetrization,
required to solve the ordering problem. The equations
of motion obeyed by the ghost field operators are, then,
found to be 8 C = 0 and ct C+ —0. These equations
and the canonical equal-time anticommutation relations

We emphasize that the original bosonic Lagrangian does
not possess a local symmetry since it only exhibits
second-class constraints. Nevertheless, a BRST symme-
try has emerged after the addition of the ghost fields. An
analogous situation has already been encountered in the
literature [8].

The canonical ghost Hamiltonian

where N~ denotes the Hermitian ghost number operator.
Our next step consists in constructing the BRST

charge operator. One can verify that

Q = — dp[dt(p)b(p) + bt(p)d(p)],
0

(22)

correctly implements the quantum analogue of the global
transformation (14). Furthermore, Q = 0. By using the
commutation relations (7) and (19) one arrives at the
quartet algebra [7]

[Q, u(p)] = id(p), (23a)

[Q, t'(p)] =0,

(Q d(p)) =o

(Q d(p)) =-~(p).

(23b)

(23c)

(23d)
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We now recall that physical states are required to verify

Q~phys )= 0. Hence, by the quartet mechanism [7],
all physical states, with the exception of the vacuum,
are zero —norm states. The physical S matrix is just the
identity operator and ( 0[HO + Hf ~0 )= 0.

Thus, the addition of ghosts render the theory consis-
tent but, however, trivial. We then conclude that lin-

ear constraints do not provide an eKcient mechanism to
generate chiral bosons. We mention that several mod-

els for chiral bosons not based on the linear constraint,
and therefore free of the above dif5culties, have been pro-
posed in the past [4, 9—11].
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