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Abstract

This review briefly introduces the chiral effective field theory of nuclear

forces and atomic nuclei. We discuss the status of the nuclear Hamiltonian

derived in this framework and some recent applications in few-nucleon sys-

tems. We also introduce nuclear lattice simulations as a new tool to address

the many-body problem and present some of the first results based on that

method.
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1. INTRODUCTION AND DISCLAIMER

Nuclear physics on one hand is an old and well-established science but on the other hand represents

a new and fascinating field. This is related to new experimental facilities and techniques and, even

more so, to recent developments in theory. Using modern high-performance computers, physicists

have made the first attempts to calculate atomic nuclei directly from quantum chromodynamics

(QCD), the SU(3)color gauge theory of quarks and gluons (1). Complementary to these efforts,

starting from the groundbreaking work by Weinberg (2), an effective field theory (EFT) approach

to the forces between two, three, and four nucleons has been developed and applied to various

nuclear-bound states and reactions. This EFT is based on the observations that (a) nuclei are

composed of nonrelativistic nucleons (neutrons and protons) and virtual mesons and (b) the nuclear

interactions feature two very distinct contributions, long-range one- and two-pion exchanges

and shorter-range interactions, that can be represented by a tower of multinucleon operators.

Given that the pion is the pseudo-Goldstone boson of the approximate chiral symmetry of QCD

(for an introduction, see, e.g., Reference 3), its interactions with the nucleons are of derivative

nature and are strongly constrained by the available data on pion-nucleon (πN) scattering and

other fundamental processes. However, in harmony with the principles underlying EFT (for an

introduction, see, e.g., Reference 4), one must also consider operators of nucleon fields only. In

a meson exchange model of the nuclear forces, these can be represented by the exchanges of

heavier mesons such as σ , ρ, ω, and so on—but such modeling is no longer necessary and does not

automatically generate all the structures consistent with the underlying symmetries. Also, in the

EFT approach, the forces between three and four nucleons are generated consistently with the

dominant two-nucleon forces (2NFs)—which could never have been achieved in earlier models

of these forces.

Due to the nonrelativistic nature of nuclei, the underlying equation for the nuclear A-body

system (where A is the atomic number) to be solved is the Schrödinger equation, in which the

various contributions to the nuclear potential are organized according to the power counting

discussed below. In a second step, bound and scattering states are calculated as solutions of this

equation. This process allows one not only to pin down the various low-energy constants (LECs)

related to the multinucleon interactions but also to check the convergence of the approach by

including higher orders in the underlying potentials. Once data for the two- and three-nucleon

systems are described with sufficient precision, one can then perform ab initio calculations of
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nuclei, eventually combining well-developed many-body techniques with the forces from chiral

nuclear EFT. Another way to approach light and medium-heavy nuclei is based on simulation

techniques because they are so successfully utilized in lattice QCD (5) to calculate the properties

of protons, neutrons, and many other hadrons. All these developments are accompanied and

extended by the construction of the corresponding electroweak charge and current operators that

allow for many further fine tests of the structure of nuclei, as well as the calculation of fundamental

nuclear reactions that are relevant to the generation of the elements in the big bang and in stars.

Disclaimer: Clearly, this is not a detailed, all-purpose review of this field; rather, we intend

to provide an introduction to the underlying ideas and some recent applications. Two recent,

detailed review articles can be found in References 6 and 7, which also contain many references to

earlier work. We therefore have not attempted to give a complete or exhaustive list of references,

but the interested reader will find sufficient citations to the literature to be able to acquire a much

deeper understanding.

Our article is organized as follows. Section 2 contains the basic ideas of the chiral Lagrangian

and power counting of the nuclear forces. We end that section with a brief review of the current

status of the nuclear Hamiltonian derived in this framework. Section 3 contains some applications

of these forces to nuclei that are based on calculations using exact few-nucleon methods. In

Section 4, we present the new method of nuclear lattice simulations (nuclear lattice EFT) and

discuss some of the first results obtained in that scheme.

2. FROM THE EFFECTIVE CHIRAL LAGRANGIAN
TO NUCLEAR FORCES

Our goal is to develop a systematic and model-independent theoretical framework that can de-

scribe reactions involving several nucleons up to a center-of-mass (CMS) three-momenta of (at

least) the order of the pion mass Mπ . Following the usual philosophy of EFT, we aim at the

most general parameterization of the amplitude consistent with fundamental principles such as

Lorentz invariance, cluster separability, and analyticity. Given that the energies of the nucleons

we are interested in are well below the nucleon mass, it is natural and appropriate to make use

of the nonrelativistic expansion (i.e., an expansion in inverse powers of the nucleon mass, mN ).

Accordingly, in the absence of external probes and below the pion production threshold, we are

left with a potential theory in the framework of the quantum-mechanical A-body Schrödinger

equation,

(H0 + V )|�〉 = E|�〉, where H0 =
A

∑

i=1

−�∇2
i

2mN

+ O(m−3
N ). 1.

The main task then reduces to the determination of the nuclear Hamilton operator H0 + V .

This task can be accomplished by use of the framework of chiral perturbation theory (ChPT)

(2). Note that the approach outlined above automatically maintains unitarity of the scattering

amplitude and correctly reproduces its analytic properties at very low energies. Consider, for

example, the singularities of the neutron-proton (np) lth partial-wave amplitude in the complex

energy plane with E = k2/mN (Figure 1). The discontinuity across the right-hand cut running

from E = 0 to E = +∞ and separating the physical and unphysical sheets is determined by elastic

unitarity, which is already built into the Lippmann–Schwinger (LS) equation. However, the left-

hand cuts are governed by the properties of the interactions. Exploiting only the knowledge of the

finite-range nature of the nuclear force and parameterizing the nucleon-nucleon (NN) potential

by zero-range terms are sufficient to correctly describe the analytic structure of the amplitude

within the region near threshold, limited by the branch point of the first left-hand cut associated
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Im E

Re EEπE2π

Figure 1

Singularity structure of the partial-wave two-nucleon scattering amplitude in the complex energy plane. The
solid dot indicates the position of the S-wave (virtual) bound state. The shaded area shows the region in
which the effective range function k2l+1 cot δl (k) is a meromorphic function of k2.

with one-pion exchange and located at k2 = −M 2
π/4. The so-called pionless EFT (see Reference

8 for a recent overview) is based on the Lagrangian involving all possible zero-range two- and

more-nucleon operators with increasing number of derivatives and can, in the two-nucleon sector,

be matched to the well-known effective-range expansion, namely the expansion of the function

k2l+1 cot δl (k) in powers of k2. Clearly, this approach is limited to very low energies that correspond

to nucleon momenta well below the pion mass (Figure 1). To extend the range of applicability,

one needs to correctly describe the left-hand singularities of the amplitude and thus to explicitly

include in the potential the contributions emerging from the exchange of one or several pions. In

the following subsections, we describe how this task can be accomplished in a systematic way by

exploiting the spontaneously broken, approximate chiral symmetry of QCD. Another method to

construct the NN scattering amplitude is dispersion theory; see Reference 9 for a recent application

of this approach.

2.1. Chiral Lagrangian and Power Counting

Within the framework of ChPT, one derives nuclear forces from the most general effective chiral

Lagrangian by making an expansion in powers of the small parameter q, defined as1

q ∈
{

M π

�
,
|�k|
�

}

, 2.

where Q ∼ |�k| ∼ M π is a typical external momentum (the soft scale) and � is a hard scale.

Appropriate powers of the inverse of this scale determine the size of the renormalized LECs in

the effective Lagrangian. Note that once renormalization of loop contributions is carried out and

the renormalization scale is set to μ ∼ M π , as appropriate in ChPT, all the momenta flowing

through the diagrams appear to be, effectively, of the order ∼M π (10). Consequently, one can

use naı̈ve dimensional analysis to estimate the importance of the (renormalized) contributions of

individual diagrams.

Specifically, consider a connected Feynman graph with N nucleon lines.2 It is easier to count

the powers of the hard scale � rather than of the soft scale Q by observing that the only way for �

to emerge is through the corresponding LECs. Thus, the low-momentum dimension ν of a given

diagram can be expressed in terms of the canonical field dimensions, κi + 4, of Vi vertices of type

i via

ν = −2 +
∑

V iκi , where κi = di + 3

2
ni + pi − 4. 3.

1Below, we use this parameter and the soft scale Q synonymously.

2Nucleons cannot be destroyed or created within the nonrelativistic approach.
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Here, ni ( pi) and di refer to the number of the nucleon (pion) field operators and derivatives or

pion mass insertions, respectively. The constant −2 in the expression for ν is merely a convention.

The power counting can also be rewritten in terms of topological variables, such as the number

of loops L and nucleon lines N rather than κ i, which is appropriate for diagrammatic approaches.

For connected diagrams, the above equation takes the form

ν = −4 + 2N + 2L +
∑

V i�i , where �i = di + 1

2
ni − 2. 4.

The chiral symmetry of QCD guarantees that Goldstone bosons, which in the case of two light

flavors are identified with the pions, couple only through vertices involving derivatives or powers

of M π . This observation implies that the effective Lagrangian contains only irrelevant (i.e., non-

renormalizable) interactions with κi ≥ 1 (�i ≥ 0), which allows for a perturbative description of

pion-pion (ππ ) and πN scattering as well as nuclear forces. The leading interactions, namely the

ones with the smallest possible �i (that is, �i = 0), have the form

L(0) = 1

2
∂μπ∂μ

π − 1

2
M 2

ππ
2 + N †

[

i∂0 + gA

2Fπ

τ �σ �∇π − 1

4F 2
π

τ (π × π̇ )

]

N

− 1

2
CS(N †N )(N †N ) − 1

2
CT (N † �σ N )(N † �σ N ) + · · · , 5.

where π and N refer to the pion and nucleon field operators, respectively, and �σ (τ ) denote the

spin (isospin) Pauli matrices. Further, gA(Fπ ) is the nucleon axial coupling (pion decay) constant,

and CS,T are the LECs accompanying the leading contact operators. The ellipses refer to terms

involving additional pion fields. Importantly, chiral symmetry leads to highly nontrivial relations

between the various coupling constants. For example, the strengths of all �i = 0 vertices without

nucleons with 2, 4, 6, . . . pion field operators are given in terms of Fπ and M π . Similarly, all

single-nucleon �i = 0 vertices with 1, 2, 3, . . . pion fields are expressed in terms of only two

LECs, namely gA and Fπ . See References 11 and 12 for further details on the construction of the

effective chiral Lagrangians (for a modern way to construct the pertinent πN Lagrangian, see,

e.g., Reference 13).

The expressions for the power counting given above are derived under the assumption that

there are no infrared divergences. This assumption is violated for a certain class of diagrams

involving two and more nucleons due to the appearance of pinch singularities of the following

kind:
∫

dl0
i

l0 + iǫ

i

l0 − iǫ
. 6.

Here, i/(l0 + iǫ) is the free nucleon propagator in the heavy-baryon approach corresponding to

the Lagrangian in Equation 5. Clearly, the divergence is not “real” but merely an artifact of the

extreme nonrelativistic approximation for the propagator, which is not applicable in that case.

If we keep the first correction beyond the static limit, the nucleon propagator takes the form

i/(l0 − �l2/(2mN ) + iǫ)−1, leading to a finite result for the integral in Equation 6 that is, however,

enhanced by a factor mN /|�q | compared with the estimation based on naı̈ve dimensional analysis.

In physical terms, the origin of this enhancement is related to the two-nucleon Green’s function

of the Schrödinger equation (Equation 1). The nuclear potential V we are actually interested in is,

of course, well defined in the static limit mN → ∞ and thus is not affected by the above-mentioned

infrared enhancement. The precise relation between the nuclear potentials and the amplitude

corresponding to a given Feynman diagram is discussed in the next section.

We now address the qualitative implications of the power counting in Equation 4 and the

explicit form of the effective chiral Lagrangian. First, one observes that the dominant contribution

to the nuclear force arises from two-nucleon tree-level diagrams with the lowest-order vertices,
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which implies that the nuclear force is dominated by the one-pion exchange potential and the

two contact interactions without derivatives. Pion loops are suppressed by two powers of the soft

scale. Also, vertices with �i > 0 that involve additional derivatives are suppressed and do not

contribute at lowest order. Second, one observes the suppression of many-body forces: According

to Equation 4, N-nucleon forces begin to contribute at order Q−4+2N . This observation implies

the dominance of the 2NF with three- and four-nucleon forces (3NFs and 4NFs) that appear as

corrections at orders Q2 and Q4, respectively.

2.2. Derivation of the Nuclear Forces

We now clarify the meaning of the nuclear potential V and outline some approaches that can be

used to derive it. We first rewrite Equation 1 as the LS equation for the half-shell T-matrix,

Tαβ = V αβ +
∑

γ

V αγ

1

Eβ − Eγ + iǫ
Tγβ , 7.

where α, β, and γ denote the few-nucleon states; Eα is the kinetic energy of the nucleons in the

state α; and
∑

γ is interpreted as a sum (integral) over all discrete (continuous) quantum numbers

of the nucleons. Further, the scattering matrix S, which is related to the T-matrix via

Sαβ = δ(α − β) − 2π iδ(Eα − Eβ )Tαβ , 8.

can be directly computed from the effective chiral Lagrangian through the use of the Feynman

graph technique. Doing so then allows one to define the potential V αβ by matching the amplitude

to the iterative solution of Equation 7, which in the operator form can be written as

T̂ = V̂ + V̂ Ĝ0 V̂ + V̂ Ĝ0 V̂ Ĝ0 V̂ + · · · , 9.

where Ĝ0 is the A-nucleon resolvent operator. The outlined approach is, of course, not new and

was extensively used in the 1950s in the context of the meson field theory (see, e.g., References 14

and 15). There is, however, a subtlety here related to the fact that the T-matrix calculated from the

effective Lagrangian by utilizing Feynman diagrams and by the use of Equation 8 is available only

on the energy shell. The potential to be substituted in the LS equation is needed off the energy

shell, which leads to an ambiguity in the definition of the potential corresponding to the freedom

associated with carrying out an off-the-energy-shell extension. This finding should not come as a

surprise, given that the Hamiltonian H0 + V is not an observable quantity.

An alternative method to define nuclear forces exploits another old idea of decoupling the pion

states from the rest of the Fock space by means of a suitably chosen unitary transformation (16).

This approach was formulated in the context of chiral EFT in Reference 17. The derivation of the

unitary operator, nuclear forces, and currents can be carried out straightforwardly by using pertur-

bation theory in powers of Q and by employing the “algebraic” version of the power counting in

Equation 3. The above-mentioned ambiguity of the nuclear potentials and currents can be system-

atically explored in this approach by performing further unitary transformations after decoupling

the pion states. Interestingly, this ambiguity is strongly constrained by the renormalizability of

the Hamiltonian (18).

Specifically, consider the derivation of the long-range two-nucleon potentials up to next-to-

next-to-leading order (N2LO). For the sake of simplicity, here we use the matching approach

and closely follow Reference 19 (also see Reference 20 for a pioneering calculation within the

framework of time-ordered perturbation theory). We do not consider the short-range part of the

nuclear force because it can be directly read off from the Lagrangian. Note that it is not necessary

to explicitly evaluate pion loop diagrams involving contact interactions unless one is interested in

164 Epelbaum · Meißner
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a b c d e f g

Figure 2

Diagrams contributing to the long-range part of the two-nucleon potential at (a) leading order, (b–e) next-to-
leading order, and ( f,g) next-to-next-to-leading order. The solid and dashed lines represent nucleons and
pions, respectively. The solid dots and filled rectangles, respectively, refer to the leading (�i = 0) and
subleading (�i = 1) vertices from the chiral Lagrangian.

the quark mass dependence of the short-range operators. As noted above, the leading-order (LO)

contribution ∼Q0 is due to one-pion exchange. Evaluating the contribution from the diagram in

Figure 2a for on-shell nucleons yields

V (0)
1π = T (0)

1π |E �p =E �p ′ = −
(

gA

2Fπ

)2 �σ1 · �q �σ2 · �q
�q 2 + M 2

π

τ 1 · τ 2, 10.

where �q = �p ′ − �p is the nucleon momentum transfer; �p and �p ′ refer to the CMS initial and final

momenta. Note that although V (0)
1π is uniquely defined in this procedure in the static limit with

E �p = E �p ′ = 0, the relativistic corrections are not because one is, in principle, free to add to V 1π

terms proportional to E �p − E �p ′ .

Because of parity conservation, the next-to-leading-order (NLO) corrections to the potential

appear at order Q2 rather than Q (2). For all two-pion exchange diagrams in Figure 2 (except for

the box graph in Figure 2e), the potential can be defined via the identification V (2)
2π = T (2)

2π |E �p =E �p ′ .

In the case of the box diagram, we have to subtract the iterated one-pion exchange contribution

V̂ (0)
1π Ĝ0V̂ (0)

1π to avoid double counting. Evaluating the corresponding Feynman diagram in the

CMS, one obtains a contribution proportional to the integral

∫

d 4l

(2π )4

(2mN )2i

[(p − l)2 − m2
N + iǫ][(p + l)2 − m2

N + iǫ][l2
1 − M 2

π + iǫ][l2
2 − M 2

π + iǫ]

=
∫

d 3l

(2π )3

(

1

ω2
1(E �p − E �p−�l + iǫ)ω2

2

+ ω2
1 + ω1ω2 + ω2

2

2ω3
1ω

3
2(ω1 + ω2)

+ O(m−1
N )

)

,

11.

where ωi =
√

�l2 + M 2
π and the virtual pion momenta are given by l1 = l and l2 = l + q . Note that

we use here the relativistic expressions for the nucleon propagators in order to avoid the pinch

singularity discussed in the previous section. The first term within the round brackets is nothing

but the iterated one-pion exchange, V̂ (0)
1π Ĝ0V̂ (0)

1π , whereas the second one gives rise to V (2)
2π,box.

Note further that, as explained above, the iterated one-pion exchange is enhanced, compared with

the estimation ∼Q2 based on naı̈ve dimensional analysis, because E ∼ O(Q2/mN ) ≪ O(Q).

The final result for the two-pion exchange potential at order Q2 can now be obtained by

evaluating the loop integrals and carrying out the spin-isospin algebra. Employing dimensional

regularization and using the decomposition

V = VC + τ 1 · τ 2 WC + [V S + τ 1 · τ 2 W S]�σ1 · �σ2 + [V T + τ 1 · τ 2 WT ]�σ1 · �q �σ2 · �q , 12.

www.annualreviews.org • Few- and Many-Nucleon Systems 165

A
n
n
u
. 
R

ev
. 
N

u
cl

. 
P

ar
t.

 S
ci

. 
2
0
1
2
.6

2
:1

5
9
-1

8
5
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.a
n
n
u
al

re
v
ie

w
s.

o
rg

b
y
 W

IB
6
3
1
5
 -

 F
o
rs

ch
u
n
g
sz

en
tr

u
m

 J
u
el

ic
h
 o

n
 0

5
/1

7
/1

3
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



it takes the form

W (2)
C = − L(|�q |)

384π2 F 4
π

[

4M 2
π (5g4

A − 4g2
A − 1) + �q 2(23g4

A − 10g2
A − 1) + 48g4

AM 4
π

4M 2
π + �q 2

]

,

V (2)
T = − 1

�q 2
V (2)

S = − 3g4
A

64π2 F 4
π

L(|�q |),
13.

where we do not show the contributions that are polynomial in momenta because these can be

absorbed into the contact interactions. The loop function L is defined via

L(|�q |) =
√

4M 2
π + �q 2

|�q | ln

√

4M 2
π + �q 2 + |�q |
2M π

. 14.

Note that the UV divergences entering the loop integrals are polynomial in the external momenta

and, therefore, do not affect the nonpolynomial pieces if one uses dimensional regularization or

equivalent schemes.

The N2LO corrections emerge at order Q3. Again, parity conservation forbids any one-pion

exchange contributions at this order. The two-pion exchange terms emerge from the triangle

diagram in Figure 2f through the identification V (3)
2π = T (3)

2π |E �p =E �p ′ , whereas the diagram in

Figure 2g yields a vanishing result. One finds that

V (3)
C = − 3g2

A

16π F 4
π

[2M 2
π (2c 1 − c 3) − c 3q 2](2M 2

π + q 2)A(|�q |),

W (3)
T = − 1

q 2
W (3)

S = − g2
A

32π F 4
π

c 4(4M 2
π + q 2)A(|�q |),

15.

where the ci are LECs associated with the ππNN vertices of order �i = 1 and the loop function

A is given by

A(|�q |) = 1

2|�q | arctan
|�q |

2M π

. 16.

In addition to the static terms, in principle there are also 1/mN corrections to NLO graphs; see,

for example, the last term within the brackets in Equation 11. The nucleon mass is, however,

often treated as a very heavy scale with mN ≫ � (see Reference 2 for a discussion), leading to a

suppression of the 1/mN corrections.

We now address the convergence of the chiral expansion for the long-range 2NF. Given that

the obtained expressions depend solely on the momentum transfer �q , the potential is expected to

be local in coordinate space,

V (�r) = ṼC + τ 1 · τ 2 W̃C + [Ṽ S + τ 1 · τ 2 W̃ S]�σ1 · �σ2 + [Ṽ T + τ 1 · τ 2 W̃T ]S12, 17.

where r is the distance between the nucleons, S12 ≡ (3�σ1 · �r �σ2 · �r − �σ1 · �σ2r2)/r2, and Ṽ X and W̃ X

are scalar functions of r ≡ |�r|. The Fourier transform of the expressions in Equations 13 and 15

is, however, ill defined because the potentials are not bounded as q increases, where q ≡ |�q |. At

finite distances, r > 0, the potential can be obtained through a suitable regularization,

V (�r) = lim
�→∞

∫

d 3q

(2π )3
e−i �q ·�r V (�q )F�(|�q |), 18.

where the regulator function F�(x) can be chosen as, for instance, F�(x) = exp(−x2/�2).

Alternatively, and more elegantly, one can write the functions WX and VX in terms of a

continuous superposition of Yukawa functions that can easily be Fourier transformed (see

Reference 19 for more details). For example, for central potentials one obtains the unsubtracted
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Figure 3

Chiral expansion of the isovector-tensor (top row) and isoscalar-central (bottom row) long-range potentials
W̃T (r) and ṼC (r), respectively. The left (right) panels show the results for the effective field theory without
(with) explicit �(1,232) degrees of freedom. The shaded bands represent the estimated scheme dependence,
which is intrinsic to the separation between the long- and short-range contributions in the potential (shown
only for the theory without �s). Abbreviations: LO, leading order; NLO, next-to-leading order; N2LO,
next-to-next-to-leading order; N3LO, next-to-next-to-next-to-leading order.

dispersive representation

VC (q ) = 2

π

∫ ∞

2Mπ

dμ μ
ρC (μ)

μ2 + q 2
, VC (r) = 1

2π2r

∫ ∞

2Mπ

dμ μe−μrρC (μ), 19.

where ρC (μ) = Im [VC (0+ − iμ)] is the corresponding spectral function.

Figure 3 shows the chiral expansion for the two most important cases, specifically the isovector-

tensor and isoscalar-central potentials W̃T (r) and ṼC (r). We also include the contributions at

next-to-next-to-next-to-leading order (N3LO), whose explicit form can be found in Reference 21;

however, we restrict ourselves to the local pieces, omitting the 1/mN corrections. We include in

the dispersive integrals in Equation 19 only the components in the spectrum with μ < �̃ = 1 GeV.

The high-μ components generate terms that, at low momenta, are indistinguishable from contact

interactions parameterizing the short-range part of the chiral potential. The bands correspond

to the variation of �̃ in the range from 800 MeV to ∞. Their widths may, therefore, serve as

an estimation of the size of short-range components that are not associated with the dynamics of

Goldstone bosons.

The potential in the isovector-tensor channel is clearly dominated by one-pion exchange,

V 1π . Two-pion exchange contributions in this channel become visible at distances of the order

r ∼ 2 fm and shorter. The strong, attractive isoscalar-central potential in the intermediate range

is another well-known feature of the 2NF. Phenomenologically, it is attributed to the correlated

two-pion exchange, which is often modeled in terms of σ -meson exchange (22). In chiral EFT,

however, all low-energy manifestations of the σ and other heavy mesons are systematically taken

into account through values of the LECs in the effective Lagrangian. The resulting strength

of ṼC is comparable to that of V 1π , even at distances r ∼ 2 fm, and appears to be an order of

magnitude larger than the strength of the two-pion exchange in any other channel. The large
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size of the N2LO contributions can be traced back to the large numerical factor of 3/16 in the

case of V (3)
C , an enhancement by one power of π (Equations 13 and 15), and the large values of

the LECs c 3,4. For example, the determination from πN subthreshold coefficients at order Q2

leads to c 3 = −3.9 GeV−1 and c 4 = 2.9 GeV−1 (23, 24), which are larger in magnitude than the

expected natural size, |c 3,4| ∼ gA/� ∼ 1 GeV−1. Moreover, even larger values are obtained from

πN scattering at order Q3, where the effects of pion loops are taken into account (25, 26). The

large values of c 3,4 can be traced back to the implicit treatment of the �(1,232) isobar. Given the

fairly low excitation energy of the � (m� − mN , which is numerically ∼ 2M π ), one may expect

that its explicit inclusion in the EFT within the so-called small-scale expansion (27), based on the

(phenomenological) extension of the counting in Equation 2, to

ǫ ∈
{

M π

�
,
|�k|
�

,
m� − mN

�

}

20.

would allow one to resum a certain class of important contributions, leading to a superior conver-

gence compared with the �-less theory. The improved convergence is indeed observed in the cases

of both πN scattering (28) and nuclear forces (24, 29, 30). In particular, the dominant contribution

to VC and WT has already emerged in the �-full theory at NLO; the N2LO contributions provide

fairly small corrections (Figure 3). For example, at NLO the single � excitation in Figure 2d,e

generates the isoscalar-central potential

V (2)
C = − g2

Ah2
A

12π F 4
π (m� − mN )

(2M 2
π + q 2)2 A(|�q |), 21.

where hA denotes the πN� axial coupling. In the standard �-less approach based on the assign-

ment m� − mN ∼ � ≫ M π , this numerically large contribution is shifted to N2LO, where

it is reproduced through the �-isobar saturation of c3, c �
3 = −4h2

A/[9(m� − mN )] (23); see

Equation 15. Having explicitly included the effects of the � isobar, one finds strongly reduced

values of the LECs c3,4, which agrees with the naturalness assumption. For example, by using

h A = 3gA/(2
√

2) from SU(4) or large Nc, one obtains c 3 = −0.8 GeV−1 and c 4 = 1.3 GeV−1 (30).

Thus, the major part of the unnaturally large subleading two-pion exchange potential at N2LO is

shifted to NLO in the �-full theory. Figure 3 illustrates this more natural convergence pattern.

When substituted into the Schrödinger equation, the long-range potentials introduced above

provide an approximate representation of the nearby left-hand singularities in the partial-wave

amplitude shown in Figure 1. These potentials cause a rapid energy dependence and indicate

nontrivial relations between the coefficients in the effective-range expansion that can be regarded

as low-energy theorems (LETs) (31–33) and confronted with the data. A pedagogical introduction

to the LETs and their relation to the so-called modified effective range expansion can be found

in Reference 34. Assuming that the pion exchange contributions are perturbative, these relations

can be worked out analytically within the scheme proposed by Kaplan et al. (35). The resulting

LETs, however, appear to be strongly violated in the 1S0 and 3S1–3D1 channels (31, 32). This

observation indicates the nonperturbative nature of the one-pion exchange potential, at least in

these channels (36). By employing a nonperturbative treatment of the pion exchange potential,

Epelbaum et al. (37) tested the LETs numerically. Birse and collaborators (38–41) followed a

closely related approach by analyzing the energy dependence of the residual short-range potential

in a given partial wave. Perhaps the most impressive evidence of the chiral two-pion exchange

comes from the Nijmegen partial-wave analysis of proton-proton ( pp) scattering (42), where

the Schrödinger equation was solved for a specific choice of the long-range potential outside of

some boundary b. The authors took short-range physics into account by choosing appropriate

boundary conditions at r = b. The number of parameters needed to describe experimental data
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below the pion production threshold with χ2/datum ∼ 1 can be regarded as a measure of the

amount of physics not included in the long-range potential. By using b = 1.4 fm, the authors

of Reference 42 observed a reduction (31 → 28 → 23) in the number of parameters when they

employed V 1π → V 1π + V (2)
2π → V 1π + V (2)

2π + V (3)
2π as the long-range potential (in addition to

the corresponding electromagnetic interactions).

2.3. Nuclear Forces: Status and Open Issues

We now summarize the current status of the nuclear forces within the heavy-baryon, �-less

formulation based on the power counting of Equation 4. In this scheme, the nuclear Hamiltonian

is presently worked out up to N3LO in the chiral expansion,

H = H0 + V 2N + V 3N + V 4N + · · · , 22.

with

V 2N = V (0)
2N + V (2)

2N + V (3)
2N + V (4)

2N + · · · ,
V 3N = V (3)

3N + V (4)
3N + · · · ,

V 4N = V (4)
4N + · · · ,

23.

where the ellipses refer to terms beyond N3LO. For two nucleons, it is necessary and sufficient

to go to N3LO to accurately describe the np and pp phase shifts up to laboratory energies of

Elab ∼ 200 MeV (37, 43). This scenario is shown in Figure 4, where, as a representative example,

the experimental data for the np differential cross section and vector analyzing power at Elab =
50 MeV are compared with calculations based on the chiral NN potentials from References 37 and

43, as well as various modern phenomenological potentials. At N3LO accuracy, it is mandatory to

take into account isospin-breaking (IB) contributions. The dominant IB effects emerge from the

charged-to-neutral-pion mass difference in the one- and two-pion exchange (charge-independence

breaking) (46), the proton-to-neutron mass difference in the two-pion exchange (charge-symmetry

breaking) (47, 48), and the two derivative-less contact interactions (both charge-independence and

charge-symmetry breaking in the two S-waves). The short-range part of the potential at N3LO

receives contributions from 24 isospin-invariant and 2 IB contact interactions whose strength
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d
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Ω
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b
 s
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–

1
)
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y

θ (degrees)

12

0 60 120 180 60 120 180

16

20

0

0.1

0.2

0.3

EGM N3LO

EM N3LO

CD Bonn 2000
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a b

Figure 4

(a) Neutron-proton differential cross section and (b) analyzing power at Elab = 50 MeV, calculated by use of
the chiral effective field theory, the CD Bonn 2000 potential (44), and the potential developed by Gross &
Stadler (45). Also shown are results from the Nijmegen partial-wave analysis (PWA). References to data can
be found at http://nn-online.org. EGM and EM refer to the potentials constructed by Epelbaum, Glöckle
& Meißner and by Entem & Machleidt in References 37 and 43, respectively.
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was adjusted to phase shifts (scattering data) in Reference 37 (43). Both available versions of the

N3LO potential employ a finite momentum-space cutoff to regularize the Schrödinger equation.

This cutoff is varied in Reference 37 in the range � = 450–600 MeV. More details about the

construction of chiral potentials at N3LO can be found in two comprehensive review articles

(7, 49).

Although the chiral expansion of the long-range nuclear forces emerges rather straightfor-

wardly, the power counting for the short-range operators and the closely related issue of non-

perturbative renormalization of the Schrödinger (or LS) equation are still being debated in the

community (e.g., References 50–52). Here, the main conceptual difficulty is associated with the

nonperturbative treatment of the one-pion exchange potential V 1π . Despite considerable efforts,

(35, 53), no approximation to V 1π is presently known that would capture the relevant nonperturba-

tive physics and, at the same time, be analytically resummable and renormalizable. Therefore, one

is left with the numerical solution of the Schrödinger equation for appropriately regularized chiral

potentials, along the lines of the analysis in Reference 54. That paper also explains the meaning

of renormalization in such an approach and provides a tool to verify its consistency a posteriori by

means of the so-called Lepage plots. Note that iterating the potential, truncated at a given order

of the chiral expansion, in the LS equation necessarily generates higher-order contributions in

the amplitude that are generally UV divergent; renormalization of these contributions requires

counterterms beyond the truncated potential. Therefore, in such an approach it is not legitimate

to arbitrarily increase the cutoff �. This point is exemplified in Reference 33 through the use of

an exactly solvable analytical model (also see Reference 54 for a qualitative discussion). More work

is needed to (better) understand the power counting for the scattering amplitude in the presence

of the long-range pion exchange potentials. A promising tool to address this question is provided

by the modified effective range expansion (see the discussion in Reference 55, and see Refer-

ences 39 and 40 for related work). Also, it remains to be determined whether the renormalization

group–based approach such as that proposed in Reference 56 can shed new light on this issue.

3NFs are an old but still relevant topic in nuclear physics. Despite many decades of effort, the

detailed structure of the 3NF has not been captured by modern phenomenological 3NF models.

Indeed, the global analysis presented in Reference 57 demonstrates that the available models do

not allow one to significantly reduce the observed discrepancies between the experimental data and

calculations based on the high-precision NN potentials for breakup and polarization observables

in elastic nucleon-deuteron (Nd ) scattering. Given the very rich spin-momentum structure of the

3NF compared with that of the NN force, the more sparse database in the three-nucleon sector,

and the relatively high computational cost of solving the Faddeev equation, further progress in

this field clearly requires input from theory. This situation provides a strong motivation to study

the structure of the 3NF within chiral EFT.

The general structure of the 3NF up to order Q4, which also holds at order Q5, is represented by

six topologies (Figure 5). The first nonvanishing contributions emerge at N2LO (Q3) (58, 59) from

the two-pion (Figure 5a), one-pion contact (Figure 5d ) and contact (Figure 5f ) diagrams. The

corresponding πN (ππN, πNN, NNN) amplitudes at this order are given simply by the �i = 0

(�i = 1) vertices from the effective Lagrangian. The one-pion contact and contact diagrams

depend on the two LECs cD and cE, respectively, whose determination requires few-nucleon data.

We discuss the applications of the resulting nuclear Hamiltonian to the properties of few-nucleon

systems in the next section. Note, however, that the leading 3NF involves a rather restricted set of

isospin-spin-momentum structures, which are also included in the phenomenological 3NF models.

In particular, the longest-range two-pion exchange topology (Figure 5a) is well established as

one of the most important phenomenological 3NF mechanisms. The leading chiral 3NF cannot,
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a b c d e f

Figure 5

(a–f ) Various topologies contributing to the three-nucleon force up to order Q5. Shaded areas represent the
corresponding amplitudes.

therefore, be expected to shed new light on the persistent deficiencies in the theoretical description

of, for instance, Nd scattering. The corrections to the 3NF at N3LO generated by the leading-loop

diagrams are performed in References 60–62. Remarkably, the N3LO terms do not involve any

unknown LECs. In addition to the static loop contributions, one also has to take into account

the 1/mN corrections in the topologies in Figure 5a and d (62; also see the earlier calculation

in Reference 63). The numerical implementation of the novel N3LO contributions in few-body

studies is nontrivial and requires a partial-wave decomposition. This work is presently in progress;

see Reference 64 for an initial step in this direction.

Clearly, one of the most interesting features of the 3NF at N3LO is its rich spin-momentum

structure, which yields many operators that have never been explored in few-body studies and

could be capable of resolving the observed discrepancies in three-nucleon scattering. This feature

especially applies to the ring topology in Figure 5c and, to a lesser extent, the two-pion/one-

pion topology in Figure 5b. However, the observed convergence pattern of the chiral expansion

of the two-pion exchange two-nucleon potential with the diagrams in Figure 2b–e yields small

contributions, and the major effect that emerges from the subleading diagram in Figure 2f (see

the previous section) brings the convergence of the 3NF at N3LO into question. Indeed, because

the (large) LECs c2,3,4 saturated by the � isobar do not contribute to the ring and two-pion/one-

pion exchange 3NF topologies at N3LO, one may expect that the corresponding potentials from

Reference 61 have not yet converged (also see the discussion in Reference 65). Thus, one may either

need to go to at least N4LO in the �-less theory or explicitly take into account the contributions

of the � isobar up to N3LO. Such work is in progress; see Reference 66 for the first steps in this

research.

The parameter-free results that are currently being and have been obtained in chiral EFT for

the various components of the 3NF at large distances rely solely on the spontaneously broken

chiral symmetry of QCD. These results introduce a very interesting possibility for benchmarking

with future lattice QCD calculations3 (see References 67 and 68 for the initial efforts).

Finally, the 4NF also receives its first contribution at N3LO from tree-level diagrams con-

structed from the lowest-order vertices of dimension �i = 0. The parameter-free expressions for

the 4NF at N3LO can be found in Reference 18. The contribution of the 4NF to the α-particle

binding energy (BE) was estimated (69) to be of the order of a few hundred keV. This value

provides some justification for neglect of four (and more)-nucleon forces in nuclear structure

calculations.

3Clearly, one must take care when dealing with the nonuniqueness of the nuclear potentials. The long-range part of the 3NF
at N3LO is, however, uniquely determined after fixing the corresponding long-range part of the 2NF.

www.annualreviews.org • Few- and Many-Nucleon Systems 171

A
n
n
u
. 
R

ev
. 
N

u
cl

. 
P

ar
t.

 S
ci

. 
2
0
1
2
.6

2
:1

5
9
-1

8
5
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.a
n
n
u
al

re
v
ie

w
s.

o
rg

b
y
 W

IB
6
3
1
5
 -

 F
o
rs

ch
u
n
g
sz

en
tr

u
m

 J
u
el

ic
h
 o

n
 0

5
/1

7
/1

3
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



3. APPLICATIONS TO FEW-NUCLEON SYSTEMS

Having determined most of the parameters in the nuclear Hamiltonian from NN data, it is now

interesting to test them in few-nucleon reactions in which the A-nucleon Schrödinger equation

(Equation 1) can be exactly solved numerically. For three particles, the Schrödinger equation can

be conveniently rewritten in terms of the Faddeev integral equations, which are usually solved

in the partial-wave basis (see Reference 70 for details). The Faddeev equations can be routinely

solved for any given two- and three-nucleon potentials for both bound and scattering states. For a

review of recent progress toward including the Coulomb interaction in three-nucleon scattering,

see Reference 71.

As explained in the previous section, the 3NF at N2LO depends on two LECs, cD and cE,

which need to be determined from few-nucleon data. In Reference 59, cD and cE were tuned to the

triton BE and the neutron-deuteron (nd ) doublet scattering length. The resulting parameter-free

nuclear Hamiltonian was then tested in Nd scattering. Figure 6 compares a sample of results with

the data. The bands emerge from the cutoff variation, as discussed in the previous section. Note
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Figure 6

(a) Differential cross section and tensor analyzing powers T20 and T21 for elastic nucleon-deuteron (Nd ) scattering at E N
lab = 10 and

65 MeV. (b) The nucleon-to-nucleon polarization transfer coefficient in elastic Nd scattering at E N
lab = 22.7 MeV [the proton-deuteron

( pd ) data are from Reference 72]. (c) Nd breakup cross section in the space-star configuration (upper sets of data, nd; lower sets of data,
pd ). The blue and red shaded bands show the results from the chiral effective field theory at next-to-leading order and next-to-next-
to-leading order, in order. The precise kinematical description and references to data can be found in Reference 70.
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that the NLO results are based solely on the 2NF. We further emphasize that the calculations

shown do not include the Coulomb interaction and thus correspond to nd scattering. We have cor-

rected the proton-deuteron data at E N
lab = 10 MeV by subtracting out the (estimated) Coulomb-

force contribution (see Reference 59 for additional details). Remarkably, even some accurate

data for double-polarization observables are available at low energy. As a representative example,

Figure 6b shows our results for the nucleon-to-nucleon polarization transfer coefficient K x′
z (N )

at E N
lab = 22.7 MeV, compared with data from Reference 72. Additional results for different po-

larization transfer coefficients at this energy, also based on conventional nuclear potentials, can be

found in Reference 73. For most of the elastic observables, one can obtain an improved description

when going from NLO to N2LO, which is consistent with the description of two-nucleon data at

these orders. The increasing theoretical uncertainty, however, limits the applicability of the N2LO

chiral forces to energies below E N
lab ∼ 100 MeV, where the modern phenomenological 2NFs and

3NFs also provide an accurate description of the data. There is one well-known exception from

the generally good agreement between the theory and the data at very low energies; this exception

is known as the Ay puzzle. It refers to the strong underprediction of the nucleon vector analyzing

power observed at energies below E N
lab ∼ 30 MeV for all modern two- and three-nucleon poten-

tials; see Reference 70 for more details. We emphasize, however, that Ay is (a) very small at these

energies and (b) very sensitive to small contributions to the nuclear force (70); see Reference 57

for an extensive discussion. Therefore, it is not surprising that the solution to the Ay puzzle in

chiral EFT has not been achieved at N2LO and requires the inclusion of higher-order terms in

the Hamiltonian.

The kinematically very rich deuteron breakup reactions provide even more detailed insights

into nuclear dynamics. At low energies, only a very few selected observables, mainly the cross

section, are available in certain regions of the phase space. Although good agreement between the

data and calculations based on the conventional potentials and chiral EFT has been observed for

the final-state-interaction and quasi-free-scattering configurations, large discrepancies occur in

the case of the space-star configuration (the plane in the CMS spanned by the outgoing nucleons

is perpendicular to the beam axis, and the angles between the nucleons are 120◦). This discrepancy

is shown in Figure 6c (compare with the upper sets of nd data). Remarkably, the existing 3NFs

have almost no effect on this observable. For recent studies of related breakup configurations, see

References 74 and 75.

At higher energies, the situation is similar to the one in the elastic channels; the predictions from

chiral EFT generally agree with the data but show a rapidly increasing theoretical uncertainty.

See References 76–78, which compare the high-precision cross section and analyzing powers,

measured recently at KVI at E N
lab = 65 MeV and covering a large part of the available phase space,

with theoretical calculations. For a detailed review on three-nucleon scattering at intermediate

energies, see Reference 57.

The four-nucleon continuum provides another interesting and (given the appearance of low-

energy resonance structures) very sensitive testing ground for nuclear dynamics. It also offers the

possibility of probing isospin channels that are not accessible in Nd scattering. The solution of

the Schrödinger equation for four-nucleon scattering states still represents a major challenge, so

only a restricted set of calculations, typically at low energies, is available. Interestingly, the Ay

puzzle persists in the four-nucleon system, in which it becomes even more striking due to a much

larger magnitude of Ay. The very recent study by the Pisa group (79) shows that, in contrast to

the three-nucleon system, the Ay puzzle in the four-nucleon system is significantly reduced by

inclusion of the chiral 3NF at N2LO once the LECs cD and cE are adjusted to the 3H and 4He BEs.

Given space constraints, we refrain from presenting a more detailed discussion of four-nucleon

scattering and refer the reader to the review article (79).
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The nuclear Hamiltonian at N2LO has also been used to compute the spectra of light nuclei,

yielding 7.7–8.5 MeV and 24.4–28.8 MeV for the triton and α-particle BEs, respectively, at NLO.

These results agree well with the experimental values of 8.482 MeV and 28.30 MeV, respectively.

When the triton BE is used as input in the determination of cD and cE, the α-particle BE at N2LO,

27.8–28.6 MeV, is improved compared with its NLO value.

In all the applications discussed so far, the LECs entering the 3NF were determined from the

triton BE and the nd scattering length. Given the strong correlation between these two observables,

which is known as the Philips line and is caused by the large S-wave scattering lengths in the two-

nucleon system, the resulting values for cD and cE suffer from a sizable uncertainty. Other possible

ways to determine these LECs include fitting to the triton and α-particle BEs (80) or to the

properties of light nuclei (81). Recently, Gazit et al. (82) exploited the fact that the LEC cD not

only contributes to the 3NF at N2LO but also governs the strength of the dominant short-range

axial vector exchange current to find that cD can be determined from weak processes. By using the

N3LO 2NF from Reference 43, combined with the N2LO 3NF in which cD and cE are calibrated

to the triton BE and half-life, Gazit et al. (82) obtained an α-particle BE of 28.50(2) MeV. Also,

these authors determined the point-proton radii of 3H, 3He, and 4He to be 1.605(5) fm, 1.786(5)

fm, and 1.461(2) fm, which are in excellent agreement with the corresponding experimental values

of 1.60 fm, 1.77 fm, and 1.467(13) fm, respectively. These results provide an important and highly

nontrivial consistency check of the chiral EFT approach by bridging the strong and axial few-

nucleon processes.

Last but not least, the chiral 3NF at N2LO has also been extensively explored in connection

with the spectra of light and medium-mass nuclei; see References 83 and 84 for a recent review

describing state-of-the-art calculations within the no-core-shell model and the limit of neutron-

rich nuclei. Other recently covered topics include oxygen isotopes (85), the properties of nuclear

matter and constraints on neutron star radii (86), the puzzle of the anomalously long β-decay

lifetime of 14C (87), and an ab initio coupled-cluster approach to nuclear structure (88).

4. NUCLEAR LATTICE SIMULATIONS

A novel scheme to tackle the nuclear A-body problem that combines chiral EFT for nuclear forces

with Monte Carlo (MC) methods, which have been successfully used in lattice QCD and other

fields of physics, consists of the so-called nuclear lattice simulations, collectively known as nuclear

lattice EFT (NLEFT). Below, we give a brief outline of this approach and present some early

results (for a review with many references to earlier, related work, see Reference 89).

4.1. Formalism

In NLEFT, space-time is discretized in Euclidean time on a torus of volume Ls × Ls × Ls × Lt ,

where Ls (Lt) is the side length in the spatial (temporal) direction (Figure 7). The minimal distance

on the lattice, the so-called lattice spacing, is a (at) in space (time). This distance entails a maximum

momentum on the lattice, pmax = π/a , which serves as a UV regulator of the theory. In contrast to

lattice QCD, we do not take the continuum limit a → 0 because we are dealing with an EFT and

do not wish to resolve the structure of individual nucleons. The nucleons are treated as point-like

particles residing on the lattice sites, whereas the nuclear interactions (pion exchanges and contact

terms) are represented as insertions on the nucleon world lines by use of standard auxiliary field

representations. The nuclear forces have an approximate spin-isospin SU(4) symmetry (Wigner

symmetry) (90) that is of fundamental importance in suppressing the malicious sign oscillations

that plague any MC simulation of strongly interacting fermion systems at finite density (for
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Figure 7

Schematic illustration of the space-time lattice. The minimal length is the lattice spacing a. The side length
L in any spatial direction is an integer multiple of a. Protons ( p) and neutrons (n) reside on the lattice sites.

a modern look at this symmetry, see Reference 91). The derivation of inequalities for BEs of

light nuclei in the Wigner symmetry limit is given in Reference 92. Because of this approximate

symmetry, nuclear lattice simulations provide access to a large part of the phase diagram of QCD

(Figure 8), whereas calculations using lattice QCD are limited to finite temperatures and low

densities (baryon chemical potential). Here, we concentrate on calculations of the ground-state

properties and the excited states of atomic nuclei with A ≤ 12.

We have simulated the interactions of nucleons by using the MC transfer matrix projection

method (5). Each nucleon evolves as if it were a single particle in a fluctuating background of

10–3 10–2 10–1

10

1

100

T
 (

M
e

V
)

Heavy-ion
collisions

Quark-gluon
plasma

Gas of light
nuclides

Early
universe

Nuclear
liquid

Super�uid

Excited
nuclei

Accessible by
lattice QCD
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1

Neutron star crust Neutron star core
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Figure 8

Nuclear phase diagram as accessible by lattice quantum chromodynamics (QCD) ( yellow area) and by nuclear
lattice effective field theory (EFT) (blue-gray area). On the abscissa, the nuclear density ρ (where ρN is the
density of nuclear matter) is shown. On the ordinate, the temperature T is displayed. Figure reproduced
courtesy of Dean Lee.
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Figure 9

Schematic representation of the transfer matrix calculation. For the first t0 time steps, the SU(4) symmetric
part of the leading-order (LO) action is employed, which serves as an inexpensive filter to suppress the sign
oscillations. Only then is the full LO action used. All higher-order corrections are included perturbatively, as
shown. The initial and final wave functions are a Slater determinant of Z protons and N neutrons.
Abbreviations: NLO, next-to-leading order; N2LO, next-to-next-to-leading order.

pion and auxiliary fields; the latter represent the multinucleon contact interactions (for detailed

definitions at LO in the chiral expansion, see Reference 93). We have also performed Gaussian

smearing of the LO contact interactions, which is required by the too strong binding of four

nucleons on one lattice site. More precisely, in a LO calculation that uses the two independent

four-nucleon contact operators without derivatives, ∼ (N †N )2, the ground state of the 4He system

is severely overbound and consists almost entirely of the quantum state where all four nucleons

occupy the same lattice site. This situation arises in part from a combinatorial enhancement of the

contact interactions when more than two nucleons occupy the same lattice site. This effect can be

partly overcome by higher-order four-nucleon operators, but it is most efficiently dealt with by use

of a Gaussian smearing procedure, which turns the point-like vertex into an extended structure.

A detailed discussion of this issue can be found in Reference 93. Remarkably, the aforementioned

configurations have led to a new interpretation of the phenomenon of clustering in nuclei (94).

Let us return to the simulation method. To LO, we begin with a Slater determinant of single-

nucleon standing waves in a periodic cube for Z protons and N neutrons (where Z + N = A).

We use the SU(4) symmetric approximation of the LO interaction as an approximate inexpensive

filter for the first t0 time steps, which dramatically suppresses the sign oscillations. Then we switch

on the full LO interaction and calculate the ground-state energy and other properties from the

correlation function

ZA(t) = 〈�A| exp(−t H )|�A〉, 24.

letting the Euclidean time t go to infinity. Here, �A is the Slater-type initial wave function and H

is the nuclear Hamiltonian, expressed in terms of the lattice variables and lattice fields. Higher-

order contributions, namely the Coulomb repulsion between protons and other IB effects (due

to the light quark mass difference), are computed as perturbative corrections to the LO transfer

matrix (Figure 9). The perturbative treatment of all these effects is justified as for typical lattice

spacings of a ≃ 2 fm; the maximal momentum is pmax ≃ 300 MeV. Note, however, that due to

the Gaussian smearing of the LO contact interactions, a part of the higher-order corrections is

also treated nonperturbatively. If one is interested in the expectation value of any operator O,

Equation 24 has to be generalized to

ZO
A = 〈�A| exp(−t H /2)O exp(−t H /2)|�A〉, 25.
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and the ground-state expectation value is obtained as the Euclidean time goes to infinity

(Figure 9). Excited states are calculated from a multichannel projection MC method (95). As

a first step, we use various improvements in our LO lattice action. This step is necessary to sup-

press, as much as possible, the artifacts from the lattice so that the rotational symmetry SO(3) is

broken to cubic symmetry SO(3, Z) and further artifacts due to the finite lattice spacing a arise.

To minimize the effect of these artifacts, one performs O(a4) improvements for the nucleon ki-

netic energy and the Gaussian smearing factors of the contact interactions. Moreover, all lattice

operators at O(Q3) are included, in particular those related to the breaking of rotational symme-

try. Their strengths can be tuned to eliminate unphysical partial-wave mixing such as that, for

instance, between the 3S1 − 3 D1 and 3 D3 partial waves. One then uses a set of Slater determinants

of numerous single-nucleon standing waves; for example, for the calculation of the spectrum of
12C, 24 initial standing waves were used, and from these, three states with a total momentum

of zero and Jz = 0 mod 4 and one state with Jz = 2 mod 4 were constructed. Therefore, the

correlation function becomes a matrix:

Zi j
A (t) = 〈� i

A| exp(−t H )|� j
A〉. 26.

Diagonalization of this matrix of a given ensemble of states with the required quantum numbers

leads to a tower of states. One can thereby reconstruct the excitation spectrum of any given nucleus.

However, due to the required computing resources, so far only the ground state and a few excited

states for some nuclei have been computed.

The very low memory and trivially parallel structure of the lattice MC codes allow one to

perform simulations that scale ideally with several thousand processors. The computational time

scales with the number of nucleons A as A1.7 at fixed volume V and with V1.5 for fixed A. The

average sign, which is a measure of the severity of the sign oscillations, scales approximately as

exp(−0.1A). Taking the calculation of 12C as a benchmark, the required CPU time for a nucleus

with spin S and isospin I can be estimated as

X CPU ≈ X CPU
12C

×
(

A

12

)3.2

exp[0.1(A − 12) + 3(S mod 2) + 4I ], 27.

and the memory requirements to store the generated configurations are

X storage ≈ X
storage
12C

×
(

A

12

)2

exp[0.1(A − 12) + 3(S mod 2) + 4I ]. 28.

Therefore, combining high-performance computing with the forces derived from chiral EFT,

and fixing the parameters in few-nucleon systems, permits true ab initio calculations of atomic

nuclei and their structure, with a quantifiable uncertainty of any observable under investigation.

Before we present the early results based on NLEFT, we emphasize the differences between

this approach and other ab initio methods. One distinction is that in NLEFT all systematic er-

rors are introduced up front when defining the low-energy EFT, which eliminates unknown

approximation errors related to specific calculational tools, physical systems, or observables. By

including higher-order interactions, one can expect a systematic improvement in all the low-

energy observables. Another difference is that many different phenomena can be studied through

the use of the same lattice action. Once the action is determined, it can be used to calculate

bound nuclei, the ground state of neutron matter, or thermodynamic properties at nonzero tem-

perature. In addition, NLEFT uses several efficient lattice methods that were developed for lat-

tice QCD and condensed matter simulations, including Markov chain MC techniques, auxiliary

fields (96, 97), pseudofermion methods (98), and nonlocal updating schemes such as hybrid MC

(99–101).
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Figure 10

S-wave phase shifts in the two-nucleon system. From top to bottom: 3S1 neutron-proton (np) scattering, 1S0

np scattering, and 1S0 proton-proton ( pp) scattering. The open and filled symbols represent the results at
leading order (LO) and next-to-leading order (NLO) (including all isospin-breaking effects), respectively.
The curves are the result of the Nijmegen partial-wave analysis (PWA). Whereas the np phases are fitted, for
the pp phase only the pp scattering length is input.

4.2. Results

So far, calculations in NLEFT have been performed up to N2LO in the chiral expansion of the

nuclear potential. At this order, both the two-body and leading three-body forces are present.

First, consider the two-nucleon system. At NLO, nine parameters are determined from a fit to

the S- and P-waves in np scattering. Two further IB parameters are determined from the pp and

nn scattering lengths (102). Up to CMS momenta of the order of the pion mass, the empirical

phase shifts in the np system have been well described (Figure 10), and furthermore, the NLO

corrections are small. For these results to be obtained, a novel method to extract phase shifts

from finite-volume simulations had to be developed (given that the standard Lüscher scheme is

not well suited to this purpose in the case of strong partial-wave mixing) (104). Note that, due

to the perturbative treatment of the higher-order effects, there are no contributions to the 2NF

at N2LO. The 3NF features only two LECs (Section 2.3); in our simulations, these LECs have

been determined from the triton BE in combination with either low-energy nd scattering in the

doublet channel (103) or the α-particle BE (95).

The first nontrivial predictions are (a) the energy dependence of the pp 1S0 partial wave, which

agrees with the Nijmegen partial-wave analysis up to momenta of approximately the pion mass

(Figure 10), and (b) the BE difference between the triton (3H) and 3He,

E(3He) − E(3H) = 0.78(5) MeV, 29.

which agrees well with the experimental value of 0.76 MeV (105, 106). The theoretical uncertainty

arises primarily from the infinite-volume extrapolation. The following finite-volume expression

has been utilized to arrive at the result for the three-nucleon ground-state energies:

E(L) = −BE − a

L
exp(−b L). 30.

Here, BE is the positive binding energy, E(L) is the measured energy in the finite volume L3, and

a and b are fit parameters (also see Reference 107).
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Extraction of the excited states of 12C from the Euclidean time dependence of the projection amplitude at
leading order (LO). The slope of the logarithm of Z(t)/Z0+

1
(t) at large t determines the energy relative to the

ground state.

The ground-state energies of nuclei with A = 4, 6, or 12 were calculated in References 105

and 106, which showed that at N2LO one can achieve a precision of a few percent. By refining

the underlying action as described above and utilizing the multichannel projection MC method,

Epelbaum et al. (95) determined the spectrum of 12C. Figure 11 shows the clean signals of the

first few excited states on top of the 0+ ground state. Note that due to lattice artifacts, the first

excited 2+ state is indeed split into two states. This problem will eventually be overcome through

the choice of a larger basis of initial states.

In addition to the ground state and the excited spin-two state, the calculation predicts a res-

onance with an angular momentum of zero and positive parity at −85(3) MeV, very close to the
4He+8Be threshold at −86(2) MeV. Experimentally, this threshold is located at −84.80 MeV.

This first 0+ excitation is the so-called Hoyle state. It plays a crucial role in the helium burning of

stars that are heavier than our Sun and in the production of carbon and other elements necessary

for life. Hoyle (108) postulated that this excited state of 12C was necessary for the fusion of three

α-particles to produce a sufficient amount of carbon and other elements needed for life at stellar

temperatures. For this reason, the Hoyle state plays a very important role in the context of the

anthropic principle, although such considerations did not play any role when this state was pre-

dicted (109). The Hoyle state has been an enigma in nuclear structure theory for decades; even

the most successful Green’s function MC methods based on realistic 2NFs and 3NFs (110) or

the no-core-shell model employing modern (chiral or V low-k) interactions (81, 83) were unable to

describe this state. Table 1 shows results for the ground state and the low-lying excited states of
12C at LO, NLO (with IB and electromagnetic corrections included), and N2LO. For comparison,

we list the experimentally observed energies.

The N2LO results for the Hoyle state and spin-two state are in agreement with the experimental

values (Table 1) (Figure 12). Although the ground state and spin-two state have been calculated in

other studies, these results are the first ab initio calculations of the Hoyle state with an energy close

to the phenomenologically important 8Be + α threshold. Note the energy-level crossing involving
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Table 1 Lattice results for the ground state 0+
1 and the low-lying excited states of 12C (units: MeV)

0+

1 0+

2 2+

1 , Jz = 0 2+

1 , Jz = 2

LO [O(Q0)] −110(2) −94(2) −92(2) −89(2)

NLO [O(Q2)] −85(3) −74(3) −80(3) −78(3)

N2LO [O(Q3)] −91(3) −85(3) −88(3) −90(4)

Experiment −92.16 −84.51 −87.72 —

For comparison, the experimentally observed energies are shown. The error bars are 1-σ estimates that include both

Monte Carlo statistical errors and uncertainties due to extrapolation at large Euclidean time. Systematic errors due to

omitted higher-order interactions can be estimated from the size of corrections from O(Q0) to O(Q2) and from O(Q2) to

O(Q3). Abbreviations: LO, leading order; NLO, next-to-leading order; N2LO, next-to-next-to-leading order.

the Hoyle state and the spin-two state. The Hoyle state is lower in energy at LO but higher at

NLO. One of the main characteristics of the NLO interactions is that the repulsion between

nucleons is increased at short distances. This characteristic decreases the binding strength of the

spinless states relative to higher-spin states. There is a 25-MeV reduction in the ground-state BE

and a 20-MeV reduction for the Hoyle state but less than half as much binding correction for

the spin-two state. This degree of freedom in the energy spectrum suggests that at least some

fine-tuning of parameters is needed to set the Hoyle state energy near the 8Be+4He threshold.

It would be very interesting to understand which fundamental parameters in nature control this

fine-tuning. At the most fundamental level, there are only a few such parameters, of which two

of the most interesting are the masses of the up and down quarks. Investigations have already

been performed to unravel the quark mass dependence of the deuteron BE and of the S-wave

NN scattering lengths (111, 112). The impact on the primordial abundances of light elements

created by a variation of the quark masses at the time of big bang nucleosynthesis was studied in

Reference 113.

Exp Th

−92

E
 (

M
e

V
)

−84

−86

−88

−90

−92.16

−84.51

−87.72

0+

2+

0+

0+

2+

0+
−91(3)

−88(3)

−85(3)

Figure 12

Results for the 12C spectrum (Th) and comparison with experimental values (Exp). The results of the nuclear
lattice effective field theory at next-to-next-to-leading order are shown for the ground state, the Hoyle state,
and the lowest-lying spin-two state. In the simulations, the 2+ state was split into the Jz = 0 and Jz = 2
projections. Only the Jz = 0 component is shown.
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4.3. Neutron Matter

Not only is matter made exclusively of neutrons interesting in its own right; it is also of astrophysical

relevance, given that various forms of this strongly interacting quantum many-body state are

realized in the different layers of neutron stars. Due to the Pauli principle, three-body forces are

suppressed in neutron matter, and of course, there is no Coulomb repulsion. As for nuclei, one can

perform simulations for a fixed number of neutrons in a given volume, thereby varying the Fermi

momentum kF (density ρ) of the neutron matter. For N (spin-saturated) neutrons in a periodic

cube of side length L, the Fermi momentum and density are

kF = (3π2 N )1/3

L
; ρ = k3

F

3π2
. 31.

Varying L from 4 to 7, and taking N to be 8, 12, or 16, corresponds to a Fermi momentum between

88 MeV and 155 MeV, that is, a density between 2% and 10% of normal nuclear matter density:

ρN = 0.17 fm3. Interestingly, neutron matter at kF ∼ 80 MeV is close to the so-called unitary

limit, where the S-wave scattering length is infinite and the range of the interaction is negligible.

At lower densities, corrections due to the (finite) scattering length become more important, and

at higher densities, corrections due to the effective range and other effects become important. In

the unitary limit, the ground state has no dimensionful parameters other than the particle density.

Thus, the ground-state energy of the system should obey the simple relation E0 = ξ E free
0 for some

dimensionless constant ξ , where E free
0 is the energy of noninteracting particles. The universal

nature of the unitary limit makes it relevant to several areas of physics; in atomic physics, the

unitarity limit has been studied extensively with ultracold 6Li and 40K atoms through the use of

a magnetic-field Feshbach resonance (a summary of recent determinations of ξ can be found in

Reference 114). There have been numerous analytic calculations of ξ that employ the full arsenal of

available many-body techniques (see Reference 115 for a recent review). A benchmark calculation

for the four-particle system was reported in Reference 114. Around the unitary limit, the ratio

E0/E free
0 can be parameterized as

E0

E free
0

= ξ − ξ1

kF ann

+ ξ2kF rnn + · · · 32.

in terms of the neutron-neutron (nn) scattering length ann and effective range rnn. Below, we use

ξ = 0.31(1) and ξ1 = 0.81(1), as was determined from lattice simulations for two-component

fermionic systems (116, 117).

Neutron matter has been studied in the framework of NLEFT (118, 119). Figure 13 shows

the energy of an N-neutron quantum state versus that of a free ensemble, in comparison to results

from earlier calculations that used different many-body techniques. For most cases in the range of

densities considered, the agreement is good. The universal parameter ξ 2 from Equation 32 ranges

from 0.14 to 0.27 (119). In principle, this parameter can be measured in any two-component

fermionic system.

In the future, nuclear lattice simulations of neutron matter could be used to investigate the

interesting problem of a possible P-wave pairing, given that we can dial the strength of the nn

interactions in the different partial waves by varying the strength of the corresponding LECs.

Obviously, one cannot do so in nature. Also, simulations with greater numbers of neutrons and

different lattice spacings will be necessary to better understand the neutron equations of state at

higher densities and obtain better control over the lattice errors. Now that a neutron star of two

solar masses has been observed (125), there are much more stringent constraints on the neutron

equations of state (see, e.g., References 86 and 126), so future investigations based on NLEFT

will be an important tool.
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Figure 13

Results for the ground state of strongly interacting neutron matter E0/E free
0 versus the Fermi momentum kF

in the framework of nuclear lattice effective field theory at leading order (LO) (open triangles) and next-to-
leading order (NLO) ( filled triangles). Also shown for comparison are the results from Friedman &
Pandharipande (120), Akmal et al. (121), Carlson et al. v6 and v8′ (122), Schwenk & Pethick (123), and
Gezerlis & Carlson (124), which are based on different many-body techniques.
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17. Epelbaum E, Glöckle W, Meißner U-G. Nucl. Phys. A 637:107 (1998); Epelbaum E, Glöckle W, Meißner
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