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1. Introduction

The fact that the τ is the only lepton massive enough to decay into hadrons makes it an excel-

lent tool to study QCD, both perturbative and non-perturbative, using the precise hadronic τ -decay

data provided by ALEPH [1]. The determination of the QCD coupling αs(Mτ ) [2 – 6], which be-

comes the most precise determination of αs(MZ) after QCD running, is an excellent example. In

this particular case the non-perturbative contributions are strongly suppressed, but in other analy-

ses the non-perturbative effects are sizable and then one can extract important phenomenological

hadronic matrix elements and other non-perturbative QCD quantities. Thanks to the fact that the

spectral function of the τ decay can be separated experimentally in its vector and axial-vector

contributions, we can study their difference that is specially interesting because it vanishes in per-

turbative QCD (in the chiral limit) and therefore it is a purely non-perturbative quantity.

The τ -decay measurement of this V −A spectral function has been used to perform [7 – 9]

phenomenological tests of the so-called Weinberg sum rules (WSRs) [10], to compute the elec-

tromagnetic mass difference of the pions [8], and to determine several QCD vacuum condensates

[11, 12] relevant for the computation of ε ′
K/εK [13]. The common idea under these studies is the

use of the analyticity properties of the different two-point correlation functions appearing in the

dynamical description of the τ hadronic width. As it is well known, analyticity allows us to relate

different regions of the q2-complex plane. Roughly speaking, one can relate in this way regions

where we are able to compute analytically, either with Chiral Perturbation Theory (χPT) or with

the short-distance Operator Product Expansion (OPE), with regions where we are not able to com-

pute (except perhaps in the lattice) but that are experimentally accessible. This connection can be

used either to predict observables that we are not able to calculate “directly” or, in the other way

around, to extract the value of QCD parameters that are not fixed theoretically.

Using χPT [14 – 16], the hadronic τ -decay data can also be related to order parameters of the

spontaneous chiral symmetry breaking (SχSB) of QCD. χPT is the effective field theory of QCD

at very low energies that describes the physics of the SχSB Nambu-Goldstone bosons through an

expansion in external momenta and quark masses, with coefficients that are order parameters of

SχSB. At lowest order (LO), i.e. O(p2), all low-energy observables are described in terms of

the pion decay constant fπ ≃ 92.4 MeV and the light quark condensate. At O(p4), the SU(3)

χPT Lagrangian contains 12 low-energy constants (LECs), Li=1,···,10 and H1,2 [16], whereas at

O(p6) we have 94 (23) additional parameters Ci=1,···,94 (CW
i=1,···,23) in the even (odd) intrinsic parity

sector [18]. These LECs are not fixed by symmetry requirements alone and have to be determined

phenomenologically or using non-perturbative techniques. Values for the Li couplings have been

obtained in the past with an acceptable accuracy (a recent compilation can be found in ref. [19]),

but much less well determined are the O(p6) couplings Ci.

There has been a lot of recent activity to determine the chiral LECs analytically, using as much

as possible QCD information [20 – 29], and from lattice simulations [40 – 43]. This strong effort

is motivated by the precision required in present phenomenological applications, which makes

necessary to include corrections of O(p6) where the huge number of unknown couplings is the

major source of theoretical uncertainty.

Here we explain how the determination of some of these LECs can be improved significantly

using the most recent experimental data on hadronic τ decays [1]. In particular we will obtain the
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most accurate results for the χPT couplings L9, L10 and C87 or equivalently, in the SU(2) χPT

language, l5, l6 and c50 [30]. Previous work on L10 using τ -decay data can be found in refs. [8, 9,

11, 31]. Our analysis is the first one which includes the known two-loop χPT contributions and,

therefore, provides also the SU(3) (SU(2)) O(p6) couplings C87 (c50).

We will first introduce the sum rule relations that we will use, then we will show our results and

finally we will compare them with other recent analytic results and hadronic τ -data determinations.

2. Sum rule approach

s0sth

ReIq2M

ImIq2M

Figure 1: Analytic structure of Π(s).

The basic objects of the theoretical analysis are the two-point correlation functions of the non-

strange vector (J
µ

ud = V
µ

ud = uγµd) and axial-vector (J
µ

ud = A
µ
ud = uγµγ5d) quark currents:

Πµν
ud,J (q) ≡ i

∫

d4x eiqx 〈0|T
(

J µ
ud(x)J

ν
ud(0)†

)

|0〉

= (−gµν q2 + qµqν ) Π(1)
ud,J (q2) + qµqν Π(0)

ud,J (q2) . (2.1)

In particular, we are interested in the difference Π(s) ≡ Π(0+1)
ud,V −Π(0+1)

ud,A , and we will work in the

isospin limit (mu = md) where Π(0)
ud,V (q2) = 0. The analytic behaviour of this correlator is shown

in Fig.1, together with the complex circuit that we will use to apply Cauchy’s theorem. As we

are interested in relating the χPT domain (very low energies) with the τ data, we multiply this

correlator by a weight function of the form 1/sn with n > 0. In this way we generate a residue at

s = 0. Taking into account the OPE associated with our correlator at large momenta and working

with the cases n = 1,2, one gets the following sum rules (see ref. [30] for a careful derivation):

−8Leff
10 ≡

∫ ∞

sth

ds

s

1

π
ImΠ(s) =

2 f 2
π

m2
π

+ Π(0) , (2.2)

16Ceff
87 ≡

∫ ∞

sth

ds

s2

1

π
ImΠ(s) =

2 f 2
π

m4
π

+
dΠ
ds

(0) , (2.3)

where the integrations start at the threshold sth = 4m2
π. These two relations represent the starting

point of our work and define the effective parameters Leff
10 and Ceff

87 . Their interest stems from the

fact that the l.h.s. can be extracted from the data (see Section 3), while the r.h.s. can be rigourously

calculated within χPT in terms of the LECs that we want to determine (see Section 4).
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3. Determination of the effective parameters
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Figure 2: Leff
10(s0) and Ceff

87 (s0) from different sum rules. For clarity, we do not include the error bands

associated with the modified weights.

We use the recent ALEPH data on hadronic τ decays [1], that provide the most precise mea-

surement of the V −A spectral function. In the integrals of equations (2.2) and (2.3) we are forced

to cut the integration at a finite value s0, neglecting in this way the rest of the integral from s0 to

infinity. The superconvergence properties of Π(s) at large momenta imply a tiny contribution from

the neglected range of integration, provided s0 is large enough. Nevertheless, this generates a the-

oretical error called quark-hadron duality violation (DV)1. From the s0-sensitivity of the effective

parameters one can assess the size of this error.

In Fig. 2, we plot the value of Leff
10 obtained for different values of s0 (solid lines), with the

one-sigma experimental error band, and we can see a quite stable result at s0 &2 GeV2. The weight

function 1/s decreases the impact of the high-energy region, minimising the DV. The resulting

integral is then much better behaved than the corresponding sum rules with sn (n ≥ 0) weights.

There are some possible strategies to estimate the value of Leff
10 and his error. One is to give

the predictions fixing s0 at the so-called “duality points”, two points where the first and second

WSRs [10] happen to be satisfied. In this way we get Leff
10 = −(6.50 ± 0.13) · 10−3, where the

uncertainty covers the values obtained at the two “duality points”. If we assume that the integral

(2.2) oscillates around his asymptotic value with decreasing oscillations and we perform an average

between the maxima and minima of the oscillations we get Leff
10 = −(6.5± 0.2) · 10−3. Another

way of estimating the DV uses appropriate oscillating functions defined in [33] which mimic the

real quark-hadron oscillations above the data. These functions are defined such that they match

the data at ∼ 3 GeV2, go to zero with decreasing oscillations and satisfy the two WSRs. We

find in this way Leff
10 = −(6.50 ± 0.12) · 10−3, where the error spans the range generated by the

different functions used. These estimates are in good agreement with each other and give us a first

determination, but the most precise way to evaluate the error can be obtained taking advantage

of the WSRs to construct modified sum rules with weight factors w(s) proportional to (1− s/s0),

in order to suppress numerically the role of the suspect region around s∼ s0 [3]. Fig. 2 shows

the results obtained with w1(s)≡ (1−s/s0)/s (dashed line) and w2(s)≡ (1−s/s0)
2 /s (dot-dashed

line). These weights give rise to very stable results over a quite wide range of s0 values. One gets

1From a different but equivalent perspective, we are assuming that the OPE is a good approximation for Π(s) at any

|s|=s0, what is not expected to happen near the real axis, and that produces the DV.
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Leff
10 = −(6.51±0.06) ·10−3 using w1(s) and Leff

10 = −(6.45±0.06) ·10−3 using w2(s). Taking into

account all the previous discussion, we quote as our final result:

Leff
10 = −(6.48±0.06) ·10−3 . (3.1)

We have made a completely analogous analysis to determine Ceff
87 . The results are shown in

Fig. 2. The solid lines, obtained from Eq. (2.3), are much more stable than the corresponding results

for Leff
10 , due to the 1/s2 factor in the integrand. The dashed and dot-dashed lines have been obtained

with the modified weights w3(s) ≡
1
s2

(

1− s2

s2
0

)

and w4(s) ≡
1
s2

(

1− s
s0

)2 (

1+2 s
s0

)

. The agreement

among the different estimates is quite remarkable, and our final result is

Ceff
87 = (8.18±0.14) ·10−3 GeV−2 . (3.2)

Our result for Leff
10 agrees with [8, 11, 31], but our estimation includes a more careful assessment of

the theoretical errors. The 3.2σ discrepancy between the estimation of ref. [9] and ours is caused

by an underestimation of the systematic error associated with the duality-point approach used in

that reference. Only in ref. [31] Ceff
87 is also determined and it is in good agreement with our result.

4. Determination of the χPT couplings

Using the results of ref. [32] to calculate in χPT the r.h.s. of equations (2.2) and (2.3), we get

−8 Leff
10 = − 8 Lr

10(µ)+ G4
1L(µ)+ G6

0L(µ)+ G6
1L(µ)+ G6

2L(µ) , (4.1)

16 Ceff
87 = H4

1L + 16 Cr
87(µ)+ H6

1L(µ)+ H6
2L(µ) , (4.2)

where the functions Gm
nL(µ),Hm

nL(µ) are corrections of order pm generated at the n-loop level, which

explicit analytic form [30] is omitted for simplicity.

Working at O(p4), the determination of the chiral coupling L10 is straightforward. One gets

Lr
10(µ =Mρ) = −(5.22±0.06) ·10−3 . (4.3)

At order p6, the numerical relation is more involved because the small corrections G6
0L,1L(µ)

contain some LECs that represent the main source of uncertainty for Lr
10. It is useful to clas-

sify the O(p6) contributions through their ordering within the 1/NC expansion. The tree-level

term G6
0L(µ) contains the only O(p6) correction in the large–NC limit, 4m2

π(Cr
61−Cr

12−Cr
80);

this correction is numerically small because of the m2
π suppression and can be estimated with a

moderate accuracy [25, 26, 32, 34, 35]. At NLO G6
0L(µ) contributes with a term of the form

m2
K(Cr

62−Cr
13−Cr

81). In the absence of information about these LECs we will adopt the conserva-

tive range |Cr
62−Cr

13−Cr
81| ≤ |Cr

61−Cr
12−Cr

80|/3, which generates the uncertainty that will dominate

our final error on Lr
10. Also at this order in 1/NC there is the one-loop correction G6

1L(µ), that is

proportional to Lr
9 which is better known [36]. Calculating the 1/N2

C suppressed two-loop function

G6
2L(µ) and taking all these contributions into account we finally get the wanted O(p6) result:

Lr
10(Mρ) = −(4.06±0.04Leff

10
±0.39LECs) ·10−3 = −(4.06±0.39) ·10−3 , (4.4)

where the error has been split into its two main components.
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A recent reanalysis of the decay π+ → e+νγ [35], using new experimental data, has provided

quite accurate values for the combination L9 +L10, both at order p4 and p6, that combined with our

results for Lr
10(Mρ) give us

Lr
9(Mρ) =







(6.54±0.15) ·10−3 [O(p4)],

(5.50±0.40) ·10−3 [O(p6)].
(4.5)

Repeating the process we have done for Lr
10 with Cr

87 (where the only LEC involved is Lr
9) we get

Cr
87(Mρ) = (4.89±0.19) ·10−3 GeV−2 . (4.6)

5. SU(2) χPT

Up to now, we have discussed the LECs of the usual SU(3) χPT (χPT3). It turns useful to con-

sider also the effective low-energy theory with only two flavours of light quarks (χPT2). In some

cases, this allows to perform high-accuracy phenomenological determinations of the corresponding

LECs at NLO. Moreover, recent lattice simulations [43, 42] with two dynamical quarks are already

able to obtain the SU(2) LECs with sufficient accuracy and this is an important check for them.

In SU(2) χPT, there are ten LECs, li=1,..7 and h1,2,3, at O(p4) (NLO) [15]. Using the O(p6)

relation between lr
5(µ) and Lr

10(µ), recently obtained in ref. [37], we get

l5 =







13.30±0.11 [O(p4)],

12.24±0.21 [O(p6)].
(5.1)

Analogously to the SU(3) case, the combination l6 − l5 has been determined from the analysis of

π→ lνγ [44]. In combination with our determinations for l5 this gives us2

l6 =







15.80±0.29 [O(p4)],

15.22±0.39 [O(p6)].
(5.2)

Making use of the recent results obtained in reference [37] we can also rewrite our result for

Cr
87 in the χPT2 language, getting in this way the first determination of cr

50

cr
50(Mρ) = (4.95±0.19) ·10−3 GeV−2 . (5.3)

6. Summary and comparison with previous estimates

Tables 1 and 2 summarize our determinations of chiral LECs at O(p6) and O(p4), respectively.

They have been obtained through a sum rule analysis that only uses general properties of QCD and

the measured V−A spectral function [1], and taking into account the results of refs. [35, 44].

Our determination of Lr
10 (l5) is the first one extracted from τ -decay data at O(p6). We can

make an indirect and interesting check comparing our O(p6) result for Lr
9 (l6) with the value

2Actually, at order p4, the most precise value of the combination l6− l5 is obtained if we calculate it from the SU(3)

combination L9 +L10 of ref. [35]. In this way we have obtained a prediction for l6 that supersedes that of ref. [30].

6
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χPT2 χPT3

l5 = 12.24±0.21 Lr
10(Mρ) = −(4.06±0.39) ·10−3

l6 = 15.22±0.39 Lr
9(Mρ) = (5.50±0.40) ·10−3

cr
50 = (4.95±0.19) ·10−3 GeV−2 Cr

87(Mρ) = (4.89±0.19) ·10−3 GeV−2

Table 1: Results for the χPT LECs obtained at O(p6).

χPT2 χPT3

l5 = 13.30±0.11 Lr
10(Mρ) = −(5.22±0.06) ·10−3

l6 = 15.80±0.29 Lr
9(Mρ) = (6.54±0.15) ·10−3

Table 2: Results for the χPT LECs obtained at O(p4).

Lr
9(Mρ) = (5.93 ± 0.43) · 10−3 (l6 = 16.0 ± 0.5 ± 0.7) obtained from the charge radius of the

pion [36] ([45]). The agreement is very good and the improvement in the numerical value of l6 is

remarkable.

At order p4 we do have a previous estimate of Lr
10 from τ data [8] that found Lr

10(Mρ) =

−(5.13 ± 0.19) · 10−3, through a simultaneous fit of this parameter and the OPE corrections of

dimensions six and eight to several spectral moments of the hadronic distribution. This determi-

nation is in good agreement with our O(p4) result. Our quoted uncertainty has an smaller ex-

perimental contribution and includes a better assessment of the theoretical uncertainties. We can

also perform an indirect check through the comparison of our O(p4) result for Lr
9 with the value

Lr
9(Mρ) = (6.9±0.7) ·10−3 obtained from the charge radius of the pion [19]. We see again a very

good agreement and a clear improvement in the precision.

If we shift now from phenomenology to theory, we can compare our results with those obtained

from analytical approaches and lattice simulations. Our determinations of Lr
10(Mρ) and Cr

87(Mρ)

agree within errors with the large–NC estimates based on lowest-meson dominance [21, 24, 32, 38],

L10 ≈ −3 f 2
π/(8M2

V ) ≈ −5.4 · 10−3 and C87 ≈ 7 f 2
π/(32M4

V ) ≈ 5.3 · 10−3 GeV−2, and with the re-

sult of ref. [28] for C87, based on Padé approximants. These predictions however are unable

to fix the scale dependence which is of higher-order in 1/NC. More recently the resonance chi-

ral theory Lagrangian [24, 39] has been used to analyse the correlator Π(s) at NLO order in the

1/NC expansion. Matching the effective field theory description with the short-distance QCD be-

haviour, both LECs are determined, keeping full control of the µ-dependence. The predicted values

Lr
10(Mρ) = −(4.4±0.9) ·10−3 and Cr

87(Mρ) = (3.6±1.3) ·10−3 GeV−2 [29] are in perfect agree-

ment with our results, although less precise.

The most recent lattice calculations find the following results (order p4):

Lr
10(Mρ) =

{

−(5.2±0.5) ·10−3 [40],

−(5.7±1.1±0.7) ·10−3 [41],

l6 =

{

14.9±1.2±0.7 [42],

11.9±0.7±1.0 [43].
(6.1)

They are in good agreement with our determinations (although still far from the phenomenological

precision), but for the last one that is slightly smaller. As discussed in ref. [43], this is partly due to

7
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the deviation of the lattice determination of the pion decay constant from the χPT one.

Therefore we can conclude that the different analytical approaches and the various lattice

calculations agree very well with our precise phenomenological values.
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