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It is shown that the IIB matrix model compactified on a six-dimensional torus with a
nontrivial topology can provide chiral fermions and matter content close to the standard
model on our four-dimensional spacetime. In particular, generation number three is given
by the Dirac index on the torus.
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§1. Introduction

Matrix models are a promising candidate to formulate the superstring theory
nonperturbatively,1),2) and they indeed include quantum gravity and gauge theory.
One of the important subjects in such studies is to connect these models to phe-
nomenology. Spacetime structures can be analyzed dynamically in the IIB matrix
model,3) and four dimensionality seems to be preferred.3),4) Assuming that four-
dimensional spacetime is obtained, we next want to show the standard model of
particle physics on it. An important ingredient of the standard model is the chi-
rality of fermions. Chirality also ensures the existence of massless fermions, since,
otherwise, quantum corrections would induce mass of the order of the Planck scale
or of the Kaluza-Klein scale in general.

A way to obtain chiral spectrum in our spacetime is to consider topologically
nontrivial configurations in the extra dimensions.∗∗) Owing to the index theorem,7)

the topological charge of the background provides the index of the Dirac operator,
i.e., the difference in the numbers of chiral zero modes, which then produce massless
chiral fermions on our spacetime. Generalizations of the index theorem to matrix
models or noncommutative (NC) spaces with finite degrees of freedom were pro-
vided by using a Ginsparg-Wilson (GW) relation∗∗∗) developed in the lattice gauge
theory.11)

In M4 × S2 × S2 embeddings in the IIB matrix model, however, we could not
obtain a chiral spectrum on M4, even though the IIB matrix model is chiral in ten
dimensions, and topological configurations give chiral zero modes on S2 × S2, since

∗) E-mail: haoki@cc.saga-u.ac.jp
∗∗) Having this mechanism in mind, we analyzed the dynamics of a model on a fuzzy 2-sphere and

showed that topologically nontrivial configurations are indeed realized.5) Models of four-dimensional

field theory with fuzzy extra dimensions were studied in Ref. 6).
∗∗∗) GW Dirac operators on a fuzzy 2-sphere and a NC torus were given in Refs. 8) and 9),

respectively. A general formulation for constructing GW Dirac operators on general geometries and

defining the corresponding index theorem was provided in Ref. 10).
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522 H. Aoki

the remainder dimensions M10/(M4 × S2 × S2) interrupt.12) This obstacle arises
generally in the cases with remainder dimensions, such as the coset space construc-
tions. We thus have to consider the situations where topological configurations are
embedded in the entire six extra dimensions.∗)

We then consider compactifications on tori, such as M4×T 6. Toroidal compact-
ifications in the matrix models were studied in Refs. 13) and 14), and their unitary
matrix formulations were also considered.15) Moreover, a formulation for gauge the-
ories with adjoint matter in nontrivial topological sectors on a NC torus was given
by using the Morita equivalence.16) For the fundamental matter, since the Morita
equivalence is not satisfied in this case, a matrix model formulation was provided in
a purely algebraic way.17),∗∗)

In this paper, we begin with a gauge theory with adjoint matter in the triv-
ial topological sector, since adjoint matter naturally arises from the matrix models
whose action is written by the commutators. We then introduce block-diagonal
matrix configurations as topologically nontrivial gauge field backgrounds. The off-
diagonal blocks of the adjoint matter field, which are in the bifundamental represen-
tations of the gauge group produced by the background, thus obtain nonzero Dirac
indices. Note that nontrivial topologies are given by the backgrounds, not by impos-
ing suitable boundary conditions by hand. We further show that such configurations,
when considered in the extra dimensions in the IIB matrix model, indeed give chiral
spectrum on our spacetime. We also study the dynamics of these configurations by
investigating their classical actions, and find that they appear in the continuum limit
as in the gauge theories on the commutative spaces. We finally present an example
of a configuration that gives matter content close to the standard model.∗∗∗)

In §2, we briefly review the finite matrix formulation of gauge theories with ad-
joint matter on a NC torus, including the formulation of the GW Dirac operator
and the index theorem. Then in §3, we introduce block-diagonal configurations as
topological backgrounds. Explicit forms of the configurations on two-dimensional
and six-dimensional tori are given in §§4 and 5, respectively. Dynamics of the con-
figurations are studied in §4.1. In §6, we show an example of a configuration that
gives matter content close to the standard model. Section 7 is devoted to conclusions
and discussion. In Appendix A, we calculate the index of the GW Dirac operator.

∗) In the case of spheres, if we also embed topological structures in the direction of the thickness

of the sphere shell, the problem is resolved.
∗∗) All the formulations for toroidal compactifications correspond to imposing the periodic or the

twisted boundary conditions on the matrices, rather than embedding manifolds in larger-dimensional

spaces. In this sense, they are related to orbifolds and orientifolds. Their matrix model formulations

were studied, for instance, in Refs. 18) and 19), respectively.
∗∗∗) Almost all the arguments and results presented in this paper are valid in general contexts with

toroidal compactifications and nontrivial topologies, and do not depend on our specific settings, i.e.,

the unitary matrix formulation and the NC space. Here, we exploit the unitary matrix formulation

since it is described by finite matrices. We also think that noncommutativities arise naturally if

we start from the matrix models.14), 20) We will also discuss in §7 that the noncommutativity may

give a seed to select matrix configurations with three generations dynamically from many possible

classical solutions.
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Chiral Fermions and Standard Model from Matrix Model on Torus 523

§2. Gauge theory with adjoint matter on a NC torus

In this section, we briefly review the finite matrix formulation of gauge theories
with adjoint matter on a NC torus. For details, see Ref. 16), for instance. Here, we
consider a simple setting that gives a topologically trivial sector, however.

An action for the gauge fields on a d-dimensional NC torus can be given by the
twisted Eguchi-Kawai model21),22)

Sb = −Nβ
∑
μ �=ν

Zνμtr
(
Vμ Vν V

†
μ V

†
ν

)
+ d(d− 1)βN 2 , (2.1)

with μ, ν = 1, . . . , d. Here, Vμ denote U(N ) matrices representing the link variables
on the lattice, β stands for the lattice gauge coupling constant, and Zνμ are ZN
factors that are assumed to be specified to give the topologically trivial sector. The
constant term is added to make the action vanish at its minimum.

Actions for adjoint matter are given by using covariant forward and backward
difference operators

∇μψ =
1
ε

(
Vμ ψ V

†
μ − ψ

)
,

∇∗
μψ =

1
ε

(
ψ − V †

μ ψ Vμ

)
, (2.2)

with Vμ ∈ U(N ) introduced above. ε is an analog of the lattice spacing. For instance,
a Wilson-Dirac operator DW is defined as

DW =
1
2

d∑
μ=1

{
γμ

(
∇∗

μ + ∇μ

)
− ε∇∗

μ∇μ

}
, (2.3)

where γμ are d-dimensional Dirac matrices.
One can also define a GW Dirac operator as∗)

DGW =
1
ε
(1 − γγ̂) , (2.4)

where γ is an ordinary chirality operator on the d-dimensional space, and γ̂ is a
modified one defined as

γ̂ =
H√
H2

, (2.5)

H = γ (1 − εDW) , (2.6)

with DW given in (2.3). They satisfy the relations

γ† = γ , γ̂† = γ̂ , γ2 = γ̂2 = 1 . (2.7)

∗) We explain it according to the general formulation10) here, while it was obtained by applying

the Neuberger’s overlap Dirac operator to a NC torus.9)
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524 H. Aoki

Then, by the definition (2.4), the Dirac operator satisfies a GW relation

γDGW +DGWγ̂ = 0 . (2.8)

Hence, the index, i.e., the difference in the numbers of chiral zero modes, is given by
the trace of the chirality operators as

index(DGW) =
1
2
T r [γ + γ̂] , (2.9)

where T r is the trace over the whole configuration space. Since the definition of γ̂
depends on the link variables Vμ, the right-hand side (rhs) of (2.9) is a functional
of the gauge field configurations. It also takes only integer values, since it is a trace
of sign operators. Moreover, it is shown to become the Chern character with star
product in the continuum limit for the fundamental matter.23) It then gives a non-
commutative generalization of the topological charge for the gauge field backgrounds.
Thus, Eq. (2.9) gives an index theorem on the NC torus.

We expect, however, that the rhs of (2.9) vanishes for any configurations Vμ

that survive in the continuum limit because of the following reasons: First, the
rhs of (2.9) is considered to have an appropriate continuum limit, as shown for the
fundamental matter case in Ref. 23). Since the adjoint matter is chiral-anomaly-
free in 2 (mod 4) dimensions, it must vanish. Second, since we now begin with the
matrix model (2.1) describing the trivial module, only the topologically trivial sector
appears in the continuum limit, as shown in Refs. 24) and 25). We therefore need
some modifications in order to have nontrivial topologies, which we will study in the
next section.

§3. Topological configurations

As topologically nontrivial gauge configurations, we introduce the following
block-diagonal matrices:

Vμ =

⎛
⎜⎜⎜⎝
V 1

μ

V 2
μ

. . .
V h

μ

⎞
⎟⎟⎟⎠ , (3.1)

with h blocks and μ = 1, . . . , d. As we will see in the following sections, each block
produces gauge group U(pa) with a = 1, . . . , h.

We also introduce the following projection operators P a with a = 1, . . . , h, which
pick up the space that ath block acts:

P a =

⎛
⎜⎜⎜⎜⎜⎜⎝

. . .
0

11
0

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.2)
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Chiral Fermions and Standard Model from Matrix Model on Torus 525

Since P a commutes with the chirality operator (2.5) and the Dirac operator (2.4),
the index theorem (2.9) is satisfied in each space projected by P a as

index(P aLP bRDGW) =
1
2
T r [P aLP aR(γ + γ̂)] , (3.3)

where the superscript L (R) means that the operator acts from the left (right) on
matrices: OLM ≡ OM, ORM ≡ MO. P aLP bR picks up the following block ψab

from the matter field ψ in the adjoint representation:

ψ =

⎛
⎜⎜⎜⎝
ψ11 ψ12 · · · ψ1h

ψ21 ψ22 · · · ψ2h

...
...

. . .
...

ψh1 ψh2 · · · ψhh

⎞
⎟⎟⎟⎠ , (3.4)

where we decompose ψ into blocks in the same way as (3.1). The diagonal blocks
ψaa are in the adjoint representations under the gauge group, while the off-diagonal
blocks ψab with a �= b are in the bifundamental representations. As shown in the
following sections, the index of each block (3.3) can have nonzero values, although
the total matrix ψ has a vanishing index.

In the remainder of this section, we show that, by considering the configurations
(3.1) with d = 6 in the extra dimensions in the IIB matrix model, chiral fermions on
our four-dimensional spacetime are obtained. See Ref. 12) for detailed arguments.
For d = 2 (mod 4), the topological charge becomes the (d/2)th Chern character,
with d/2 being an odd integer. Hence, ψab and ψba, which are in the conjugate
representations under the gauge group, have the opposite indices. We denote the
corresponding chiral zero modes as ψab

R and ψba
L , where the subscripts R and L stand

for the chirality. (Choosing ψab
L and ψba

R instead would give the identical results shown
below.) Taking spinors ϕ on our four-dimensional spacetime as well, we obtain the
following possible Weyl spinors:

ϕR ⊗ ψab
R , (3.5)

ϕL ⊗ ψba
L , (3.6)

ϕL ⊗ ψab
R , (3.7)

ϕR ⊗ ψba
L . (3.8)

The spinors (3.5) and (3.6) are in the charge conjugate representations to each other
under the gauge and the Lorentz groups; so are (3.7) and (3.8).

Since the IIB matrix model has a ten-dimensional Majorana-Weyl spinor, we
now impose these conditions. By the Weyl condition, (3.5) and (3.6) are chosen.
(Choosing (3.7) and (3.8) gives identical results.) Since the four-dimensional Weyl
spinors ϕR in (3.5) and ϕL in (3.6) are in the different representations under the
gauge group, they give chiral spectrum on our spacetime, although we still have a
doubling of (3.5) and (3.6). Furthermore, by the Majorana condition, (3.5) and (3.6)
are identified. (So are (3.7) and (3.8).) Then, the unwanted doubling of (3.5) and
(3.6) is also resolved.
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526 H. Aoki

§4. Two-dimensional torus

In this section, we show explicit forms of the configurations (3.1) with d =
2. In the context of M4 × T 6 compactifications in the IIB matrix model, this T 2

corresponds to the one in T 6 = T 2 × T 2 × T 2.
We consider the following configurations:

Vμ =

⎛
⎜⎜⎜⎝
Γ 1

μ ⊗ 11p1

Γ 2
μ ⊗ 11p2

. . .
Γ h

μ ⊗ 11ph

⎞
⎟⎟⎟⎠ , (4.1)

with μ = 1, 2. The factors 11pa with a = 1, . . . , h give gauge group U(p1)×· · ·×U(ph).
The matrices Γ a

μ represent NC tori with magnetic fluxes specified by integers qa. The
configurations (4.1) are classical solutions for the action (2.1), as shown in Ref. 24).

We now show some details about formulations of a NC torus. For more details,
see Ref. 17). We use the same conventions as in Ref. 17) here. The matrix Γ a

μ is a
shift operator on a dual torus specified by a set of integers na,ma, ja, k′a for each a.
They satisfy the Diophantine equation,

maja + nak′a = 1 . (4.2)

We also introduce an original torus specified by a set of integers N, s, r, k, satisfying
the Diophantine equation,

2rs− kN = −1 . (4.3)

The dual torus and the original torus are related by the integer qa, which specifies
the magnetic flux on the dual torus, as∗)

ma = −s+ kqa , na = N − 2rqa . (4.4)

Equation (4.4) can be inverted as

1 = 2rma + kna , qa = Nma + sna . (4.5)

Explicit forms of the coordinate and the shift operators on the dual torus are
given, for instance, as

Za
1 = Wna , Za

2 = (Vna)ja
,

Γ a
1 = Vna , Γ a

2 = (Wna)−ma
, (4.6)

∗) In Ref. 17), the dual torus is determined by the two integers p and q, which specify the gauge

group U(p) and the abelian flux. The present case corresponds to p = pa, q = paqa, and hence,

p0 = pa, p̃ = 1, q̃ = qa.
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Chiral Fermions and Standard Model from Matrix Model on Torus 527

in terms of the shift and clock matrices

Vn =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0
0 1

. . . . . .
. . . 1

1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, Wn =

⎛
⎜⎜⎜⎜⎜⎝

1
e2πi/n

e4πi/n

. . .
e2πi(n−1)/n

⎞
⎟⎟⎟⎟⎟⎠ ,

(4.7)
which are U(n) matrices obeying the commutation relations

VnWn = e2πi/nWnVn . (4.8)

The off-diagonal block ψab in (3.4) can be interpreted as in the fundamental
representation, if we identify the bth block as an original torus. The corresponding
integer q is thus given by (4.5), with N and s replaced by nb and −mb, respectively.
Substituting (4.4) and using (4.3), we obtain

nbma −mbna = qa − qb . (4.9)

Then, the index for the block ψab (3.3) should become

1
2
T r [P aLP aR(γ + γ̂)] = papb(qa − qb) . (4.10)

Indeed, as shown by the explicit calculations in Appendix A, Eq. (4.10) is satisfied
in general, except for the rare cases with |r| = 1, na = 1, and nb = 2|qa − qb|+ 1, or
the cases with na and nb reversed. As long as we consider the cases with the block
sizes na greater than one, Eq. (4.10) is satisfied. The Monte Carlo results in Ref. 26)
also support (4.10). Equation (4.10) means that the index of each component in the
(pa, p̄b) representation under the gauge group U(pa) × U(pb) is qa − qb. By using a
relation

na − nb = −2r(qa − qb) (4.11)

given by (4.4), Eq. (4.10) is rewritten as

1
2
T r [P aLP aR(γ + γ̂)] = − 1

2r
papb(na − nb) . (4.12)

The same equation was given for the fuzzy 2-sphere case in Eq. (5.4) of Ref. 12),∗)

except for the factor 2r.

4.1. Classical actions

We now study the dynamics of the configurations (4.1) by evaluating their clas-
sical actions (2.1). Similar analyses were given in Ref. 24), but the present case
corresponds to the situation where all the configurations are in the topologically
trivial sector in the sense of Ref. 24), where the topology was defined in terms of the

∗) The case with the fundamental matter was studied in Ref. 27). The formulation was further

extended to S2 × S2 in Ref. 28).
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528 H. Aoki

total matrix. Now, the nontrivial topologies arise from the blocks, as explained in
§3.

We take p1 = · · · = ph = 1 without loss of generality. We also choose the integers
r and k specifying the original torus to be r = −1, k = −1, which give s = N+1

2 from
(4.3), following the previous works.24)–26) From (4.4), na = N+2qa and ma = −na+1

2
are determined. It then follows from (4.6) that

Γ a
1 Γ

a
2 = e2πi na+1

2na Γ a
2 Γ

a
1 . (4.13)

Choosing the phase Zμν in the action (2.1) as

Z12 = e2πiN+1
2N , (4.14)

the actions for the configurations (4.1) become

S = −2Nβ

h∑
a=1

na cos
(
π

(
1
N − 1

na

))
+ 2βN 2 . (4.15)

For h blocks with the same sizes, n1 = . . . = nh, (4.15) becomes

Sh = βπ2(h− 1)2 − 1
12
βπ4(h− 1)4

1
N 2

+ O
(
(1/N )4

)
. (4.16)

We now study the cases where the block sizes are different. For simplicity, we
consider the cases with h = 3 and the size of the total matrix N and that of the
third block n3 fixed. They correspond to the cases where we focus on the two blocks
with the other h− 2 blocks fixed. The action (4.15) for n ≡ n1 becomes

S(n) = −2Nβ

[
n cos

(
π

(
1
N − 1

n

))

+(N − n3 − n) cos
(
π

(
1
N − 1

N − n3 − n

))]
, (4.17)

where we did not write the constant terms. As shown in Fig. 1, S(n) has its minimum
at the middle point n = N−n3

2 with a flat plateau around it. The function S(n) is
in fact symmetric at the middle point and convex downwards. We note that the
middle point corresponds to the configuration where the first and second blocks have
the same size, which gives trivial topology to the off-diagonal block ψ12. We then
consider the difference in the actions between the topologically trivial and nontrivial
configurations. By expanding in 1/(N − n3), we obtain

S

(
N − n3

2
+m

)
− S

(
N − n3

2

)
= 16π2β

m2

(N − n3)2
+ O

(
1/(N − n3)3

)
. (4.18)

The difference in the block sizes n1 − n2 = 2m is also given as (4.11). Thus, (4.18)
becomes

ΔS � 16π2βr2
(q1 − q2)2

(N − n3)2
. (4.19)
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Fig. 1. The classical action (4.17) as a function of n is displayed. Here, we take N = 153 and

n3 = 51.

Therefore, within the configurations with a restricted number of blocks, the topolog-
ical configurations appear in the continuum limit, since the continuum limit is taken
by sending β and N to infinity with β/N fixed.29)

This situation agrees with the cases in gauge theories on the commutative spaces,
where one has

ΔScom = 4π2β

(
q

(N − n3)/2

)2

, (4.20)

which becomes 4π2(q/gL)2 in the continuum limit, where L = ε(N − n3)/2 is the
physical size of the torus, and g is the gauge coupling constant. On the other hand,
this is contrary to the cases in Refs. 24) and 25), where topologies are defined by
the total matrix on the NC torus. There, studies by classical actions and Monte
Carlo calculations gave ΔS ∼ β(N − n3), or ΔS ∼ β at best, and topologically
nontrivial configurations do not survive in the continuum limit.24),25) Since we now
define topologies by the blocks, not by the total matrix, we recover the situations
close to the ordinary commutative spaces.

§5. Six-dimensional torus

Extension of the configurations (4.1) to six dimensions is straightforward. They
are given as

Vµ =

0
BBBB@

Γ 1
1,µ ⊗ 11n1

2
⊗ 11n1

3
⊗ 11p1

Γ 2
1,µ ⊗ 11n2

2
⊗ 11n2

3
⊗ 11p2

. . .

Γ h
1,µ ⊗ 11nh

2
⊗ 11nh

3
⊗ 11ph

1
CCCCA

,

V2+µ =

0
BBBB@

11n1
1
⊗ Γ 1

2,µ ⊗ 11n1
3
⊗ 11p1

11n2
1
⊗ Γ 2

2,µ ⊗ 11n2
3
⊗ 11p2

. . .

11nh
1
⊗ Γ h

2,µ ⊗ 11nh
3
⊗ 11ph

1
CCCCA

,
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V4+µ =

0
BBBB@

11n1
1
⊗ 11n1

2
⊗ Γ 1

3,µ ⊗ 11p1

11n2
1
⊗ 11n2

2
⊗ Γ 2

3,µ ⊗ 11p2

. . .

11nh
1
⊗ 11nh

2
⊗ Γ h

3,µ ⊗ 11ph

1
CCCCA

,

(5.1)

with μ = 1, 2. In Γ a
l,μ, na

l , and pa, a = 1, . . . , h specifies the blocks, and l = 1, 2, 3
specifies T 2’s in T 6 = T 2 × T 2 × T 2.

The operators Γ a
l,μ are shift operators on the dual tori specified by a set of integers

na
l ,m

a
l , j

a
l , k

′a
l , while the original tori are specified by Nl, sl, rl, kl. The integers satisfy

the Diophantine equations,

ma
l j

a
l + na

l k
′a
l = 1 , (5.2)

2rlsl − klNl = −1 , (5.3)

for each a = 1, . . . , h and l = 1, 2, 3. The dual tori and the original tori are related
by integers qa

l as
ma

l = −sl + klq
a
l , na

l = Nl − 2rlqa
l , (5.4)

for each a and l. Equation (5.4) can be inverted as

1 = 2rlma
l + kln

a
l , qa

l = Nlm
a
l + sln

a
l . (5.5)

Explicit forms of the coordinate and the shift operators on the dual tori are
given, for instance, as

Za
l,1 = Wna

l
, Za

l,2 = (Vna
l
)ja

l ,

Γ a
l,1 = Vna

l
, Γ a

l,2 = (Wna
l
)−ma

l , (5.6)

in terms of the shift and clock matrices (4.7). As shown in Ref. 24), the configurations
(5.1) are classical solutions for the action (2.1). Note also that (5.1) represents
configurations with magnetic flux in each T 2, and does not exhaust all the topological
configurations in T 6.

The index for the block ψab (3.3) should become

1
2
T r [P aLP aR(γ + γ̂)] = papb

3∏
l=1

(qa
l − qb

l ) . (5.7)

This can also be checked as in Appendix A. Since numerical calculations take a much
longer time for the six-dimensional case, we will report on it in a future publication.

§6. A standard model embedding in IIB matrix model

We now present an example of configuration (5.1) which, when considered in the
extra dimensions in the IIB matrix model, gives matter content close to the standard
model. We can consider the situations where all the ten dimensions are compact-
ified to a torus, but with an asymmetry of the sizes between our four-dimensional
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Chiral Fermions and Standard Model from Matrix Model on Torus 531

spacetime and the extra six-dimensional space. Alternatively, we can consider the
cases where our four-dimensional spacetime is not compactified and described by
Hermitian matrices as in the original IIB matrix model. In this case, we consider
the backgrounds as

Aμ = xμ ⊗ 11 , (μ = 7, . . . , 10)
V ′

μ = 11 ⊗ Vμ , (μ = 1, . . . , 6) (6.1)

with Vμ given by (5.1). Our spacetime is represented by the backgrounds xμ. Here,
we denote our spacetime directions as μ = 7, . . . , 10 in order to follow the notations
in the previous sections.

Let us now focus on Vμ given in (5.1). The number of blocks is taken to be
h = 4. The integers qa

l are taken, for instance, as

qab
1 =

⎛
⎜⎜⎝

0 1 0 1
0 −1 0

0 1
0

⎞
⎟⎟⎠ , qab

2 =

⎛
⎜⎜⎝

0 1 0 3
0 −1 2

0 3
0

⎞
⎟⎟⎠ , qab

3 =

⎛
⎜⎜⎝

0 3 0 1
0 −3 −2

0 1
0

⎞
⎟⎟⎠ ,

(6.2)
where we presented qab

l = qa
l −qb

l . The lower triangle part is obtained from the upper
one by the relation qab

l = −qba
l . Hence, qab =

∏3
l=1 q

ab
l becomes

qab =

⎛
⎜⎜⎝

0 3 0 3
0 −3 0

0 3
0

⎞
⎟⎟⎠ . (6.3)

The generation number three is obtained, as we will explain in detail below.
We next incorporate the gauge group structure by specifying the integers pa as∗)

Vμ =

⎛
⎜⎜⎝
Γ 1

μ ⊗ 113

Γ 2
μ ⊗ 112

Γ 3
μ

Γ 4
μ ⊗ σ3

⎞
⎟⎟⎠ , (6.4)

with μ = 1, . . . , 6. σ3 is the Pauli matrix. The gauge group given by this background
is U(3) × U(2) × U(1)3 � SU(3) × SU(2) × U(1)5.

The fermionic matter content of the standard model is obtained from the fermi-
onic matrix ψ as

ψ =

⎛
⎜⎜⎝

0 q 0 ud
0 l̄ 0

0 νe
0

⎞
⎟⎟⎠ , (6.5)

where each block ψab is na
1n

a
2n

a
3p

a × nb
1n

b
2n

b
3p

b matrices. Here, q denotes the quark
doublets, l the lepton doublets, ud the quark singlets, and νe the lepton singlets.

∗) Similar configurations were studied in Ref. 30).
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They are in the correct representations under the gauge group SU(3)×SU(2). From
(6.3), they all have qab three. Using (5.7), we find that they have appropriate indices
that give generation number three. The other blocks in (6.5) denoted as 0 have a
vanishing index and do not give massless particles on our spacetime.

The hypercharge Y is given by a linear combination of five U(1) charges pre-
sented below (6.4) as

Y =
5∑

i=1

xiQi , (6.6)

where Qi = ±1 with i = 1, . . . , 5 is the charge of ith U(1) gauge group. From the
hypercharge of q, u, d, l, ν, and e, the following constraints are obtained:

x1 − x2 = 1/6 , x1 − x4 = 2/3 , x1 − x5 = −1/3 ,
−x2 + x3 = −1/2 , x3 − x4 = 0 , x3 − x5 = −1 . (6.7)

Their general solutions are given by

x1 = 2/3 + c , x2 = 1/2 + c , x3 = x4 = c , x5 = 1 + c , (6.8)

with c being an arbitrary constant.

§7. Conclusions and discussion

In this paper, we first introduced block-diagonal matrices for topologically non-
trivial gauge field configurations on a NC torus, and found that off-diagonal blocks
of the adjoint matter can have nonzero Dirac indices. We then showed that, by
considering these configurations in the extra dimensions in the IIB matrix model,
chiral fermions and matter content close to the standard model can be obtained on
our four-dimensional spacetime. In particular, generation number three was given
by the Dirac index on the torus. Several things remain to be clarified, some of which
we list below. We will report on these issues in future publications.

Our model close to the standard model gave five U(1) gauge fields. The hy-
percharge UY (1) will remain massless, while the others become massive by some
dynamics of the matrix model, or of the field theories that arise as low-energy effec-
tive theories of the matrix model. While we did not discuss the Higgs field in the
present paper, it should be introduced, and the mechanism of electroweak symmetry
breaking and values of the Yukawa couplings should also be studied.

Our model is reminiscent of the intersecting D-brane models.31),32) There, one
can obtain four-dimensional chiral fermions by the same reason as ours, that is,
one has no remainder dimensions normal to all the D-branes intersecting with one
another.33) The model in Ref. 31) gives the standard model matter content. Since
that setting is related to ours by the T-duality, it is interesting to compare them with
each other. These studies may advance both string theories and matrix models.

In this paper, we studied the dynamics of the configurations by investigating
the classical actions in the two-dimensional case, and found that topologically non-
trivial configurations appear in the continuum limit, within the configurations with
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restricted number of blocks, as in the commutative theories. This shows a contrast
to the cases in Refs. 24) and 25), where topologies were defined by the total matrix,
not by the blocks, and only the topologically trivial sector survives in the continuum
limit. For studying higher-dimensional cases, however, quantum corrections become
relevant and should be taken into account. Owing to the quantum corrections with
the noncommutativity of the torus, a topologically nontrivial sector may arise with
higher probability than the trivial sector, as shown in Ref. 25). Then, the generation
number three might be chosen dynamically.

We hope to study the dynamics over wider regions in the configuration space,
including various compactifications, in the IIB matrix model. From these studies,
we might be able to find that the standard model or its extension is obtained as a
unique solution from the IIB matrix model or its variants. Or, more complicated
structures of the vacuum, such as the landscape,34) might be found. Even in this case,
since the matrix model has the definite measure as well as the action, we can define
probabilities taking account of the measure, and discuss entropy on the landscape.
The matrix models make these studies possible.

Appendix A
Calculations of the Index

In this appendix, we calculate the index of the Dirac operator for the back-
grounds (4.1) and confirm that Eq. (4.10) is indeed satisfied. It is sufficient to
consider the case with h = 2 and p1 = p2 = 1. For the off-diagonal block ψ12 of the
matter field ψ, the operation VμψV

†
μ becomes Γ 1

μψ
12Γ 2†

μ . Hereafter, we will write
ψ12 simply as ψ. By using the explicit forms of Γ a

μ in (4.6), we obtain

(Γ 1
1ψΓ

2†
1 )i,j = ψi+1,j+1 ,

(Γ 1
2ψΓ

2†
2 )i,j = (ωn1)−m1(i−1)(ωn2)m2(j−1)ψi,j , (A.1)

with ωn = e2πi/n. Here, ψij represents ij components of the matrix ψ.
The matrix ψ is n1×n2, and (A.1) is invariant under identifications i ∼ i+n1 and

j ∼ j+n2. When n1 and n2 are coprime, ψi,j with i = 1, . . . , n1 and j = 1, . . . , n2 are
mapped one-to-one by the above identifications to ψi,i with i = 1, . . . , n1n2, which
we denote as ψi:

ψi,j ∼ ψi,i ≡ ψi . (A.2)

Then, (A.1) is rewritten as

(Γ 1
1ψΓ

2†
1 )i = ψi+1 ,

(Γ 1
2ψΓ

2†
2 )i = (ωn1n2)−q12(i−1) , (A.3)

with q12 = q1 − q2. In the second equation, we used the relation (4.9). Γ 1†
1 ψΓ 2

1 and
Γ 1†

2 ψΓ 2
2 are similarly estimated. It then follows from (2.2) that

ε((∇∗
1 + ∇1)ψ)i = ψi+1 − ψi−1 ,
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Fig. 2. The indices are plotted for various values of q12 with n1n2 fixed. On the left, we take

n1n2 = 399, while on the right, we take n1n2 = 1295.

ε((∇∗
2 + ∇2)ψ)i = −2i sin

(
2π
n1n2

q12(i− 1)
)
ψi ,

ε2(∇∗
1∇1ψ)i = ψi+1 − 2ψi + ψi−1 ,

ε2(∇∗
2∇2ψ)i = 2

[
cos
(

2π
n1n2

q12(i− 1)
)
− 1
]
ψi . (A.4)

The operator H in (2.6) is written as

H =

(
1 + ε2

2 (∇∗
1∇1 + ∇∗

2∇2) − ε
2(∇∗

1 + ∇1) + i ε
2(∇∗

2 + ∇2)
ε
2(∇∗

1 + ∇1) + i ε
2(∇∗

2 + ∇2) −1 − ε2

2 (∇∗
1∇1 + ∇∗

2∇2)

)
(A.5)

by taking γμ = σμ for μ = 1, 2 and γ = σ3. Equations (A.4) and (A.5) give the
explicit operation of H on ψi,α, where α = 1, 2 is spinor index. In particular, the
operator H depends only on the two integers n1n2 and q12.

The index of the GW Dirac operator is given by the difference in the numbers
of the positive and negative eigenvalues of the operator H. We thus diagonalized
it numerically. In Fig. 2, we plot the indices for various values of q12 with n1n2

fixed. The result is periodic in q12 with periodicity n1n2, and asymmetric under an
exchange of q12 to −q12. The graphs have similar forms irrespective of the values of
n1n2. For n1n2 = 399, which is presented in the left figure, we find that the index
takes the identical value with q12, and thus, Eq. (4.10) is satisfied, in the region
|q12| ≤ 113. For n1n2 = 1295, it is satisfied in the region |q12| ≤ 367.

In Fig. 3, we plot the values of n1n2 and q12, where Eq. (4.10) is not satisfied.
Because of the periodicity in q12, it is enough to survey the region −(n1n2 − 1)/2 ≤
q12 ≤ (n1n2 − 1)/2 for odd n1n2, and −n1n2/2 + 1 ≤ q12 ≤ n1n2/2 for even n1n2.
From the left figure, we find that, within n1n2 ≤ 21, Eq. (4.10) is satisfied at least in
the region |q12| < (2/7)n1n2. For n1n2 ≤ 101, which is presented in the right figure,
such safety region that ensures (4.10) becomes |q12| < (23/81)n1n2. For n1n2 ≤ 201,
it becomes |q12| < (44/155)n1n2. For n1n2 ≤ 501, it becomes |q12| < (128/451)n1n2.
The coefficients 2/7, 23/81, 44/155, 128/451 slightly decrease as we increase n1n2.
They actually take

(22 + 1)l + (20 + 1)m
(77 + 4)l + (70 + 4)m

(A.6)

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/125/3/521/1861510 by guest on 21 August 2022



Chiral Fermions and Standard Model from Matrix Model on Torus 535

Fig. 3. The values of n1n2 and q12, where Eq. (4.10) is not satisfied, are plotted. Because of the

periodicity in q12, we survey the region −(n1n2 − 1)/2 ≤ q12 ≤ (n1n2 − 1)/2 for odd n1n2, and

−n1n2/2 + 1 ≤ q12 ≤ n1n2/2 for even n1n2. On the left, the region 3 ≤ n1n2 ≤ 21 is shown,

while on the right, the region 3 ≤ n1n2 ≤ 101 is shown. The lines in the left figure represent

q12 = ±(2/7)n1n2.

with l = 1 and m = 0, 1, . . . , 24 up to n1n2 = 1857,∗) and thus, they are bounded
from below by 21/74. We then conclude that, for any values of n1n2, Eq. (4.10) is
satisfied at least in the region |q12| < (1/3.53)n1n2.

In fact, from the constraint (4.11), n1n2 and q12 are required to satisfy

n1n2 = 2|rq12|n+ (n)2 , (A.7)

for some positive integer n. Then, only the cases with |r| = 1 and n = 1, which give
n1n2 = 2|q12|+ 1, are really allowed in the dotted region in Fig. 3, where Eq. (4.10)
is not satisfied. They correspond to the highest and lowest points for odd n1n2 in
Fig. 3. We therefore find that Eq. (4.10) is satisfied in general, except for the rare
cases with |r| = 1, n1 = 1, and n2 = 2|q12|+1, or the cases with n1 and n2 reversed.
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