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We study the scattering of open-beauty mesons and Goldstone bosons as predicted by the chiral SU(3)
Lagrangian. The impact of subleading-order chiral interactions to systems with JP ¼ 0þ and JP ¼ 1þ

quantum numbers is worked out. We estimate the relevant low-energy coefficients from the open-charm
sector, for which their values have been determined previously from sets of QCD lattice data. The leading-
order heavy-quark symmetry-breaking effects are estimated by matching the B-meson ground-state chiral
mass formula to the mass formula from the heavy-quark effective theory. We make refined predictions for
the flavor antitriplet and sextet resonances that are generated dynamically by coupled-channel interactions.
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I. INTRODUCTION

How to understand the spectrum of QCD is the long-
lasting challenge in contemporary theoretical physics.
While the strong interactions lead to a myriad of hadronic
resonances, QCD, the fundamental theory, fails to describe
these phenomena if tackled with a perturbative expansion
in the gauge coupling constant. In order to unravel non-
perturbative aspects of QCD, effective field theories are
commonly employed. They are constructed to respect the
asymptotic symmetries of QCD in its low-energy limit.
Those symmetries include the chiral SU(3) symmetry
(which holds exactly when the quarks u, d, and s are
massless) and the heavy-quark symmetry (which asymp-
totically holds as the quarks c or b tend to be infinitely
massive). An open-charm or open-beauty system, which is
composed of one heavy quark c or b and light quarks,
possesses both of these two symmetries and therefore plays
a crucial role in studies of QCD.
Chiral SU(3) symmetry drives the interactions between

an open heavy-flavor meson and Goldstone bosons.
Such interactions can be described by an effective chiral
Lagrangian. The leading order s-wave interaction may be
attractive or repulsive and resonant states can thus be
dynamically generated (see, e.g., [1]). According to such
an interaction, the nature of the open-charm meson
D�

s0ð2317Þ can be successfully explained. While within a

quark model approach [2,3] such state poses a puzzle,
coupled-channel scattering studies between Goldstone
bosons and JP ¼ 0− D-meson ground states suggest that
it is a bound state below theDK threshold [4–6]. It comes as a
part of a flavor antitriplet,which is completed by a broad state
with isospin-strangeness ðI; SÞ ¼ ð1=2; 0Þ quantum num-
bers. The heavy-quark spin symmetry implies that a heavy-
flavor hadron always comes with almost degenerate spin
partners. This reflects the marginal importance of the spin
orientation of its heavy-quark content. For instance, the
Ds1ð2460Þ can be understood as the spin 1 partner of the
D�

s0ð2317Þ. In addition, the heavy-quark flavor symmetry
suggests that open-beauty partners of the open-charm states
should exist. We note, however, that so far no experimental
evidence for the open-beauty partner of the D�

s0ð2317Þ has
been found. How stable are these theoretical predictions?
Answering this question requires systematic studies that take
into account chiral symmetry and heavy-quark symmetry-
breaking effects as based on effective Lagrangians suitably
linked toQCD. In our workwe use chiral perturbation theory
(ChPT) and heavy-quark effective theory (HQET).
Chiral symmetry-breaking effects are encoded into low-

energy constants (LEC) of the chiral Lagrangian [7–11]. In
a recent study [12], the LEC relevant in the open-charm
chiral Lagrangian have been well estimated from QCD
lattice data on ensembles with a variety of unphysical quark
masses. It was shown that the open-charm mesons
D�

s0ð2317Þ and Ds1ð2460Þ are stable against the next-to-
leading order (NLO) chiral corrections [12,13]. Moreover,
the same work [12] predicted the behavior of the ð1=2; 0Þ
antitriplet partner of the D�

s0ð2317Þ at unphysical quark
masses, which has been recently confirmed by lattice
simulations [14].
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Motivated by our success in the open-charm sector, we
would like to derive more quantitative predictions for the
open-beauty partner systems. In this article, we will study
the chiral symmetry-breaking effects in the open-beauty
systems, working out systematically heavy-quark spin
and flavor symmetry-breaking effects. Such a projection
requests a matching of ChPT to HQET.
We will first recall the part of the chiral Lagrangian

responsible for the leading-order symmetry-breaking LEC.
The heavy-quark mass dependence of those LEC is
determined by matching the chiral formula of the B-meson
masses to the HQET result. Based on such LEC, we will
derive the pole positions of resonance states in the complex
plane as generated by coupled-channel scattering from the
chiral Lagrangian. Special attention will be paid to the
antitriplet states. Predictions for the open-beauty partners of
D�

s0ð2317Þ and Ds1ð2460Þ will be made. A brief discussion
on the flavor-exotic sextet states will follow [4,15]. In
particular, we will comment on the disputed isospin and
strangeness one Xð5568Þ state [16–28].

II. THE CHIRAL LAGRANGIAN WITH HEAVY-
QUARK FLAVOR SYMMETRY

The pseudoscalar B-meson ground states form a flavor
antitriplet B ¼ ðB0;−Bþ; Bþ

s Þ. They are the heavy-quark
flavor partners of the open-charm antitriplets D ¼ ðD0;
−Dþ; Dþ

s Þ states. In both flavor sectors the heavy-quark
spin symmetry predicts almost degenerate JP ¼ 1− partner
states. According to the heavy-quark flavor symmetry, the
chiral Lagrangian for these two types of mesons take the
same form. Therefore it is useful to introduce generic heavy-
meson fieldsH andHμν, that refer either to aD or aB-meson
antitriplet field. The kinetic terms of the heavy-flavored
mesons constitute the leading-order chiral Lagrangian:

Lkin ¼ ð∂̂μHÞð∂̂μH̄Þ −
�
M̄ −

3

4
Δ
�
2
HH̄

− ð∂̂μHμαÞð∂̂νH̄ναÞ þ
1

2

�
M̄ þ 1

4
Δ
�
2
HμαH̄μα; ð1Þ

where following [12,13] the tensor field representation is
adopted for the vector mesons. The LEC M̄ − 3

4
Δ and M̄ þ

1
4
Δ are the chiral-limit masses of the heavy pseudoscalar and

vector mesons, respectively. They depend on the heavy-
quark massMQ. The M̄ ¼ M̄ðMQÞ scales as M̄ ∼MQ in the
heavy-quarkmass limit. The hyperfine splittingΔ ¼ ΔðMQÞ
is caused by Oð1=MQÞ heavy-quark spin symmetry-break-
ing effect [29,30].
The chiral covariant derivative ∂̂μ in (1),

∂̂μH̄ ¼ ∂μH̄ þ ΓμH̄; ∂̂μH ¼ ∂μH −HΓμ:

Γμ ¼
1

2
e−i

Φ
2f∂μe

þiΦ
2f þ 1

2
eþiΦ

2f∂μe
−iΦ

2f; ð2Þ

involves the flavor octet Goldstone-boson fields as encoded
in the 3 × 3 matrix Φ. The parameter f is the chiral limit
of the pion-decay constant for which we choose f ¼
92.4 MeV. The leading-order, so called Tomozawa-
Weinberg, interaction between the B mesons and the
Goldstone bosons is implied by the kinetic terms (1) via
its covariant derivative and the chiral connection Γμ.
At the NLO the chiral Lagrangian has terms that are

proportional to the masses of the u-, d-, and s quarks. Such
terms break the chiral symmetry explicitly and define
corrections to the heavy-flavor ground-state masses. We
recall such terms in the chiral Lagrangian:

Lχ ¼ −ð4c0 − 2c1ÞHH̄trχþ − 2c1HχþH̄

þ ð2c̃0 − c̃1ÞHμνH̄μνtrχþ þ c̃1HμνχþH̄μν;

χ� ¼ 1

2
ðeþiΦ

2fχ0e
þiΦ

2f � e−i
Φ
2fχ0e

−iΦ
2fÞ; ð3Þ

where the quark-mass dependence is embodied in the
diagonal matrix χ0 ¼ 2B0 diagðmu;md;msÞ, with the low-
energy constantB0. Throughout thisworkwe assume perfect
isospin symmetry with mu ¼ md ¼ m. Those parameters
contribute to the JP ¼ 0− and JP ¼ 1− meson masses
at NLO:

M2
H ¼

(
ðM̄ − 3

4
ΔÞ2 þ ð4c0 − 2c1ÞΠð2Þ;0

H þ 2c1Π
ð2Þ;1
H þ ΠHO

H if H ∈ ½0−�
ðM̄ þ 1

4
ΔÞ2 þ ð4c̃0 − 2c̃1ÞΠð2Þ;0

H þ 2c̃1Π
ð2Þ;1
H þ ΠHO

H if H ∈ ½1−�
; ð4Þ

where the LEC ci ¼ ciðMQÞ and c̃i ¼ c̃iðMQÞ depend on
the heavy-quark mass MQ. Throughout this work we will
use a superscript (c) and (b) with e.g.,

cðcÞi ≡ ciðMQ ¼ McÞ; c̃ðbÞi ≡ c̃iðMQ ¼ MbÞ; ð5Þ
for the open-charm and open-beauty systems, respectively.

The chiral terms Πð2Þ;i
H are linear combinations of the light-

quark masses:

Πð2Þ;0
H ¼ 2B0ð2mþmsÞ;

Πð2Þ;1
H ¼

�
2B0m if H ∈ fD;D�; B; B�g
2B0ms if H ∈ fDs;D�

s ; Bs; B�
sg;

ð6Þ

that contribute to chiral order Q2
χ, with

Qχ ∼
ffiffiffiffiffiffiffiffiffiffiffi
B0mq

p
; q ¼ u; d; s: ð7Þ
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The higher-order chiral corrections ΠHO
H start from OðQ3

χÞ
at the one-loop level.
The parameters ci and c̃i scale with the heavy-quark

mass MQ ∼ M̄ in the heavy-quark mass limit [29,30]. It is
useful to make this more explicit. We factor out their heavy-
quark mass-independent part, denoted by Ci ∼ Λ−1

χ . They
are of dimension −1 with Λχ the chiral symmetry-breaking
scale. Higher-order corrections account for the heavy-quark
symmetry-breaking effects. At order 1=M̄, those effects
enter. They consist of an overall shift to Ci and a hyper-
fine splitting between the ci and c̃i [31,32]. We introduce
dimensionless parameters ζi and ηi responsible for
these two kinds of effects, and arrive at the following
representation:

ciðMQÞ ¼ M̄ðMQÞ
�
Ci þ

ζi
M̄ðMQÞ

−
3

4

ηiðMQÞ
M̄ðMQÞ

�
;

c̃iðMQÞ ¼ M̄ðMQÞ
�
Ci þ

ζi
M̄ðMQÞ

þ 1

4

ηiðMQÞ
M̄ðMQÞ

�
: ð8Þ

The parameters ηi ¼ ηiðMQÞ depend on MQ. The
remaining four parameters Ci, ζi turn out to be independent
of MQ. This will be seen in the next section, in which an
explicit matching with HQET is worked out.
The LEC in the charm sector ci and c̃i atMQ ¼ Mc were

adjusted in four fit scenarios in [12]. In application of such
values, the Ci can be determined modulo an unknown ζi
dependence:

Ci ¼
1

4M̄ðcÞ ðc
ðcÞ
i þ 3c̃ðcÞi − 4ζiÞ; ð9Þ

where we apply our notation cðcÞi ≡ ciðMcÞ. Similarly, the
value of ηi at MQ ¼ Mc can be easily derived as

ηðcÞi ¼ ðc̃ðcÞi − cðcÞi Þ; ð10Þ

with again ηðcÞi ≡ ηiðMcÞ.
In this work, the one-loop result is employed for the

higher-order chiral correction terms ΠHO
H . At the one-loop

level, they receive contributions from bubble and tadpole
diagrams and their corresponding counterterms:

ΠHO
H ¼ Πbubble

H þ Πtadpole
H þ ΠCT

H : ð11Þ
For explicit expressions, Refs. [12,13] are referred to.
While more LEC are involved, they have been determined
in the charm sector in Ref. [12]. Using the leading-order
scaling behavior, ΠHO

H ∼ M̄ðMQÞ, the LEC in the bottom
sector can be well estimated.

III. MATCHING THE CHIRAL LAGRANGIAN
AND THE HQET

So far we have not yet fully specified the LEC cðbÞ0;1 and

c̃ðbÞ0;1 in (8). While at leading order in the 1=MQ expansion

their values may be inferred from c0;1 and c̃0;1 atMQ ¼ Mc

this is no longer true at subleading order. Since such
counterterms contribute at NLO in the chiral counting
scheme it appears reasonable to consider the effect of order
1=MQ. Note that our approach considers chiral N2LO
effects in the heavy pseudoscalar and vector-meson masses.
We now set up a more detailed matching with HQET, in
which the heavy-meson masses take the form [33]

MHðMQÞ ¼
8<
:

MQ þ Λ̄ðHÞ þ
μ2
πðHÞ
2MQ

−
μ2
GðHÞ
2MQ

if H ∈ ½0−�

MQ þ Λ̄ðHÞ þ
μ2
πðHÞ
2MQ

þ μ2
GðHÞ
6MQ

if H ∈ ½1−�
:

ð12Þ

The quantities Λ̄ and μ2π , μ2G come with an explicit index
(H), that resolves the specifics of the light-quark content.
The Λ̄ is the contribution from light degrees of freedom,
and therefore MQ independent [34]. The μ2π term accounts
for the kinetic energy of the heavy quark in the meson’s
rest frame. Due to reparametrization invariance, it is MQ

independent as well [35]. Finally, the μ2G is a chromomag-
netic moment which leads to a hyperfine splitting between
the 0− and 1− B mesons. It depends on the heavy-quark
mass. We assume that μ2G can be factorized as a product of
the high-energy and low-energy contributions,

μ2G ¼ ĈcmðMQÞμ̂2G; ð13Þ

where the factor μ̂G accounts for low-energy contributions.
The high-energy contributions are incorporated in the
renormalization-group (RG) invariant Wilson coefficient
ĈcmðMQÞ [36]. The RG evolution starts at a scale close
to the heavy-quark mass μ ∼MQ, where the value of the
Wilson coefficient is determined by matching the chromo-
magnetic moment from HQET to the multiloop calcula-
tions from the QCD Lagrangian. For our purposes it
suffices to know the ratio ĈcmðMbÞ=ĈcmðMcÞ. This ratio
has been derived at the one-loop and two-loop level in [37]
and [38,39], respectively. The averaged result is

R≡ ĈcmðMbÞ
ĈcmðMcÞ

≃ 0.80ð4Þ; ð14Þ

where the uncertainty is estimated by the difference of the
one-loop and the two-loop results. In the latest calculation,
a poor convergence pattern has been claimed at the three-
loop level [40]. Therefore we refrain from using the three-
loop result here.
The expansion moments Λ̄, μ2π , and μ̂G depend on

physical scales significantly lighter than MQ: the light-
quark masses mq and an intrinsic nonperturbative QCD
scale Λ. While Λ was once commonly regarded as the
Landau scale ΛQCD in literature [37,41,42], we follow the
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way of Refs. [31,43] and identify Λ ∼ Λχ. It has been
demonstrated in [44] that only via such an assignment,
ChPT and HQET can be matched convincingly at the loop
level. Moreover, the size of Λ should be comparable to the
mass difference M̄ −MQ [31,37]. Using numerical values,
this mass difference is ∼0.8 GeV for both charm and
bottom systems, indeed consistent with estimates of Λχ .
In the chiral limit, the Λ̄ scales as ∼Λ whereas the μ2π and

μ̂2G scale as ∼Λ2. We can expand the components Λ̄, μ2π ,
and μ̂2G in powers of the light-quark masses around their
chiral limit. The corrections are suppressed by powers offfiffiffiffiffiffiffiffiffiffiffi
B0mq

p
=Λχ . The small-scale expansion scheme entails the

scaling behavior Δ ∼ μ̂2G=M̄ ∼Qχ, and therefore the expan-
sion parameters in the chiral and heavy-quark expansions
are comparable:

ffiffiffiffiffiffiffiffiffiffiffi
B0mq

p
Λχ

∼
Λ
MQ

: ð15Þ

By matching the mass formula (12) with the chiral result
(4), we can recover the relations between the M̄;Δ, and the
heavy-quark moments [29,32]. It is emphasized that the
chiral structure of (4) restricts the structure of the OðQ2

χÞ
corrections to the heavy-quark expansion moments. From
the matching we obtain that Ci and ζi are involved in the
OðQ2

χÞ corrections of Λ̄ and μ2π , respectively. And they are
indeed heavy-quark mass independent. In addition ηi
contributes to the OðQ2

χÞ corrections of μ2G, and its scaling
behavior is proportional to Ĉcm. We summarize,

M̄ðbÞΔðbÞ

M̄ðcÞΔðcÞ ¼
ηðbÞi

ηðcÞi

¼ R: ð16Þ

Using (16) with R ≃ 0.80 together with (10) we are left with
three unknown parameters M̄ðbÞ and ζ0;1. The MQ−
independent parameters Ci follow from (9).
The three unknown parameters M̄ðbÞ and ζ0;1 are deter-

mined by a fit with our chiral mass formula to the empirical
values of the four B-meson ground-state masses. Here we
admit a residual systematic uncertainty of 5 MeV in the
heavy-meson masses. Such a value was used in our
previous open-charm system studies [12]. It reflects the
accuracy level at which we expect our one-loop chiral
formula to hold. The results of M̄ðbÞ, ζ0;1 are shown in
Table I. In this table, we also show the parameters involved
in the expansion (8) together with the associated LEC. In
the fits, we used the results of [12], for the inputs of the
LEC in the charm sector. In the charm sector, four sets of
fitted results are determined according to the lattice data on
D-meson ground-state masses and πD s-wave scattering
process. They are named Fits 1–4. We will recall some of
the fitting details in the following discussion.

Consider first the scenarios of Fits 1, 3, and 4. The
masses of the B-meson ground states can be reproduced
within the systematic error of 5 MeV. All of the three fits
give modest heavy-quark corrections to the leading-order
expectations of c0;1 and c̃0;1. At leading order, c0;1 and c̃0;1
are about 2.5 times larger atMQ ¼ Mb as compared to their
values at MQ ¼ Mc. For convenience we recall the ranges
c0 ∼ c̃0 ∼ ð0.2–0.3Þ and c1 ∼ c̃1 ∼ ð0.6–0.9Þ at MQ ¼ Mc

from [12].
Scenarios 3 and 4 show quite similar values for the

LEC. This is not the case for scenario 1. Here we recall a
decisive distinction. Both Fit 1 and Fit 2 did not consider
QCD lattice data on the πD s-wave scattering process
[45]. While Fit 1, nevertheless, appears reasonably con-
sistent with the πD phase shift and inelasticity parameters
as given in [45], this is not the case for Fit 2. The key
feature of Fit 3 and also Fit 4 is their compatibility with the
lattice data on the ηD phase shift. Such data play a crucial
role in the determination of the LEC. Based on this
observation we would disfavor scenarios 1 and 2. In this
context it is amusing to observe that Fit 2 should be
rejected also based on an unnaturally large value of the ζ0
parameter as shown in Table I. This is so despite the fact
that it comes with the best chi-square value for the
reproduction of the B-meson masses. The corresponding
c0 ∼ c̃0 ∼ 2.7 atMQ ¼ Mb, are nearly ten times larger than
their charmed counterparts c0 ∼ c̃0 ∼ 0.3. This implied a
serious violation of the leading-order scaling behavior.
Such large LEC lead to unnaturally large higher-order
corrections. Therefore, altogether we exclude Fit 2 from
our further analysis.

TABLE I. The low-energy parameters in (8), corresponding to
Fits 1–4 in the charm sector [12]. The χ2=N is the chi-square per
data point, with the number of data points N ¼ 4 and an ad hoc
systematic error estimate of 5 MeV.

Fit 1 Fit 2 Fit 3 Fit 4

M̄ðbÞ [GeV] 5.3743 4.8540 5.3303 5.3666
ζ0 0.0921 −1.5072 −0.0839 0.0523
ζ1 0.1689 0.1233 0.1585 0.1678

C0 [GeV−1] 0.0602 0.8777 0.1774 0.1145
C1 [GeV−1] 0.2376 0.3916 0.3382 0.3445

ηðbÞ0
−0.0145 −0.0302 −0.0176 −0.0170

ηðbÞ1
−0.0238 0.0318 −0.0276 −0.0238

ΔðbÞ [GeV] 0.0562 0.0643 0.0563 0.0568

cðbÞ0
0.4262 2.7757 0.8750 0.6797

c̃ðbÞ0
0.4117 2.7455 0.8574 0.6628

cðbÞ1
1.4637 2.0002 1.9820 2.0345

c̃ðbÞ1
1.4399 2.0320 1.9544 2.0107

χ2=N 0.94 0.10 0.89 0.92
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IV. SCATTERINGS WITH COUPLED-CHANNEL
DYNAMICS

The chiral Lagrangian predicts the formation of JP ¼ 0þ

and JP ¼ 1þ resonance state as a consequence of coupled-
channel final-state interactions of the Goldstone bosons
with the ground-state heavy mesons with JP ¼ 0− and
JP ¼ 1− quantum numbers. Such states are an unavoidable
consequence of the flavor SU(3) chiral Lagrangian. We
focus on the resonances generated by the s-wave scatter-
ings with open-beauty quantum numbers. Here the leading-
order coupled-channel interaction is predicted by the
Tomozawa-Weinberg theorem in terms of the “known”
parameter f. A resonance is dynamically generated from a
scattering process when the reaction amplitude contains a
pole in the complex s plane. The scattering amplitude
with manifest s-channel unitarity is obtained from a self-
consistent summation:

TabðsÞ ¼ VabðsÞ þ
X
c;d

VacðsÞJcdðsÞTdbðsÞ; ð17Þ

with given out- and in-going two-body states a and b. The
T matrix exhibits poles in the complex s plane that we
can determine by extending the definition of TðsÞ into
the higher Riemann sheet of the s plane. The potential
VabðsÞ is obtained with an on-shell condition [1], and set
equivalent to the scattering amplitude as derived from the
chiral Lagrangian at the matching point

ffiffiffi
s

p ¼ μM. It
receives tree-level chiral symmetry-breaking contributions
from the Lagrangian (3). Additional terms are implied by
the LEC that imply the one-loop ΠHO

H structures decom-
posed in (11). The latter will also contribute to VabðsÞ as
tree-level chiral symmetry-preserving corrections; see
Ref [12]. Following [4], we set μM ¼ MBð�Þ for S ¼ 0, 2
and μM ¼ M

Bð�Þ
s

for S ¼ �1 scatterings with the total

quantum numbers JP ¼ 0þð1þÞ. The diagonal analytic
matrix JðsÞ function is universal as it leads to a scattering
amplitude TðsÞ that is consistent with the coupled-channel
unitarity condition and the microcausality condition. Such
an approach can be justified if short-range forces largely
dominate the system. Along the real axis from each
threshold, there is a branch cut defining the doorway for
the higher Riemann sheets. For an n-dimensional coupled-
channel system there are 2n Riemann sheets, and we use
the signature ð�;…;�Þ as introduced in [13] to label a
specific one.
We start with a discussion of the flavor antitriplet

channels. Poles in the complex s plane are found from
the parameter sets 1, 3, and 4. The complex pole masses are
compared with the results from the Tomozawa-Weinberg
interaction in Table II. To estimate the theoretical error, we
allow a deviation of the matching points from their natural
values for jΔμMj ¼ 0.1 GeV. We first look at the states
with isospin and strangeness ðI; SÞ ¼ ð0; 1Þ. A pole below
the BK threshold is found on the physical Riemann sheet

in the JP ¼ 0þ scattering amplitude always. It is the open-
beauty partner of D�

s0ð2317Þ . The pole mass is
5.59(8) GeV. Comparing to the leading-order result at
5.65(3) GeV, the higher-order chiral corrections slightly
reduce the pole mass. This result is somewhat lower than
previous predictions with values above 5.7 GeV [10,
46–48]. In the axial-vector sector, the open-beauty partner
of Ds1ð2460Þ is found as a bound state at 5.64(8) GeV,
which should be compared with previous predictions at
above 5.75 GeV [10,46–48]. Besides the bound states in
the ðI; SÞ ¼ ð0; 1Þ channels, broad resonances are found in
the ðI; SÞ ¼ ð1=2; 0Þ channels with poles in the unphysical
Riemann sheet denoted by ð−;þ;þÞ. Their broad charmed
partners were extensively discussed in previous theoretical
studies [4,7,10,15,48,49]. Our prediction of their pole
masses are ð5.52ð3Þ − 0.12ð5ÞiÞ GeV for the 0þ state
and ð5.57ð3Þ − 0.12ð5ÞiÞ GeV for the 1þ state. Both of
them are in agreement with previous theoretical predictions
[4,10,48,50].
In the charmed and beauty sector, there are further poles

belonging to a flavor sextet. In Table III, we listed the
complex pole masses found in the sextet channels with
ðI; SÞ ¼ ð1=2; 0Þ and (1,1) from Fits 1, 3, and 4. The other
sextet channel, with ðI; SÞ ¼ ð0;−1Þ, shows a pole in the
vicinity of the scattering threshold within the range of our
theoretical uncertainty always. The resonances with
ðI; SÞ ¼ ð1=2; 0Þ were also obtained in previous works
[48,50] with masses (5.84–5.85) GeVand (5.88–5.91) GeV,
respectively, for JP ¼ 0þ and 1þ. Our predicted values are
significantly smaller than those. The JP ¼ 0þ member with
ðI; SÞ ¼ ð1; 1Þ is of particular interest. It has been specu-
lated that the controversial Xð5568Þ state has such quantum
numbers (see e.g., [51,52]). In [4], it was shown that the LO
Tomozawa-Weinberg interaction implies the existence of
an exotic state with JP ¼ 0þ and ðI; SÞ ¼ ð1; 1Þ quantum
numbers at

ffiffiffi
s

p
≃ ð5.79ð3Þ − 0.07ð1ÞiÞ GeV. We demon-

strate that this prediction is quite stable against higher-order

TABLE II. Complex pole masses (in GeV) of the flavor
antitriplet states with JP ¼ 0þ and 1þ. The relevant Riemann
sheets are ð−;þ;þÞ and ðþ;þÞ for ðI; SÞ ¼ ð1=2; 0Þ and (0, 1).

ðI; SÞ ¼ ð1=2; 0Þ ðI; SÞ ¼ ð0; 1Þ
JP ¼ 0þ
Fit 1 5.5202þ282

−209 − 0.0923þ463
−254 i 5.6296þ431

−395
Fit 3 5.5137þ179

−225 − 0.1073þ623
−387 i 5.5689þ614

−544
Fit 4 5.5126þ154

−196 − 0.1120þ595
−384 i 5.5755þ610

−535
TW 5.5207þ260

−190 − 0.0905þ456
−243 i 5.6495þ353

−310

JP ¼ 1þ
Fit 1 5.5652þ283

−208 − 0.0915þ460
−252 i 5.6763þ428

−391
Fit 3 5.5595þ179

−224 − 0.1071þ624
−384 i 5.6179þ610

−542
Fit 4 5.5586þ156

−198 − 0.1115þ597
−382 i 5.6242þ605

−533
TW 5.5658þ260

−190 − 0.0903þ455
−242 i 5.6959þ354

−311
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corrections from our Fits 1, 3, and 4. The pole mass comes at
ð5.80ð3Þ − 0.14ð8ÞiÞ GeV as shown in Table III. We con-
clude that theXð5568Þ cannot be a chiral excitation, i.e., it is
not explained convincingly by chiral coupled-channel
dynamics. This supports previous such claims [53,54].

V. SUMMARY

We studied open-beauty mesons with JP ¼ 0þ and 1þ
quantum numbers. Such states were predicted as a conse-
quence of coupled-channel interactions based on the chiral
SU(3) Lagrangian. Already the leading-order Tomozawa-
Weinberg interaction implies attractive forces in the flavor

antitriplet and sextet channels between the Goldstone
bosons and the heavy-meson ground states with JP ¼ 0−

and 1− quantum numbers.
In this article the role of the next-to-leading order chiral

interactions in the s-wave open-beauty meson scattering
processes was scrutinized. The LEC are derived mainly
from corresponding LEC as obtained previously from
global fits to the QCD lattice dataset in the charm sector
[12]. Where possible additional direct data form the beauty
sector were taken into account. The heavy-quark scaling
behavior is constrained by the RG-invariant Wilson coef-
ficient for the chromomagnetic moment. We employ the
results of the Wilson coefficient calculated at the two-
loop level.
We find that in the antitriplet but also in the exotic flavor

sextet, the chiral correction terms lead to minor effects in
the JP ¼ 0þ and 1þ pole masses only. This confirms the
semiquantitative predictions made almost two decades ago
by one of the authors. Our refined values should be used in
ongoing experimental searches and QCD lattice simula-
tions. It is noted, however, that like in the open-charm
sector, we expect the light-quark mass dependence in
the flavor antitriplet and sextet states to be significant.
This should be investigated further, in particular for the πB
s-wave phase shifts.
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