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Abstract

The interplay of quantum anomalies with magnetic field and vorticity results in a variety of
novel non-dissipative transport phenomena in systems with chiral fermions, including the quark-
gluon plasma. Among them is the Chiral Magnetic Effect (CME) – the generation of electric
current along an external magnetic field induced by chirality imbalance. Because the chirality
imbalance is related to the global topology of gauge fields, the CME current is topologically pro-
tected and hence non-dissipative even in the presence of strong interactions. As a result, the CME
and related quantum phenomena affect the hydrodynamical and transport behavior of strongly
coupled quark-gluon plasma, and can be studied in relativistic heavy ion collisions where strong
magnetic fields are created by the colliding ions. Evidence for the CME and related phenomena
has been reported by the STAR Collaboration at Relativistic Heavy Ion Collider at BNL, and by
the ALICE Collaboration at the Large Hadron Collider at CERN. The goal of the present review
is to provide an elementary introduction into the physics of anomalous chiral effects, to describe
the current status of experimental studies in heavy ion physics, and to outline the future work,
both in experiment and theory, needed to eliminate the existing uncertainties in the interpretation
of the data.
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1 Introduction

Quantum Chromodynamics (QCD) presents a remarkable example of a theory with known symmetries
and well established elementary constituents, but with emergent behavior that remains mysterious to
this day. In spite of forty years of intense effort, it is still not clear how the asymptotic states of
QCD perturbation theory – colored quarks and gluons – transform into the asymptotic states actually
observed in experiment, the color-singlet hadrons. Because the confinement of color is not present in
perturbation theory, its mechanism has to arise from a non-perturbative dynamics.

It is widely perceived that such non-perturbative dynamics originates in the topological sector of
QCD. The main topic of this review, namely the Chiral Magnetic Effect (CME), is motivated by
attempts to find observable manifestations of the topological structure of the theory. In this review we
will provide a simple intuitive introduction into CME and other similar anomalous transport effects,
discuss the phenomenology of these effects for heavy ion collisions, and review the current status of
experimental search. For the rest of the Introduction, however, let us first discuss the theoretical
foundations and the distinctive features of the CME phenomenon.

A salient feature of QCD ignored in the perturbative approach is the compactness of the non-Abelian
gauge group. This may well be at the origin of the difficulties of perturbative QCD in describing the
ground state of the theory. Indeed, the compact gauge group SU(3) allows for topologically nontrivial
configurations of the gluon field. The existence of these configurations in the ground state of the theory
essentially modifies the vacuum structure – a superposition of an infinite set of topologically distinct
states connected by tunneling instanton transitions [1] becomes the “θ-vacuum” of the theory [2, 3]. It
is likely that topological effects in QCD are responsible for the chiral symmetry breaking (see [4] for a
review) and possibly for confinement (see [5] for a recent proposal).

The crucial importance of the compactness of the gauge group for the structure of the ground state
can be illustrated by using electrodynamics of superconductors as an example. The U(1) gauge group
of electrodynamics with elements eiϕ can be treated both as a compact (i.e. defined on a circle, with
identification ϕ → ϕ + 2πn) or a non-compact (i.e. defined on an infinite line) group. The Abrikosov
vortex in a type II superconductor [6] corresponds to the continuous circle onto circle S1 → S1 mapping
from the azimuthal angle of space onto the phase angle of the electromagnetic order field, and its
existence is thus linked to the compactness of U(1). One would not be able to understand the existence
of the ground state of a superconductor using any finite order computation in U(1) perturbation theory.

The example of the Abrikosov vortex is suggestive since it emerges as a crucial ingredient of confine-
ment mechanism proposed for QCD by ’t Hooft [7], Mandelstam [8], and Nambu [9]. Indeed, if magnetic
monopoles existed, a pair of magnetic monopole and anti-monopole inside a superconductor would be
connected by the Abrikosov vortex, since magnetic field is expelled from the bulk of the material due
to Meissner effect. As the vortex possesses a fixed amount of energy per unit of length, the monopole
and anti-monopole would be bound by a linear confining potential. In the dual picture with magnetic
and electric charges exchanged, the opposite electric charges become connected by an confining electric
flux tube expelled from the bulk due to the condensation of magnetic charges (dual to the condensate
of electrically charged Cooper pairs).

Superconductors also demonstrate the deep link between topology and non-dissipative currents.
Since this link is of crucial importance for our discussion, let us elaborate on it by using superconductor
as an example. Around the Abrikosov vortex, there exists a supercurrent that screens the magnetic
field of the vortex in the bulk. The corresponding physics is captured by the London relation between
the electric current and gauge potential (∇ · ~A = 0):

~J = −λ−2~A . (1)
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Integrating Eq.(1) along the circle around the vortex and using the Stokes theorem, we get
∫

∂S

~J = −λ−2

∫

∂S

~A = −λ−2

∫

S

B = −λ−2ΦB , (2)

where ΦB is the magnetic flux; from Eq.(2) one can deduce the existence of the supercurrent around
the vortices filled by magnetic flux. Due to the compactness of U(1) group, the magnetic flux through
an Abrikosov vortex is quantized. Therefore, the amount of current circulating around the vortex is
determined by its magnetic flux which in turn is fixed by topology of the S1 → S1 mapping. This means
that the circulating supercurrent is topologically protected – it is not allowed to dissipate, or else the
(conserved) S1 → S1 winding number would have to change.

In the absence of electric charges, ~E = − ~̇A and so the London relation Eq.(1) yields

~E = λ2~̇J . (3)

This means that a constant electric field induces an electric current growing with time, so the charges
accelerate as if they met no obstacles, following the Newton’s law e~E = m~̇v – in other words, we get
a superconducting current. Note that the motion of dual confining strings can be described by using
the London theory as well [10], suggesting connection between the mechanism of confinement and the
non-dissipative currents.

It is instructive to consider the relation Eq.(1) as an analog of Ohm’s law ~J = σ~E for superconductors.
Let us first examine the discrete symmetries of quantities on both sides of the Ohm’s law. Both electric
current and electric field are even under parity transformation, so the ohmic conductivity σ has to
be P-even as well. Under time reversal, the electric current is T -odd – if we film the propagation of
current and then watch the film backwards in time, the current would flow in the opposite direction.
The electric field however is T -even (due to the time derivative in its definition), and so the Ohmic
conductivity has to be odd under T -reversal for the Ohm’s law to make sense. This is natural since the
ohmic conductivity describes processes of dissipation that produce entropy, and entropy production by
the second law of thermodynamics is an irreversible process – it generates an arrow of time. Because
of this, almost all of the known transport coefficients in fact are odd under T -reversal.

Let us however examine the discrete symmetries of the quantities entering the London relation
Eq.(1) that replaces the Ohm’s law for superconductors. Both ~J and ~A are odd under T -reversal, so
the coefficient relating them has to be T -even, and no current dissipation is allowed! Note that in a
superconductor this has been achieved due to the spontaneous breaking of gauge invariance (or, to be
more precise, due to the loss of invariance with respect to the U(1) rotations in the ground state). The
non-dissipative chiral magnetic currents discussed in this review, as we shall see, are also topologically
protected, but do not require the loss of U(1) invariance. They appear in every system possessing chiral
fermions in the presence of chirality imbalance.

How can a chirality imbalance arise in quark-gluon matter? The compact nature of SU(3) gauge
group implies the existence of topological solutions, similar to the case of Abrikosov vortices arising
from the compact U(1) gauge group. If these solutions are chiral, they can transfer chirality to quarks
through the chiral anomaly [11, 12], creating an imbalance between the numbers of left- and right-
handed fermions. In fact, the Atiyah-Singer index theorem [13] implies that the extended topological
configurations of gluon fields support the chiral zero modes of fermions. Since the fermions of QCD
– the quarks – also possess electric charges, their topology can be effectively probed by a background
Abelian magnetic field. The topology of zero modes of chiral fermions in a magnetic field leads to a
number of surprising novel phenomena some of which are reviewed below; see the volume [14] and Refs.
[15, 16, 17, 18, 19, 20, 21] for complementary reviews of topics not covered here in detail.

A particularly interesting phenomenon stemming from the interplay of chirality, magnetic field and
the chiral anomaly is the Chiral Magnetic Effect (CME). This term [22, 23] refers to the generation of
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electric current induced by the chirality imbalance in the presence of an external magnetic field:

~J = σ5
~B , (4)

where σ5 = e2/(2π2) µ5 is the chiral magnetic conductivity expressed in terms of the chiral chemical
potential µ5. For QCD with Nc colors and Nf dynamical quarks of charges Qfe, one has to sum over
the quark colors and flavors: σ5 = Nc

∑

f Q
2
fe

2/(2π2) µ5. In heavy ion collisions, the CME leads to the
event-by-event fluctuations of electric dipole moment of the quark-gluon plasma [24, 25] – the effect
that will be the main focus of our discussion in this review.

Similarly to superconductivity discussed above, the CME is a macroscopic quantum effect - it is
a manifestation of the chiral anomaly creating a collective motion in the Dirac sea. Analogously to
the London relation, the quantities ~J and ~B on both sides of Eq.(4) are T -odd, so the chiral magnetic
conductivity is T -even, and no dissipation is allowed [26]. The same conclusion can also be reached
[15] by using the Onsager relations of non-equilibrium statistical mechanics. However, unlike supercon-
ductivity, the CME does not require a spontaneous symmetry breaking, or formation of a condensate
– it is driven solely by the chirality imbalance. Because the chirality imbalance is related to the global
topology of gauge fields, the CME current is topologically protected [27] and thus non-dissipative even
in the presence of strong interactions. As a result, the CME and related quantum phenomena affect
the hydrodynamical and transport behavior of systems possessing chiral fermions, from the quark-gluon
plasma to Dirac semimetals.

The persistence of CME at strong coupling and small frequencies makes the hydrodynamical de-
scription of the effect possible, and indeed it arises naturally within the relativistic hydrodynamics as
shown by Son and Surowka [28]. The quantum anomalies in general have been found to modify hydro-
dynamics in a significant way, see [29, 30, 31, 26, 32, 33, 34, 35, 36], and [37] for a review. The principle
of “no entropy production from P-odd and T -even anomalous terms” [26] can be used to constrain the
relativistic conformal hydrodynamics at second order in the derivative expansion, where it allows to
compute analytically 13 out of 18 anomalous transport coefficients.

Anomalous hydrodynamics has been found to possess a novel gapless collective excitation – the
“chiral magnetic wave” [38], see also [39]. It is analogous to sound, but in strong magnetic field
propagates along the direction of the field with its wave speed reaching the speed of light [38]. The chiral
magnetic wave is the hydrodynamical mechanism of transporting the CME current; it transforms an
initial chiral or electric charge fluctuation into a macroscopic observable asymmetry in the distribution
of electric charge [40, 41].

The anomaly-induced effects away from equilibrium can be described by using the chiral kinetic
theory [42, 43, 44]. In particular, the chiral kinetic theory can be used to derive the chiral magnetic
wave [45]. In the presence of chirality-flipping transitions, the chiral magnetic wave at frequencies
smaller than the transition rate has been found to give rise to a diffusive vector mode [45]. The chiral
kinetic description of transport in systems with finite chemical potential has been recently studied in
[46].

Since topological fluctuations are accompanied by the changes in net chirality, QCD matter subjected
to an external magnetic field will develop fluctuations of the electric dipole moment [22, 23, 24, 25]. A
clean and explicitly soluble example is the electric dipole moment of the QCD instanton in a strong
magnetic field [47]. Similar effect can be induced by rotation, due to the coupling of vorticity to the spin.
The corresponding “chiral vortical effect” can be disentangled from the CME due to the difference in
the coupling of quarks to magnetic field and vorticity [48]. The physics of CME and related phenomena
has been recently reviewed in [15, 16, 17] which contain an extensive set of references.

After the recent discovery of Dirac and Weyl semimetals, the studies of CME in condensed matter
has begun. The experimental observation of CME in Dirac semimetal ZrTe5 has been reported in [49].
Very recently, the effect has been also observed in Na3Bi [50], TaAs [51], and TaP [52].
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Under extreme conditions of high temperature and/or high baryon density, the vacuum of QCD
changes its properties, and deconfinement and chiral symmetry restoration take place. This deconfine-
ment transition is accompanied by the rapid change in the rate and nature of topological transitions
connecting different topological sectors. The heavy ion program opens a possibility to study these
phenomena. Moreover, since the colliding ions create strong magnetic fields eB ∼ O(10 m2

π) [22] (see
[53] for review), the interplay of QCD topology with an Abelian magnetic background can be studied
experimentally.

In this review we will focus our attention on the discussion of recent CME-related developments
in heavy ion physics, and the plans for the future experiments aimed at establishing (or falsifying)
the presence of CME in heavy ion data. The paper is organized as follows. In section 2 we give an
elementary introduction into the physics of anomaly-induced transport in systems with chiral fermions,
using the quark-gluon plasma as an example. In section 3 we discuss the theoretical predictions of these
anomalous chiral effects in relativistic heavy ion collisions. In section 4 we present the current status of
the experimental studies of anomalous chiral effects at Relativistic Heavy Ion Collider (RHIC) at BNL
and the Large Hadron Collider (LHC) at CERN. We describe the experimental observables proposed
for detecting the signal and the experimental evidences for the anomalous chiral effects, as well as the
backgrounds and uncertainties. We also outline the future measurements that will allow to reach a
definite conclusion on the occurrence of anomalous chiral effects in the quark-gluon plasma produced
in heavy ion collisions.

2 Anomalous Chiral Effects for Pedestrians

The purpose of this Section is mainly pedagogical, aiming to provide a simple and intuitive way of
understanding the physics of anomalous chiral effects. For a more detailed and technical discussion, we
refer the reader to the previous reviews [15, 16, 17, 54, 55, 56].

To set the stage of subsequent discussions, let us consider the quark-gluon plasma (QGP) with
restored chiral symmetry for light quarks. For each specific flavor of these chiral fermions, one can
introduce the corresponding vector current Jµ and axial current Jµ

5 :

Jµ = 〈Ψ̄γµΨ〉 , Jµ
5 = 〈Ψ̄γµγ5Ψ〉. (5)

By virtue of the chiral symmetry, one can also separately introduce the right-handed (RH) and left-
handed (LH) fermions, and relate them to the above currents via Jµ

R/L = (Jµ±Jµ
5 )/2. Equivalently one

has Jµ = Jµ
R + Jµ

L and Jµ
5 = Jµ

R − Jµ
L. The thermodynamic states of such QGP can be specified by, in

addition to the temperature T , the vector chemical potential µ (pertinent to the vector number density
J0) and the axial chemical potential µ5 (pertinent to the axial number density J0

5 ). The quantity µ5

characterizes the imbalance of RH and LH fermions in the system, and the QGP with nonzero µ5 is a
chiral medium. Such a chiral QGP may be created locally in heavy-ion collisions through a variety of
mechanisms (e.g. topological fluctuations in the gluonic sector, glasma flux tubes, or simply fluctuations
in the quark sector [22, 24, 25, 57, 58, 59]) on an event-by-event basis. Again one may also introduce
correspondingly the RH and LH chemical potentials µR,L = µ± µ5.

For simplicity we will discuss the anomalous chiral effects with the single-fermion-species example
in this Section. The generalization to the multi-flavor and multi-color case would be straightforward.
Experimental measurements often concern the electromagnetic charge or baryonic charge rather than
the quark-level currents. The conserved charge currents can be constructed from those of quarks by
summing over relevant flavors and colors, e.g.

Jµ
Q = Nc

∑

f

eQfJ
µ
f , Jµ

B = Nc

∑

f

BfJ
µ
f , (6)
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where Qf and Bf are the electric and baryonic charges of a given flavor, respectively, e.g. for (u, d, s)
flavors, Qf = (2/3,−1/3,−1/3) and Bf = (1/3, 1/3, 1/3).

2.1 The Chiral Magnetic Effect

A powerful way of probing properties of matter, known since the time of Ohm and still widely used
today, is to apply external electromagnetic fields and examine the responses of matter. For example, in
an electrically conducting medium, an electric current can be generated in the presence of an external
electric field

~J = σ~E, (7)

which is the famous Ohm’s law, with σ being the electric conductivity characterizing the vector charge
transport property of matter. (Note we have “hidden” an electric charge Qe factor on both sides in the
above.) Obviously the QGP with electrically charged quarks roaming around is a conductor.

There are however more interesting questions one may ask regarding the QGP transport. What
would happen if one uses an external magnetic field ~B as a probe, instead? Can a vector current be
generated similarly to that in Eq. (7)? Normally this is forbidden by the symmetry argument: ~J is a

P-odd vector quantity while ~B is a P-even axial vector quantity. But the situation is different if the
underlying medium itself is chiral, such as a chiral QGP with nonzero µ5 whose parity “mirror image”
has an opposite µ5. As already discussed in the Introduction section, in such case the Chiral Magnetic
Effect (CME) [22, 24, 25] predicts the generation of a vector current ~J = σ5

~B in response to the ~B
field, as given in Eq.(4). The σ5 = Qe

2π2µ5 is a chiral magnetic conductivity. (Again if one wants to

specifically consider the electric current, then ~J → Qe~J = (Qe)2/(2π2)µ5
~B.)

The generation of a vector current in the presence of chirality imbalance was first discussed by
Vilenkin [60]. However chirality imbalance itself is a necessary but not sufficient ingredient of the CME
– the corresponding current does not vanish only when the chiral charge is not conserved, i.e. in the
presence of chiral anomaly. The detailed discussion of this issue, and additional references to earlier
work, can be found in [15]. Because both the chirality imbalance and the chiral anomaly are involved
in the CME and related phenomena, we will refer to them as “anomalous chiral effects” in this review.

Intuitively the CME may be understood in the following way, as illustrated in Fig. 1. The magnetic
field leads to a spin polarization (i.e. “magnetization”) effect, with quarks’ spins preferably aligned along

the ~B field direction, which implies 〈~s〉 ∝ (Qe)~B. Quarks with specific chirality have their momentum
~p direction correlated with spin ~s orientation: ~p ||~s for RH quarks, while ~p ||(−~s) for LH ones. In the
presence of chirality imbalance, i.e. µ5 6= 0, there will be a net correlation between average spin and
momentum 〈~p〉 ∝ µ5〈~s〉. For example, if µ5 > 0 there are more RH quarks, and the momentum is

preferably in parallel to spin. It is therefore evident that 〈~p〉 ∝ (Qe)µ5
~B, which implies a vector current

of these quarks ~J ∝ 〈~p〉 ∝ (Qe)µ5
~B.

Of course, the precise coefficient of the chiral magnetic conductivity σ5 has to be determined dy-
namically. Remarkably, computations in various systems ranging from free gas to infinitely strongly
coupled field theories, have inevitably found the same universal value independent of dynamical details
(see e.g. the reviews in [14] and further references therein). This points to a certain deep origin of the
CME, and indeed this coefficient is entirely dictated by the chiral anomaly. A most elaborative way
to manifest this profound connection is perhaps through the following derivation (see e.g. [23]). Let us

assume a CME-induced electric current (Qe)~J = (Qe)σ5
~B. To probe the existence of such a current

we turn on an arbitrarily small auxiliary electric field ~E || ~B and examine the energy changing rate of
the system. The straightforward electrodynamic way of computation “counts” the work per unit time
(i.e. power) done by such an electric field P =

∫

~x
~J · ~E =

∫

~x
[(Qe)σ5]~E · ~B. Alternatively for this system

of chiral fermions, the (electromagnetic) chiral anomaly suggests the generation of axial charges at the
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Figure 1: (Color online) Illustration of the Chiral Magnetic Effect. To be specific, the illustration is for
just one kind of massless quarks with positive electric charge Q > 0 and for the case of µ5 > 0. For
quarks with negative electric charge the quark current ~J is generated in the opposite direction (owing
to the opposite spin polarization) but their contribution to the electric current would be the same as
that from positively charged quarks. For µ5 < 0 the current will flip direction.

rate dQ5/dt =
∫

~x
CA

~E · ~B with CA = (Qe)2/(2π2) the universal anomaly coefficient. Now a nonzero
axial chemical potential µ5 6= 0 implies an energy cost for creating each unit of axial charge, thus the
energy changing rate via anomaly counting would give the power P = µ5(dQ5/dt) =

∫

~x
[CAµ5]~E · ~B.

These reasonings therefore lead to the following identification:
∫

~x

[(Qe)σ5]~E · ~B =

∫

~x

[CAµ5]~E · ~B (8)

for any auxiliary ~E field. Thus the σ5 must take the universal value CAµ5

Qe
= Qe

2π2µ5 that is completely
fixed by the chiral anomaly.

The transport phenomenon in Eq. (4) bears a distinctive feature that is intrinsically different from
Eq. (7). The chiral magnetic conductivity σ5 is a T -even transport coefficient while the usual conduc-
tivity σ is T -odd [26]. That is, the CME current can be generated as an equilibrium current without
producing entropy, while the usual conducting current is necessarily dissipative.

2.2 The Chiral Separation Effect

By reminding ourselves of the axial counterpart in Eq. (5) of the vector current, which we have discussed
so far, it may be natural to ask: could axial current also be generated under certain circumstances in
response to external probe fields? The answer is positive. A complementary transport phenomenon to
the CME has been found and named the Chiral Separation Effect (CSE) [61, 62]:

~J5 = σs
~B . (9)

It states that an axial current is generated along an external ~B field, with its magnitude in proportion
to the system’s (nonzero) vector chemical potential µ as well as the field magnitude. The coefficient
(which may be called the CSE conductivity) is given by σs =

Qe
2π2µ.

Intuitively the CSE may be understood in the following way, as illustrated in Fig. 2. The magnetic
field leads to a spin polarization (i.e. “magnetization”) effect, with 〈~s〉 ∝ (Qe)~B. This effect implies that

the positively charged quarks have their spins preferably aligned along the ~B field direction, while the
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Figure 2: (Color online) Illustration of the Chiral Separation Effect. To be specific, the illustration is
for just one kind of right-handed (RH) quarks(with Q > 0) and their antiquarks (with Q < 0) and for
the case of µ > 0 (i.e. more quarks than antiquarks). For left-handed (LH) quarks (and anti-quarks)
the LH quarks’ current is generated in the opposite direction but their contribution to the axial current
~J5 would be the same as that of RH quarks. For µ < 0 the current will flip direction.

negatively charged anti-quarks have their spins oppositely aligned. Now RH quarks and antiquarks (with

~p||~s) will have opposite average momentum 〈~p〉 ∝ 〈~s〉 ∝ (Qe)~B, i.e. with more RH quarks/antiquarks

moving in the direction parallel/antiparallel to ~B. Furthermore with nonzero µ 6= 0 (e.g. considering

µ > 0) there would then be a net current of RH quarks/antiquarks ~JR ∝ 〈~p〉(nQ − nQ̄) ∝ (Qe)µ~B. The

LH quarks/antiquarks would form an opposite current ~JL ∝ −(Qe)µ~B but contribute the same as the

RH quarks/antiquarks to form together an axial current along the magnetic field: ~J5 ∝ (Qe)µ~B.

It is instructive to recast (4) and (9) in terms of the RH and LH currents ~JR/L, as follows:

~JR/L =
~J± ~J5

2
= ±σR/L

~B . (10)

with σR/L = Qe
4π2µR/L. The above has the simple interoperation as the CME separately for the purely

right-handed and purely left-handed Weyl fermions: note the sign difference in the RH/LH cases. It
reveals that the CME and the CSE are two sides of the same coin, which is why their conductivities
are both determined from chiral anomaly coefficient. It though should be emphasized that possible
radiative corrections to the CME and CSE coefficients could occur when the pertinent gauge fields are
treated dynamically (see e.g. recent discussions in [63, 64]).

2.3 The Chiral Electric Separation Effect

Now in view of the transport effects in Eqs. (4,7,9) that we have discussed thus far, one may realize
a possibly missing phenomenon: can axial current be generated in response to an external probe of
electric field? This question has been answered recently [65, 66] and a new effect, called the Chiral
Electric Separation Effect (CESE), has been found:

~J5 = σχe
~E . (11)

Again, normally this is forbidden by the symmetry argument: ~J5 is a P-even axial vector quantity while
the ~E is a P-odd vector quantity. The above CESE is an anomalous transport process that becomes
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possible only in a chirally imbalanced environment with µ5 6= 0. However, different from the CME,
the CESE does not originate from the chiral anomaly but rather is connected to the usual conducting
phenomenon in the electric field. Its coefficient σχe = χe(Qe)µµ5, called CESE conductivity, does
depend on the specific dynamical system, and has been computed for weakly coupled QED and QCD
plasma [65, 66] as well as for a certain strongly coupled holographic system [67].

Figure 3: (Color online) Illustration of the Chiral Electric Separation Effect. To be specific, the illus-
tration is for one kind of massless (positively charged) quarks and (negatively charged) antiquarks, and

for the case of µ > 0 and µ5 > 0. Changing the sign of either µ or µ5, the current ~J5 will flip direction.

Intuitively the CESE may be understood in the following way, as illustrated in Fig. 3. The electric
field leads to the usual conducting currents, which implies that the positively charged quarks have their
momenta preferably aligned along the ~E field direction, while the negatively charged anti-quarks have
their momenta oppositely aligned, i.e. 〈~p〉 ∝ (Qe)~E. Given a nonzero µ5 (e.g. considering µ5 > 0)

there will be more RH particles than LH particles, with net RH quarks moving along ~E while net RH
antiquarks moving against ~E. Provided a further nonzero µ (e.g. considering µ > 0) there will then

be more RH quarks than antiquarks: this net amount of RH quarks move along ~E and contribute to
an axial current ~J5 ∝ (µµ5)(Qe)~E. When either µ or µ5 vanishes, this current ceases to exist owing to
cancellations.

It is useful to recast Ohm’s law (Eq. (7)) and the CESE (Eq. (11)) into the RH/LH formulation:

~JR/L =
[σ

2
± σχe

2

]

~E =

[

σ

2
± χe(Qe)

8

(

µ2
R − µ2

L

)

]

~E . (12)

The above can be interpreted as the ~E-induced conduction currents separately for RH and LH particles,
and they differ from each other when there is an imbalance |µR| 6= |µL|.

Finally the various transport effects, Ohm’s law (Eq. (7)), the CME (Eq. (4)), the CSE (Eq. (9))
and the CESE (Eq. (11)), can be nicely summarized as follows:

(

~J
~J5

)

=

(

σ σ5

σχe σs

)(

~E
~B

)

. (13)

This therefore completes our discussions on the generation of currents in a chiral quark-gluon plasma
in response to external electromagnetic fields.
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2.4 The Chiral Vortical Effect

The anomalous transport effects can also occur when a system of chiral fermions is undergoing a global
rotation. Such a fluid rotation can be quantified by a vorticity ~ω = 1

2
~∇×~v, where ~v is the flow velocity

field. Interesting analogy may be drawn between the fluid rotation and electromagnetic fields as first
emphasized in [25]: ~v is analogous to vector gauge potential ~A, and the vorticity ~ω is then similar to the

magnetic field ~B = ∇× ~A. Consider a charged particle moving in a circle perpendicular to a constant
~B field, the quantum mechanical effect gives rise to a phase factor ei(Qe)ΦB/~ (with ΦB the magnetic flux
through the circle). Similarly when such a particle moves in a circle perpendicular to a constant ~ω field,
it aquires a phase factor eiL/~ (with L the corresponding angular momentum). Given such similarity, it
is therefore natural to expect that vorticity-driven effects similar to the CME and the CSE may occur.

Such vortical effect was quantitatively identified first in holographic models [68, 29, 69] and later
understood in the anomalous hydrodynamic framework [28]. For given vorticity ~ω, the Chiral Vortical

Effect (CVE) quantifies the generation of a vector current ~J along the vorticity direction:

~J =
1

π2
µ5µ~ω . (14)

While the CME (Eq. (4)) is driven by ~B, the above CVE is driven by µ~ω in a chiral medium with
µ5 6= 0. Intuitively the above CVE may be understood in the following way, as illustrated in Fig. 4.
In the presence of a global rotation, the underlying fermions experience an effective interaction of the
form ∼ −~ω · ~S in their local rest frame, with ~S the spin of fermions. This causes a spin polarization
effect (as indeed found in other context [70, 71]), namely the fermions will have their spins preferably
aligned with ~ω. We emphasize that such spin polarization 〈~s〉 ∝ ~ω is charge-blind, which is different
from the magnetic polarization. Given a nonzero µ5 (e.g. considering µ5 > 0) there will be more RH
particles than LH particles, with net RH particles (both quarks and antiquarks) moving along ~ω due
to 〈~p〉 ∝ 〈~s〉 ∝ ~ω. Provided a further nonzero µ (e.g. considering µ > 0) there will then be more RH
quarks than antiquarks: this net amount of RH quarks move along ~ω and contribute to a vector current
~J ∝ (µµ5)~ω. When either µ = 0 or µ5 = 0, this current ceases to exist owing to cancellations.

Figure 4: (Color online) Illustration of the Chiral Vortical Effect. To be specific, the illustration is for
one kind of massless quarks and antiquarks, and for the case of µ > 0 and µ5 > 0. Changing the sign
of either µ or µ5, the current ~J will flip direction.
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In fact similarly to the CSE, an axial current can be generated as well under a global rotation:

~J5 =

[

1

6
T 2 +

1

2π2
(µ2 + µ2

5)

]

~ω . (15)

Again one can rewrite the vortical effects (Eq. (14) and Eq. (15)) in terms of chiral currents ~JR/L as
follows:

~JR/L = ±
(

1

12
T 2 +

1

4π2
µ2
R/L

)

~ω . (16)

Clearly the above can be interpreted as the CVE separately for RH/LH particles. The coefficient
1/4π2 in front of the chemical potential term is dictated by the chiral anomaly, similarly to the
σ5/2 = (Qe)/(4π2) in the CME case. It has been suggested [72, 73] that the T 2 term originates
from gravitational anomaly. Possible corrections to the coefficient of T 2 terms have been discussed in
[74, 75, 76].

2.5 The Collective Excitations

While for the intuitive illustrations in preceding discussions we have relied upon individual particle
pictures, the various anomalous transport effects are actually about the behavior of macroscopic (i.e.
thermodynamic and hydrodynamic) densities and currents, irrespective of whether the underlying sys-
tems may allow a quasiparticle description or not. A very nontrivial feature of these effects, is that
they couple together the vector and axial densities/currents in the presence of electromagnetic fields or
a fluid rotation. It is natural to wonder if certain collective modes may arise from mutually induced
vector/axial density fluctuations. Let us recall the well-known example in hydrodynamics where the
fluctuations of energy density and pressure mutually induce one another and form propagating collective
modes i.e. the sound waves. Indeed a number of robust gapless excitations in a chiral fluid system such
as the Chiral Magnetic Wave (CMW) [38, 40] and Chiral Vortical Wave (CVW) [77] have been found,
which we discuss below.

2.5.1 The Chiral Magnetic Wave

Let us first consider small fluctuations in the vector and axial densities of a QGP in an external magnetic
field ~B. (For simplicity we assume here a neutral QGP with zero background densities but the discussion
otherwise would be essentially similar.) Suppose a nonzero axial density fluctuation δJ0

5 occurs, and it

implies a locally nonzero µ5 ∝ (δJ)05, which induces a CME vector current ~J via Eq. (4). Such a current

will transport vector charges along the ~B direction and thus cause the nearby vector density to fluctuate
off equilibrium. A nonzero vector density fluctuation δJ0, in turn, implies a locally nonzero µ ∝ δJ0,
which induces a CSE axial current ~J5 via Eq. (9). Such a current will transport axial charges along

the ~B direction and further cause the nearby axial density to fluctuate off equilibrium. In this way, the
vector and axial density fluctuations mutually induce each other, and their evolutions are entangled
nontrivially through the CME and the CSE. As a result, these density fluctuations disseminate with
time along the external ~B direction to far locations, and thus a propagating wave forms: see Fig. 5
(upper panel) for an illustration of this phenomenon. This collective mode is the Chiral Magnetic
Wave [38].

Mathematically the wave equations to describe the CMW can be derived by combining the RH/LH
form of the CME and the CSE in Eq. (10) with the continuity equations for RH/LH currents ∂tJ

0
R/L +

∇ · ~JR/L = 0:
(

∂0 ±
(Qe)

(4π2)χ
~B · ∇

)

δJ0
R/L = (∂0 ± vB∂B̂) δJ

0
R/L = 0. (17)
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An expansion of the fluctuations via Fourier modes with frequency ν and wave-vector kB̂ then gives

ν ∓ vBk = 0, (18)

where we can identify the propagation speed of the wave, vB ≡ (Qe)B
(4π2)χ

. The parameter χ is the thermo-

dynamic susceptibility that connects density with chemical potential, i.e. χR/L = ∂J0
R/L/∂µR/L (which

can be easily related to the usual vector and axial susceptibilities χ = ∂J0/∂µ and χ5 = ∂J0
5/∂µ5). The

above wave equations reveal the nature of the CMW in a transparent way: it consists of actually two
chiral gapless modes traveling at the same speed vB, with the RH wave that transports RH density and
current in the direction parallel to the ~B direction as well as the LH wave that transports LH density
and current in the direction antiparallel to ~B. This is illustrated in Fig. 5 (lower panel).

A more general analysis [65] of various possible collective modes on top of a possible non-neutral-
background QGP (i.e. with nonzero µ and/or µ5) in external electric as well as magnetic fields can be
done by starting from the response relations (Eq. (13)), combining it with continuity equations, and
linearizing the equations for small fluctuations on top of background densities. Two general wave modes
are found in [65], with rather complicated structures. These however reduce to simple wave modes with
clear physical interpretations in a number of special settings: (1) in the case of pure magnetic field
~B the two modes become (slightly generalized) the CMW; (2) in the case of pure electric field ~E and
nonzero background vector density, the two modes become a new type of Chiral Electric Wave (CEW)

arising from CESE and propagating in parallel/antiparallel to the ~E field; (3) in the case of pure electric

field ~E and nonzero background axial density, the two modes turn into a vector density wave and an
axial density wave. In general, when there are both ~E and ~B fields and both types of background
densities, these physically distinct modes are intertwined into the more complex collective excitations.
In collisions of symmetric nuclei (e.g. AuAu, CuCu, or PbPb) there is nonzero electric field locally but
on average no net electric field (in contrast to the nonzero net magnetic field), so one may expect that
the possible mixing effects are unimportant in those collisions.

Note that in realistic systems there would be dissipative effects such as electric conductance as
well as diffusion of charge densities. These would change the wave dispersion relations Eq. (20) by
contributing imaginary terms to the frequency. In the case of the CMW, such contributions take
the form −i(Qeσ/2 + DLk

2 + D⊥k
2
⊥
), where σ is the electric conductivity, and DL and D⊥ are the

diffusion constants along and perpendicular to the ~B direction, respectively. The effect of diffusion
would somewhat reduce the CMW signal in heavy ion collisions, even though with reasonable values of
diffusion coefficients this reduction effect is not large as shown in [40].

2.5.2 The Chiral Vortical Wave

By virtue of the close analogue between magnetic-field-driven effects and rotation-driven effects, it is
tempting to explore whether certain interesting collective excitations may stem from the CVE-entailed
interplay between vector and axial density fluctuations in a rotating chiral fluid. Indeed, it has been
recently found that there are vorticity-induced collective excitations called the Chiral Vortical Wave
(CVW). To see how they arise, let us consider a rotating QGP with a homogeneous background vector

density µ0 6= 0. In this case with µ0~ω playing the role of ~B in the CMW, a nonzero axial density
fluctuation δJ0

5 induces a CVE vector current ~J via Eq. (14), while a vector density fluctuation also

induces a CVE axial current ~J5 via Eq. (15). In this way, the vector and axial density fluctuations
mutually induce each other and form propagating waves along the rotation axis i.e. the ~ω direction:
again see Fig. 5 (upper panel) for an illustration of this phenomenon. This collective mode is the Chiral
Vortical Wave [77].

To derive the wave equations for the CVW, it is convenient to start from the RH/LH CVE in
Eq. (16) and consider small fluctuations of RH or LH densities on top of a uniform equilibrium back-
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Figure 5: (Color online) Illustration of the Chiral Magnetic Wave and the Chiral Vortical Wave.

ground (assuming no fluctuations in temperature). By combining the linearized version of Eq. (16) with

continuity equations ∂tJ
0
R/L +∇ · ~JR/L = 0, one can easily derive the following wave equations:

(

∂0 ±
µ0

(2π2)χµ0

~ω · ∇
)

δJ0
R/L = (∂0 ± vω∂ω̂) δJ

0
R/L = 0. (19)

An expansion of the fluctuations via Fourier modes with frequency ν and wave-vector kω̂ then gives

ν ∓ vωk = 0, (20)

where we can identify the propagation speed of the wave, vω ≡ µ0ω
(2π2)χµ0

. (To be precise the µ0 here is

the background RH or LH density, and the χµ0
is the corresponding susceptibility χR/L = ∂J0

R/L/∂µR/L

evaluated at µR/L = µ0. Similar to the CMW case, the above equations imply that the CVW also
consists of two chiral gapless modes traveling at the same speed vω, with the RH wave that transports
RH density and current in parallel to the ~ω direction as well as the LH wave that transports LH density
and current in antiparallel to the ~ω. This is also illustrated in Fig. 5 (lower panel).

It is important to note that because the CVE current (unlike the CME one) depends quadratically
on the chemical potentials, the dynamics of the corresponding collective excitations in systems with
vorticity is in general nonlinear. For example, in “hot” systems with temperature much larger than
the chemical potentials, the collective excitations are described [78] by the Burgers-Hopf equation that
is known to describe rich nonlinear dynamics, including solitons and shock waves. The mixing of the
chiral magnetic and chiral vortical waves has recently been addressed in [79, 80]. Possible mixing of
these with other collective excitations, such as a Chiral Heat Wave, has also been discussed in [79].

3 Anomalous Chiral Effects in Heavy Ion Collisions

So far we have discussed the physical ideas of various anomalous chiral effects. It is of fundamental
interest to look for experimental manifestations of such effects in systems from novel semi-metals [49,
78, 81, 82, 83] to hot dense QCD matter [22, 24, 25, 40, 48, 65, 77, 84, 85]. In the rest of this review we
focus on the search of anomalous chiral effects in the quark-gluon plasma created in heavy-ion collision
experiments at the Relativistic Heavy Ion Collider (RHIC) as well as the Large Hadron Collider (LHC).
In preparation for later discussions on experimental search, a number of important phenomenological
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aspects need to be addressed here. Emphasis will be put on three examples, the Chiral Magnetic Effect,
the Chiral Magnetic Wave, and the Chiral Vortical Effect, which have been extensively studied both
phenomenologically and experimentally.

3.1 The magnetic field and vorticity

To induce effects like the CME and the CMW, strong electromagnetic fields need to be present in the
system. There are indeed such fields, originated from the highly charged ions (e.g. Au nucleus with
Z = 79 at RHIC and Pb nucleus with Z = 82 at LHC) that move at nearly the speed of light. An
elementary estimate can be done as follows: eB ∼ γ αEMZ/b2 where αEM ≃ 1/137, b is the impact
parameter, and γ = (

√
s/2)/MN is the Lorentz factor (with (

√
s/2) the energy per nucleon in the beam

and MN the nucleon mass). Upon plugging in numbers for RHIC collisions one immediately recognizes
that eB ∼ 1/(1fm)2 ∼ (mπ)

2 which is on the typical hadronic interaction scale and which represents the
strongest electromagnetic fields accessible to human. A lot of computations have been done to quantify
such electromagnetic fields on the event-by-event basis (see e.g. [86, 87, 88]). Their spatial distribution
as well as the dependence on colliding nuclei, centrality and beam energy have been studied.

An important feature of the magnetic field ~B in heavy-ion collisions is its azimuthal orientation
on the transverse plane. Fig. 7 schematically depicts the transverse plane for a collision of two heavy
ions. Following common practice we label the beam axis as ẑ, the impact parameter direction as x̂,
and the out-of-plane direction as ŷ, with x̂− ẑ as the reaction plane and x̂− ŷ as the transverse plane.
Event-by-event simulations have demonstrated that the geometric orientation of ~B is approximately in
parallel to the out-of-plane direction ŷ. This is extremely useful: it implies that any signal (such as

a CME current) along ~B will also be in the out-of-plane direction, with the latter information being
experimentally accessible.

Another important aspect of such magnetic field ~B is its duration in QCD fluid, see e.g. [53, 89,
90, 91]. This represents one of the major remaining sources of uncertainty in theoretical calcula-

tions. The time dependence of ~B after the impact of the two nuclei would crucially depend upon
whether/when/how a conducting medium may form and lead to a much elongated lifetime of magnetic
field. Such uncertainty can be reduced by the study of directed flow of charged hadrons away from
mid-rapidity, as proposed recently in [91]. The magnetic field is also expected to contribute to the
photon and dilepton production through the “magneto-sono-luminescence”: the conversion of phonons
into real or virtual photons in a magnetic background [92, 93]. There would also be nontrivial interplay
between a dynamically evolving magnetic field and the CME itself (see e.g. [94]). To ultimately resolve
this issue, one needs to treat both the field and the medium dynamically and efforts are underway to
develop such a chiral magnetohydrodynamic simulation.

The vortical effects, on the other hand, are to be induced by the global rotation of the QGP in heavy-
ion collisions. In a general non-central collision, there is obviously a nonzero global angular momentum
~L [70, 71, 95]. While the majority of this angular momentum is carried away by the spectator nucleons,

recent simulations [95, 96] do show that a considerable fraction (about 10 ∼ 20%) of ~L remains in the
QGP in the collision zone and is approximately conserved in time. This could imply a relatively long
time duration of the vortical effects. It is important to emphasize that this angular momentum is also
pointing approximately in the out-of-plane direction. Attempts on the computation of local vorticity ω
and its space-time distribution have also been made [95, 96, 97, 98, 99, 100]. The vorticity is a more
subtle quantity owing to different ways of defining it. Furthermore the vorticity can receive nonzero
local contributions from bulk flow that are not related to the global rotation: for example with a pure
radial flow field ~v⊥ ∝ f(~r⊥)r̂⊥, the vorticity ω = ~▽× ~v/2 is nonzero locally but vanishes upon average
over space. The best approach to address vorticity quantitatively, again, is to develop 3D hydrodynamic
simulations that incorporate a built-in global rotation.
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Figure 6: Distributions of the chiral (left) and electric (right) charge densities in the transverse plane
at mid-rapidity and a proper time τ = 1.5fm/c of a Au+Au collision event at

√
sNN = 200 GeV as

computed in anomalous hydrodynamics; from [41].

3.2 The initial conditions

As is evident from the formulae for the various effects, given an external “driving force” (~B or ~ω),
the next crucial elements are the vector/axial charge densities that “trigger” the anomalous transport.
In the context of heavy-ion collisions, the issue concerns the initial conditions for the various charge
densities. For example, in order for the CME to occur, one needs nonzero initial axial charge density
present in the system, for the CMW one needs nonzero initial vector charge density, and for the CVE
one needs both types of initial charge densities.

In heavy-ion collisions such initial charge densities naturally arise from fluctuations. The axial
charge density may be generated from a number of sources [22, 24, 25, 57, 58, 59]: the topological
fluctuations of the gluonic sector (via instanton and sphaleron transitions), the chromomagnetic flux

tubes with nonzero local ~E · ~B in the initial glasma, as well as simple fluctuations in the quark sector.
The obvious way of acquiring the vector charge density is from “deposition” in the collision zone by the
initial colliding nuclei which possess large baryonic, electric, and isospin charges.

To quantitatively model and constrain the charge initial conditions is crucial for the search of
anomalous effects and could be quite challenging. A fully quantitative theoretical approach to describe
charge asymmetries requires the use of relativistic hydrodynamics that includes the terms arising from
the chiral anomaly, supplemented by the initial conditions describing topological fluctuations at the
early stage of a heavy collision. A study of that kind has recently been performed in [41] where the

initial condition is provided by the fluctuating longitudinal “glasma” fields with ~Ea~Ba 6= 0 [57, 101, 102].
The snapshot of the resulting chiral and electric charge densities in the QCD fluid is shown in Fig. 6.

3.3 Chiral Magnetic Effect

We now discuss the possible signal of the CME in heavy-ion collisions. Given the field ~B and initial
axial charge µ5, the CME current ~J is induced along ~B (thus in the out-of-plane direction) with its

sign depending upon µ5. An electric charge current ~JQ forms as a result of all contributing quark-
level CME currents (see Eq. (6)). This charge current transports positive charges toward one pole of
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the QGP fireball and negative charges toward the opposite pole, thus forming a dipole moment in the
charge distribution of the QGP. This effect can be incorporated into the hadron production at freeze-out
through a nontrivial electric charge chemical potential of the form ∼ µe sin(φs −ΨRP) (where φs is the
spatial azimuthal angle and ΨRP is the reaction plane angle). Its consequence can be demonstrated via
the Cooper-Frye procedure for produced final hadron’s spectra:

dN±

dφ
∝
∫

source

e−pµuµe±(µe/Tf ) sin(φs−ΨRP). (21)

Here we have suppressed other kinetic variables and focused on the azimuthal angle distribution, and
for simplicity have used the Boltzmann approximation with the freeze-out temperature Tf . The strong
radial flow (hidden in flow velocity field uµ) will collimate the azimuthal angle φ of emitted hadron’s
momentum with the spatial angle φs of the local emission cell in the source, and thus the out-of-plane
dipole in the chemical potential will “translate” into a charge-dependent dipole term in the emitted
hadron distributions. Using the parameterization of the paricle azimuthal distribution in a form [103]:

dN±

dφ
∝ 1 + 2v1 cos(φ−ΨRP) + 2v2 cos[2(φ−ΨRP)] + ...+ 2a± sin(φ−ΨRP) + ..., (22)

where v1 and v2 are coefficients accounting for the so-called directed and elliptic flow [104], one finds that

a+ = −a− ∝ µe ∝ µ5|~B|. There is however an important complication: the µ5 arising from fluctuations
will take different signs from event to event, and on event average this dipole term vanishes, so a direct
measurement of this P-odd effect is not possible. Indeed a non-zero value of a± would manifest global
parity violation which should not occur in QCD. Fig. 8 presents the STAR measurements of 〈a±〉 with
the 1st harmonic event plane reconstructed from spectator neutrons [105]. These results indicate no
significant charge dependence in all centrality intervals, where the typical difference between positive
and negative charges is less than 10−4.
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Figure 7: Schematic depiction of the transverse
plane for a collision of two heavy ions (the left one
emerging from and the right one going into the
page) [106]. Particles are produced in the overlap
region (green-colored nucleons).
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Figure 8: 〈sin(φ − Ψ1)〉 for positive and negative
charges versus centrality for Au+Au collisions at√
sNN = 200 GeV [105].

What can be measured is the event-by-event correlations of a±, that is, a term 〈aαaβ〉 where α and
β represent electric charge + or −. This however comes with the price of dealing with now P-even
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observables that become vulnerable to background effects which could dominate the measurements. One
way of suppression of these background effects, proposed by Voloshin [103], is to make a subtraction
between the desired out-of-plane correlation and the in-plane correlation:

γ ≡ 〈cos(φα + φβ − 2ΨRP)〉 = 〈cos∆φα cos∆φβ〉 − 〈sin∆φα sin∆φβ〉 (23)

= [〈v1,αv1,β〉+BIN]− [〈aαaβ〉+BOUT]

≈ −〈aαaβ〉+ [BIN − BOUT],

where ∆φ = (φ − ΨRP), and the averaging is done over all particles in an event and over all events.
BIN and BOUT represent contributions from P-even background processes. This method allows to
scale down the contribution from background correlations by approximately a factor of v2 , since the
difference between BIN and BOUT must be proportional to elliptic flow. In the originally studied case
of the so-called “flowing clusters” [103, 107]

BIN − BOUT

BIN +BOUT

= v2,cl
〈cos(φα + φβ − 2φcl)〉

〈cos(φα − φβ)〉
, (24)

where φcl is the cluster emission azimuthal angle, and φα and φβ and the azimthal angle of two decay
products. A useful way to help decipher the remaining backgrounds is by examining the above γ
correlator together with another correlator δ ≡ 〈cos(φα−φβ)〉 = 〈cos∆φα cos∆φβ〉+〈sin∆φα sin∆φβ〉
(see e.g. [108]), from which one can separate the in-plane and out-of-plane projected correlations.

To demonstrate further how such elliptic-flow-induced backgrounds may contribute to the correla-
tors, let us also examine the well studied example of the transverse momentum conservation (TMC)
effect (see detailed discussions in e.g. [109, 110, 111]). The TMC leads to the following pertinent
two-particle correlation term:

f2(φα, φβ) ∝ ...+ f1(φα −ΨRP)f1(φβ −ΨRP)

[

F

(

pαxp
β
x

〈p2x〉F
+

pαyp
β
y

〈p2y〉F

)]

, (25)

where the coefficient F represents the strength of this correlation term, the f1(φ−ΨRP) is the measured
single particle distribution of the form f1 ∝ 1 + 2〈v2〉Ω cos 2(φ − ΨRP) + ..., px = pT cos(φ − ΨRP) and
py = pT sin(φ − ΨRP). It is worth emphasizing that 〈〉F denotes an average of all produced particles
in the full phase space; the actual measurements will be only in a fraction of the full space, which we
denote by 〈〉Ω. Assuming for simplicity v2(pT ) = const, to the linear order of the small quantity v2 we
have 〈p2x〉 ≈ 〈p2T 〉(1 + 〈v2〉F )/2 and 〈p2y〉 ≈ 〈p2T 〉(1 − 〈v2〉F )/2. It is then not difficult to find that such
background effect would make the following leading contributions to the observables γ and δ:

γ → κ〈v2〉ΩF , δ → F, (26)

where the coefficient κ ≈ 2−〈v2〉F/〈v2〉Ω would become unity in the ideal full acceptance case. Another
extensively studied elliptic-flow-induced background, the positive-negative charge correlation from local
charge conservation (LCC) effect [112, 113], has a similar characteristic structure as the above. Note
such a structure is quite different from that of the CME, which gives γ → −H and δ → H (with
H = 〈aαaβ〉 the signal strength). These observations have motivated the following decomposition
analysis [106] that can help obtain a qualitative estimates of the CME signal and flow backgrounds:

γ = κ〈v2〉ΩF −H , δ = F +H. (27)

Note that the coefficient κ in the above expression depends on particle charge combination and particle
transverse momentum. It may also depend on centrality and collision energy, reflecting slightly different
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Figure 9: The three-point correlator γ for same
and opposite charge hadrons as computed using
anomalous hydrodynamics compared to the re-
sults from STAR Collaboration in Au+Au colli-
sions at

√
sNN = 200 GeV (from [41]).
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Figure 10: Anomalous hydrodynamic computa-
tion of CME and TMC contributions to correlator
(δ++ − γ++)/2 for different centrality in Au+Au
collisions at

√
sNN = 200 GeV (from [115]).

particle production mechanism in different conditions. Further discussions will follow in the next Section
on experimental results.

On the theoretical side it is vital to develop anomalous hydrodynamic simulations that quantify the
CME signals with realistic initial conditions as well as account for background contributions. Significant
steps toward this goal have been taken recently. In [41], the authors have performed the first event-
by-event simulations of the CME in the anomalous hydrodynamic framework with initial conditions
(shown in Fig. 6) from glasma flux tubes. The computed (with and without anomalous terms) charge
asymmetries are shown in Fig. 9 in comparison with the STAR experimental results [114]. One can
see that i) chiral anomaly has a big effect on charge asymmetries and ii) the results of the computa-
tion including the anomaly (and thus the CME) agree with the data within a factor of two, possibly
leaving room for some background contributions. In [115], the authors have made the first attempt to
consistently quantify contributions to observed charge correlations from both the CME and background
effects in one and same framework that integrates anomalous hydro with data-validated bulk viscous
hydro simulations. The results, shown in Fig. 10, demonstrate that the same-charge correlation data by
STAR can be described quantitatively with CME and TMC together, computed with realistic magnetic
field lifetime and initial axial charge density. Both studies have conveyed the same message that the
existence of the CME contribution is not only consistent with but also appears necessary for explaining
the data. Further important progress is anticipated to come along this line of the quantitative CME
study.

3.4 Chiral Magnetic Wave

Now we discuss the phenomenology of the Chiral Magnetic Wave. Consider the QGP created in heavy-
ion collisions in the presence of the out-of-plane magnetic field ~B. Suppose the QGP has a finite initial
vector density ρ0V concentrated around the center of the fireball, it will trigger a right-handed CMWwave
traveling toward one pole of the fireball and a left-handed CMW wave traveling toward the opposite
pole. Such CMW evolution will transport both axial and vector charges and result in an axial charge
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dipole and a vector charge quadrupole along ~B. Specifically considering the electric charge distribution,
the CMW will induce an electric quadrupole moment in the QGP, with the two (out-of-plane) poles
acquiring additional positive charges and the “equator” acquiring additional negative charges. As first
proposed and quantified in [40], the formation of this charge quadrupole lifts the degeneracy between
the elliptic flows of positive and negative pions leading to a splitting ∆v2 = vπ−2 − vπ+2 that linearly
grows with the fireball charge asymmetry Ach = (N+ − N−)/(N+ + N−) where N± are numbers of
produced positive/negative charged hadrons.

Similarly to our analysis in the CME case, let us incorporate the CMW-induced charge quadrupole
into the hadron production at freeze-out through a nontrivial electric charge chemical potential of the
form ∼ µ0[1 − 2µ̃2 cos(2φs − 2ΨRP)] with the small quantity µ0 << Tf characterizing the background
charge density ρ̄e. The coefficient µ̃2 represents the relative ratio between the quadrupole and the
“monopole” (i.e. isotropic) components in the charge distribution, µ̃2 ≃ qe/ρ̄e. Its consequence can be
demonstrated via the Cooper-Frye procedure for produced final hadron’s spectra:

dN±

dφ
∝
∫

source

e−pµuµe
±

µ0
Tf

[1−2µ̃2 cos(2φs−2ΨRP)] ≃
∫

source

e−pµuµ

[

1± µ0

Tf

[1− 2µ̃2 cos(2φs − 2ΨRP)]

]

. (28)

Here we have suppressed other kinetic variables and focused on the azimuthal angle distribution, and
for simplicity have used the Boltzmann approximation. The strong radial flow (hidden in flow velocity
field uµ) will collimate the azimuthal angle φ of emitted hadron’s momentum with the spatial angle φs

of the local emission cell in the source, and thus the out-of-plane quadrupole in the chemical potential
will “translate” into the following emitted hadron distributions:

dN±

dφ
∝ N0[1 + 2vbase2,± cos(2φ− 2ΨRP) + ...] [1± Ach[1− r cos(2φ− 2ΨRP)]]

≃ N0(1± Ach)
[

1 + 2vbase2,± cos(2φ− 2ΨRP)∓ rAch cos(2φ− 2ΨRP) + ...
]

. (29)

In the above, the vbase2,± is the elliptic flow of these positive/negative hadrons at zero charge asymmetry
µ0 = 0 (thus without any CMW effect). The charge asymmetry Ach = 〈µ0/Tf〉 ∝

∫

source
e−pµuµ(µ0/Tf )

and the slope parameter r = 2〈µ̃2〉. From the above one can read off the elliptic flow coefficient:

v±2 ≃ vbase2,± ∓ rAch/2. (30)

Such a flow splitting can be measured either for relatively lower beam energy collisions where typical
events have nonzero Ach or for high energy collision events that are binned and selected according
the events’ charge asymmetry. Indeed both types of measurements have been reported [116] and the
predicted splitting patterns have been quantitatively verified. Several hydrodynamic-based simulations
of CMW-induced flow splitting have been done for computing the slope parameter r [117, 118, 119]
and possible origins of the finite intercept ∆vbase2 (at zero charge asymmetry) have also been investi-
gated [120]. A number of potential non-CMW effects [121, 122, 123, 124, 125] that may contribute to
the observed flow splitting were proposed and studied but so far there has been no compelling alterna-
tive interpretation of data. The important next step would be an anomalous hydrodynamic simulation
framework incorporating dynamical magnetic fields as well as realistic charge initial conditions and
evolutions to fully quantify the CMW signals for data validation.

3.5 Chiral Vortical Effect

The phenomenology of the CVE in heavy-ion collisions is quite similar to that of CME. Provided
nonzero average rotation ~ω of the QGP along the out-of-plane direction (in non-central collisions)
together with nonzero background vector charge density (specifically considering baryon density µB
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from initial deposition), the CVE current ~J can be generated by initial axial charge µ5 along the out-
of-plane direction according to Eq. (14). Therefore just as in the case of the CME, the (quark-level)
CVE current leads to a separation of quarks and their anti-quarks across the reaction plane, with more
quarks transported to one pole of the QGP fireball and more anti-quarks to the other pole. The CVE
current, for example, can thus manifest itself through the baryonic charge separation (in analogy to the

electric charge separation of the CME)
dNB/B̄

dφ
∝ ...+aB/B̄ sin(φ−ΨRP), which can be measured through

baryon-number-dependent azimuthal correlations γBB/B̄B̄ and γBB̄ [48].
Such similarity between CME and CVE currents, both arising at quark level, actually brings a

complication: the two effects, if both occurring, would “mix up” and can not be easily separated from
each other. But this may turn out to be an opportunity, as proposed in Ref. [48], as different hadron-
level observables come from different combinations of quark-level contributions. By examining the
specific patterns of hadronic observables, one could identify the contributions from the CME and the
CVE and thus verify both effects. To see how this works, let us consider two observables, the baryon
current ~JB and the electric charge current ~JE, with contributions from both the CME and the CVE.
At quark level, each flavor develops a current given by:

~Jf =
Ncµ5

2π2

[

Qf (e~B) + 2Bf (µB~ω)
]

. (31)

It may be noted that a nonzero background electric charge density could also contribute a term 2Qf (µe~ω)
to the vortical effect which nevertheless might be small due to cancellation when summing over quark
flavors. From Eq. (6), one can construct the observable baryon and charge currents by summing over
flavor. The results would however depend on the extent to which the strange quark current mass is
negligible at relevant scale. If one assumes contributions from only two light flavors, the results are

~J 2f
Q =

Ncµ5

2π2

[

5

9
(e~B) +

2

9
(µB~ω)

]

, ~J 2f
B =

Ncµ5

2π2

[

1

9
(e~B) +

4

9
(µB~ω)

]

. (32)

If one assumes contributions from all three flavors, then the results are

~J 3f
Q =

Ncµ5

2π2

[

2

3
(e~B) + 0× (µB~ω)

]

, ~J 3f
B =

Ncµ5

2π2

[

0× (e~B) +
2

3
(µB~ω)

]

. (33)

Therefore, depending on the relative strength of the CME versus the CVE and depending on strange
flavor contributions, the ratio of charge and baryon separation can vary significantly. Furthermore one
can also construct the strangeness current as well as various other hadronic currents which all have
different patterns. By measuring these observables one can hopefully separate the contributions from
the CME and the CVE, and decipher the extent to which strange flavor becomes chiral in the QGP. One
can also study how the patterns of these currents change with beam energy which shall considerably
shift the relative strength between the CME and the CVE.

4 Experimental Results

Since the first STAR publications [107, 114] presenting results qualitatively consistent with the CME
expectations, the search for the CME has been actively pursued by several major collaborations study-
ing heavy-ion collisions, including STAR [105, 106, 126, 127], PHENIX [128] and ALICE collabora-
tions [129]. In addition, the correlation observables sensitive to the CMW [116, 130, 131] and the
CVE [132] have been also studied. In the absence of detailed quantitative predictions for the anomalous
chiral effects, the experimental program is mostly driven by search for qualitative features that might be
difficult or impossible to explain by any other “background” physics. Thus, the CME predicts electric

20



charge separation along the direction of the magnetic field, the CVE similarly predicts separation of
baryon number along the direction of the orbital angular momentum, and there are no obvious reasons
for such a separation based on non-anomalous physics. As the direction of the magnetic field and the
orbital angular momentum on average coincide and are perpendicular to the reaction plane, the searches
are for the separation of the electric charge and baryon number with respect to the reaction plane. Due
to the fluctuating nature of the phenomena, the direction of the separation also fluctuates, such that
on average the effect is zero. One can observe the charge separation only by means of correlations,
looking for correlated emission of particles with the same electric charge or baryon number into similar
azimuthal directions.

A “drawback” of the correlation observables is that they are P- and CP-even, unlike the anomalous
effects lying in their origin. This opens a possibility for a background contribution that is totally
unrelated to the effects under study. These background effects are often dominant, and a special care
must be taken to suppress them. For example, one “obvious” correlation to examine for the CME effect
would be to check if the particles of the same charge are preferentially emitted in the same direction,
while particles of the opposite charges are emitted in the opposite directions . But there exist many
other reasons for the particles to be correlated in azimuth: jets, radial flow, resonance decays. The
magnitudes of those background correlations in general are larger than that due to the CME. These
background correlations have to be suppressed in order to gain access to those possibly due to the CME.

An approach often used to suppress the background correlations is based on the observation that
background effects are mostly independent from the orientation of the reaction plane, while the CME
and other effects are strongly correlated with the direction of the magnetic field and thus with the
reaction plane orientation. Then the difference in “projections” of the correlations onto the reaction
plane and onto the plane perpendicular to the reaction plane would be mostly free of the background
and more sensitive to the CME [103]. In this way the background contribution can be suppressed to a
level close to the magnitude of the elliptic flow v2 [103]. The same trick could be taken further to test
the remaining effect — by studying the “projections’ onto the higher harmonic event planes one can
try to figure out if the signal is due to modulation in the background caused by anisotropic flow or if
the signal exhibits something special for the direction of the magnetic field.

The search for the CMW, at first might look “simpler” compared with those for the CME and the
CVE – while on average the net effect is still zero, the predicted splitting in elliptic flow of positive and
negative particles uniquely depends on the charge asymmetry (net vector charge) of the (sub)system.
The effect still might be studied only by many-particle correlations, three at minimum, with one particle
to be the probe, the second particle for an estimate of the reaction plane, and the third one for an
estimate of the system’s net vector (e.g. electric) charge.

Note that the analyses involving the reaction plane require measurements of at least three particle
correlations (with one particle used for the determination of the reaction plane). For events with low
multiplicities (e.g. in very peripheral collisions) such correlations could in principle have a noticeable
contribution from direct three particle decays or jets, and special precaution should be taken to suppress
such a contribution.

In the following we discuss the experimental results on the charge dependent correlations for the
search of different anomalous chiral effects, as well as measurements sensitive to the background. We
also review the pertinent results from Bean Energy Scan at RHIC as well as the analysis of U+U
collisions. The role of the local charge conservation combined with anisotropic flow in forming the
background signal, the only real possible source of the charge-dependent background identified so far,
is discussed in a separate subsection.

Once the basic measurements of a possible signal of this or other anomalous effect are performed
and found to be qualitatively consistent with expectations (and, remarkably they all are), the next steps
include cross comparison of different observables as well as variation of conditions sensitively affecting
the possible background or signal. Some of these studies have been performed, while many more are
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still awaiting experimental efforts. We discuss the latter in the subsection on future measurements.

4.1 Chiral Magnetic Effect

The STAR Collaboration first measured the γ correlator for Au+Au (shown with crosses in Fig. 11)
and Cu+Cu collisions at 62.4 and 200 GeV with data from the 2004/2005 RHIC runs [107, 114]. The
2nd harmonic event plane used in the correlator was reconstructed with the STAR Time Projection
Chamber (TPC) [133]. The opposite charge (γOS) and the same charge (γSS) correlations display the
“right” ordering, supporting the picture of the CME. Similar γ results for 200 GeV Au+Au were
observed by the PHENIX Collaboration [128]. PHENIX also employed a multiparticle charge-sensitive
correlator, Cc(∆S) [134], and their preliminary results showed a concave Cc(∆S) distribution [128],
also evidencing the charge separation effect. To study the background from conventional physics,
Au+Au collisions were simulated with heavy-ion event generators MEVSIM [135], UrQMD [136], and
HIJING [137] (with and without an elliptic flow afterburner implemented). MEVSIM only includes
correlations due to resonance decays and an overall elliptic flow pattern. UrQMD and HIJING are
much more realistic and comprehensive simulation models of the collision, and they include correlations
from many different physical processes. No generator gives qualitative agreement with data.

STAR has also analyzed Au+Au collision at 62 GeV as well as Cu+Cu collisions at 200 and 62
GeV [107, 114]. All the results have been found to be in qualitative expectation with CME. The
opposite charge correlations in Cu+Cu collisions are stronger than those in Au+Au, possibly reflecting
the suppression of the correlations among oppositely moving particles in a larger system. STAR also
presented pT and ∆η dependencies of the signal. The signal has a ∆η width of about one unit of
rapidity, consistent with small P-odd domains. The signal is found to increases with the pair average
transverse momentum, and it was later shown [108] that the radial expansion can explain such a feature.

The charge-separation signal was cross-checked with data from the 2007 RHIC run (shown in
Fig. 11) [105]. The γ correlations from these data were measured with respect to both the 1st har-
monic plane (of spectators at large rapidity) and the 2nd harmonic event planes at mid-rapidity. Using
the ZDC-SMD first harmonic event plane determined by spectator neutrons ensures that the signal
is not coming from three-particle background correlations, and is due to genuine correlations to the
reaction plane. Another test was carried out by replacing one of the two charged particles in γ with
a neutral particle, e.g. K0

S, and the results show no separation between K0
S − h+ and K0

S − h− [132].
Thus the charge separation observed in the γ correlation between two charged particles is indeed due
to the electric charge. To suppress the contribution from femtoscopic correlations, the conditions of
∆pT > 0.15 GeV/c and ∆η > 0.15 were applied to the three-point correlator, shown with the grey
bars in Fig. 12. Excluding pairs with low relative momenta significantly reduces the positive contri-
butions to opposite charge correlations in peripheral collisions, but the difference between same- and
opposite-charge correlations remains largely unchanged and consistent with CME expectations.

The γ correlator weights different azimuthal regions of charge separation differently, e.g. oppositely
charged pairs emitted azimuthally at 90◦ from the event plane (maximally out-of-plane) are weighted
more heavily than those emitted only a few degrees from the event plane (minimally out-of-plane). It is
a good test to modify the γ correlator such that all azimuthal regions of charge separation are weighted
identically. This may be done by first rewriting Eq. (23) as

〈cos(φα + φβ − 2ΨRP)〉 = 〈(MαMβSαSβ)IN〉 − 〈(MαMβSαSβ)OUT〉, (34)

where M and S stand for the absolute magnitude (0 ≤ M ≤ 1) and sign (±1) of the sine or cosine
function, respectively. IN represents the cosine part of Eq. (23) (in-plane) and OUT represents the sine
part (out-of-plane). A modulated sign correlation (msc) is obtained by reducing the γ correlator [105]:

msc ≡
(π

4

)2

(〈SαSβ〉IN − 〈SαSβ〉OUT) . (35)
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The modulated sign correlations are compared with the three-point correlator for Au+Au collisions at
200 GeV in Fig. 12. It is evident that the msc is able to reproduce the same trend as the three-point
correlator although their magnitudes differ slightly. STAR also carried out another approach called the
charge multiplicity asymmetry correlation, whose methodology is similar to the msc, and yielded very
similar results [126].

A further understanding of the origin of the observed charge separation could be achieved with a
study of the beam-energy dependence of the γ correlation. The charge separation effect depends strongly
on the formation of the quark-gluon plasma and chiral symmetry restoration [22], and the signal can
be greatly suppressed or completely absent at low collision energies where a QGP has significantly
shortened lifetime or not even formed. Taking into account that the life-time of the strong magnetic
field is larger at smaller collision energies, this could lead to an almost threshold effect: with decreasing
collision energy, the signal might slowly increase with an abrupt drop thereafter. Unfortunately, the
exact energy dependence of the chiral magnetic effect is not calculated yet.

The question of the collision-energy dependence of the γ correlator has been addressed during the
recent RHIC Beam Energy Scan. Figure 13 presents γOS and γSS correlators as a function of centrality
for Au+Au collisions at

√
sNN = 7.7 − 200 GeV measured by STAR [106], and for Pb+Pb collisions

at 2.76 TeV by ALICE [129]. The difference between γOS and γSS seems to vanish at low collision
energies, again qualitatively in agreement with expectations for the CME. At most collision energies,
the difference between γOS and γSS is still present with the “right” ordering, manifesting extra charge-
separation fluctuations perpendicular to the reaction plane. With decreased beam energy, both γOS and
γSS tend to rise up starting from peripheral collisions. This feature seems to be charge independent, and
can be explained by momentum conservation and elliptic flow [105]. Momentum conservation forces all
produced particles, regardless of charge, to separate from each other, while collective flow works in the
opposite sense. For peripheral collisions, the multiplicity (N) is small, and momentum conservation
dominates. The lower beam energy, the smaller N , and the higher γOS and γSS. For more central
collisions where the multiplicity is large enough, this type of P-even background can be estimated with
−v2/N [105, 110]. In Fig. 13, we also show the MEVSIM [135] model calculations with implementation
of elliptic flow and momentum conservation, which qualitatively describe the beam-energy dependence
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of the charge-independent background.

4.1.1 CME background studies

The ambiguity in the interpretation of experimental results comes from a possible background of (the
reaction plane dependent) correlations not related to the CME. As illustrated in Fig. 3 of Ref [106],
the two-particle correlator, δ ≡ 〈cos(φα − φβ)〉, which in the absence of any other correlations except
the CME should be proportional to 〈aαaβ〉, shows the “wrong” ordering. That indicates the existence
of an overwhelming background in δ over any possible CME effect. In γ correlator those background
correlations are strongly suppressed (at the level of v2) but still might be significant. The fact that no
event generator can explain the data says that either the experimental results are indeed due to the
CME, or that all existing event generators do not include all the possible physics. There exist several
attempts to identify the physics which might be responsible for the experimental observations. The
most notable in this respect is the paper [113] where the authors show that the difference between the
same- and opposite-charge correlations as measured by STAR can be explained within a Blast Wave
model that includes charge conservation along with radial and elliptic flow with parameters tuned to
the data.

Local charge conservation (LCC) assumes that the pairs of opposite charges are created very close in
space at the late stage of the system evolution with developed anisotropic flow. Radial boost of the pair
due to transverse expansion leads to particle collimation in azimuth and pseudorapidity [138, 139]. Then,
due to elliptic flow, opposite-charge pairs became stronger correlated in-plane than out-of-plane, which
causes splitting in value of γ correlator between same- and opposite-charge pairs [113] as observed in the
data. While in [113] the authors were able to describe the data rather closely, there exist many questions
to this particular analysis. Firstly we note that the local charge conservation (LCC) mechanism leads
to strong correlation between opposite charge pairs, while experimentally γ+− is very close to zero.
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There should be another charge-independent correlation mechanism (momentum conservation is often
discussed for that) which almost exactly compensates for the effect of the LCC. We also note that the
parameters of the Blast Wave model in [113] were tuned to the charge balance function in B(∆φ), the
detailed shape of which by itself could be influenced by the CME. Further study of the background
effects within this approach would be very useful.
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To single out background contributions, one can take the approximation in Eq. (27) and solve for
H, the CME signal strength,

Hκ = (κv2δ − γ)/(1 + κv2). (36)

According to Ref. [54], κ is close to, but deviates from, unity owing to the finite detector acceptance.
Figure 14 shows (Hκ=1

SS − Hκ=1
OS ) as a function of beam energy for 30 − 60% Au+Au (Pb+Pb) colli-

sions [106, 129]. In the case of unity κ, (HSS − HOS) demonstrates a weak energy dependence above
19.6 GeV, and tends to diminish from 19.6 to 7.7 GeV, though the statistical errors are large for 7.7
GeV. This may be explained by the probable dominance of hadronic interactions over partonic ones at
low energies. As discussed in the previous Section, the parameter κ in reality can take rather different
values for different sources of background correlations that may exhibit varied dependence on collision
energy and centrality. A more definitive conclusion may be reached with a more accurate and reliable
estimation of κ and with higher statistics at lower energies in the proposed phase II of the RHIC Beam
Energy Scan program, as illustrated by the shaded band in Fig. 14.

The prolate shape of the uranium nuclei could yield a sizable initial eccentricity (and large elliptic
flow) even in fully overlapping U+U collisions, where the magnetic field is minimal. Such collisions
would be dominated by the background effects and can be used as an additional test for the nature
of the charge dependent correlations [140]. Figure 15 shows (γOS − γSS) multiplied by the number of
participants, Npart, vs v2 for different centralities in 193 GeV U+U and 200 GeV Au+Au collisions [127].
Npart was used to compensate for the dilution effect, which is due to multiple sources involved in the
collision [107] . In both U+U and Au+Au, the signal roughly increases with v2. The centrality trigger in
U+U collisions helps to select the most central events for disentangling the background contribution from
the signal, since the magnetic field will be greatly suppressed and the measurement will be dominated
by the v2-related background. As a result, in 0-1% most central U+U collisions the signal disappears
as expected by the CME, while v2 is still ∼ 2.5%. This demonstrates the smallness of the background,
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and presents a challenge to the LCC interpretation. A phenomenological study for extrapolating both
signal and background from AuAu to UU collisions was done in [141].

Another measurement that can clarify the origin of the charge dependent correlations and the role
of the LCC was suggested in [142]: the correlations measured with respect to the fourth harmonic
event plane, 〈cos(2φα + 2φβ − 4Ψ4)〉, should not contain any contribution from the CME, but it should
include the effect of the LCC. The correlations due to the LCC in this case are expected to be somewhat
smaller in magnitude as the fourth harmonic flow is not that strong as the elliptic flow. The preliminary
results of such measurements are presented in Fig. 16 [143] with the charge-dependent part shown in the
right panel. The correlations relative to the fourth harmonic event plane are very weak and suggestive
of small contribution from the LCC, but the detailed blast wave simulation has to be performed to draw
more definite conclusion from this measurement.
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Figure 16: (Left panel) Same-charge and opposite-charge pair correlations relative to the fourth har-
monic event plane as a function of centrality. (Right panel) Comparison of the charge-dependent parts
in correlations with respect to the second and fourth harmonic event planes.

4.2 Chiral Magnetic Wave

The chiral magnetic wave (CMW) manifests itself in a finite electric quadrupole moment of the collision
system, when the “poles” of the produced fireball acquire, depending on the net charge of the system,
excess of either positive or negative charge, with the opposite charge concentrated on the “equator”.
This effect, if present, will lead to charge-dependent elliptic flow. Taking pions as an example, the
CMW will lead to [40]

v2(π
±) = vbase2 (π±)∓ rAch/2, (37)

where vbase2 (π±) is the presumably charge independent, “baseline”, elliptic flow, Ach = (N+−N−)/(N++
N−) is the charge asymmetry of the event, and r is the coefficient reflecting the strength of the CMW.
As 〈Ach〉 is always positive in heavy-ion collisions, the Ach-integrated v2 of π− (π+) should be above
(below) the baseline owing to the CMW. However, the baseline v2 may be different for π+ and π−

because of several other physics mechanisms [121, 122], so it is less ambiguous to study the CMW via
the Ach dependence of pion v2 than via the Ach-integrated v2.
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Figure 17: (a) pion v2 as a function of observed charge asymmetry and (b) v2 difference between π−

and π+ as a function of charge asymmetry with the tracking efficiency correction, for 30-40% Au+Au
collisions at 200 GeV [116].

Taking 30-40% 200 GeV Au+Au as an example, pion v2 is shown as a function of Ach in panel (a)
of Fig. 17 [116]. π− v2 increases with Ach while π+ v2 decreases with a similar magnitude of the slope.
Note that v2 was integrated over a narrow low pT range (0.15 < pT < 0.5 GeV/c) to focus on the
soft physics of the CMW. Such a pT selection also ensures that the 〈pT 〉 is independent of Ach and is
the same for π+ and π−, so that the v2 splitting is not a trivial effect due to the 〈pT 〉 variation. The
v2 difference between π− and π+ is fitted with a straight line in panel (b). The slope parameter r is
positive, qualitatively consistent with the expectation of the CMW picture. The fit function is non-zero
at 〈Ach〉 (i.e. the event-average value in given centrality class), indicating the Ach-integrated v2 for π−

and π+ are different, which was also observed in [144].
The same procedure as above was followed to retrieve the slope parameter r as a function of centrality

for Au+Au collisions at 200, 62.4, 39, 27, 19.6, 11.5 and 7.7 GeV, as shown in Fig. 18 [116]. A similar
rise-and-fall trend is observed in the centrality dependence of the slope parameter for all the beam
energies except 11.5 and 7.7 GeV, where the slopes are consistent with zero with large statistical
uncertainties. It was argued [121] that at lower beam energies the Ach-integrated v2 difference between
particles and anti-particles can be explained by the effect of quark transport from the projectile nucleons
to mid-rapidity, assuming that the v2 of transported quarks is larger than that of produced ones. The
same model, however, when used to study v2(π

−) − v2(π
+) as a function of Ach, suggested a negative

slope [145], which is in contradiction with data. Charge dependence of the elliptic flow on the event
charge asymmetry was confirmed by preliminary ALICE results for Pb+Pb collisions at 2.76 TeV [131].

Recently a more realistic implementation of the CMW [119] confirmed that the CMW contribution
to r is sizable, and that the centrality dependence of r is qualitatively similar to the data. A quantitative
comparison between data and theory requires further work on both sides to match the kinematic regions
used in the analyses.

One drawback of the measurement of v2(Ach) is that the observed Ach requires a correction factor due
to the finite detector tracking efficiency, as well as dependence on a particular experimental acceptance.
A novel correlator that is independent of efficiency was proposed in the following cumulant form [146]:

〈〈cos[n(φ1 − φ2)]q3〉〉 = 〈cos[n(φ1 − φ2)]q3〉 − 〈cos[n(φ1 − φ2)]〉〈q3〉1. (38)

Here φ1 and φ2 are the azimuthal angles of particles 1 and 2, and q3 is the charge (±1) of particle 3. 〈q3〉1
is the average charge of particle “3” under condition of observing a particle “1” of a particular charge
(whereas the particle 2 is all inclusive regardless of charge). The cos[n(φ1 − φ2)] part was estimated by
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Figure 18: The slope parameter r as a function of centrality for Au+Au collisions at 7.7-200 GeV [116].
The grey bands include the systematic errors due to the track selection cut, the tracking efficiency and
the pT range of particles involved in the event plane determination. For comparison, we also show the
UrQMD calculations [136] and the calculations of the CMW [40] with different magnetic field duration
times.

ALICE [131] using the cumulant method and denoted as cn{2}. In the absence of charge dependent
correlations, the correlator should be equal to zero. Note that when the charge of the third particle is
averaged over all particles in the event (in a specified kinematic region), the mean is equal to the charge
asymmetry, i.e. 〈q3〉 = Ach.

Figs. 19 and 20 show the three-particle correlator (as in Eq. (38)) for the second and third harmonic,
respectively, as a function of centrality in Pb+Pb collisions at 2.76 TeV [132]. For the second harmonic,
the correlation is charge dependent, with an ordering that supports the CMW picture. The third
harmonic correlator is much weaker (see discussion of the background effects below).

The main advantage of the new 3-particle correlator is a possibility of differential studies, e.g. as a
function of pseudorapidity difference between particles “1” and “3”. Such measurements, see Figs. 21
and 22 for ALICE preliminary results [131], should be significantly more informative about the nature
of the correlations and will help to identify the background effects.

4.2.1 CMW background studies

Note that more recent theoretical calculations of the CMW effect are rather controversial – they range
from a very modest signal that would be difficult to detect [117, 118] to a “full strength” effect [119]
explaining the entire signal measured by STAR. To check if the observed slope parameters come from
conventional physics, the same analysis of UrQMD [136] events was carried out. For Au+Au collisions
at 200 GeV, the slopes extracted from UrQMD events are consistent with zero for the 10-70% centrality
range, where the signal from the real data is prominent, see Fig. 18. Similarly, the AMPT event
generator [147] also yields slopes consistent with zero (not shown here).

Naively, it is very difficult to imagine any background mechanisms that would lead to the dependence
observed by STAR and there exist a very limited number of possible explanations proposed so far.
Perhaps the most interesting of these explanations is the result of Bzdak and Bozek [124] who tried
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Figure 19: The correlation of (〈c2{2}Ach〉 −
〈Ach〉〈c2{2}〉) as a function of centrality in Pb+Pb
collisions at 2.76 TeV [131].

Figure 20: The correlation of (〈c3{2}Ach〉 −
〈Ach〉〈c3{2}〉) as a function of centrality in Pb+Pb
collisions at 2.76 TeV [131].
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lisions at 2.76 TeV [131].

to incorporate the effect of the LCC in the hydrodynamic calculations. Their calculations show that
the LCC can indeed be responsible for at least a large part of the observed effect. Unfortunately it is
difficult to trace from the final result the real mechanism – how and why the LCC actually contributes
to this observable.

The mechanism of such LCC effect was elaborated only recently with the help of differential three
particle correlator in Ref. [146], where the effect was studied in detail using the Blast Wave model. It
was found that there exists an interesting interplay of two effects: a stronger correlation of balancing
charges in-plane compared with out-of-plane, and the statistical “dilution” of the correlation due to
uncorrelated background.

If there is a considerable LCC effect, then it should also be seen in higher harmonic correlators,
for which the effects of the CME and the CMW should be minimal [142, 124]. Fig. 20 demonstrates
that the correlations for the third harmonic bear the similar ordering as those for the second harmonic,
but the correlation strength is about 10 times smaller. The third harmonic differential correlator in
Fig. 22 shows a signal about 3 times smaller than the second harmonic one. The corresponding slope
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parameters for the third harmonic flow splitting were reported by STAR to be consistent with zero [130],
which would thus suggest the smallness of the LCC effect.

Another interesting point made in Ref. [124] is that the LCC at freeze-out, when convoluted with
the characteristic shape of v2(η) and v2(pT ), may provide a qualitative explanation for the finite v2 slope
observed from data. A realistic estimate of the contribution of this mechanism, however, turns out to
be smaller than the measurement by an order of magnitude [116].

In a very recent hydrodynamic study [125], it was suggested that simple viscous transport of charges
combined with certain specific initial conditions might lead to a sizable contribution to the observed v2
splitting of charged pions. In order for the results of pion splitting in line with data, the authors had to
assume a crucial relation between isospin chemical potential and the electric charge asymmetry, which
seems rather shaky, to say the very least. Furthermore certain predictions of this model (e.g. splitting
for kaons) appear not in line with current experimental information. Clearly whether such idea works
or not, would need to be thoroughly vetted by realistic viscous hydrodynamic simulations. But all that
said, this study poses a very important question that has to be answered: to make a firm case for the
observation of anomalous charge transport via CMW, the normal (viscous hydrodynamical) transport
of charges should be quantitatively understood.

4.3 Chiral Vortical Effect

The Chiral Vortical Effect (CVE) is in some sense similar to the CME: its experimental manifestation is
the baryon-number separation, instead of the electric-charge separation, perpendicular to the reaction
plane. As a result, the three-point correlator, γ, needs to be studied between two (anti)baryons.
However, if both particles are (anti)protons that carry also electric charges, there will be an ambiguity
in the possible signal arising from the CME. The study of the γ correlator with an electrically neutral
baryon, such as Λ, will provide more conclusive evidence of the baryon-number separation effect.

Although (anti)Λs are electrically neutral, it is still a question whether the strange quarks behave
the same way as the up/down quarks in the chiral dynamics during the collision. If the answer is no,
then (anti)Λs may still act like electrically charged particles in the γ correlation. Fig. 23 shows the
γ correlation of Λ-h+ (Λ̄-h−) and Λ-h− (Λ̄-h+) as a function of centrality in Au+Au collisions at 200
GeV [132]. Note that (anti)protons have been excluded from the charged hadrons in the correlation to
avoid any possible CVE contribution. Tentatively assuming Λs (Λ̄s) are positively(negatively)-charged,
we find that the “same-charge” and “opposite-charge” correlations are consistent with each other, which
means no charge-dependent effect. The message is twofold. First, from the K0

S − h correlations [132]
we learn that the different behaviors of same-charge and opposite-charge particle correlation as shown
in Fig. 11 are really due to the electric charge, and therefore the null charge-separation effect in Λ-h
indicates that (anti)Λs manifest no electric charges in the γ correlation. So the strange quarks inside
the Λ hadron seem to behave the same way as the up/down quarks in the chiral dynamics. Second, the
Λ-h correlation provides a baseline check for the Λ-p correlation, and any possible signal in the latter
should not come from the CME contribution.

Fig. 24 shows γ correlation of Λ-p (Λ̄-p̄) and Λ-p̄ (Λ̄-p) as a function of centrality in Au+Au collisions
at 200 GeV [132]. The same-baryon-number correlation has a different behavior from the opposite-
baryon-number correlation from mid-central to peripheral collisions. This baryon-number separation
with respect to the event plane is consistent with the expectation from the CVE. More investigations
into the background contribution are needed. For example, in analog with the LCC, there could be the
Local Baryon-number Conservation that plays a similar role as the LCC when coupled with the collective
flow. The magnitudes of the Λ-p correlations are much larger than those of the h-h correlations. This
is partially because the 〈pT 〉 of baryons is higher than that of mesons, and the correlation strength
increases with the average pT of the two particles in the correlation. A future differential measurement
vs the average pT and further correlations between identified particles may provide a better comparison
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of the correlation strength between the CME- and CVE-related correlations.

4.4 Future experimental studies

Experimental observation of the charge dependent correlations consistent with the theoretical expec-
tations for several chiral anomalous effects, if confirmed, can be a beginning of an exciting program –
direct experimental study of the effects from non-perturbative sector of QCD. Below we briefly discuss
several future experimental measurements aimed at more detailed study of the observed signals as well
as understanding the background effects.

• Beam Energy Scan II. The results from the BES I indicate that the signal likely disappears at
lower energies. Unfortunately the statistical uncertainties are still about a factor of three too high
to make a definite conclusion. The upcoming BES II should resolve this question.

• Collisions of isobaric nuclei. The signal dependence on the strength of the magnetic field can be
verified with collisions of isobaric nuclei (the same mass but different charges), such as 96

44Ru and
96
40Zr. In such collisions the background effects (that depend mostly on the elliptic flow) should
not change, while the magnetic field, proportional to the electric charge of the nuclei, would vary
by about 10%, resulting in a ∼ 20% change in the CME signal. Collisions of isobaric nuclei at
RHIC would also help in understanding baryon stopping, initial velocity fields, and the origin of
directed flow.

• Higher harmonic correlators. The fluctuations in the initial conditions result in nonzero higher
harmonic flow (n > 2). The background correlations, if measured relative to the higher harmonic
event planes, while smaller in magnitude (according to higher harmonic flow), should be finite.
However the correlations caused by the magnetic field should be highly suppressed, if not equal
to zero. Several such measurements have been discussed above, but they will be significantly
improved with higher statistics available in the next few years.

• Event shape engineering (ESE). [148] Large fluctuations of anisotropic flow open another possibil-
ity to disentangle effects associated with the magnetic field (or orbital angular momentum) from
the background correlations. With the event shape engineering one is able to select events corre-
sponding to the large or small flow while keeping the magnetic field the same. These measurements
also require higher statistics.
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• U+U collisions. While the selection of body-body (large elliptic flow) and tip-tip (small elliptic
flow) collision orientations solely based on the measured multiplicity appears to be much more
difficult than expected [149], these collisions, owing to increased flow fluctuations, would be the
best place for the application of ESE method.

• Charge-dependent Q̂-vector analysis. Both the CME and CMW observables pertain to nontrivial
charge distributions in azimuthal angles (e.g. the electric charged dipole and quadrupole), induced
by anomalous transport effects. Some of the identified background effects (e.g. the local charge
conservation, normal viscous charge transport) could also lead to nontrivial charge azimuthal
correlations when coupled with various harmonic flows. It would therefore be very useful to
develop possible new measurements that could extract full information for the azimuthal charge
distributions. One class of observables that can help decipher such information, are the charged
multipole vectors Q̂c

n, defined for the measured charged hadrons in an event as Qc
n e

iΨc
n =

∑

i qi e
iφi

where the summation runs over charged hadrons with qi and φi the electric charge and azimuthal
angle of the i-th particle [150, 109]. In particular the Q̂c

1 and Q̂c
2 are directly relevant to the CME

and CMW signals. One may also think of sub-event version of this analysis or possible improved
version with multi-particle correlation. These observables are different and independent from the
usual Q̂n vectors related to the collective flow measurements. The Q̂n is charge blind and includes
all charges similarly while the Q̂c

n takes the difference between positive and negative charges
therefore yielding information on the charge distribution. With a joint Q̂n and Q̂c

n analysis one
can study the strength and azimuthal correlations among all harmonics and charged multipoles. A
systematic charged multipole vector analysis would provide extremely valuable information about
the “charge landscape” in heavy ion collisions.

• Cross-correlation of different observables. Cross-correlation and cross-comparison of different
observables might be very valuable for understanding the nature of the correlations. For example,
the baryonic charge separation due to the CVE and electric charge separation due to the CME
should be strongly correlated owing to correlations in the direction of the magnetic field and
the system orbital angular momentum. This implies a strong correlation in baryonic – electric
charge correlations (e.g. Λ−π±) that can be measured experimentally. Another example of cross
comparison of different observables can be the LCC contribution to the CME and the CMW
studies. This would require a detailed modeling of the LCC, with both measurements to be
explained by the same set of parameters.

• Correlations with identified particles [151]. At least two directions can be pursued here, both in
heavy ion and elementary pp collisions. The various anomalous chiral effects discussed previously
occur at quark level, and when combined into hadronic observables, will show specific patterns
for different identified hadrons according to their electric, baryonic, and strangeness quantum
numbers. Detailed measurements of correlation observables with identified particles will provide
crucial verifications of data interpretation in terms of anomalous chiral effects. The neutral parti-
cles should not be affected by the magnetic field, and this can be used to separate the background
effects. The measurements of the “quark content” of the correlated cluster will also be extremely
interesting. The topological cluster decays in equal number of qq̄-pairs of all flavors. The so-called
’t Hooft interaction (e.g. used to explain the difference in d̄/ū ratio in the nucleon “sea”) predicts
that the topological cluster couples to equal number of qq̄ pairs of all flavors, which would lead,
e.g., to weaker correlations between hadrons with u−u combination than that with the u−d one.

• Studies of the electromagnetic fields. As mentioned earlier, there exist substantial uncertainties
in the time evolution of the magnetic field. It depends strongly on the electric conductivity of the
system [53, 91]. Experimental measurements sensitive to the strength and time dependence of the
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strong electromagnetic fields would be extremely valuable for a better theoretical modeling of the
CME and CMW effects, as well as for understanding the system evolution and hadronization in
general. There have been several proposals for such measurements [91, 152, 153], and we expect
the first experimental results on the charge dependent directed flow in Cu+Au collisions to be
available soon. Note that the electric conductivity of the plasma should strongly depend on the
quark production time. From this point of view such measurements could serve as an important
test of the “two waves” scenario proposed by S. Pratt [154, 155]. Quark propagation in a strong
magnetic field can also lead to the charge dependence of particle elliptic flow: v2,p > v2,n ≥ v2.Λ,
v2,π+ = v2,π− = v2,π0 , v2,K+ = v2,K− > v2,K0 . The recent ALICE measurements of the kaon
flow [156] appear to be consistent with this ordering.

5 Summary and Outlook

The interplay of quantum anomalies with magnetic field and vorticity induces a variety of novel non-
dissipative transport phenomena in systems possessing chiral fermions. In heavy ion collisions, these
phenomena provide a unique possibility to probe the topological properties of the quark-gluon plasma
by measuring the charge dependence of the azimuthal distributions of the produced hadrons. This
is possible because relativistic heavy ion collisions produce hot QCD matter characterized by strong
fluctuations of topological charge as well as approximately chiral fermions (namely the light quarks).
In addition, the colliding ions generate strong magnetic fields eB ∼ O(10 m2

π). Theoretical estimates
discussed in this review indicate that the chiral magnetic and chiral vortical effects lead to the event-
by-event charge separation that can be observed in heavy ion collisions. Moreover, the chiral magnetic
wave induced by the vector chemical potential leads to the characteristic charge dependence of the
elliptic flow of hadrons controlled by the electric charge asymmetry in a given event.

The experimental data from STAR Collaboration at Relativistic Heavy Ion Collider at BNL and
ALICE Collaboration at Large Hadron Collider at CERN discussed in section 4 provide an evidence
for the predicted effects, with magnitude consistent with theoretical estimates. There exist known
conventional backgrounds to all of these experimental observables. However at present there is no
compelling alternative explanation that can describe all of the data without invoking the anomalous
chiral effects.

Nevertheless, a lot remains to be done both in experiment and theory to substantiate the existing
evidence for the anomalous chiral effects in heavy ion collisions, and we outlined the future program of
these studies in section 4. The physics of anomalous transport is at the heart of QCD as a non-Abelian
gauge theory. It is crucially important to establish and quantify the anomalous chiral effects in heavy
ion collisions, and we hope that this goal will be accomplished in the near future.
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