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Abstract

Chiral symmetry and its spontaneous breaking play an important role both in the light hadron and heavy hadron
systems. The chiral perturbation theory (χPT) is the low energy effective field theory of the Quantum Chromodynam-
ics. In this work, we shall review the investigations on the chiral corrections to the properties of the heavy mesons and
baryons within the framework of χPT. We will also review the scatterings of the light pseudoscalar mesons and heavy
hadrons, through which many new resonances such as the D∗s0(2317) could be understood.

Moreover, many new hadron states were observed experimentally in the past decades. A large group of these
states is near-threshold resonances, such as the charged charmoniumlike Zc and Zcs states, bottomoniumlike Zb states,
hidden-charm pentaquark Pc and Pcs states and the doubly charmed Tcc state, etc. They are very good candidates of
the loosely bound molecular states composed of a pair of charmed (bottom) hadrons, which are very similar to the
loosely bound deuteron. The modern nuclear force was built upon the chiral effective field theory (χEFT), which is
the extension of the χPT to the systems with two matter fields. The long-range and medium-long-range interactions
between two nucleons arise from the single- and double-pion exchange respectively, which are well constrained by
the chiral symmetry and its spontaneous breaking. The short-distance interactions can be described by the low energy
constants. Such a framework works very well for the nucleon-nucleon scattering and nuclei. In this work, we will
perform an extensive review of the progress on the heavy hadronic molecular states within the framework of χEFT.
We shall emphasize that the same chiral dynamics not only govern the nuclei and forms the deuteron, but also dictates
the shallow bound states or resonances composed of two heavy hadrons.
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1. Brief overview of the heavy hadron spectroscopy

Quantum chromodynamics (QCD) is the theory of the strong interaction. Its basic constituents are the quarks and
gluons. They carry the color degrees of freedom of the non-Abelian SU(3) color gauge group and interact with each
other through the exchange of the gluons. QCD has three salient features: color confinement, asymptotic freedom,
chiral symmetry and its spontaneous breaking. No isolated quarks and gluons have been observed. Instead, the quarks
and gluons are confined within the colorless mesons and baryons. The interaction strength between the quarks and
gluons increases as the energy scale of the interaction decreases. The perturbation in terms of the coupling constant
is invalid in the low energy region. The QCD Lagrangian exhibits the exact SU(3)L ⊗ SU(3)R chiral symmetry
when the current quark masses of the up, down and strange quarks vanish, which is spontaneously broken to the
SU(3)V . With the small current quark masses, QCD also exhibits the approximate SU(3) flavor symmetry. When the
masses of the charm, bottom and top quarks become very large, QCD exhibits the approximate heavy quark spin and
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flavor symmetries. These symmetries play a crucial role in our understanding of the heavy hadrons and their strong
interactions.

The hadrons encode the underlying information of the QCD dynamics in the nonperturbative region. The hadron
spectroscopy tightly connects the experimental measurements with various theoretical frameworks, such as the ab-
initio lattice QCD simulations, the quark models, QCD sum rule, etc. In the traditional quark model, the mesons and
baryons are composed of the quark-antiquark pair (qq̄) and three quarks (qqq), respectively. Most of the ground-state
and excited hadrons can be successfully described by such a simple framework.

In the past decades, the hadron spectroscopy has been revived by the observation of many excited heavy hadrons [1],
the exotic X,Y,Z states [1], and the hidden-charm pentaquark states [2, 3] as well as the doubly charmed teraquark
state Tcc [4, 5], etc. Readers may find more experimental and theoretical details in the reviews [6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17]. The traditional quark model failed badly for most of these states. In general, QCD allows the
existence of the more complicated forms of structures for the hadrons, such as the hybrid meson, the glueball, the
tetraquark state, the pentaquark state, and hadronic molecule, etc. In fact, the multiquark states (qqq̄q̄) and (qqqqq̄)
were proposed together with the conventional mesons and baryons by Gell-Mann [18] and Zweig [19]. These newly
observed structures might be the good candidates of the exotic states and contain the missing piece of knowledge
about the nonperturbative strong interactions.

Most of the new hadron states are in the heavy sector. Thus, the heavy hadron spectroscopy is of great interest. The
heavy hadrons are composed of the light quarks q = u, d, s (mq � Λχ), and the heavy quarks Q = c, b (mQ � ΛQCD).
Note that the top quark is not considered because it decays into the bottom quark and W boson rapidly and its life time
is much shorter than the typical hadronization time scale. Therefore, the heavy hadrons synchronously possess the
chiral symmetry for the light quarks as well as the heavy quark symmetry for the heavy quarks. The heavy hadrons are
ideal objects to study the dynamics between the light and heavy quarks, and explore the chiral symmetry and heavy
quark symmetry simultaneously. In the following, we will give a brief review about the heavy hadron spectroscopy,
especially the states which will be analyzed carefully in the following sections.

1.1. Singly heavy mesons

A singly heavy meson is composed of a heavy quark Q and a light antiquark q̄ from the perspective of the quark
model. From the point of view of heavy quark effective field theory (HQEFT), an open flavor meson contains a heavy
quark and a light quark cloud with the quantum numbers of a light antiquark. In Fig. 1, we present the masses of the
heavy mesons collected from the Review of Particle Physics (RPP) [1]. For comparison, we also list the predictions
of the Godfrey-Isgur quark model (GI model) [20]. The hyperfine splittings between the ground 1− and 0− heavy
mesons are measured precisely [1]

mD∗(2007)0 − mD0 = (142.014 ± 0.030) MeV, (1)
mD∗(2010)+ − mD+ = (140.603 ± 0.015) MeV, (2)
mD∗±s − mD±s = (143.8 ± 0.4) MeV, (3)
mB∗ − mB = (45.21 ± 0.21) MeV, (4)
mB∗s − mBs = (48.6+1.8

−1.5) MeV, (5)

where the ratio between the hyperfine splitting for the charmed and the bottom mesons is around mc/mb. The strange
quark mass is around 90 MeV, which induces the SU(3) flavor symmetry breaking mass

mD±s − mD± = (98.69 ± 0.05)MeV, (6)
mB0

s
− mB0 = (87.38 ± 0.16) MeV. (7)

The P-wave excited states are of special interest. In the quark model, there are four possible spin-orbital config-
urations (2S +1)LP

J = 1P+
1 , 3P+

0 ,3P+
1 , 3P+

2 for the P-wave heavy mesons with JP = 1+, 0+, 1+, 2+. The 1P+
1 and 3P+

1
components may mix with each other to form the JP = 1+ states through the spin-orbital potential. Since the heavy
quark is much heavier than the light quarks, the heavy quark symmetry (HQS) is a good symmetry, especially for
the bottom hadrons. In the heavy quark limit mQ → ∞, the light spin j` decouples with the heavy quark spin sQ,
where j` = sq + L. The quantum numbers jP

` , sQ and J are conserved separately. Therefore, one can categorize the
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heavy mesons with the light j` and heavy degrees of freedom (d.o.f) sQ. The two categorization methods based on
different bases can always be related to each other through the Clebsch–Gordan (CG) coefficients. For the P-wave
heavy mesons,

P-wave : jP
` =

1
2

+

, JP = 0+ or 1+, (8)

jP
` =

3
2

+

, JP = 1+ or 2+. (9)

In the heavy quark limit, the mesons with the same jP
` are degenerate and can be treated as the heavy spin doublet (see

Sec. 2.6). The decay behavior of the two doublets could be distinct. For instance, given large enough phase space,
the jP

` = 1
2

+ and jP
` = 3

2
+ cq̄ doublets decay into the D(∗)π modes via S -wave and D-wave in the heavy quark limit,

respectively. Hence, the jP
` = 1

2
+ doublet is generally expected to be broad while the jP

` = 3
2

+ doublet is narrow.
There are four non-strange P-wave charm mesons, the D∗0(2300) [known as D∗0(2400) previously], D1(2420),

D1(2430)0 and D∗2(2460) [1]. The D1(2420) is narrow with a width around (31.3 ± 1.9) MeV, while the D1(2430)
is very broad with a width around (314 ± 29) MeV. The D∗0(2300) is also very broad and its mass from different
experimental collaborations varies from 2300 MeV to 2400 MeV [1].

In the charm-strange sector, the four P-wave states are D∗s0(2317), Ds1(2460), Ds1(2536), D∗s2(2573). All the
four states are very narrow. The masses and narrow widths of the Ds1(2536) and D∗s2(2573) are consistent with the
theoretical predictions for the (1+, 2+) doublet [21]. But the low mass and extremely narrow width of the D∗s0(2317)
and Ds1(2460) states are very puzzling.

In 2003, the D∗s0(2317) was first observed in the D+
s π

0 channel by BaBar Collaboration [22]. Later, its axial-vector
partner state Ds1(2460) was observed by the CLEO Collaboration [23]. They were confirmed by Belle and BaBar
Collaborations [24, 25, 26]. Their masses are (2317.8 ± 0.5) MeV and (2459.5 ± 0.6) MeV, respectively [1]. In
particular, the D∗s0(2317) and Ds1(2460) lie below the DK and D∗K thresholds, respectively. The only allowed strong
decay channels are the D(∗)

s πwhich break the isospin symmetry and their decay widths are therefore extremely narrow.
Since the discoveries, these two states inspired strong interests in the charm-strange mesons due to the following
puzzles: (i) the masses of the D∗s0(2317) and Ds1(2460) states are significantly lighter than the quark model predictions;
(ii) the mass splitting mDs1(2460) − mD∗s0(2317) = 141.7 MeV is equal to mD∗ − mD within 2 MeV [(]the P-wave (0+, 1+)
states and the ground Ds states belong to different heavy quark spin doublets and their hyperfine splittings are unrelated
by any symmetry]; (iii) the mass hierarchy mD∗s0(2317) −mD∗0(2300) = −25.2 MeV and MDs1(2460) −MD1(2430) = 47.5 MeV
are unnatural.

In order to unveil the mysteries of the D∗s0(2317) and Ds1(2460), there exist a lot of investigations in literature,
including the quenched and unquenched cs̄ quark model [27, 28, 29, 30, 31, 32, 33, 34, 35, 36], the hadronic molecules
[37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58], the compact tetraquark states
[59, 60, 61, 62, 63], and the mixing of the cs̄ state and tetraquark state [64, 65, 66, 32]. The readers may consult the
reviews [7, 67, 11, 68, 17] for more details. We will review the P-wave states with the chiral unitary approaches in
Sec. 4.

1.2. Heavy baryons
In the language of the quark model, the heavy baryons are composed of three quarks, which give rises to a very

intricate spectroscopy. According to the number of the heavy quarks, the heavy baryons can be classified into the
singly heavy baryon Qqq (BQ), doubly heavy baryon QQq (BQQ) and triply heavy baryon QQQ (BQQQ), respectively.
In the view of HQEFT, these three types of heavy baryons consist of the singly, doubly and triply heavy quarks
accompanied by the light quark cloud.

For the singly heavy baryons, the two light quarks are in the antisymmetric 3̄ f or the symmetric 6 f flavor rep-
resentations in the SU(3) flavor symmetry. Experimentally, 30 singly charmed baryons and 22 bottom baryons have
been established now [1], which are shown in Fig. 2. In the review, we focus on the ground-state singly/doubly heavy
baryons (see Sec. 3) and the possible hadronic molecules composed of the singly/doubly heavy baryons and other
hadrons (see Sec. 5.7 and Sec. 5.8).

In the ground-state S -wave singly heavy baryons, the two light quarks form the diquark with the total spin 0 and
1 as shown in Table 1. The diquark then combines with the heavy quark to form the spin- 1

2 anti-triplet heavy baryons

5



Charmed Meson

Bottom Meson

Charmed-strange Meson

Bottom-strange Meson

�

�*(����)

��*(����)

��(����)
��(����)�

��*(����)
��(����)�

��*(����)�
��(����)�

��*(����)��*(����)�

��

�*�

���
���

��	

��

�- �- �+ �+ �+ �- �-
����

����

����

����

����

����

���

�
��
�(
�
��

)

��

���
* (����)

��
*

���
* (����)

���
* (����)

���
* (��	�)

���
* (�
��)

���
* (����)

���
* (����)

���
* (����)

���
* (��
�)

��
�*�

���
���

���

�- �- �+ �+ �+ �- ��

����

����

����

����

����

����

���

�
��
�(
�
��

)

�
�*

��(����) ��*(����)
��*(����)

��(����)

��(�	��)

��
�*�

���

��

�- �- �+ �+ ��
����

����

����

����

����

���

�
��
�(
�
��

)

���
��*

���* (����)� ���* (����)�
���* (����)

��
�*�

���

�������/�	
�� (���)

�������� ������ ����

�������� ����� ����

�- �- �+ �+ ��

����

����

����

����

����

���

����

���

�
��
�(
�
��

)

Figure 1: The charmed and bottom mesons from the Review of Particle Physics [1]. The colored band denotes the error of the mass. The dashed
horizontal line stands for the threshold. The x- and y-axis represent the JP quantum numbers and masses (in units of MeV), respectively.

which include the (Λ+
c , Ξ0

c , Ξ+
c )/(Λ0

b, Ξ−b , Ξ0
b), and the sextet spin- 1

2 or 3
2 heavy baryons which are denoted as the (Σ++

c ,
Σ+

c , Σ0
c , Ξ′+c , Ξ′0c , Ω0

c)/ (Σ+
b , Σ0

b, Σ−b , Ξ′0b , Ξ′−b , Ω−b ) in the charmed/bottom sectors.
In the ΣQ sector, the (Σc(2455),Σc(2520)) and (Σb,Σ

∗
b), form the S -wave doublet ( 1

2
+
, 3

2
+) as listed in Table 1. In the

ΞQ sector, since the three quarks in the ΞQ heavy baryons are different, the possible configurations are quite rich. The
ΞQ can be in the antisymmetric 3̄ f or symmetric 6 f flavor representations as shown in Table 1, which are analogous
to the ΛQ and ΣQ, respectively. The two lowest ΞQ baryons are in the 3̄ f representation and can only decay weakly.
The Ξ′c and Ξc(2645), as well as Ξ′b(5935) and Ξb(5955)−/Ξb(5945)0 are in the symmetric 6 f representation and form
the S -wave Ξ′c

(
1
2

+
, 3

2
+
)

doublet. Constrained by the phase space, the Ξ′c has no strong decay modes but can decay

radiatively. In the Ωc sector, the lowest Ωc and Ωc(2770)0 form the S -wave doublet
(

1
2

+
, 3

2
+
)

as shown in Table 1. The
former one can only decay weakly, and the latter one mainly decays into the Ω0

cγ since the mass difference between
the Ωc(2770)0 and Ω0

c is too small to permit the strong decays. In the bottom sector, only the lowest Ω−b with JP = 1
2

+

state was observed [69] while its partner state with JP = 3
2

+ is still absent. These ground-state singly heavy baryons
are understood very well as the conventional Qqq baryons in the quark model.

In quark model, a heavy baryon, composed of three quarks Qqq, has two orbital excitation modes, the ρ-mode with
the orbital excitation (Lρ) between the two light quarks, and the λ-mode one with the orbital excitation Lλ between
the heavy quark and the light diquark. They combine to form the total orbital angular momentum L = Lρ + Lλ, which
then couples with the spin of the two light quarks (sqq) and the heavy quarks (sQ) to form the total spin J of the heavy
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baryon. Due to the different excitation modes, there are multiple candidates for the singly baryons with specific I(JP)
quantum numbers as shown in Table 1. In the HQEFT, only the quantum numbers of the light quark cloud jP

` matter.
Up to now, the knowledge about the excited singly heavy baryons is still quite poor. Among them, the Λc(2940)+

and Σc(2800) attracted much attention since they are located very close to the ND∗ (2946 MeV) and ND (2805 MeV)
thresholds, respectively, which leads to the molecular interpretations as discussed in Sec. 5.8.1.

The Λc(2940)+ was reported by the BaBar Collaboration in the invariant mass spectrum of the D0 p channel [70].
No signal was seen in the D+ p final state. Therefore the isospin of the Λc(2940)+ equals 0. Later, the Belle Col-
laboration confirmed the Λc(2940)+ in the Λ+

c π
+π− final state [71]. In 2017, the LHCb Collaboration analyzed the

amplitude of the decay Λ0
b → D0 pπ− and found the most likely spin-parity assignment of the Λc(2940)+ is 3

2
−, but the

assignments with spin 1
2 to 7

2 cannot be excluded [72]. Recently, the Λc(2910) was reported by the Belle Collaboration
in the decay process B̄0 → Σc(2455)πp̄ [73]. Its mass and width are measured to be 2913.8 ± 5.6 ± 3.8 MeV and
51.8 ± 20.0 ± 18.8 MeV, respectively.

In 2005, the Belle Collaboration observed the Σc(2800) in the Λcπ channel [74], which was confirmed by BaBar
Collaboration in the Λ+

c p̄ channel [75], but with the measured mass about 50 MeV larger. Up to now, the spin-parity
quantum numbers of the Σc(2800) have not been determined yet.

The interpretations of the Λc(2940) and Σc(2800) are still controversial. The mass of the Λc(2940)+ is consistent
with the first radial or P-wave excitation of the Λc considering the uncertainty of the quark model around tens of
MeV [76, 77, 78, 79]. The Σc(2800) may be the P-wave excitation [80, 81, 82, 83, 84]. However, the Λc(2940)+ is
only 6 MeV lower than the D∗0 p threshold, which inspired various D∗N molecular interpretations [85, 86, 87, 88, 89,
90, 91, 92, 93]. Similar to the Λc(2940)+, the Σc(2800) is located just below the DN threshold and was proposed as a
candidate of the DN molecule [91, 92, 93, 94, 95]. More discussions are referred to reviews [96, 97, 98, 7, 99, 100, 17].
In the past several years, many excited heavy baryons including some P-wave states have been observed by LHCb
Collaboration. An extensive review of these states can be found in Ref. [17].

In literature, the singly heavy baryon spectroscopy have been studied in different frameworks, such as the various
quark models [101, 77, 102, 103, 80, 77, 104, 105, 106, 107, 108, 78, 101, 83, 109, 110], QCD sum rule [111, 112,
113, 114, 115, 116, 117], bag models [118, 119, 120, 121], nonperturbative string approach [122], effective field
theory incorporating different symmetries [123, 124, 125, 126, 127], Skyrme model [128], the Faddeev method [76],
the relativistic flux tube model [129], lattice QCD [130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142,
139, 143, 144, 137, 145, 146, 147, 148, 149, 150, 151, 152] and so on. Besides the mass spectrum, the other properties,
such as the strong and radiative decays, magnetic moments have also been widely studied [81, 153, 154, 155, 156,
157, 158, 79, 159, 160, 153, 161, 162, 163, 164, 165]. More detailed discussions about the singly heavy baryons can
be found in Refs. [7, 97, 166, 98, 17].

Figure 2: The charmed and bottom baryons from the Review of Particle Physics [1]. The x- and y-axis denote the year of the observation and mass
(in units of MeV), respectively. Here, the mass errors are not presented.

For the doubly heavy baryons, the SELEX Collaboration reported the Ξcc(3520)+ in the Λ+
c K−π+ [167] as well

7



Table 1: The possible configurations of the two light quarks in the singly heavy baryon in the quark model. The first five columns are the flavor-
color-spatial-spin configurations of the two light quarks, which are antisymmetric under the light quark interchange. The Lρ and Lλ are the orbital
angular momentum between the two light quarks and that between the light quark cluster and the heavy quark, respectively. The jP

`
and sQ denote

the light and heavy d.o.f, respectively. The scripts “S” and “A” represent the exchange symmetry and antisymmetry for the identical particles,
respectively.

S -wave

Flavor Color Lρ sqq JP
qq Lλ jP

` sQ State JP

3̄ f (A) 3̄c (A) 0(S) 0 (A) 0+ 0 0+ 1
2 ΛQ, ΞQ

1
2

+

6 f (S) 3̄c (A) 0 (S) 1 (S) 1+ 0 1+ 1
2 ΣQ, Ξ′Q, ΩQ ( 1

2
+
, 3

2
+)

λ-mode P-wave

Flavor Color Lρ sqq JP
qq Lλ jP

` sQ State JP

3̄ f (A) 3̄c (A) 0 (S) 0 (A) 0+ 1 1− 1
2 ΛQS , ΞQS ( 1

2
−
, 3

2
−)

6 f (S) 3̄c (A) 0 (S) 1 (S) 1+ 1 0−/1−/2− 1
2 ΣQA, Ξ′QA, ΩQA

1
2
−
/( 1

2
−
, 3

2
−)/( 3

2
−
, 5

2
−)

ρ-mode P-wave

Flavor Color Lρ sqq JP
qq Lλ jP

` sQ State JP

3̄ f (A) 3̄c (A) 1 (A) 1 (S)
0− 0 0− 1

2 ΛQP, ΞQP
1
2
−

1− 0 1− 1
2 ΛQV , ΞQV ( 1

2
−
, 3

2
−)

6 f (S) 3̄c (A) 1 (A) 0 (A) 1− 0 1− 1
2 ΣQV , Ξ′QV , ΩQV ( 1

2
−
, 3

2
−)

2-orbital excitations

Flavor Color Lρ sqq JP
qq Lλ jP

` sQ State JP

3̄ f (A) 3̄c (A) 2 (S) 0 (A) 2+ 0 2+ 1
2 ΛQ2, ΞQ2 ( 3

2
+
, 5

2
+)

6 f (S) 3̄c (A) 2 (S) 1 (S) 1+/2+/3+ 0 1+/2+/3+ 1
2 ΣQ1/2/3, Ξ′Q1/2/3, ΩQ1/2/3

(
1
2

+
, 3

2
+
)
/
(

3
2

+
, 5

2
+
)
/
(

5
2

+
, 7

2
+
)

Flavor Color Lρ sqq JP
qq Lλ jP

` sQ State JP

3̄ f (A) 3̄c (A) 0 (S) 0 (A) 0+ 2 2+ 1
2 Λ̃Q2, Ξ̃Q2 ( 3

2
+
, 5

2
+)

6 f (S) 3̄c (A) 0 (S) 1 (S) 1+ 2 1+/2+/3+ 1
2 Σ̃Q1/2/3, Ξ̃′Q1/2/3, Ω̃Q1/2/3

(
1
2

+
, 3

2
+
)
/
(

3
2

+
, 5

2
+
)
/
(

5
2

+
, 7

2
+
)

Flavor Color Lρ sqq JP
qq Lλ jP

` sQ State JP

3̄ f (A) 3̄c (A) 1 (A) 1 (S)

0− 1 1+ 1
2

˜̃Λ0
Q1, ˜̃Ξ0

Q1

(
1
2

+
, 3

2
+
)

1− 1 0+/1+/2+ 1
2

˜̃Λ1
Q0/1/2, ˜̃Ξ1

Q0/1/2
1
2

+
/
(

1
2

+
, 3

2
+
)
/
(

3
2

+
, 5

2
+
)

2− 1 1+/2+/3+ 1
2

˜̃Λ2
Q1/2/3, ˜̃Ξ2

Q1/2/3

(
1
2

+
, 3

2
+
)
/
(

3
2

+
, 5

2
+
)
/
(

5
2

+
, 7

2
+
)

6 f (S) 3̄c (A) 1 (A) 0 (A) 1− 1 0+/1+/2+ 1
2

˜̃ΣQ0/1/2, ˜̃Ξ′Q0/1/2, ˜̃ΩQ0/1/2
1
2

+
/
(

1
2

+
, 3

2
+
)
/
(

3
2

+
, 5

2
+
)
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as the pD+K− channels [168]. They also reported the Ξ++
cc (3460) and Ξ++

cc (3780) in the Λ+
c K−π+π+ channel [169].

However, none of them has been confirmed by the other experimental collaborations [170, 171, 172, 173].
In 2017, the LHCb Collaboration reported the Ξ++

cc in the Λ+
c K−π+π+ decay mode [174] and one year later in the

Ξ+
c π

+ decay mode [175]. Its mass is [176]

mΞ++
cc = 3621.55 ± 0.23 (stat) ± 0.30 (syst) MeV, (10)

and its lifetime [177] is

τ = (2.56 ± 0.27) × 10−13 s. (11)

There have been extensive theoretical efforts to study the mass spectrum, the strong decay patterns, the electro-
magnetic properties, the life time and other properties of the doubly heavy baryon in different frameworks, such as
the bag models [178, 179, 180, 181], various quark models [182, 183, 184, 185, 186, 109, 78], Bethe-Salpeter equa-
tion [187], Born-Oppenheimer EFT [188, 189], the Regge phenomenology [190, 191], QCD sum rule [192, 193, 194,
195, 196, 197, 160], heavy diquark effective theory [198], and lattice QCD [132, 146, 147].

In Sec. 3, we will review the investigations of the doubly heavy baryons using the chiral perturbative theory. Under
the heavy diquark-antiquark symmetry (HDAS) [199], the interactions between the doubly heavy baryons with the
other hadrons can be related to the interactions of the heavy mesons. The doubly heavy baryons may interact with
other hadrons to form the exotic molecules similar to the heavy mesons. We will review these theoretical studies about
the BQQϕ system in Sec. 4.3, and the BQQD(∗), BQQBQ as well as BQQBQQ systems in Sec. 5.8, respectively.

1.3. Heavy hadronic molecule candidates
1.3.1. X(3872) and T +

cc

We focus on the experimental progresses after 2015. For the previous experimental results and huge theoretical
efforts, we refer to Refs. [6, 9, 8, 10, 11, 200, 13, 14] for reviews.

The χc1(3872), also known as X(3872), was first observed by Belle Collaboration in 2003 [201]. With the tremen-
dous efforts of many experimental collaborations, its quantum numbers were measured to be JPC = 1++ [1, 202]. The
X(3872) is an excellent candidate of the exotic states. Its mass coincides exactly with the D̄∗0D0/D̄0D∗0 threshold
as mD0 + mD∗0 − mX(3872) = (0.00 ± 0.18) MeV with a very narrow width Γ = (1.19 ± 0.21) MeV [1]. Whether the
X(3872) lies below or above the D̄∗0D0/D̄0D∗0 threshold is still a pending question. In fact, the above decay width
was extracted from the Breit-Wigner fits [203, 204]. Using a Flàtte-inspired model, the full width at the half maximum
(FWHM) of the lineshape was determined to be FWHM = 0.22 + 0.07 + 0.11

− 0.06− 0.13MeV [203]. As the χc1(2P) state, there is
large discrepancy between the experimental mass of X(3872) and the quark model predictions (e.g. [20]). Another
important feature of the X(3872) is the large isospin violating decay patterns [205, 206, 207],

B[X → J/ψπ+π−π0]
B[X → J/ψπ+π−]

= 1.0 ± 0.4 ± 0.3 Belle;
B[X → J/ψω]
B[X → J/ψπ+π−]

=


1.6+0.4
−0.3 ± 0.2 BESIII,

0.7 ± 0.3 B+ events, BaBar,
1.7 ± 1.3 B0 events, BaBar,

(12)

where the final states J/ψπ+π−π0 and J/ψπ+π− are mainly driven by the intermediate states J/ψω and J/ψρ, respec-
tively.

The theoretical interpretations of the X(3872) include the χc1(2P) state, the D∗D̄/D̄∗D molecular state, the mixing
of the cc̄ core with the D∗D̄/D̄∗D component, the compact tetraquark state and so on. Obviously, in the pure cc̄ picture
and compact tetraquark picture, it is hard to understand the puzzles of its mass coincidence with the threshold and
large isospin violation. In the D̄∗0D0/D̄0D∗0 molecular picture, the proximity of the X(3872) mass to the threshold
is natural although such an exact coincidence is still confusing (see Sec. 5.5 for the discussion of the fine-tuning
problem). The mass of the X(3872) exactly coincides with the neutral threshold D0D̄∗0/D∗0D̄0 and is about 8 MeV
below the charged threshold D∗−D+/D−D∗+. In Sec. 5.5.5, we will review the theoretical interpretations of the large
ratio in Eq. (12) based on the fine-tuning mass of the X(3872). Meanwhile, we will see the kinematic mechanisms
due to the threshold of the J/ψρ(ω) and the ρ(ω) widths will also contribute to the large ratio in Eq. (12). Another
experimental evidence supporting the molecular picture is the dominant decay mode of X(3872) [1],

Γ(X → D0D̄0π0)/Γtotal = (49+18
−20)%, Γ(X → D̄∗0D0)/Γtotal = (37 ± 9)%, (13)
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where the branch fractions were extracted fromB(B+ → D0D̄0π0K+)Γ(X → D0D̄0π0)/Γtotal,B(B+ → D̄∗0D0K+)Γ(X →
D̄∗0D0)/Γtotal and B(B+ → X(3872)K+). The phase spaces of the above decay modes are severely suppressed. The
large fractions indicate the strong coupling between the X(3872) and the D̄∗0D0/D̄0D∗0 channels.

The experimental progresses inspired the heated debates about the nature of X(3872). The authors of Ref. [208]
argued that the experimental prompt production data of the X(3872) [209, 210, 211, 212, 213, 214] challenged the
hadronic molecule interpretation. The prompt and non-prompt contributions are discriminated by analyzing displace-
ment of the production vertex. In Sec. 5.5.5, we will review the discussions [208, 215, 216, 217]. In order to pin down
the nature of the X(3872), its heavy quark flavor partner was searched in CMS [218], ATLAS [219] and Belle [220].
No evidence for the Xb was observed. In Ref. [203], the lineshape of the X(3872) → J/ψπ+π− was investigated in
a Flatté inspired model by LHCb Collaboration. The pole structure analysis indicated the X(3872) is consistent with
the D0D̄∗0/D∗0D̄0 with the molecular component & 70% in the context of Weinberg’s compositeness criterion [221].
The lineshape analysis results incited a debate on discerning the structure of the X(3872) with the sign of the effective
range in Ref. [222, 223], which will be discussed in Sec. 5.1.1. In Ref. [213], the LHCb Collaborations investigated
the multiplicity-dependence of the prompt production of the X(3872), ψ(2S ) and their ratio in pp collisions and found
that the ratio decreased with the multiplicity. Based on the Comover Interaction Model, the authors of Ref. [224] ar-
gued that the above observation disfavored the molecular picture of the X(3872), which was challenged by Ref. [225].
The CMS Collaboration reported the evidence of the X(3872) production in relativistic heavy ion collisions for the
first time [226], which provides a novel insight into the nature of X(3872) [227, 228, 229, 230].

Very recently, the LHCb Collaboration observed the first doubly charmed tetraquark state T +
cc in the prompt pro-

duction of the pp collision [4]. Its mass with respect to the D∗+D0 threshold and width are

δm = (−273 ± 61 ± 5+11
−14) keV, Γ = (410 ± 165 ± 43+18

−38) keV. (14)

In the fitting, the quantum number JP = 1+ is assumed. The LHCb Collaboration also released the analysis in the
unitarized Breit-Wigner profile including the T +

cc → D0D0π+, D0D+π0 and D0D+γ explicitly in the decay width [5].
The mass with respect to the D∗+D0 threshold and width read

δmU = (−361 ± 40) keV, ΓU = (47.8 ± 1.9) keV. (15)

One should notice the discrepancy in the widths from the above two analyses. The conventional Breit-Wigner param-
eterization in the first analysis works well in the region far away from the thresholds. The Tcc state lies very close
to the DD∗ two-body thresholds and DDπ three-body thresholds. The second analysis constrained by the unitarity is
more reasonable. In Sec. 5.5.4, we will review the related theoretical calculations (some of them were ahead of the
second experimental analysis), which also support the narrower width.

The observation of the T +
cc marks the striking progress in the search of the exotic states. It is the second dou-

bly charmed hadron observed in experiments after the Ξ++
cc [174]. Moreover, the T +

cc is manifestly exotic with four
(anti)quarks (ccq̄q̄), which has been anticipated and debated for 40 years [231, 232, 233, 234, 235, 236, 237, 238, 239,
240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262,
263, 264]. The T +

cc is also the second hadron with the mass almost coinciding with the threshold and a very narrow
width after the X(3872). In fact, the T +

cc and X(3872) share the same fine-tuning problem. In the molecular scheme,
the one-pion-exchange interaction of the D̄∗D/D̄D∗ system with the quantum numbers of I(JPC) = 0(1++) [corre-
sponding to the X(3872)] and that of the D∗D system with I(JP) = 0(1+) are exactly the same in the isospin symmetry
limit. The D∗D molecular states had been predicted [265, 266, 267, 268] before the experimental observations. The
discovery of the Tcc also inspired huge amounts of investigations [269, 270, 271, 272, 273, 274, 275, 276, 277, 278,
279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292].

1.3.2. Zc, Zcs and Zb

In addition to the isoscalar states X(3872) and T +
cc, there are several well-known isovector states Zc(3900) and

Zc(4020) in the charmonium energy region, as well as the Zb(10610) and Zb(10650) in the bottomonium energy
region [1]. The charged charmoniumlike states Zc(3900) and Zc(4020) were observed by the BESIII Collaboration
in the J/ψπ±, (DD̄∗)± [293, 294, 295] and hcπ

±, (D∗D̄∗)± [296, 297] channels, respectively. The Zc(3900) was also
confirmed by the Belle Collaboration [298] and Xiao et al [299]. The charged bottomoniumlike states Zb(10610)
and Zb(10650) were observed by the Belle Collaboration in the Υ(nS )π± (n = 1, 2, 3) and hb(mP)π± (m = 1, 2)
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invariant mass spectra [300], as well as in the (BB̄∗)± and (B∗B̄∗)± channels [301], respectively. Besides, the Belle and
LHCb Collaborations also observed several other Zc states with large widths in the B meson decay processes, e.g.,
the Zc(4200) [302, 303] and Zc(4430) [303, 304, 305, 306]. In what follows, we will mainly focus on the Zc(3900),
Zc(4020), Zb(10610) and Zb(10650). For the experimental and theoretical aspects of Zc(4200) and Zc(4430), we refer
to reviews [6, 11, 14].

The minimal quark content of these charged charmoniumlike and bottomoniumlike states should be QQ̄qq̄ (Q =

c, b, q = u, d), so they are good candidates of the manifestly exotic hadrons. There are many similarities among
the Zc(3900), Zc(4020) and Zb(10610), Zb(10650) from their mass spectra and decay patterns, etc. For example,
(i) their masses from Breit-Wigner fits all lie about several MeVs above the corresponding DD̄∗, D∗D̄∗ and BB̄∗,
B∗B̄∗ thresholds, respectively (see Refs. [307] and [308] for results with other parameterizations); (ii) they both
decay into the open and hidden heavy flavor channels, but the open heavy flavor channels are dominant; (iii) their
IG(JPC) quantum numbers are measured to be 1+(1+−) [the JP of Zc(4020) is not determined yet, but 1+ is presumed
in most works]. There have been many efforts toward understanding the internal structures of these charged heavy
quarkoniumlike states, such as the lattice QCD simulations, effective field theories (EFTs) (see the reviews in Sec. 5.6)
and the phenomenological models, etc. The popular explanations include the molecular states (bound states, virtual
states or resonances), compact tetraquarks, hadro-quarkonia and kinetic effects (see reviews [6, 14, 11, 9, 10, 12, 13, 8,
200, 309]). The proximities to the D(∗)D̄∗/B(∗)B̄∗ thresholds indicate that their properties should be strongly correlated
with the D(∗)D̄∗/B(∗)B̄∗ interactions. These states provide a very good platform to utilize the EFTs containing both the
chiral and heavy quark symmetries.

The strange partner of the Zc states—the Zcs(3985) was recently observed by the BESIII Collaboration in the
D−s D∗0 + D∗−s D0 channel [310]. With the Breit-Wigner parameterization, its mass and width are measured to be

m = 3982.5+1.8
−2.6 ± 2.1 MeV, Γ = 12.8+5.3

−4.4 ± 3.0 MeV. (16)

Similar to the Zc(3900), the Zcs(3985) lies about 6 MeV above the D−s D∗0/D∗−s D0 thresholds. In addition, the mass
difference is mZcs(3985)−mZc(3900) ' mD(∗)

s
−mD(∗) ' 100 MeV. These features inspired the interpretations of the Zcs(3985)

as the SU(3) partner of the Zc(3900) [311, 312, 313]. The discovery of the Zcs(3985) has stimulated many works to
explain its nature from various aspects [311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325,
326, 327, 328, 329, 330, 331, 332, 333, 264, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344]. Later, the
LHCb Collaboration reported two Zcs states—the Zcs(4000) and Zcs(4220) in the J/ψK+ channel from the process
B+ → J/ψK+φ [345]. The mass of the Zcs(4000) (4003 ± 6+4

−14 MeV) is close to that of Zcs(3985), but its width
(131 ± 15 ± 26 MeV) is about ten times larger than that of Zcs(3985). Whether they are the same state [330] or totally
different ones [331, 332, 346] is still under debate. Some important implications for the Zcs(3985) and Zcs(4000) as
two different states were derived in Ref. [346].

1.3.3. Pc and Pcs

In 2015, the LHCb Collaboration reported two pentaquark states, a broader Pc(4380) with a width 205 ± 18 ± 86
MeV and narrower Pc(4450) with a width 39±5±19 MeV in the J/ψp invariant mass distribution in the decay process
Λ0

b → J/ψpK− [2]. In 2019, in the same channel J/ψp but with larger statistics, the LHCb Collaboration found that
the Pc(4450)+ should be dissolved into two substructures Pc(4440)+ and Pc(4457)+ [3]. In addition, another narrow
state Pc(4312)+ was observed. Their resonance parameters are [3]

P+
c (4312) : MP+

c (4312) = 4311.9 ± 0.7+6.8
−0.6 MeV, ΓP+

c (4312) = 9.8 ± 2.7+3.7
−4.5 MeV, (17)

P+
c (4440) : MP+

c (4440) = 4440.3 ± 1.3+4.1
−4.7 MeV, ΓP+

c (4440) = 20.6 ± 4.9+8.7
−10.1 MeV, (18)

P+
c (4457) : MP+

c (4457) = 4457.3 ± 1.3+0.6
−4.1 MeV, ΓP+

c (4457) = 6.4 ± 2.0+5.7
−1.9 MeV. (19)

In the new analysis, the evidence of the broad Pc(4380)in Ref. [2] was neither confirmed nor contradicted and awaits
for a future complete amplitude analysis of the decay Λ0

b → J/ψpK−.
The observation of the Pc states confirmed the predictions of the hidden-charm molecular pentaquarks in Refs. [347,

348, 349] and inspired the great enthusiasm about the hidden-charm pentaquark states. Various interpretations
have been proposed such as the molecular states [350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361,
362, 363, 364, 365, 366, 355], the compact pentaquark states [367, 368, 369, 370, 371, 372, 373], the hadro-
charmonium states [374, 375, 376, 377], the triangle singularities [378, 379, 380], and the cusp effects [367, 381].
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The Pc(4312) and Pc(4440)/Pc(4457) are located only tens of MeV below the ΣcD̄ and ΣcD̄∗ thresholds, respec-
tively. The molecular scheme is a more natural interpretation and attracted much attention. In the molecular pic-
ture, the Pc(4312) is widely accepted as an S -wave ΣcD̄ molecule with JP = 1

2
−. The Pc(4440) and Pc(4457)

are treated as the S -wave ΣcD̄∗ molecules. However, there are two possible scenarios of the spin-parity assign-
ments. In scenario I, the Pc(4440) and Pc(4457) are the ΣcD̄∗ molecules with the JP = 1

2
− and 3

2
− , respec-

tively [382, 383, 351, 364, 365]. In scenario II, the JP quantum numbers of the Pc(4440) and Pc(4457) are the 3
2
− and

1
2
−, respectively [384, 385, 386, 387, 384, 363]. Their decay patterns [388, 389, 366, 365, 390, 391, 392, 360, 393, 394]

and productions [395, 396, 397, 398, 399, 400, 401, 392, 377, 402, 403] were also investigated extensively. In
Ref. [404], the photo-production of Pc was suggested to testing its multiquark nature in the framework of string-
junction picture [405, 406, 407] unifying the baryons and multiquark states.

Recently, the LHCb Collaboration reported the evidence of a new pentaquark state Pc(4337)+ in the J/ψp invariant
mass distribution of the decay Bs → J/ψpp̄. Its resonance parameters are [408]

Pc(4337)+ : MPc(4337)+ = 4337+7+2
−4−2 MeV, ΓPc(4337)+ = 29+26+14

−12−14 MeV. (20)

The Pc(4337)+ lies very close to the P+
c (4312) state and the Pc(4380) signal. Its interpretations included the compact

tetraquark state [373], the cusp effect [381], the hadro-charmonium [409], coupled channel dynamics [409], the D̄Σc

molecule [409], the D̄Σ∗c molecule [Pc(4380)+] [410], etc.
The partners of the Pc states were predicted with the heavy quark spin symmetry, [Σ∗cD̄]I=1/2

J=3/2 [candidate for the
Pc(4380)+] and [Σ∗cD̄∗]I=1/2

J=( 1
2 ,

3
2 ,

5
2 ) [364, 387, 411, 412, 385, 359, 356, 384, 352], which await the future experimental

scrutiny. The studies of the Pc states can be easily extended to the strange hidden-charm molecular pentaquarks (Pcs)
under the SU(3) flavor symmetry and the Pcs states were predicted in Refs. [348, 413, 414, 415, 416, 417, 416, 418].

In 2020, the LHCb found the evidence of the Pcs(4459) in the J/ψΛ invariant mass distribution via the decay
Ξ−b → J/ψΛK− [419],

Pcs(4459) : MPcs(4459) = 4458.8 ± 2.9+4.7
−1.1 MeV, ΓPcs(4459) = 17.3 ± 6.5+8.0

−5.7 MeV. (21)

which is only about 19 MeV below the Ξ0
c D̄∗0 threshold. The experiment did not confirm or contradict the existence

of the two-peak hypothesis. The result inspired various theoretical works [420, 340, 421, 373, 422, 423, 424, 425,
426, 427]. Most of them favored the Pcs as the ΞcD̄∗ molecule [422, 420, 423, 424, 425, 426, 427, 428]. Besides the
molecular interpretation, there also exist other explanations such as the hadro-charmonium [340], compact pentaquark
states [421, 373]. There were intensive discussions of its production, decays and other properties [429, 430, 431].
Similar to the Pc states, various partners of the Pcs were also predicted in numerous theoretical works [417, 426, 416,
428, 432, 423, 414, 433, 416], which need to be examined by future experiments.

Very recently, the LHCb Collaboration observed the Pcs(4338) (also named as the PΛ
ψs(4338)0 according to the

naming convention proposed in Ref. [434]) in the decay B− → J/ψΛp̄ [435]. The amplitude analysis prefers the
JP = 1

2
− assignment for Pcs(4338). Its mass and width in the relativistic Breit-Wigner fits read

Pcs(4338) : MPcs(4338) = 4338.3 ± 0.7 ± 0.4 MeV, ΓPcs(4338) = 7.1 ± 1.2 ± 1.3 MeV. (22)

The Pcs(4338) is very close to the ΞcD̄ threshold (which is about 4336 MeV). In Ref. [436], the authors proposed
it is the ΞcD̄ molecule considering the near-threshold behavior, the spin-parity and the narrow width. In Ref. [437],
Meng et al investigated the influence of the double-threshold (Ξ0

c D̄0 and Ξ+
c D−) on the line shape (the invariant

mass distribution of J/ψΛ) of Pcs(4338). A comparison between the Pc and Pcs states was given in Ref. [438].
Other approaches were also employed to understand this state, such as the one-boson exchange model [439], the
triangle singularity [440], the effective field theory [441, 442], the coupled-channel dynamics [443, 444], the quark
model [445], etc. Its electromagnetic properties were also studied in Refs. [446, 447].

The discovery of the Pc states and the evidence of the Pcs also inspired the investigation of the other pentaquark
states, such as QQqqq̄ [448, 449, 450, 451, 452, 453, 450, 454], Pcss [455], the fully heavy pentaquark state [456, 457],
the Q̄qqqq [458, 459, 460, 461, 462], BΞc and BΞ′c bound states [463], etc.
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1.4. A short summary
Quark model inherits some spirits and features of QCD and has been successfully employed to describe the

conventional mesons and baryons at the quark level. The hadron spectroscopy had witnessed the success of quark
model before 2003. However, the quark model was challenged by many near-threshold exotic states observed since
2003. More and more experimental evidences indicate the relevance and importance of the clustering effect of the
quarks, e.g., the heavy hadronic molecules. The loosely bound hadronic molecules are very well known as a building
block of the matter, namely the nuclei. The abundant hadron spectra are the opportunities and challenges for us to
understand the nonperturbative behaviors of QCD at low energy domains.

The chiral effective theories are built upon the chiral symmetry of QCD with the asymptotic hadronic d.o.f. These
powerful tools have been developed and applied in the nuclear sectors with flying colors in the past decades. The heavy
hadrons and exotic hadronic molecular states observed in recent years supply the fertile soil for the redevelopment of
these effective theories. In this work, we will mainly review the developments and applications of chiral perturbation
theory, chiral effective field theory, as well as their ramifications and variants in the heavy flavor sectors together
with the heavy quark symmetry. We shall also cover the experimental measurements, lattice QCD simulations, and
phenomenological model calculations briefly.

2. Symmetries of low energy QCD and effective field theories

Effective field theory (EFT) is designed for systems with widely separated energy scales. One basic principle
of EFT is that the low energy interaction does not depend on the details of dynamics at high energies. The most
general Lagrangian contains all terms satisfying the requirements of underlying symmetries of the system, which are
organized with increasing number of derivatives [464]. Once the low energy scale Q and high energy scale Λ for such
a system are well identified, the amplitude of a soft process can be expanded in powers of Q/Λ, i.e.,

A =
∑
ν

Cν(Q/µ, ci)
(Q
Λ

)ν
, (23)

where the expansion coefficients Cν are the functions of regularization scale µ which arises from the loop diagrams
and low energy constants (LECs). For a well-defined EFT, the expansion coefficients are of order unity (naturalness)
after separating out the common dimension of the amplitude. The high energy dynamics above the Λ are encoded
in the LECs ci via a series of the local contact terms, which are the functions of Λ in general, i.e., ci ≡ ci(Λ). The
expansion index ν is connected to the power counting given by the EFT. If the energy scale is largely separated in the
system, the small value Q/Λ ensures the good convergence of the above expansion, thus only finite terms are needed
for a given accuracy in practical calculations. One can consult two recent books [465, 466] for a more comprehensive
introduction about EFT.

QCD is one of the main ingredients of the Standard Model. The full Lagrangian of QCD is given in terms of the
quark and gluon degrees of freedom, which reads

LQCD = q̄(i /D−M)q − 1
4
Gµν,aGµνa , (24)

where the quark field is q ≡ qc
f , and the summations over the flavor index f and color index c are implied. The covari-

ant derivative isDµ = ∂µ − igsλ
aAa

µ/2, where gs is the strong coupling constant. λa (a = 1, . . . , 8) represents the Gell-
Mann matrix, andAa

µ denotes the gluon field. The quark mass matrix is defined asM = diag(mu,md,ms,mc,mb,mt).
The field strength tensor reads Gµν,a = ∂µAν,a − ∂νAµ,a + gs fabcAµ,bAν,c [where fabc denotes the antisymmetric struc-
ture constant of SU(3) group], with G̃µνa = εµναβGαβ,a/2 being its dual. QCD exhibits well separated scales. In the
following, we refer to the current quark mass in the MS subtraction scheme at a renormalization scale µ = 2 GeV [1].
The u, d and s quarks are very light

(mu = 2.16+0.49
−0.26, md = 4.67+0.48

−0.17, ms = 93+11
−5 ) MeV � ΛQCD, (25)

where ΛQCD ∼ 200 MeV is the nonperturbative scale of QCD. The c, b and t quarks are very heavy compared with
ΛQCD,

(mc = 1.27 ± 0.02, mb = 4.18+0.03
−0.02, mt = 172.76 ± 0.03) GeV � ΛQCD. (26)
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Therefore, the u, d and s quarks are generally called as the light quarks, while c, b and t are the heavy quarks.
The small mass of the light quarks and the large mass of the heavy quarks stimulate two extreme approximations,
i.e., mu = md = ms → 0 and mc = mb → ∞ (the top quarks are generally not considered in hadron physics due
to its extremely unstable nature). In these two limits, QCD exhibits chiral symmetry and heavy quark symmetry,
respectively.

Due to the nonperturbative nature of QCD at low energy domain, the quarks are confined in the color neutral
hadrons with the not-fully-understood nonperturbative dynamics. It is hard to perform thorough analyses in terms of
its fundamental d.o.f, i.e., the quarks and gluons. An alternative description for the physics occurring at E � Λχ is in
terms of the asymptotic hadron states, where Λχ ∼ 1 GeV is the chiral symmetry breaking scale 1. As a full-fledged
EFT of QCD at low energies, the chiral perturbation theory (χPT) has been developed in the past decades. Now it has
become the common language of nuclear physics and hadron physics when encountering the light quark dynamics.
However, the richness of hadron spectrum also calls for combinations of chiral symmetry and HQS in the heavy-light
systems (e.g., the singly heavy mesons Qq̄, the singly heavy baryons Qqq, where Q = c, b and q = u, d, s). The
EFT based on the chiral symmetry and heavy quark symmetry for the heavy-light systems is denoted as the heavy
hadron chiral perturbation theory (HHχPT). Besides, in recent years, an approximate symmetry, the so-called heavy
diquark-antiquark symmetry (HDAS), is proposed for the heavy-heavy-light system (i.e., the doubly heavy baryons
QQq), whereas the suitability is still an open question.

In the following, we outline the basic frameworks of χPT, heavy quark effective theory (HQET), HHχPT and
chiral effective field theory (χEFT) with two matter fields, respectively. For more comprehensive details of these
theories and related topics, we refer to some more specialized reviews [468, 469, 470, 471, 472, 473, 474, 475, 476]
and lecture notes [477, 478, 479], and the references therein. The readers who are familiar with these effective theories
can skip this chapter and move on to the next one.

2.1. Chiral perturbation theory
2.1.1. Chiral symmetry and its spontaneous breaking

Now we focus on the three flavor (u, d, and s) QCD with massless quarks (chiral limit), and pick out their left-
handed (qL = PLq) and right-handed (qR = PRq) components with the projection operators

PL =
1
2

(1 − γ5), PR =
1
2

(1 + γ5), with PL + PR = 1, P2
R = PR, P2

L = PL, PRPL = PLPR = 0. (27)

The Lagrangian (24) is expressed with the qL and qR as

L0
QCD = q̄Li /DqL + q̄Ri /DqR, (28)

where the irrelevant gluon field strength tensor is omitted for this discussion. The Lagrangian (28) is invariant under
the global G = SU(3)L ⊗ SU(3)R transformations2

qL
G−→ gLqL = exp(−iϑa

L
λa

2
)qL, qR

G−→ gRqR = exp(−iϑa
R
λa

2
)qR. (29)

According to the Noether’s theorem, there are eight conserved left-handed currents Jµ,aL and right-handed currents
Jµ,aR , respectively, with Jµ,aL = q̄Lγ

µ λa

2 qL, ∂µJµ,aL = 0, and Jµ,aR = q̄Rγ
µ λa

2 qR, ∂µJµ,aR = 0. The vector currents and axial
vector currents are the linear combinations of Jµ,aL and Jµ,aR

Vµ,a = Jµ,aR + Jµ,aL = q̄γµ
λa

2
q, with ∂µVµ,a = 0,

Aµ,a = Jµ,aR − Jµ,aL = q̄γµγ5
λa

2
q, with ∂µAµ,a = 0. (30)

1Λχ can be chosen either as 4π fπ, a factor appearing in the loop diagrams [467] or the mass of the ρ-meson, a natural scale for chiral symmetry
breaking.

2It is also invariant under the U(1)V ⊗ U(1)A transformations. The U(1)V trivially corresponds to the baryon number conservation, while the
U(1)A is broken at quantum level due to the ‘U(1)A anomaly’.
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The vector charges and axial-vector charges are given as

Qa
V =

∫
d3xV0,a(x, t) =

∫
d3xq†(x, t)

λa

2
q(x, t), with

d
dt

Qa
V = 0,

Qa
A =

∫
d3xA0,a(x, t) =

∫
d3xq†(x, t)γ5

λa

2
q(x, t), with

d
dt

Qa
A = 0. (31)

They obey the following commutation relations,

[Qa
V ,Q

b
V ] = i f abcQc

V , [Qa
A,Q

b
A] = i f abcQc

V , [Qa
V ,Q

b
A] = i f abcQc

A. (32)

Both the Qa
V and Qa

A commute with the QCD Hamiltonian H0
QCD, i.e., [Qa

V ,H
0
QCD] = [Qa

A,H
0
QCD] = 0, which

implies the existence of degenerate light hadrons with opposite parities, i.e., the parity doublets, if the QCD vacuum
satisfies the same symmetry as the Hamiltonian. From the experimental facts, the lightest vector hadron (JP = 1−) is
the ρ meson and its mass is mρ ' 770 MeV. In contrast, the lightest axial-vector state (JP = 1+) is the a1 meson and
its mass ma1 ' 1230 MeV is much heavier than mρ. Therefore, it is far-fetched to regard the a1(1260) as the parity
partner of the ρ. Moreover, there are eight light pseudoscalar mesons below mρ, and their masses are lighter than the
scalar states in the hadron spectrum. These facts indicate that the vacuum (ground state) of QCD is not invariant under
the continuous SU(3)R−L transformation, i.e.,

Qa
A|0〉 , |0〉, (33)

where we keep having Qa
V |0〉 = |0〉.

A continuous symmetry is spontaneously broken if this symmetry is not realized in its ground state. There-
fore, Eq. (33) implies the spontaneous breaking of chiral symmetry. Then the Goldstone’s theorem [480, 481] de-
mands that there should exist massless particles with the same quantum numbers as the broken generators, which
are called Goldstone bosons. The number of Goldstone bosons is equal to the number of the broken generators,
so there should exist eight Goldstone bosons according to Eq. (33) with JP = 0−. The eight lightest pseudoscalars
(π+, π−, π0,K+,K−,K0, K̄0, η) coincidentally correspond to the eight Goldstone bosons. According to the Lorentz
invariance, one can parameterize the following matrix elements,

〈0|Aa
µ(0)|ϕb(p)〉 = ipµ f0δab, (34)

where ϕa are the Goldstone bosons, and f0 is the decay constant in the chiral limit 3. The non-vanishing masses of the
Goldstone bosons arise from light quark masses which break the chiral symmetry explicitly.

2.1.2. Explicit breaking of chiral symmetry
In deriving Eq. (28), the approximationM→ 0 is assumed, whereas the light quarks have non-vanishing masses,

which explicitly break the chiral symmetry. The mass term results in the mixing of left-handed and right-handed
components of the quark fields, LM = −q̄Mq = −(q̄LMqR + q̄RMqL). An infinitesimal transformation on the LM
under chiral group G leads to the divergences of Vµ,a and Aµ,a as

∂µVµ,a = iq̄[M, λa/2]q, ∂µAµ,a = iq̄{M, λa/2}γ5q. (35)

The three flavor light quark mass matrix can be expressed with the λa matrix as

M =

 mu 0 0
0 md 0
0 0 ms

 =
mu + md + ms√

6
λ0 +

(mu + md)/2 − ms√
3

λ8 +
mu − md

2
λ3. (36)

Inserting Eq. (36) into Eq. (35) one obtains that:

3In the weak decay element of pion, 〈l−v̄|HW |π−〉 =
GF cos θC√

2
〈l−v| j−µ |0〉〈0|J−µ |π−〉, the leptonic current and the hadronic currents are j−µ =

l̄γµ(1 − γ5)νl and J−µ = V+
µ − A+

µ , respectively, where GF and θC are coupling constants and Cabibbo angle. Because of 〈0|Vµ(0)|π〉 = 0, only the
axial current has contribution. Thus, the matrix element of axial current is related to the leptonic decay constant f0.
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1. When mu = md = ms, the eight vector currents Vµ,a are conserved due to [1, λa] = 0, which corresponds to the
emergence of the rigorous SU(3) f (subscript f denotes flavor) symmetry. In this case, we can define the U-spin
and V-spin in the subgroup [SU(2) f ] of SU(3) f , which are analogous to the well-known isospin I,

u
I←→ d, d

U←→ s, s
V←→ u. (37)

Similarly, we can further define the GU-parity and GV -parity as the G-parity for isospin symmetry, with the
transformation operators

Ĝ = ĈeiπÎ2 , ĜU = ĈeiπÛ2 , ĜV = ĈeiπV̂2 . (38)

The eight axial-vector currents Aµ,a are not conserved anymore, and the chiral symmetry is explicitly broken [in
comparison with the hidden (spontaneous) breaking in Sec. 2.1.1]. The non-vanishing divergences of Aµ,a leads
to the microscopic interpretation of the partially conserved axial-vector current (PCAC) relation [482, 483, 484].

2. When mu = md , ms, the SU(3) f symmetry group breaks down to its subgroup SU(2) f . Now the isospin
symmetry is still exact.

3. When mu , md , ms, the isospin symmetry is also broken, which leads to the isospin breaking effect 4.

The light masses of these pseudoscalar mesons [especially in the SU(2) sector] are deeply rooted in their nature
as the pseudo Goldstone bosons. The quantum fluctuations of these pseudoscalar mesons are very important, which
are denoted as chiral dynamics. The χPT is the low-energy effective field theory of the QCD.

2.1.3. Lowest order Lagrangians and power counting
The phenomenological and experimental evidences all suggest that the chiral group G = SU(3)L ⊗ SU(3)R spon-

taneously breaks down to its vectorial subgroup SU(3)V [or say SU(3)R+L], i.e.,

G = SU(3)L ⊗ SU(3)R −→ H = SU(3)V . (39)

The interactions among light Goldstone bosons are described by the χPT [485, 486], in which the light octet are
collected in terms of a 3 × 3 unitary matrix field U(ϕ) transforming under SU(3)L ⊗ SU(3)R as

U(ϕ)
G−→ gRU(ϕ)g−1

L or gLU(ϕ)g−1
R , with (gL, gR) ∈ G. (40)

Different parameterizations of U(ϕ) correspond to the different choices of coordinates in coset space G/H, where a
commonly used representation is the exponential parametrization,

U(ϕ) = ξ2(ϕ) = exp
(
i
ϕ

fϕ

)
, ϕ =

∑
a

λaϕa =


π0 + 1√

3
η8

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η8

√
2K0

√
2K−

√
2K̄0 − 2√

3
η8

 , (41)

where the coset field ξ(ϕ) is introduced as the square root of U(ϕ), which transforms under the SU(3)L ⊗ SU(3)R as

ξ(ϕ)
G−→ gRξ(ϕ)K−1(ϕ, g) = K(ϕ, g)ξ(ϕ)g−1

L , with g = (gL, gR) ∈ G. (42)

where the compensator field K(ϕ, g) belongs to the unbroken subgroup SU(3)V . Introducing the coset field ξ(ϕ)
ensures the interactions of the Goldstone bosons with themselves and the matter fields (such as baryons, heavy mesons,
etc.) can be described by the nonlinear representation theory on quantum fields [487, 488].

4The other origin of the isospin symmetry breaking effect comes from the electromagnetic interaction.
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The leading order (LO) Lagrangian for the interactions among the light Goldstone bosons without the external
sources is given as

L2 =
f 2
ϕ

4
Tr

[
∂µU∂µU†

]
, (43)

where the decay constant of the light Goldstone bosons fϕ is introduced to yield the canonical kinetic terms (as well
as the mass terms in the following).

In quantum field theory, the external fields can be either a computational technique or physical entities. The
extended QCD Lagrangian with external fields reads

Lext.
QCD = LQCD + q̄γµ(vµ + γ5aµ)q − q̄(s − iγ5 p)q, (44)

where the vµ, aµ, s and p represent the external vector, axial-vector, scalar and pseudoscalar fields, respectively. The
extended Lagrangian (44) is invariant under the local Gl = SU(3)L ⊗ SU(3)R transformations if the quark fields and
external fields satisfy the following transformation rules,

qL
Gl−→ gLqL, qR

Gl−→ gRqR, rµ
Gl−→ gRrµg−1

R + igR∂µg−1
R , lµ

Gl−→ gLlµg−1
L + igL∂µg−1

L , s + ip
Gl−→ gR(s + ip)g−1

L , (45)

where gL/R = gL/R(x) is the function of x.
In practice, the quarks generally couple to the external sources, such as the electromagnetic field, the weak current,

etc. The quark mass matrixM is contained in the scalar field s. The photon, W boson fields and quark mass terms are
embedded in the vµ, aµ and s via

rµ = vµ + aµ = −eQAµ + . . . ,

lµ = vµ − aµ = −eQAµ − e√
2 sin θW

(W†µT + + H.c.) + . . . ,

s = M + . . . , (46)

where Aµ and Wµ denote the photon and W boson fields, respectively. The quark charge matrix Q, CKM matrix T +

and quark mass matrixM are given as, respectively,

Q =
1
3

diag(2,−1,−1), T + =

 0 Vud Vus

0 0 0
0 0 0

 , M = diag(mu,md,ms), (47)

The electromagnetic field and the W boson fields are gauge fields.
The low energy effective field theory of the extended QCD contains the same external fields and has the same local

Gl = SU(3)L ⊗ SU(3)R symmetry with extended QCD Lagrangians. The local transformation invariance requires that
the fields vµ and aµ appear in the covariant derivatives of U,

∇µU = ∂µU − irµU + iUlµ, ∇µU† = ∂µU† + iU†rµ − ilµU†, ∇µU
Gl−→ gR∇µUg−1

L . (48)

We can also introduce the field strength tensors as building blocks,

f µνR = ∂µrν − ∂νrµ − i[rµ, rν], f µνL = ∂µlν − ∂νlµ − i[lµ, lν]. (49)

When the gauge field is introduced as the external field, the local group Gl = SU(3)L ⊗ SU(3)R will reduce to the
corresponding gauge symmetry. For example, if one introduces the external electromagnetic field, the f µνR and f µνL
degrade into the usual electromagnetic field strength tensor f µνR = f µνL = f µν = −eQ(∂µAν − ∂νAµ). When the external
field is switched off, the above local symmetry will degenerate into the global chiral symmetry of QCD.

The most general LO Lagrangian which satisfies the Lorentz invariance and local chiral symmetry reads [486,
489, 490]

L2 =
f 2
ϕ

4
Tr

[
∇µU∇µU† + χ†U + U†χ

]
, (50)
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where the spurion χ = 2B0(s + ip), and B0 is a LEC. The above Lagrangian is the general LO Lagrangian with the ex-
ternal fields. If we focus on the effect induced by the light quark masses, we could set s =M = diag{mu,md,ms}, p =

lµ = rµ = 0, where the scalar field s is the same as that in the extended QCD Lagrangian in Eq. (47). By comparing
the vacuum expectation of the EFT Hamiltonian with that of the QCD Hamiltonian with the same external field, one
can get B0 = −〈q̄q〉/(3 f 2

ϕ ), where 〈q̄q〉 is the quark condensate 5. Expanding the Lagrangian containing the spurion χ
at the hadronic level, one can see it corresponds to the mass of the pseudoscalar mesons, specifically,

χ = 2B0diag(mu,md,ms) = diag(m2
π,m

2
π, 2m2

K − m2
π). (51)

The masses of the pseudoscalar mesons can be related to the quark masses.
The χPT is an EFT of QCD at low energies. Its effective Lagrangians are organized in the same form as given in

Eq. (23), where the soft scale Q can be either the external momentum of the Goldstone bosons or their small masses.
The expansion index ν (chiral order) is obtained from Weinberg’s power counting based on the naive dimensional
analysis (NDA) [464]. The building blocks (fields and spurion) in the chiral Lagrangians are counted as

O(p0) : U; O(p1) : ∇µU, vµ, aµ; O(p2) : f µνL , f µνR , s, p. (52)

In χPT without matter fields, the Lagrangians can be even order only. From Eq. (52) one sees that the LO Lagrangian
in Eq. (50) is of order O(p2). The chiral dimension (order) of a Feynmann diagram is

D = 4L − 2IM +
∑

i

Vidi, (53)

where L and IM are the numbers of loops and Goldstone boson inner lines, respectively. Vi and di are the number of
vertex i and number of the derivatives in the vertex i, respectively. With the topological relation, L = IM −∑

i Vi + 1,
one can obtain a more useful power counting,

D = 2L + 2 +
∑

i

Vi(di − 2). (54)

For the LO interaction (di = 2), the amplitudes of Feynman diagrams with an extra loop is suppressed by two extra
chiral orders. To achieve a certain precision, one needs to calculate the Feynman diagrams with a finite numbers of
loops. With the power counting, one can calculate the amplitude perturbatively (in terms of p/Λχ).

2.2. Heavy quark effective theory
In this part, we discuss the infinite heavy quark mass limit of low energy QCD [491, 492, 493, 494, 495, 496,

497, 498]. The masses of the c and b quarks are much larger than the nonperturbative scale ΛQCD. We will see that
the dynamics is largely simplified in the approximation mQ → ∞. For a hadron containing one single heavy quark,
the typical transferred momentum pty between the heavy quark and light d.o.f is of order ΛQCD. The heavy quark is
almost on-shell. The variation of the heavy quark velocity δv = pty/mQ is very small due to mQ � pty. In the limit
mQ → ∞, the heavy quark moves with a constant velocity. In the heavy quark limit, the heavy quark is at rest in the
hadron rest frame and serves only as a static color source .

2.2.1. Heavy quark flavor and spin symmetries
In the framework of heavy quark effective theory (HQET), the four-momentum pµ of a heavy quark is split into

two parts,

pµ = mQvµ + kµ, (55)

where vµ is the four velocity of the heavy quark with v2 = 1, kµ is called the residual momentum. k � mQv since
the heavy quark is almost on-shell. The heavy quark spinor field Q(x) can also be separated into the large component
h(Q)

v (x) and small component H(Q)
v (x)

Q(x) ≡ (Pv+ + Pv−)Q(x) = exp(−imQv · x)
[
h(Q)

v (x) + H(Q)
v (x)

]
, (56)

5〈HEFT〉 = HEFT |ϕ=0 = − f 2
ϕ B0(mu + md + ms) and

∂〈HQCD〉
∂mq

|mu=md=ms=0 = 1
3 〈q̄q〉.

18



via introducing the projection operators Pv±,

Pv± =
1 ± /v

2
, with Pv+ + Pv− = 1, P2

v± = Pv±, Pv±Pv∓ = 0, /vh(Q)
v = h(Q)

v , /vH(Q)
v = −H(Q)

v . (57)

With vµ = (1, 0), one can see that the h(Q)
v (x) and H(Q)

v (x) correspond to the large component and small component of
the spinor, respectively. Hv(x, t) is suppressed by the factor 1/mQ in comparison with hv(x, t). The detailed derivation
is presented in Appendix B. With Eq. (56), the heavy quark Lagrangian becomes [474]

L(Q)
QCD = h̄(Q)

v (iv · D)h(Q)
v − H̄(Q)

v
(
iv · D + 2mQ

)
H(Q)

v + h̄(Q)
v i /D⊥H(Q)

v + H̄(Q)
v i /D⊥h(Q)

v , (58)

whereDµ
⊥ = Dµ − vµ(v · D), v · D⊥ = 0. One can see that the hv and Hv are light and heavy fields with the mass 0 and

2mQ, respectively. With the equation of motion or the path integral approach (see Appendix B for details), one can
get the effective Lagrangian

Leff = h̄(Q)
v (iv · D)h(Q)

v + h̄(Q)
v i /D⊥ 1

(iv · D + 2mQ − iε)
i /D⊥h(Q)

v . (59)

An expansion of Lagrangian in Eq. (59) up to O(1/mQ) reads

LHQET = h̄(Q)
v (iv · D)h(Q)

v +
1

2mQ
h̄(Q)

v (i /D⊥)2h(Q)
v +

gs

4mQ
h̄(Q)

v σαβGαβh(Q)
v + O(1/m2

Q), (60)

where Gαβ = λaGa
αβ/2.

In the heavy quark limit, only the LO term survives. The original quark–gluon vertex igsγ
µλa/2 becomes igsvµλa/2,

i.e., the interaction is independent of the heavy quark spin. This is called the heavy quark spin symmetry (HQSS). In
addition, the heavy quark mass is eliminated thus the reduced Lagrangian is invariant with a global transformation un-
der heavy flavor U(2) group. This is the heavy quark flavor symmetry (HQFS). Therefore, the spin and flavor together
form a larger SU(2) ⊗ U(2) ∈ U(4) group.

The physical picture behind the HQSS and HQFS is that the soft gluon as a soft probe can only resolve the
dynamics occurring at the scale of Λ−1

QCD. The light d.o.f can only perceive the color forces induced by the color
charge of the heavy quark (chromoelectric interaction), while the chromomagnetic interaction that carries the spin and
flavor information of the heavy quark vanishes when mQ → ∞.

The HQSS and HQFS lead to interesting spectroscopic implications for the hadrons containing a heavy quark.
In the heavy quark limit, the heavy spin jh (spin of the heavy quark, jh = 1

2 ) and light spin j` (the total angular
momentum of the light d.o.f) are conserved separately. Thus, the singly heavy hadrons can be labeled by its light spin
j`. The states with total spin J = j` ± 1

2 should be degenerate. An example is the masses of the ground state heavy
mesons,

mD∗ − mD ≈ 140 MeV, mB∗ − mB ≈ 45 MeV, (61)

where the mass splittings are relatively small compared with the masses of the heavy mesons. The HQSS dictates the
mass splittings are inversely proportional to heavy quark masses, namely (mD∗ − mD)/(mB∗ − mB) = mb/mc in line
with the above experimental results. Meanwhile, HQFS requires that the mass difference between the mesons with
different light d.o.f for the charm and bottom systems should be approximately the same. For example

mB(∗)
s
− mB(∗) ≈ mD(∗)

s
− mD(∗) ≈ 100 MeV. (62)

Apart from the mass spectrum, the HQSS and HQFS could be used to relate the different coupling constants and
interactions. For example, in the HQFS, the vertices BB∗π and D̄D̄∗π can be related to each other. In the heavy quark
limit, the interaction between two heavy hadrons is dominated by the interactions of the light d.o.f of the two particles.
For example, the HQSS can bridge DD̄ interaction and D∗D̄∗ interaction. More examples will be discussed in Sec. 5.4.

In fact, the masses of the heavy quarks are finite and mc < mb, which indicates the HQS is explicitly broken.
In Eq. (60), the second and third terms correspond to kinetic energy and chromomagnetic hyperfine interaction,
respectively. The second term will break the HQFS while the third term will break both HQSS and HQFS. The
chromomagnetic term gives the mass splittings in the spin doublets (D,D∗) and (B, B∗) at O(1/mQ), respectively. This
leads to the refined relation m2

B∗ − m2
B ≈ m2

D∗ − m2
D.
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2.2.2. An introduction to the heavy diquark-antiquark symmetry
The HDAS was proposed by Savage and Wise in Ref. [199], which relates the doubly heavy baryons QQq (Q̄Q̄q̄)

to the heavy mesons Q̄q (Qq̄). The basic assumption (approximation) of HDAS is that the QQ pair in color 3̄ in the
doubly heavy baryons forms a compact object under the attractive color Coulomb interaction. The compact QQ is
called the diquark (for more general concepts of the diquark, we refer to Ref. [499]). In the limit mQ → ∞, the heavy
diquark becomes pointlike (the radius is inverse to the mQ for the Coulomb interaction) and only acts as a static color
source in the 3̄ channel, which plays the same role as the heavy antiquark in the Q̄q meson.

If we denote the vector diquark as D j, the LO Lagrangian has the same form as that in Eq. (60)

LD = D†j (iv · D)D j, (63)

with j = 1, 2, 3 the spin index for the vector state. The Lagrangian (60) plus (63) is invariant under the U(5) transfor-
mation, which is named as the superflavor symmetry [500]. The S -wave QQq and Q̄q form the doublets (Ξ∗QQ,ΞQQ)
and (P̃∗, P̃) with spins-(3/2, 1/2) and -(1, 0), respectively. When the chromomagnetic interactions at O(1/mQ) are
considered [analogous to Eq. (60)], they give the following relations of the mass splittings [199, 501],

mΞ∗QQ
− mΞQQ =

3
4

(mP̃∗ − mP̃), (64)

which is qualitatively supported by the calculations from the potential model [502] and lattice QCD [503, 139, 150].
A similar relation was extended to the singly heavy baryons Qqq and doubly heavy tetraquarks QQqq [504]. The
corrections to Eq. (64) from the nonrelativistic QCD (NRQCD) calculation were given in [505]. Eq. (64) implies that
the one-pion transition Ξ∗QQ → ΞQQπ is inaccessible in experiments. Considering mD∗ − mD ≈ mπ, only the radiative
and weak decays of the Ξ∗QQ state are allowed. The HDAS was also adopted to relate the axial coupling constant of
the doubly heavy baryon to that of the heavy meson [506] because the axial coupling D∗Dπ can be directly extracted
from the partial decay width of the D∗ in experiments. The details are given in Sec. 2.6.

The HDAS is valid only if the spatial extent cannot be resolved from the perspective of the light d.o.f. If mQv �
ΛQCD

6 and the diquark excitations are suppressed, the HDAS is a good approximation. However, for the doubly
charmed baryons, mQv ∼ ΛQCD ∼ mQv2, thus one expects that the HDAS breaking effect is sizable in the charmed
sector. One can further consult the related discussions and calculations from NRQCD [501, 507, 508].

2.3. Heavy baryon chiral perturbation theory

When we extend the chiral perturbation theory to the heavy-light hadrons, we have to understand the meanings
of “heavy” in twofold ways. First, the mass of the matter field is comparable to Λχ, which is heavy compared to the
pion mass. In this sense, the nucleon mass is also heavy. At the hadronic level, the heavy baryon χPT (HBχPT) for
the nucleon (or the matter field without heavy quarks) was invented to perform the chiral expansion. Meanwhile, for
the system with a heavy quark, one can perform the heavy quark expansion and adopt the heavy quark symmetry.
The heavy field expansion is performed at the quark level. In this subsection and Sec. 2.6, we will focus on twofold
meanings in order. In this subsection, we will take the nucleon as an example of the matter field with a large mass but
without heavy quarks.

The Weinberg’s power counting in Eq. (54) based on the NDA can be extended to the mater fields [509],

D = 4L − IN − 2IM +
∑

i

Vidi, (65)

where L, IM and IN are the numbers of loops, Goldstone boson inner lines and matter field inner lines, respectively.
Vi and di are the numbers of vertex i and the derivatives in the vertex i, respectively. With two topological relations,

L = IN + IM −
∑

i

Vi + 1, 2IN + En =
∑

i

Vini, (66)

6mQv and mQv2 are the typical transferred momentum and binding energy between heavy quarks in the NRQCD power counting.
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one can obtain a more useful power counting,

D = 2L + 2 − En

2
+

∑
i

Vi∆i, with ∆i ≡ di +
ni

2
− 2 , (67)

where ni is the number of matter fields connected by the vertex i. En is the number of the external matter fields. The
power counting can be generalized to the cases with more than one separately connected pieces and more than two
matter fields [510, 476, 475]. In this section we focus on the process with one matter field and take En = 2.

In order to derive (67), we treat the “momentum” of the matter field as a small scale, which is valid only when
the mass of the matter field M is removed properly. However, in the practical calculations (e.g., in the dimensional
regularization scheme), the mass of the matter field M is comparable to or even larger than Λχ, which will make the
naive power counting in Eq. (67) fail. In fact, compared to the matter field mass M, the chiral fluctuations involve
very soft dynamics. Thus, one can integrate out the hard scale M and recover the Weinberg’s power counting. In the
HBχPT [511], one can separate the momentum of the matter field into two parts, pµ = Mvµ + qµ, like the heavy quark
expansion in HQET, where v2 = 1. Mvµ and qµ are the mass term and residual momentum, respectively. The field is
divided into the heavy field and massless light field. One can obtain the action and Lagrangian of the effective field
theory by integrating out the heavy field with the assistance of the equation of motion [474] (in the classical sense) or
the path integral approach [512] (in the quantum sense), see Appendix B.

We take the LO Lagrangian of the nucleon pion interaction as an example,

L(1) = Ψ̄(i /D− M +
gA

2
/uγ5)Ψ, uµ =

i
2

[
ξ†∂µξ − ξ∂µξ†

]
, (68)

where Ψ = (p, n)T and ξ2 = U. The complete form of uµ with the external fields is given in Eq. (A.4). With the heavy
field decomposition, the correspondingA, B and C in Eq. (B.11) read

A = iv · D + gA(u · S ), (69)

B = i /D⊥ − gA

2
(v · u)γ5, (70)

C = i(v · D) + 2M + gA(u · S ). (71)

One can see that there is no mass term for the light field H, while the mass of the heavy field h is 2M. Expanding the
C−1 in powers of 1/M one obtains that

C−1 =
1

2M
− i(v · D) + gA(u · S )

(2M)2 + . . . . (72)

The contribution of the heavy component will appear as the recoiling effect, which is suppressed by the power of 1/M.
In the HBχPT, one has to perform two expansions, the chiral expansion and heavy baryon expansion. The HBχPT has
been widely used to investigate the chiral dynamics of the nucleon systems (e.g., see Refs. [469, 513] for reviews).
For the heavy flavor systems, the recoiling effect is less important because of the much larger heavy quark mass M
as compared to the nucleon mass. However, the HQS breaking effect will appear as the 1/M correction for the heavy
flavor system, which is particularly interesting for some systems. We will discuss this issue in Sec. 5.4.

Apart from the nonrelativistic expansion, the infrared regularization scheme [514, 515, 516] and extended on-
mass-shell scheme (EOMS) [517] are two Lorentz covariant approaches to performing chiral expansion for the matter
fields. The motivation of the infrared regularization is to discern the soft dynamics (typically mϕ) and the hard
dynamics (typically M). One can only focus on the soft part, which includes the chiral fluctuation effect. To this end,
in the infrared regularization scheme, the loop integral is divided into the infrared singular and regular parts when the
mass of the Goldstone boson approaches zero. The infrared singular part is typically the soft dynamics. It was shown
that the infrared singular parts do not include the power counting breaking (PCB) effect [514] and thus are kept. The
infrared regular terms can be expanded as polynomials of the mϕ and thus are absorbed by the renormalization of the
LECs. As shown in Fig. 3, the leading terms in the loop integrals of the infrared regularization are consistent with the
Weinberg’s power counting in Eq. (67).

In the extended on-mass-shell scheme [517], all the PCB terms are polynomials of small scales (such as the mϕ),
which can be absorbed by redefining the LECs. As shown in Fig. 3, in this scheme, some infrared regular terms which
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do not violate the power counting are kept. Like the infrared regularization scheme, the remaining terms in the loop
integrals are at least at the order given by Eq. (67). The terms with powers beyond the Weinberg’s power counting
only contribute at higher orders.
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Figure 3: The comparisons of the different regularization schemes in LO Lagrangians [518]. x- and y-axis denote the number of loops and the
corresponding chiral order, respectively. The Green dashed lines stand for the Weinberg’s power counting. The chiral orders increase linearly with
the number of loops according to Eq. (67) if all the vertices are the LO ones. The four subfigures (from left to right) correspond to MS, EOMS,
infrared regularization and HHχPT schemes, respectively. The blue lower and red upper triangles represent the infrared regular and singular terms,
respectively. The blue squares denote the PCB terms, while the black squares represent tree diagrams and counter terms. A successful subtraction
scheme should ensure that there is no contribution below the green dashed line.

2.4. Effective range expansion
Effective range expansion (ERE) is a convenient parameterization scheme of the near-threshold partial wave T -

matrix, which was first proposed by Schwinger in an unpublished note and reformulated by Bethe [519]. The ERE has
extensive applications in both the experimental and theoretical aspects, such as fitting the scattering data [520], Wein-
berg compositeness [521], determining the power counting of EFT [522], universality in low energy scattering [523],
mπ-dependence [524] and finite volume effect [525, 526] of the lattice QCD simulation and so on.

The partial wave S -matrix and T -matrix are parameterized as functions of the phase shift δl,

S l = 1 + 2ikTl(k) = e2iδl(k), Tl(k) =
k2l

k2l+1 cot δl − ik2l+1 , (73)

where the unitarity S lS
†
l = 1 is fulfilled. Here, we use the nonrelativistic formalism. The power of the k for Tl is

determined by the asymptotic behavior of the wave functions in the partial wave basis. One can see that the unitary
cut of the T -matrix is ensured by introducing the ik2l+1 in the denominator. k2l+1 cot δl is a meromorphic function,
where we assume that the left-hand cuts are sufficiently far way. Assuming there is no pole for k2l+1 cot δl near the
threshold, one can expand it with the Taylor series in powers of k2,

k2l+1 cot δl = − 1
as

+
1
2

r0k2 + v2k4 + v3k6 + ..., (74)

where the coefficients are named as shape parameters. In particular, the leading two order coefficients as and r0 are
scattering length and effective range, respectively. The Eq. (74) is called effective range expansion. In the derivation
of Bethe’s work [519], the above expansion is formulated in the two body systems with a local interaction, namely
V(r, r′) = V(r)δ3(r− r′). The r0 gets its name since its value roughly equals to half of the range of the potential [527].
However, in the modern view, the potentials corresponding to the same scattering data are not unique and there is
no good reason to exclude the non-local interactions. It was proven by Ekstein [528] that a large class of unitary
transformations can relate the different Hamiltonians producing the same S -matrix. In the modern perspective, the
ERE is not relevant to the locality of the interaction but an effective theory to depict the low-energy behavior of the
two-body scattering with finite parameters truncated according to the expected precision. It was shown that the ERE is
just equivalent to the pionless effective field theory [529]. But, once the one-pion exchange interaction is introduced,
the accompanying left-hand cut will invalidate the ERE expansion.
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Figure 4: Levinson’s theorem and scattering lengths with the square well potential as an example (specifically in right panel). The left panel and
the right panel illustrate the phase shifts near the threshold and scattering lengths respectively when the interaction becomes more attractive and
then bound states appear.

The scattering length encodes important information. According to Levinson’s theorem [530, 527], if the potential
admits n bound states in the S -wave, the phase shift at zero energy is

δ(0) = nπ [with the convention δ(∞) = 0]. (75)

For the marginal potential that the nth bound state starts to appear, the phase shift is δ(0) = (n + 1
2 )π. The phase shifts

within the square well potential are shown in Fig. 4 when the potential becomes more attractive and the first bound
state starts to appear at K0 ∼ 1.57. The scattering lengths will cross the infinity (from the negative one to the positive
one or vise verse) when the new bound state appears (see the right panel of Fig. 4). When the interaction is repulsive
everywhere or attractive everywhere but too weak to form the bound states, the sign of the scattering lengths can
reflect the sign 7 of the potential [531],

V > 0 everywhere → as > 0,
V < 0 everywhere (but no bound states) → as < 0. (76)

For the system with the “bare” poles, namely the discrete eigenstates of the free Hamiltonian H0, the Levinson’s
theorem is generalized as [532, 533, 534, 535]

δ(0) = (n − nbare)π, (77)

where nbare is the number of the bare poles, and n is the number of the bound states, namely the discrete eigenstates
of the Hamiltonian H.

Landau and Smorodinsky proved that the effective range is always positive r0 > 0 if the local potential is attractive
everywhere, i.e. V(r) < 0 everywhere in their textbook [536]. The arguments was cited in Ref. [222] to claim that
“the molecular case gives always r0 > 0”. However, as we mentioned before, the potentials corresponding to the same
observable are not unique. The local attractive everywhere potential is not the necessary condition of the hadronic
bound states. The statement in Ref. [222] extends the argument of Landau and Smorodinsky without an extra proof.
In fact, according to the Wigner’s theorem [537] (based on the unitary and causality), the effective range of the zero-
range potential is non-positive [538]. From the perspective of the inverse scattering problem, one can construct the
non-local potential to permit any given scattering phase shift function (no matter the sign of the effective range) and
bound states with given binding energies. For example, one can construct the rank-one separable potential to permit
a loosely bound state and arbitrary phase shift [539]. In Sec. 5.1.1, we will construct an example with the non-local
interaction admitting the bound state but with negative effective range. See [540] for more detailed discussions on this
issue.

7There are different conventions about the sign of the scattering length. Here, we follow the convention in Eq. (74).
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The ERE in Eq. (74) is the simplest version, which has been extended to more complicated cases. The single-
channel ERE was generalized to the multichannel cases [541, 542, 543]. In fitting the pion-pion scattering, the effect
of the inelastic thresholds are considered with ERE supplemented by a conformal expansion, which takes the unitarity
and analyticity into account [544]. Meanwhile, the convergence radius of Eq. (74) is determined by the appearance of
the left-hand cuts. For example, for the NN scattering systems, the ERE fails at the energy |Elab| ∼ m2

π/(2mN) = 10.5
MeV. If one includes the Coulomb interaction, the convergence radius of ERE is zero. In Ref. [545], the modified
ERE was proposed to overcome this problem by separating the long-range interaction and the short-range interaction,
where the long-range interaction is known explicitly (e.g., OPE and Coulomb interaction). In the modified ERE,
the contribution of the long-range interaction is calculated directly and the contribution of the short-range interaction
can be expanded in the power of k2, where the left-hand singularity is absent. It was shown that the effective-range
function is actually metamorphic, where the poles might prevent performing the Taylor expansion in Eq. (74). The
problem can be solved by replacing the Taylor expansion with the Padé approximation [546].

2.5. Chiral unitary approach
The analyticity and unitarity are important features of the S -matrix, which are closely tied to the causality and

conservation of the probability current, respectively. Considering these constraints, many theoretical tools have been
invented to explore the nonperturbative dynamics. The chiral unitary approaches combine the χPT, unitarity and
analyticity. Compared with the χPT, the chiral unitary formalism satisfies the exact unitary condition, while the
χPT satisfies it perturbatively. A dazzling merit of the unitary methods is that they can introduce the bound state or
resonance poles in the amplitude, which is impossible in the χPT up to any finite order. In this subsection, we will
introduce the basic concepts and frameworks. We refer to Refs. [547, 548, 549, 68] for reviews.

For an elastic scattering process 1 + 2→ 1 + 2, its partial wave amplitude is given by

T`(s) =
1

2(
√

2)α

∫ 1

−1
dzT (s, z)P`(z), (78)

where (
√

2)α is the symmetry factor. The α equals 1 or 0 when the two particles are identical and different, respectively.√
s is the total energy. z = cosθ, with θ the relative angle between the initial and final momenta in the center of mass

system (c.m.s). P` is the Legendre polynomial.
The partial wave S -matrix is constrained by the unitary,

S `(s) = 1 + 2iρ(s)T`(s), S ∗`S ` = 1, (79)

with

ρ(s) =
q

8π
√

s
, q =

√(
s − (m1 + m2)2

) (
s − (m1 − m2)2

)
2
√

s
, (80)

where m1 and m2 are the masses of the scattering particles. q is the relative momentum in the c.m.s. The optical
theorem Im T`(s) = T †

`
(s)ρ(s)T`(s) leads to the unitary condition

Im T−1
` (
√

s) = −ρ(s), s ≥ sth = (m1 + m2)2 . (81)

Based on Eq. (81), one can define the K-matrix, T` = [K−1 − iρ(s)]−1, where K−1 = Re(T−1
` ).

The T` is the function of
√

s, which is real and analytical along some intervals of real
√

s axis. The T` can be
analytically continued to the whole complex plane except for the poles and cuts. According to the Schwartz reflection
principle (see Ref. [549] for details), one gets

T`(
√

s) = T`(
√

s∗)∗. (82)

With the unitary condition in (81), we know the discontinuity appears across the real axis for
√

s > m1 + m2,

T`(
√

s + iε) − T`(
√

s − iε) = 2i Im T`(
√

s), (83)
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which corresponds to a right-hand cut (named after its approaching to the right), or unitary cut. The unitary cut is
independent of the interaction and appears as the threshold opens, which is also classified as the kinetic cut.

Apart from the right-hand cut, there might exist the left-hand cuts (also called the dynamical cuts since they
depend on the dynamical details, e.g., see Ref. [550]). For the relativistic systems, the cross symmetry will transform
the singularities of the t-channel or u-channel into the left-hand cuts in the s-channel. For the nonrelativistic system,
the particle-exchange interaction such as the one-pion-exchange interaction in the NN system will give rise to the
left-hand cuts.

When the T` is continued to the complex plane of
√

s, the q in Eq. (80) is a multivalue function of
√

s. For
simplicity, we neglect the existence of the left-hand cuts and focus on the single-channel problem. In this case, the
Riemann surface has two sheets. Moving from one sheet to the other one needs to cross the unitary cut and changes
the sign of Im q. The conventional definition is

sheet I (physical): Im q > 0, sheet II: Im q < 0. (84)

The poles on the real axial of sheet I with
√

s < m1 + m2 correspond to the bound states. Actually, constrained by
the causality, on the first sheet the poles can only appear on the real axis below the lowest threshold. The poles in
the sheet II with Im(

√
s) < 0 correspond to the resonances. We refer to Ref. [547] for the topology of the Riemann

surfaces for the coupled-channel problem.

2.5.1. Bethe-Salpeter equation
One may incorporate the unitary condition through the Bethe-Salpeter equation (BSE). For simplicity, we start

from the singe-channel scattering amplitude.
The Bethe-Salpeter equation reads

T = V + VGT, (85)

T
(
q, q′, P

)
= V

(
q, q′, P

)
+

∫
d4k

(2π)4 V (q, k, P)
1

k2 − m2
1 + iε

1
(P − k)2 − m2

2 + iε
T (k, q′, P), (86)

where P, q′, and q are the total four-momentum, relative ones in the initial and final states, respectively. G is the
hadron-hadron loop function with k the four-momentum in the loop. m1 and m2 are the masses of the scattering
hadrons. The Lippmann-Schwinger equation has a very similar form but in a nonrelativistic framework where the
integral is performed for the three momentum. In Sec. 2.5.2, we will see that Eq. (86) is equivalent to the dispersion
relation of the T -matrix [c.f. Eq. (99)] constrained by the unitary condition if the left-hand cut is neglected [551].

The BSE in Eq. (86) can be understood as the nonperturbative resummation of the s-channel loops as shown
in Fig. 5. The BSE can generate the poles of the S -matrix corresponding to the bound states or resonances, which
is impossible in χPT. Thus, the BSE was widely used to investigated the so-called “dynamically generated” states.
These poles originate from the hadron-hadron scattering dynamics and can be understood as the meson-meson/meson-
baryon/baryon-baryon molecules to some extent.

One should note that the unitary approach only considers the s-channel loops as shown in Fig. 5, while the χPT
has the t-channel and u-channel ones as well, which are not included explicitly in the Bethe-Salpeter equation. If
the singularities of the crossed loops locate far away from the concerned energy region, their energy dependency is
expected to be smooth. Their contributions can be absorbed by the subtraction terms in regularizing the Bethe-Salpeter
equation.

Omitting the off-shell effect, Eq. (85) converts into an algebraic equation

Ton = Von + VonGTon. (87)

The on-shell approximation Ton still satisfies the unitary relation [552, 553, 554]. It was shown that the off-shell
contribution could be absorbed by the renormalization of the couplings and masses in the kernel interaction [555, 552].
The loop function G is given by

G = i
∫

d4k
(2π)4

1
k2 − m2

1 + iε
1

(P − k)2 − m2
2 + iε

. (88)
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Figure 5: The resummation of the s-channel diagrams giving rise to the scattering amplitude.

It is divergent and needs to be regularized. In literature, there are two common regularization methods. One is the
dimensional regularization [556]

GDR(
√

s) =
1

16π2

a(µ) + ln
m2

2

µ2 +
m2

1 − m2
2 + s

2s
ln

m2
1

m2
2

+
q√

s

ln
(
s + 2q

√
s
)2 −

(
m2

2 − m2
1

)2(
s − 2q

√
s
)2 −

(
m2

2 − m2
1

)2 − 2πi


 , (89)

where µ is the regularization scale and a(µ) is the subtraction constant to cancel the µ dependence of the loop function.
We may also introduce a hard cut-off parameter Λ for the three momentum. The k0 component in Eq. (88) can be
integrated out in the c.m.s, and the loop function reads [557, 552]

GCR(
√

s) =

∫ Λ

0

k2dk
4π2

(ω1 + ω2)

ω1ω2

[
s − (ω1 + ω2)2 + iε

] , ωi =

√
k2 + m2

i . (90)

Constrained by the unitary relation, the two regularization schemes ensure the same imaginary parts. The analyti-
cal continuation to the second Riemann sheet is achieved by

GII(
√

s + iε) = GI(
√

s + iε) − 2i Im GI(
√

s + iε). (91)

However, their real parts depend on a(µ) or Λ. For such a nonperturbative approach, the renormalization is not
transparent. For example, there are no free LECs in the LO Lagrangians contributing to the ππ scattering [557] to
absorb the cutoff-dependence in G(

√
s). The a(µ) or Λ can only be determined phenomenologically [557]. However,

in the spirit of EFT, one can expect that the regulator dependence will become weaker as one goes to the high orders.

In Ref. [44], the typical value of the Λ was estimated as Λ ∼
√

Λ2
χ − m2

ϕ ∼ 0.8± 0.2 GeV, where Λχ ∼ 1 GeV and mϕ

is the mass of the light mesons such as π, K or η.With the above estimation, the subtraction term in the dimensional
regularization can be estimated by requiring the two schemes giving the same results in the low energy region. See
Refs. [552, 349] for the discussions on their relations. One can get the regulator-independent results via some other
unitary approaches, e.g. the inverse amplitude method in Sec. 2.5.3.

The above equations can be extended to the coupled-channel cases. The T -matrix, the potential V , and G become
the n × n matrix (n is the number of the coupled channels), in which G is a diagonal matrix.

In the chiral unitary method, the kernel interaction V is obtained with the help of the χPT. We use the scattering
of the pseduo-Goldstone boson off a matter field as an example. The relativistic G in Eq. (88) is superficially O(p0).
However, the dynamics of the matter field is nonrelativistic. The G function will reduce to O(p) if the propagator of
the matter field is nonrelativistic. The unitarized T -matrix within BSE is obtained by

T = (1 − VG)−1V. (92)

By matching the T with the chiral expansion amplitude A at low energy regions, the V can be introduced order by
order [558, 551, 559],

V (1) = A(1), V (2) = A(2), V (3) = A(3) − V (1)GV (1), (93)

where the superscript denotes the chiral expansion order. With the kernel potential in Eq. (93), the unitarized T -
matrix matches the chiral amplitudeA precisely at a given order and satisfies the unitary condition. One should note
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that the s-channel loop from the iteration of the lower chiral order amplitudes A has been subtracted to avoid the
double counting. For instance, V (3) = A(3) − V (1)GV (1) at O(p3). In Ref. [551], the case with a resonance in the
kernel potential was considered. The presence of the resonance arises from the nonperturbative dynamics of chiral
Lagrangians [560, 561, 562]. In this case, the power counting method in Eq. (93) should be modified. Recently, the au-
thors in Refs. [563, 564] used an alternative regularization scheme of the HBχPT, infrared regularization scheme, and
EOMS in Sec. 2.3. They introduced the renormalized scalar bubble-loop contributions independent of the renormal-
ization scale and replaced the heavy-light field bubble loops subject to certain replacement rules. The renormalization
scale dependence of the tadpole integral with only the light mesons is absorbed by the suitable counter terms. The
left-hand cuts were also discussed and turned out to be significant.

2.5.2. N/D method

According to the analytic structures in Eq. (81) and Eq. (83), the N/D method is proposed to construct a general
solution of the T -matrix [565, 554]. In the following, the “reduced” amplitude T ′` = T`(s)/q2` is used to remove the
vanishing threshold behavior of the partial wave. In the N/D method, the T ′` has the form, T ′`(s) = N′`(s)/D′`(s), where
N′` (numerator) and D′` (denominator) carry the analytic information of the left- and right-hand cuts, respectively. If
the left-hand cut is neglected (see Ref. [549] for the derivation of keeping the left-hand cut), N′` becomes a polynomial.

Dividing the denominator by the numerator, one can set N′`(s) = 1 and get [554, 560]

T ′−1
` (s) = D′`(s). (94)

With the unitary condition, one has

ImD′` =

0 s < sth

−ρ(s)q2` s > sth
. (95)

where ρ is defined in Eq. (80). Using the dispersion relation, the general forms of D′`(s) and T ′`(s) are given by

T ′−1
` (s) = D′`(s) = − (s − s0)`+1

π

∫ ∞

sth

ds′
q2`ρ (s′)

(s′ − s) (s′ − s0)`+1 +
∑̀
m=0

amsm +

M∑̀
i

Ri

s − si
, (96)

where s0 is the subtraction point and am stands for the subtraction terms. According to Eq. (95), one has the asymptotic
behavior,

lim
s→∞

ImD′`
s`

= − lim
s→∞

q2`ρ(s)
s`

= − 1
4`+2π

, (97)

which requires the `+ 1 times subtraction. All the poles (si) in Eq. (96) are called the Castillejo–Dalitz–Dyson (CDD)
poles [566]. M` is the number of the CDD poles. When the CDD poles are located far away from the energy region
of interest, they can be absorbed into the subtraction terms. However, if they are close to the physical state, one
should be much cautious when dealing with the CDD poles. In literature, there are various works where the interplay
of the zeros of T -matrix (t-zeros) and poles of T -matrix (t-poles) was discussed in detail [567, 568, 569, 570]. In
Ref. [567], the authors used the X(3872) as a paradigm for a two-channel situation and compared the production line
shapes in B-meson decays in the near-threshold region with and without the presence of the near-threshold t-zeros
and important continuum channel interplay. In the absence of these two factors, the production of the X(3872) is
regular and can be described by the simple Flatté formulae. However, if there is a strong channel-entanglement or
the presence of near-threshold t-zeros, the line shape can be dramatically distorted and exhibit an irregular behavior.
The line shapes can be used to discriminate between the binding mechanisms for the X(3872) as demonstrated in Ref.
[570]. Additionally, the presence of the near-threshold t-zeros corresponds to more near-threshold t-poles, as shown
in Refs. [568, 567].

The physical resonances or bound states are the poles of T ′` and satisfy D′`(spole) = 0. In contrast, the CDD poles
are the poles of the inverse amplitude T ′−1

` and the zeros of T ′`(s) = 0. In literature, the pole in the interaction potential
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was often called the CDD pole, e.g. [571, 572, 573]. One should be cautious about the different meanings of the
“CDD pole” according to the context.

If one insists on using the T` without eliminating the vanishing threshold effect, one obtains the form of the
T` [560] similar to Eq. (96),

T−1
` (s) = D`(s) =

∑
i

Ri

s − si
+ a (s0) − s − s0

π

∫ ∞

sth

ds′
ρ (s′)

(s′ − s) (s′ − s0)
, (98)

where the left-hand cut is neglected. The vanishing threshold behaviour of T` should be introduced as the CDD poles.
The a(s0), si and the residue Ri are not known in advance. Their values can be obtained in different ways such as using
experimental data, matching to χPT, or fitting lattice data as discussed below.

The Eq. (98) can be written in the generalised form

T−1
` (s) = V−1(s) − g(s), ⇒ T`(s) = [1 −V(s)g(s)]−1V(s), (99)

with

g(s) = ã (s0) +
s − s0

π

∫ ∞

sth

ds′
ρ (s′)

(s′ − s) (s′ − s0)
, (100)

where the ã (s0) specifies the freedom of choosing subtraction terms. One can see the V and the g(s) play the same
roles as the kernel potential and loop function in BSE in Eq. (86). The explicit calculation shows that g(s) is identical
to Eq. (88) up to a constant. Their right-hand cuts and imaginary parts along the cut are the same. In Ref. [551],
the interaction kernel is determined by the χPT amplitude to any given chiral expansion order as well as the explicit
resonance contributions, see Eq. (93) and the context. The kernel potentialV(s) contains all the contributions except
the right-hand cut.

The extension to the coupled-channel cases was given in Ref. [554] with the matrix form, in which the T -matrix
satisfies the unitary condition [

Im T−1
`

]
i j

= −ρii(s)δi j. (101)

2.5.3. Inverse amplitude method

The inverse amplitude method (IAM) is another unitarization technique adopting the unitary condition in Eq. (81)
for the inverse amplitude rather than the amplitude [574, 575, 576, 577], since they have the same analytic structures
except the possible pole contributions. This method has been used to study the light resonances, for instance f0(500),
K∗0(700), f0(980), a0(980), ρ(770) and K∗(892) (see more discussions in Ref. [578]).

Before deriving the formalism of the inverse amplitude method in the unitary perspective, it is instructive to adopt
the Padé expansion. The chiral partial wave amplitudes for the scattering of the light pseudoscalar mesons can be
expanded as

T (s) = T2(s) + T4(s) + T6(s) + . . . , (102)

where the “ . . . ” denotes the higher order amplitude T2k ∼ O(p2k). We can perform the [1, 1] and [1, 2] Padé expansion
for the T -matrix,

T [1,1] =
N(0) + N(2)

1 + D(2) = T2 + T4, T [1,2] =
N(0) + N(2)

1 + D(2) + D(4) = T2 + T4 + T6, (103)

where [i, j] represent that the truncation chiral orders of the expansions of the numerator and denominator are 2i and
2 j, respectively. In the above equation, we further match the [1, 1] order and [1, 2] order Padé expansions to the chiral
expansions of T to O(p4) and O(p6), respectively, which can fix the N(2n) and D(2m) terms. The final results are

T [1,1] =
T 2

2

T2 − T4
+ O(p6), T [1,2] =

T 2
2

T2 − T4 + T 2
4/T2 − T6

+ O(p8). (104)
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The Eq. (104) is just the conventional IAM formula to O(p4) and O(p6).
Now, we inspect the above results from the unitarity. With the optical theorem, one has

Im T2(s) = 0, Im T4(s) = T2(s)ρ(s)T2(s), Im T6(s) = 2ρ(s)T2(s) Re T4(s), . . . . (105)

The dispersion relations for the amplitudes are

T2(s) = a0 + a1s, T4(s) = b0 + b1s + b2s2 +
s3

π

∫
sth

ds′
Im T4 (s′)

s′3 (s′ − s − iε)
+ LC(T4), (106)

where LC(T4) represents the left-hand cut. ai (i = 0, 1) and b j ( j = 0, 1, 2) are the subtraction constants.
To implement unitarity, one defines g(s) = T2(s)2/T (s). Since the T2(s) is real, the g(s) has the same cuts as T (s).

One can obtain the integral equation for g(s) with the dispersion relation. For instance, the three times subtracted
dispersion relation for g(s) is

g(s) = g(0) + g′(0)s +
1
2

g′′(0)s2 +
s3

π

∫
sth

ds′
Im g (s′)

s′3 (s′ − s − iε)
+ LC(g) + PC(s), (107)

where PC(s) denotes the pole contribution of the g(s). Note that the correct pole contribution of 1/T (corresponding
to Adler zero) cannot be obtained from the PC term of the g(s) given the appearance of T 2

2 in the numerator. With the
unitarity relation in Eq. (81), one obtains

Im g(s) = −T2(s)ρ(s)T2(s) = − Im T4(s), (108)

on the right-hand cut. The subtraction constants in Eq. (107) are related to the chiral expansions. Up to O(p4), the
g(s) can be expanded in the low energy region using Eq. (106) after neglecting the pole contributions PC,

g(s) =
T 2

2

T2 + T4
' a0 + a1s − b0 − b1s − b2s2 − s3

π

∫
sm

ds′
Im T4 (s′)

s′3 (s′ − s − iε)
− LC(T4) = T2(s) − T4(s), (109)

where one has approximated

Im g(s) ' − Im T4(s), LC(g) = −LC(T4) + . . . (110)

on the left cut. Thus, the elastic formula for IAM reads [574, 575, 576, 577]

T (s) ' T 2
2 (s)

T2(s) − T4(s)
, (111)

which recovers the χPT expansion by expanding Eq. (111) as follows

T (s) ' T 2
2 (s)

T2(s) − T4(s)
' T2 + T4 + O(p6), (112)

The above discussion with the dispersion formalism can be extended to higher orders. For instance, up to the next-to-
next-to-leading order (NNLO or N2LO) one reads [577]

T (s) ' T 2
2 (s)

T2(s) − T4(s) + T 2
4 (s)/T2(s) − T6(s)

. (113)

It should be noticed that the above IAM method neglecting the pole contribution will give the imprecise Adler zeros
of the T -matrix. Such a flaw casts some doubts about the robustness of this method [579] given the Adler zeros are
zeros of the T -matrix arising from chiral symmetry and its spontaneous breaking [580]. In Ref. [581], the IAM is
adjusted to incorporate the Alder zeros correctly.

In Refs. [553, 552, 582], the IAM is generalized to the coupled channels using the matrix formalism,

T (s) = T (2)(s) ·
[
T (2)(s) − T (4)(s)

]−1 · T (2)(s). (114)
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The IAM approach can be generalised to study the system with the matter field. In Ref. [583], the authors applied the
IAM to derive the scattering amplitude of the pseudo-Goldstone boson off the heavy meson,

T (s) = T (1)(s) ·
[
T (1)(s) − T (2)(s) − T (3)(s)

]−1 · T (1)(s), (115)

where

Im[T (1)(s)] = Im[T (2)(s)] = 0, Im[T (3)(s)] = T (1)(s)ρ̃(s)T (1)(s). (116)

The loop function is O(p) since the propagator of the heavy meson is counted as O(p−1) [551] and its imaginary part
ρ̃(s) is O(p) in this case.

2.5.4. Dynamically generated states
The chiral unitary approaches combine the unitary condition with χPT and lead to the nonperturbative resum-

mation of the infinite s-channel loop diagrams. The implementation of the unitary condition extends the applicable
range of the χPT to higher energy region and generates the poles for the resonance/bound states in the unitarized
scattering amplitudes. Such chiral unitary approaches have been successfully used to describe a variety of scatter-
ing processes of the meson-baryon systems [584, 555, 585, 551, 586, 587, 588, 571, 589, 590] and meson-meson
systems [577, 557, 553, 552, 591, 556], which can also be extended to the heavy flavor systems in Sec. 4.

In the chiral unitary methods, the poles of the resonances or bound states can be generated by the dynamics of the
hadron-hadron scattering. In this context, the poles are called the “dynamically generated” states. These states arise
from the hadron-hadron interactions ( which definitely happen at the hadron level). They are not the explicit d.o.fs in
the free Hamiltonians or Lagrangians. Their properties such as the masses and decay widths are determined by the
hadron-hadron scattering potentials.

In contrast to the dynamically generated states, there are literally “preexisting” states, which are assumed to exist
as the explicit d.o.fs before the hadron interactions. The “preexisting” states are often associated with the bound states
or resonances composed of more fundamental d.o.fs than the scattering d.o.f, and their properties are determined by
more fundamental theories. For example, in the meson-meson scattering, the compact quark states such as the q̄q or
qqq̄q̄ tetraquark state are governed by the direct QCD dynamics. They exist prior to the hadron-hadron interactions
and are considered as the preexisting states. There is another potential origin of the “preexisting” states. They can be
the dynamically generated states in the other channels, which could be regarded as the preexisting ones in the relevant
channels [571, 592, 593, 578].

In Ref. [594], the CDD pole was interpreted as an independent particle participating in the scattering. In literature,
the “preexisting” states were associated with the CDD poles which act as the poles of the inverse T -matrix as shown
in Eq. (96). Thus, the “preexisting” states were often called the CDD poles directly, e.g. [571, 572]. One should be
cautious about the different meanings of the “CDD pole” according to the context. The “preexisting” states are usually
introduced explicitly through a bound state or resonance propagators in the effective field theory [571, 593, 595, 595,
572].

However, the above naive distinction (or classification) of the “dynamically generated” and “preexisting” states
is model-dependent. From the perspective of the effective field theory, the parameterizations of the kernel potentials
which generate the consistent T -matrix at the energy scale of interest are not unique. In some cases, the preexisting
states are hidden in the low energy constants (LECs). Within a given energy range, it is possible to replace a theory
with the non-perturbative two-particle interactions and no preexisting pole by an effective theory with a preexist-
ing pole and perturbative two-particle interactions [521]. This leads to ambiguity regarding the mechanisms of the
resonance generation. Sometimes, it is difficult to distinguish the direct QCD dynamics at the quark level and the
hadron-hadron interactions since both of them may contribute simultaneously. Even some well-accepted q̄q mesons
could be dynamically generated from the meson-meson interaction at least formally in some frameworks. For ex-
ample, the pole of the ρ resonance can be reproduced well either from the χPT interaction without the bare pole in
the chiral unitary approaches (e.g. [553, 596]) or by introducing the bare pole in the ππ scattering, e.g. [554, 572].
The D∗ was also dynamically generated from the Dπ interaction in Ref. [597]. In Sec. 4.3, we will illustrate that
the dynamically generated mechanisms and its mixtures with the preexisting states can both reproduce the mass and
width of the D∗s0(2317) and are indistinguishable within the current experimental uncertainties.
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For the system associated with the meson-meson scattering, to discern the genuine state and the dynamically
generated ones, the studies of other properties, such as the trajectories in the large NC limit, are useful [554]. The
latter does not survive in the large NC limit, since the meson-meson scattering is O(N−1

C ) [598]. In the large NC limit,
the pole position of the genuine q̄q state MNC − iΓNC/2 should satisfy MNC/M3 being a constant and ΓNC/Γ3 ∼ 3/NC ,
while the dynamically generated two-meson state will disappear [599, 600]. As an example, the studies of the NC

scaling behaviors in Ref. [600] favored the ρ and K∗ as the qq̄ state, while their results supported the σ and κ as the
“dynamically generated” two-meson states as shown in Fig. 6.
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Figure 4: The trajectories of large NC scaling (dashed line) for the ρ, K∗, σ and κ pole positions ( MNC − iΓNC /2). The gray areas represent the
uncertainties induced by the renormalization scale µ ≃ 0.5 − 1 GeV. The figure is taken from Ref. [255].

where the unitarity S lS
†
l = 1 is fulfilled. Here, we use the nonrelativistic formalism. The Tl is different with that

in Sec. 2.4 up to a factor. The power of the k for Tl is determined by the asymptotic behavior of the wave functions
in the partial wave basis. One can see that the unitary cut of the T matrix is ensured by introducing the ik2l+1 in the
denominator. k2l+1 cot δl is a metamorphic function. Assuming there is no pole for k2l+1 cot δl near the threshold, one
can expand it with the Taylor series in powers of k2,

k2l+1 cot δl = − 1
as
+

1
2

r0k2 + v2k4 + v3k6 + ..., (104)

where the coefficients are named as shape parameters. In particular, the leading two order coefficients as and r0 are
scattering length and effective range, respectively. The Eq. (104) is called effective range expansion. In the derivation
of Bethe’s work [256], the above expansion is formulated in the two body systems with a local interaction, namely
V(r, r′) = V(r)δ3(r− r′). The r0 gets its name since its value roughly equals to half of the range of the potential [263].
However, in the modern view, the potentials corresponding to the same scattering data are not unique and there is
no good reason to exclude the non-local interactions. It was proven by Ekstein [264] that a large class of unitary
transformations can relate the different Hamiltonians producing the same S matrix. In the modern perspective, the
ERE is not relevant to the locality of the interaction but an effective theory to depict the low-energy behavior of the
two-body scattering with finite parameters truncated according to the expected precision. It was shown that the ERE
is just equivalent to the pionless effective field theory [265].

The scattering length encodes important information. According to Levinson’s theorem [266, 263], if the potential
admits n bound states in the S -wave, the phase shift at zero energy is δ0(0) = nπ (with the convention δ(∞) = 0).
For the marginal potential that the nth bound state starts to appear, the phase shift is δ0(0) = (n + 1

2 )π. The phase
shifts within the square well potential are shown in Fig. 5 when the potential becomes more attractive and the first
bound state starts to appear at K0 ∼ 1.57. The scattering lengths will cross the infinity (from the negative one to the
positive one or vise verse) when the new bound state appears (see the right panel of Fig. 5). When the interaction is
repulsive everywhere or attractive everywhere but too weak to form the bound states, the sign of the scattering lengths
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Figure 6: The trajectories of large NC scaling (dashed line) for the ρ, K∗, σ and κ pole positions (MNC − iΓNC /2). The gray areas represent the
uncertainties induced by the renormalization scale µ ' 0.5 − 1 GeV. The figure is taken from Ref. [600].

In fact, many theoretical methods are proposed to define or discern the above two concepts more framework-
independently. In principle, the generalized Levinson’s theorem [532, 533, 535] in Eq. (77) can tell the number of the
“preexisting” states. However, in practice, the phase shifts at the infinite energy are not accessible observables. In the
1960s, Weinberg exploited the relations of the elementary particle and the composite particle [521, 221], which are
similar to “preexisting” state and “dynamically generated” state, respectively. For an S -wave shallow bound state, the
probability of the hadron-hadron molecule component (1−Z) (where Z is the wave function renormalization constant)
is related to the S -wave scattering length as and effective range re [221],

as =
2
κ

1 − Z
2 − Z

, re = −1
κ

Z
1 − Z

, (117)

where κ is the binding momentum. The above relations provide a criterion of compositeness from the low-energy
scattering observables. This relation was used to identify the deuteron as a molecule composed of two nucleons
instead of an elementary state [221]. Later, this relation has been generalized to describe the unstable resonances
in many theoretical works [601, 568, 602, 603, 604, 605, 606, 607, 608]. It should be noticed that the Weinberg
compositeness criterion, even the version for the bound states, has its validity range. By construction, one can always
get a pure two-body bound state with any given small binding energy with any given phase shifts [539], which means
any Z from Weinberg’s criterion. The conditions to ensure and validate the Weinberg’s criterion include: κ � Λ

(where Λ is mπ for the NN system), the non-pole term in the Low equation can be neglected, the form factor 〈p|V |B〉
is a constant, and so on. In Ref. [609], Li et al investigated the effect of the non-constant form factor. At the same
time, the authors demonstrated that the low energy observables (phase shifts) in Weinberg’s criterion cannot reveal
the short-range structure information of a state. It was pointed that the Weinberg “compositeness” is a measure for the
probability to find the constituents separated by a distance greater than the interaction range [610, 611]. In Ref. [612],
Song et al also considered the role of the interaction range (the cutoff of the interaction) in the Weinberg’s criterion.
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2.6. Superfield representations combining the chiral and heavy quark symmetries

For the heavy-light systems, their dynamics are constrained by HQS and chiral symmetry, thus the combination of
these two symmetries is necessary. At higher order, the corrections come from two sides: the 1/mQ correction and the
chiral expansion. Thus, the HHχPT has a double expansion in ΛQCD/mQ and p/Λχ. The Λχ and mQ are identified as
the high-energy scale, while the ΛQCD and the pπ,K,η ∼ mπ,K,η are identified as the low-energy scale. In literature, the
two expansions were often combined (treating ΛQCD/mQ as the same order as p/Λχ). In this review, we will discuss
these corrections separately.

In Sec. 2.2.1, we have discussed the HQSS, which is manifested in heavy hadron spectrum. In the heavy quark
limit, these degenerate states are collected in the superfield representation owing to the development of χPT and
HQET in 1990s [613, 614, 615, 470, 616]. In the superfield representations, the Lagrangians can be written with a
compact form. The LO terms satisfy the HQS and chiral symmetry, while the explicit breaking terms from finite light
quark masses and heavy quark masses can be systematically included order by order.

In the following, we outline some basic properties of the superfields. For a heavy-light system, if one assumes the
heavy d.o.f is ultra nonrelativistic and decouples from the light d.o.f, the field of this system can be expressed with
the product of the heavy and light ones, i.e., ψhl ∼ ψhψl [474]. Accordingly, we take the S -wave heavy-light hadrons
as an example,

heavy mesons: H ∼ uhv̄l, (118)
singly heavy baryons: ψµQ ∼ uhAµ

l , (119)

doubly heavy baryons: ψµQQ ∼ ulA
µ
h, (120)

where uh and vl (h and l for heavy and light d.o.f respectively) denote the quark and antiquark. Aµ
h/l represents the

vector diquark. TheH , ψµQ and ψµQQ transform as the antitriplet, sextet and triplet under the SU(3)L⊗SU(3)R rotations.
Meanwhile, they are the linear combinations of the degenerate states in the heavy (di)quark symmetry. Here, we aim
to explain the superfield technique to satisfy the heavy (di)quark spin symmetry. However, for the scalar diquarks,
there are no heavy (di)quark spin doublets. There is no need to construct the superfields. For the rules to construct the
Lagrangians keeping or breaking heavy (di)quark symmetry, see the details in Appendix A and Ref. [615].

In the following, we present the matrix representations of the heavy hadrons as the flavor SU(3) multiplet, and
define the superfields of degenerate states under the HQSS. We give the low order Lagrangians to illustrate how to
combine the two symmetries for different classes. One can find the definition of building blocks and some technical
details in Appendix A.

2.6.1. S -wave heavy mesons
For the ground-state heavy mesons Qq̄, S Q = 1

2 , j` = 1
2 , J = 0 and J = 1 correspond to the pseudoscalar P and

vector meson P∗, respectively. In flavor space, the doublet P with JP = 0− and P∗ with JP = 1− are

P = (D0,D+,D+
s ) or (B−, B̄0, B̄0

s), P∗ = (D∗0,D∗+,D∗+s ) or (B∗−, B̄∗0, B̄∗0s ), (121)

where the corresponding antiparticle’s doublet is denoted as P̃ and P̃∗ (column vector in flavor space), respectively.
The degenerate P and P∗ (P̃ and P̃∗) are combined into the superfieldH (H̃) with the form

H = Λ+(P∗µγ
µ + iPγ5), H̃ = (P̃∗µγ

µ + iP̃γ5)Λ−, (122)

where Λ± = (1 ± /v)/2, v2 = 1. The conjugation of H and H̃ is defined as H̄ = γ0H†γ0 and ¯̃H = γ0H̃†γ0. The
properties of theH field under the Lorentz, chiral and heavy quark spin transformations can be found in Ref. [478].

With the superfields, the low order Lagrangians read [616, 478]

LHϕ = −i〈Hv · DH̄〉 + gb〈H/uγ5H̄〉 − δb

8
〈HσµνH̄σµν〉, (123)

LH̃ϕ = −i〈 ¯̃Hv · DH̃〉 + gb〈 ¯̃H/uγ5H̃〉 − δb

8
〈 ¯̃HσµνH̃σµν〉, (124)
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where 〈. . . 〉 denotes the trace in spinor space, i.e., for the gamma matrix. If we consider the heavy quark flavor
symmetry, the gb is the same for the charmed and bottom sector. For the mesons, the chiral covariant derivative is
defined asDµ = ∂µ + Γµ, and the complete form of chiral connection Γµ with the external fields is given in Eq. (A.3).
gb is the axial coupling constant, which can be determined from the decay width of D∗+ → D0π+ [1] for the charmed
ones (|gb| ' 0.59), or the lattice QCD calculations for the bottom ones [617]. The δb terms originate from the
chromomagnetic interaction, e.g., see Eq. (60), which contribute to the mass splittings between P and P∗,

δb = mP∗ − mP. (125)

For the general higher order chiral Lagrangians of the heavy mesons, we refer to Ref. [618].

2.6.2. P-wave heavy mesons
For the P-wave excited heavy mesons, combining the light spin j` = 1

2 ,
3
2 with the S Q = 1

2 yields two spin doublets
(0+, 1+) and (1+, 2+). These two doublets are described by the superfields S and T µ [615], respectively,

S = Λ+

[
R∗µγµγ5 − R

]
, (126)

T µ = Λ+

Y∗µνγν −
√

3
2

Yνγ5

[
gµν − 1

3
(γµ − vµ)γν

] . (127)

The corresponding low order chiral Lagrangians are given by [619, 620]

LSϕ = 〈S (iv · D − δS) S̄〉 + g′b〈S/uγ5S̄〉 +
δ′b
8
〈SσµνS̄σµν〉, (128)

LTϕ = 〈T µ (iv · D − δT ) T̄µ〉 + g′′b 〈T ν/uγ5T̄ν〉 +
3δ′′b
16
〈T ρσµνT̄ρσµν〉, (129)

LSHϕ = h〈H/uγ5S̄〉 + H.c., (130)
LTHϕ = k1〈T µγλγ5(Dµuλ)H̄〉 + k2〈T µγλγ5(Dλuµ)H̄〉 + H.c., (131)
LSTϕ = h̃〈T µuµγ5S̄〉 + H.c., (132)

where δS and δT contribute to the mass difference with respect to the ground states,

δS/T = m̄S/T − m̄H , m̄H/S ≡
3mP∗/R∗ + mP/R

4
, m̄T ≡ 5mY∗ + 3mY

8
. (133)

The δ′b and δ′′b terms produce the mass splittings in the doublets S and T , respectively,

δ′b = mR∗ − mR, δ′′b = mY∗ − mY . (134)

2.6.3. Singly heavy baryons
The two light quarks qq in the ground-state singly heavy baryons can form 3 ⊗ 3 = 3̄ ⊕ 6 representations in SU(3)

flavor space. The antitriplet have j` = 0, while the sextet have j` = 1. Therefore, the spin of the antitriplet baryon is
1
2 , while the spins of the sextet are 1

2 and 3
2 , respectively. In the SU(3) flavor space, the conventional representations

of the singly heavy baryons are [621]

B3̄ =

 0 Λ+
c Ξ+

c
−Λ+

c 0 Ξ0
c

−Ξ+
c −Ξ0

c 0

 , B6 =


Σ++

c
Σ+

c√
2

Ξ′+c√
2

Σ+
c√
2

Σ0
c

Ξ′0c√
2

Ξ′+c√
2

Ξ′0c√
2

Ω0
c

 , B∗6 =


Σ∗++

c
Σ∗+c√

2
Ξ∗+c√

2
Σ∗+c√

2
Σ∗0c

Ξ∗0c√
2

Ξ∗+c√
2

Ξ∗0c√
2

Ω∗0c

 , (135)

where we use the B3̄, B6 and B∗6 to denote the spin- 1
2 antitriplet, spin- 1

2 and spin- 3
2 sextet, respectively.

Without the HQS, the low order Lagrangians are constructed as [621]

LBQϕ = Tr
[
B̄6(i /D− m6)B6

]
+

1
2

Tr
[
B̄3̄(i /D− m3̄)B3̄

]
33



+Tr
{
B̄∗µ6

[
−gµν(i /D− m∗6)i(γµDν + γνDµ) − γµ(i /D + m∗6)γν

]
B∗ν6

}
+g1Tr

[
B̄6/uγ5B6

]
+ g2Tr

[
B̄6/uγ5B3̄

]
+ H.c. + g3Tr

[
B̄∗µ6 uµB6

]
+ H.c.

+g4Tr
[
B̄∗µ6 uµB3̄

]
+ H.c. + g5Tr

[
B̄∗ν6 /uγ5B∗6ν

]
+ g6Tr

[
B̄3̄/uγ5B3̄

]
, (136)

where the chiral covariant derivative is
DµB = ∂µB + ΓµB + BΓT

µ . (137)

The Lagrangian (136) is reduced to a compact form with the superfield representation, where the B6 and B∗6 are
described by the superfield ψµQ via

ψ
µ
Q = B∗µ6 +

√
1
3

(γµ + vµ)γ5B6, and its conjugate ψ̄µQ = B̄∗µ6 −
√

1
3
B̄6γ

5(γµ + vµ), (138)

with B6 (≡ Λ+B6) and B∗6 (≡ Λ+B∗6) the nonrelativistic reduced fields of B6 and B∗6, respectively, see Appendix B.
Then the Lagrangian (136) is reexpressed as

LψQϕ = −Tr
[
ψ̄
µ
Qiv · DψQµ

]
+ igaεµνρσTr

[
ψ̄
µ
QuρvσψνQ

]
+ i

δa

2
Tr

[
ψ̄
µ
Qσµνψ

ν
Q

]
+

1
2

Tr
[
B̄3̄(iv · D + δc)B3̄

]
+ gcTr

(
ψ̄
µ
QuµB3̄ + H.c.

)
, (139)

where ga and gc are two independent axial couplings, and the δa term is proportional to the mass splitting between
the spin- 3

2 sextet and spin- 1
2 sextet. The δc contributes to the mass splitting between the flavor antitriplet and sextet.

Unfolding Eq. (139) one obtains the following relations

g1 = −2
3

ga, g3 = − 1√
3

ga, g5 = ga; g2 = − 1√
3

gc, g4 = gc, g6 = 0, (140)

in which the g2 and g4 can be extracted from the partial decay widths of Σc → Λcπ and Σ∗c → Λcπ, respectively. g6 = 0
is due to the fact that the interactions between the pseduscalar meson and the spin-0 diquark are forbidden because of
the conservation of the parity and angular momentum. Meanwhile, the couplings g1, g3 and g5 are determined with
the quark model [622, 623, 624],

g2 = −0.60, g4 = −√3g2 = 1.04;

g1 = −
√

8
3 g2 = 0.98, g3 =

√
3

2 g1 = 0.85, g5 = − 3
2 g1 = −1.47.

(141)

It should be noticed that, for the SU(2) case, there are two conventional representations for the isospin triplet Σc,

ΣI
c =

 Σ++
c

Σ+
c√
2

Σ+
c√
2

Σ0
c

 , ΣII
c = Σc · τ =

√
2

 Σ+
c√
2

Σ++
c

Σ0
c − Σ+

c√
2

 . (142)

The different representations will not change the physical results so long as they are used consistently. The first
one is the direct reduction of B6 and the covariant derivative is similar to Eq. (137) but transformed into the SU(2)
case. The second representation is like the Σ in the nucleon octet. The corresponding covariant derivative in the
Lagrangian becomes DµΣ

II
c = ∂µ + [Γµ,ΣII

c ]. The isospin triplet with specific I3 = (+1, 0,−1) is also different in the
two representations, e.g., (Σ++

c ,Σ+
c ,Σ

0
c)I, (−Σ++

c ,Σ+
c ,Σ

0
c)II.

2.6.4. Doubly heavy baryons
For the ground-state doubly heavy baryons QQq, j` = 1

2 , and S QQ = 1, there exist two multiplets, the BQQ with
spin- 1

2 and the B∗QQ with spin- 3
2 ,

BQQ =

 Ξ++
cc

Ξ+
cc

Ω+
cc

 , B∗QQ =

 Ξ∗++
cc

Ξ∗+cc
Ω∗+cc

 . (143)
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The low order Lagrangians after heavy baryon reduction reads (see Ref. [625] for higher order Lagrangians)

LBQQϕ = B̄QQiv · DBQQ − B̄∗µQQ(iv · D − δ4)B∗QQµ + 2g̃1B̄QQ(S · u)BQQ

+2g̃2B̄∗µQQ(u · S )B∗QQµ + g̃3(B̄∗µQQuµBQQ + B̄QQuµB∗µQQ), (144)

where the covariant derivative is the same as that in Eqs. (123) and (124),Dµ = ∂µ +Γµ. The mass splitting δ4 is given
as δ4 = mB∗QQ

− mBQQ . S µ = i
2γ5σ

µνvν is the covariant spin operator.
If one assumes the heavy diquark as a compact and heavy object, one can adopt the HDAS to treat the (BQQ, B∗QQ)

pair as a spin doublet. They can be uniformly depicted by the superfield

ψ
µ
QQ = B∗µQQ +

√
1
3

(γµ + vµ)γ5BQQ, and its conjugate ψ̄µQQ = B̄∗µQQ −
√

1
3
B̄QQγ

5(γµ + vµ). (145)

The Lagrangian (144) is expressed with the ψµQQ as

LψQQϕ = −ψ̄µiv · Dψµ + g̃bψ̄
µ/uγ5ψµ +

iδ̃b

4
ψ̄µσµνψ

ν, (146)

where there exists only one coupling g̃b within the HDAS, and the δ̃b term breaks the heavy diquark symmetry and
contributes to the mass splitting of spin- 1

2 and spin- 3
2 multiplets. The couplings g̃i (i = 1, 2, 3) and mass splitting δ4 in

Eq. (144) can be related to g̃b and δ̃b via

g̃1 =
1
3

g̃b, g̃2 = g̃b, g̃3 = 2

√
1
3

g̃b, δ4 =
3
4
δ̃b. (147)

As discussed in Sec. 2.2.2, the Lagrangians of the doubly heavy baryons can be related to those of the singly heavy
mesons with the HDAS. In the superifield formalism, we have ψµQQ ∼ ulA

µ
h and H̃ ∼ ulv̄h. For the Lagrangians with

the heavy d.o.f as the spectator, we have

LH̃ = ξ (ūlΓul)
(
A∗µh Ahµ

)
= ξψ̄µΓψµ,

LψQQ = ξ (ūlΓul) (v̄hvh) = ξ ¯̃HΓH̃ , (148)

where the Lagrangians for the singly heavy meson and doubly heavy baryons share the same coupling constant ξ in
HDAS once the heavy parts are normalized properly. Therefore, comparing Eqs. (124) and (146), one can obtain the
relation [506],

g̃b = gb. (149)

Moreover, assuming only the chromomagnetic interaction [the third term in Eq. (60)] breaks the heavy (di)quark
symmetry, the δb and δ̃b terms in Eqs.(124) and (146) can be related to each other as well [199],

δb = δ̃b. (150)

2.7. KSW and Weinberg schemes for two matter field systems

For the system with one matter field, one can perform the perturbative expansion with the guideline of the Wein-
berg’s power counting and heavy hadron expansion. However, when one adopts the same scheme in the two matter
field system, one has to overcome two obstacles at least.

We use the two nucleon system to illustrate the first obstacle—the pinched singularity [509]. For the box diagram
as shown in Fig. 7(a), if we take the leading order of the heavy baryon expansion, the amplitude reads

A ∼
∫

dl0
1

v · l + iε
1

−v · l + iε
, (151)
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where only the two propagators of the intermediate nucleons are presented. The contour of the integration is pinched
by the two poles, l0 = ±iε. It is impossible to avoid the singularities by distorting the contour. In order to eliminate the
pinched singularity, one has to keep the kinetic terms in the Lagrangian: L = N̄(i∂0 + ∂2

2M )N . The amplitude becomes

A ∼
∫

dl0
1

v · l +
p′21
2M + iε

1

−v · l +
p′22
2M + iε

∼ 1
p′22
2M +

p′21
2M

∼ 1
|p|

M
|p| . (152)

Although the pinched singularity is cured by including the kinetic energy of the nucleon in the leading terms, the
amplitude is enhanced by a large factor M/|p|. This strong enhancement explicitly breaks the naive power counting
with which the l0 integral should be of O(1/|p|). It is worthwhile to notice that the pinched singularity will appear not
only in the box diagrams but also in the triangle diagrams [Fig. 7(b), (c)] and bubble diagram [Fig. 7(d)] in the two
nucleon scattering.

(a) (b) (c) (d)

Figure 7: Three types of Feynmann diagrams that contain the pinched singularities for the NN scattering at the leading order of the heavy baryon
expansion. The (a), (b)/(c) and (d) represent the box, triangle and bubble diagrams, respectively. The solid and dashed lines denote the nucleon and
pion, respectively.

The pinched singularity is a typical feature of the nonrelativistic two-body systems. An analog is the heavy
quarkonium in the NRQCD [626, 627]. One can first separate the nonrelativistic kinetic energy q0 and momentum q
from the mass in the relativistic momentum pµ = (mQ, 0) + (q0, q). For the system with two heavy quarks, a different
power counting is adopted in NRQCD . In the NRQCD, q0 and q2/mQ is counted as the same order, while in the
HQET the q0 and q are regarded as the same order. In the NRQCD, the calculation is organized in power of the
velocity v ≡ |q|/mQ

8. In the nonrelativistic theory, the kinetic energy is at the order of mQv2 and the three momentum
is at the order of mQv. One can see that keeping the kinetic term in Eq. (152) essentially takes the similar power
counting with NRQCD.

Figure 8: Box diagrams in the time-ordered perturbation theory.

The unnaturalness is the second obstacle preventing the two matter field systems from suiting Weinberg’s power
counting. The Weinberg’s power counting is based on the NDA. An important prerequisite of its validity is the
naturalness, which implies all the dimensionless parameters of the expansion is at order of unity. The dimensionless
parameter is obtained by factoring out Λn, where Λ is the breaking scale of the effective field theory. The opposite of
the naturalness is the unnaturalness or the fine tuning. A typical example of the fine tuning is the nuclear force. At

8One should not confuse the velocity here with that in HQET and heavy field expansion.
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the scale p � mπ, one can integrate out the pion by treating it as a hard scale. It is expected that the pionless effective
field theory (/πEFT) is valid, which is equivalent to the ERE [628]. For example, the ERE for the S -wave NN system
is

p cot δ = − 1
as

+
1
2

r0 p2 + . . . , (153)

where δ is the phase shift and p is the magnitude of three momentum. as and r0 are the scattering length and effective
range, respectively. In the expansion, the large scale is the pion mass mπ. By assuming naturalness, the scattering
length as should be of order 1/mπ ≈1.4 fm. However, the experimental neutron-proton scattering lengths for the 1S 0
and 3S 1 channels are

a1S 0 ' −23.76 fm, a3S 1 ' 5.42 fm. (154)

Thus, the loss of the naturalness indicates the failure of Weinberg’s power counting for the NN systems.
The unnaturalness of the NN interaction can be attributed to the appearance of the bound state or virtual state,

like the deuteron as the 3S 1 bound state. The bound state, virtual state and the resonance are all nonperturbative
phenomena, which indicate the failure of the perturbative framework conducted by Weinberg’s power counting. One
has to face the same obstacle of unnaturalness in the heavy hadron systems. The main motivation of investigating
the two matter filed system in the heavy flavor sector is to decode the nature of the exotic hadrons in experiments. In
the molecular scheme, the exotic hadrons are interpreted as the bound state, virtual state or resonance of two heavy
hadrons. Therefore, the same unnaturalness will appear. For the NN systems, there are two types of frameworks
to perform the effective field theory properly, the Kaplan-Savage-Wise (KSW) scheme [522, 629] and the Weinberg
scheme [630, 509] 9. They were widely used for the heavy hadron systems as well.

2.7.1. KSW scheme

Kaplan, Savage and Wise proposed an elegant approach to reformulating the power counting of the NN systems
considering the unnatural large scattering length [522, 629]. The scheme starts from the scale less than the pion mass
in the 1S 0 channel. Then the tree level amplitude from the contact interaction reads

iAtree = −i(µ/2)4−d
∞∑

n=0

C2n(µ)p2n = −i(µ/2)4−dC(p2, µ), (155)

where p is the nucleon momentum in the center of mass frame. M and µ are the nucleon mass and subtraction scale.
d is the dimension of space-time. C2n are the LECs and C is the polynomial of C2n. In the Table 2, we present the
dimension of the corresponding LECs. For such a nonrelativistic system, the double expansions in power of 1/M
and p/Λ are performed. In Eqs. (152), every loop will contribute a factor M. In order to ensure the diagrams with
arbitrary loops have the same counting of 1/M as the tree-level diagrams, we count C2n as order of 1/M. With the
common factor of 1/M, we can focus on the p/Λ expansion. For example, the dimension of C0 is −2. Thus, one
expects C0 ∼ 1/(MΛ) from NDA. With the vertices, the amplitude of the one-loop bubble diagram reads

In = −i(µ/2)4−d
∫

ddq
(2π)d q2n i

(E/2 − q0 − q2/2M + iε)
i

(E/2 + q0 − q2/2M + iε)

= −M(ME)n(−ME − iε)
d−3

2 Γ

(
3 − d

2

)
(µ/2)4−d

(4π)(d−1)/2 . (156)

In the calculation, the kinetic energy terms are kept to eliminate the pinched singularity. In the conventional dimen-
sional regularization, the pole at d = 4 is subtracted to track the logarithmic ultraviolet divergence ln µ. However, if
one calculates the above integration in a hard cutoff regularization, one can find the linear ultraviolet divergence µ. To
track the power ultraviolet divergence, an extra subtraction at d = 3 was made by the counter term

δIn = −M(ME)nµ

4π(d − 3)
. (157)

9One should not confuse with the Weinberg scheme in calculating the nuclear force with the Weinberg’s power counting.
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Table 2: Power counting and dimensions of the contact terms in Eq. (155) for both natural and unnatural cases.

C0 C2 C4 C2n C2n p2n

Dimension −2 −4 −6 · · · −2(n + 1) −2

Natural 1
M

1
Λ1

1
M

1
Λ3

1
M

1
Λ5 · · · 1

M
1

Λ2n+1
1
M

p2n

Λ2n+1

Unnatural 1
M

1
p

1
M

1
p2Λ1

1
M

1
p3Λ2 · · · 1

M
1

pn+1Λn
1
M

pn−1

Λn

The above procedure was called the power divergence substation (PDS) scheme. The regularized amplitude becomes

IPDS
n = In + δIn = −(ME)n

( M
4π

)
(µ + ip). (158)

The amplitude considering bubble diagrams nonperturbatively then becomes

iA =
−iC(p2, µ)

1 + MC(p2, µ)(µ + ip)/4π
. (159)

In order to investigate the effect of the unnatural scattering length, one can match the above amplitude to the effective
range expansion,

p cot δ = − 4π
MC(p2, µ)

− µ = − 1
as

+
1
2

r0 p2 + . . . . (160)

Then the first two LECs read

C0(µ) =
4π
M

(
1

−µ + 1/as

)
, C2(µ) =

2π
M

(
1

−µ + 1/as

)2

r0, . . . . (161)

Taking µ ∼ p, one can obtain the power counting either in the natural or unnatural cases. In the natural case
1/as ∼ Λ, the powers of C2n satisfy the naive counting in Table 2. In the unnatural case, a � 1/Λ, the power counting
is presented in Table 2. The powers of the LECs are increased by the unnaturalness. From Eq. (158), one can see
that adding an extra loop (see Fig. 9) will introduce a factor of order Mp from the integration. For the natural case,
taking the extra vertex in the loop into consideration, the extra loop will introduce a factor of order p/Λ at most (for
the LO vertex, see Fig. 9). Thus, one can perform the calculation perturbatively for the natural case. For the unnatural
case, introducing an extra loop with the LO vertex will introduce a factor of order 1. Thus, one has to include the C0
nonperturbatively. Although the higher order vertices (C2, C4,...) were enhanced by the unnaturalness, one can still
deal with them perturbatively.

Figure 9: The effect of an extra loop with the LO vertex. In the natural case, the right diagram is suppressed by an extra factor Mp compared with
the left one. In the unnatural case, the right one has the same order with the left one.

It is worthwhile to stress that the validity of the above power counting is independent of the specific regularization
scheme—PDS. In Refs. [631, 632, 633, 634, 635], the alternative but equivalent regularization schemes were adopted
to obtain the same power counting. The key point of choosing the regularization scheme is to track the power di-
vergence. In Ref. [529], the author illustrated the same power counting without specific regularization scheme. In
Ref. [636], the equivalent power counting was obtained by performing the Wilsonian renormalization group equation
to the Lippmann-Schwinger equation.

The power counting can be extended to p ∼ mπ. In the 1S 0 channel, the one-pion exchange (OPE) interaction is

Vπ(p, p′) = − g2
A

2 f 2

(
m2
π

q2 + m2
π

− 1
)
, (162)
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where q = p′ − p. The counting of the OPE interaction is p0, which is of the same order as the C2 term, thus can be
treated perturbatively.

Figure 10: Feynman diagrams for KSW. The LO vertices are represented by the solid dot. The NLO vertices are labeled by solid square and empty
square.

The KSW scheme is an elegant framework to treat the unnatural NN systems with very clear power counting. In
this framework, the renormalization is very transparent. However, the resulting scattering amplitudes didn’t converge
in certain spin-triplet channels [637, 638] for the nucleon momenta around the pion mass (the subsequent improve-
ments seemed to yield a convergent expansion [639, 640]). It was shown that the breakdown of the KSW expansion
arises from the perturbative treatment of the pion exchange contributions [641, 642, 638, 643]. The proper scale where
the OPE is perturbative was obtained in Ref. [644].

The KSW type scheme was also applied in the heavy hadronic systems. Using the XEFT to investigate the X(3872)
inherits the characters of the KSW scheme—the nonperturbative LO contact interaction and the perturbative OPE and
higher contact interactions. We will discuss the relevant EFT in Sec. 5.2 and explain why the perturbative OPE works
for the X(3872) although it failed for the NN system.

2.7.2. Weinberg scheme
The state-of-the-art nuclear forces (see Refs. [645, 646, 647, 648] for recent progresses and see Refs. [476, 475,

649, 650] for reviews) are based on the Weinberg’s seminal works [630, 509]. Weinberg proposed to adopt the power
counting law to calculate the NN potentials perturbatively. The NN potentials are regarded as the effective potential
of the Schrödinger equation or the kernel of the Lippmann-Schwinger equations (LSEs). From the perspective of
the time-ordered perturbation theory as shown in Fig. 8, the contribution of the loop diagrams (e.g. box diagrams)
is divided into the two-particle-reducible (2PR) part and two-particle-irreducible (2PIR) part. The 2PR part is sub-
tracted in the NN potential. The remaining 2PIR part is iterated to all orders by solving the Schrödinger equation or
Lippmann-Schwinger equation. The 2PR part is recovered by iterating the tree diagrams automatically.

In the practical calculation, one can obtain the 2PIR contribution by subtracting the contribution of the poles of
the nucleons [651, 652] rather than the time-ordered perturbation theory [653]. For the heavy hadron systems, the
subtraction becomes more subtle due to the appearance of the mass splitting, see the Appendix of Ref. [364].

Compared with the KSW scheme, the renormalization of Weinberg scheme is less transparent. The amplitudes
are nonperturbative expressions obtained by solving the integral equations with ultraviolet (UV) divergences. For
example, one usually introduces regulators to the NN potential to render the solutions of LSEs or Schrödinger equation
finite. Sometimes the Gauss form regulator is used in the calculation

V(p, p′)→ V(p, p)e
−(pn+p′n )

Λn . (163)
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In such a nonperturbative renormalization, the cutoff independence is implicit. In Refs. [654, 655, 656], several
conceptional ambiguities in the renormalization of the nuclear forces in Weinberg scheme were clarified. Though the
Weinberg scheme is not as elegant as KSW scheme, it turns out to be convergent and practical in calculating high-
precision nuclear forces [476, 475, 649]. In the Weinberg scheme, the OPE interaction is iterated to all orders. In
the heavy hadron systems, the Weinberg scheme was also used to identity the hadronic molecules by calculating the
mass spectrum (e.g. [355, 364]) and fitting the experimental line shapes [356, 283]. We will discuss this formalism in
Sec. 5.

3. Masses, axial charges, strong and electromagnetic decays of heavy hadrons

The HHχPT was developed to investigate the heavy-light hadrons incorporating the chiral symmetry and the heavy
quark symmetry consistently. It has successfully described the properties of the heavy-light systems, including the
spectra, form factors, decay patterns, etc. In this section, we will review the chiral corrections to the masses, axial
currents, magnetic moments, electromagnetic decays and strong decays of the heavy mesons, singly heavy baryons
and doubly heavy baryons within the framework of HHχPT. The cross-talk between HHχPT and other frameworks
will also be discussed.

3.1. Heavy hadron masses
In this subsection, we briefly introduce the application of the HHχPT in the study of the mass spectroscopy of the

heavy mesons and baryons with the help of the experimental data and lattice QCD simulations. In the HHχPT, the
propagator of the meson is proportional to

i
2(v · k − δtree) − Σ(v · k)

, (164)

where the factor 2 results from the normalization of the heavy meson field (see Appendix B). The heavy meson
momentum p is split into the large component with velocity v and small residue momentum k with p = m0v + k
and m0 being the bare mass of the reference heavy meson. δtree denotes the tree-level mass difference of the particle
relative m0. The −iΣ(v · k) is the sum of all the one-particle irreducible (1PIR) self-energy contribution. In general, it
is complex and the imaginary part is related to the decay width. The on-shell renormalization condition is given by,

2(v · k̃ − δtree) − Σ(v · k̃) = 0, (165)

The physical mass corresponds the position of the pole of the propagator in Eq. (164) and is given by,

mphy
H = m0 + v · k̃ = m0 + δtree +

1
2

Re
[
Σ(v · k̃)

]
, (166)

The propagators of the singly and doubly heavy baryons are similar to those of the mesons after the heavy field
expansion. Their mass expressions can be written as

M = M0 + δtree + Re
[
Σ(v · k̃)

]
, (167)

where M0 is the bare mass of the heavy baryon.

3.1.1. Heavy mesons
As shown in Sec. 1.1, the heavy mesons can be labeled with the light and heavy d.o.f in the heavy quark spin basis.

In the heavy quark limit, the mesons with the same jP
` are degenerate and they can be embedded into the superfields

as shown in Eqs. (122), (126) and (127).
Constrained by the heavy quark symmetry and the chiral symmetry, the low order Lagrangians for the heavy

mesons Qq̄ are given in Eqs. (123), (128)-(132). Among them, we have included the 1/mQ corrections which break
the heavy quark symmetry,

L1/mQ = −δb

8
〈HσµνH̄σµν〉 +

δ′b
8
〈SσµνS̄σµν〉 +

3δ′′b
16
〈T ρσµνT̄ρσµν〉, (168)
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where the constant δb/δ
′
b/δ
′′
b is responsible for the mass splitting, δb/δ

′
b/δ
′′
b =

(
MP∗/R∗/Y∗ − MP/R/Y

)
in the H /S/T

multiplets [657], which is suppressed by 1/mQ and vanishes in the heavy quark limit.
At O(p2) of the chiral expansion, the chiral Lagrangians with the light quark masses read [658, 659, 33, 660, 621,

619, 661, 662, 663, 664, 618]

L(2)
chiral = aH

〈
HmξH̄

〉
+ σH

〈
HH̄

〉
Tr(mξ) − aS

〈
SmξS̄

〉
− σS

〈
SS̄

〉
Tr(mξ)

−aT

〈
TρmξT̄ ρ

〉
− σT

〈
TρT̄ ρ

〉
Tr(mξ)

−∆
(a)
H

8

〈
HσµνmξH̄σµν

〉
− ∆

(σ)
H

8

〈
HσµνH̄σµν

〉
Tr(mξ)

+
∆

(a)
S

8

〈
SσµνmξS̄σµν

〉
+

∆
(σ)
S

8

〈
SσµνS̄σµν

〉
Tr(mξ)

+
3

16
∆

(a)
T

〈
TρσµνmξT̄ ρσµν

〉
+

3
16

∆
(σ)
T

〈
TρσµνT̄ ρσµν

〉
Tr(mξ), (169)

where mξ = χ+/4B0 = diag{mu,md,ms} + O(p4). In the above interaction, the ∆
(a)
H/S/T and aH/S/T terms contribute to

the SU(3) flavor breaking effect, while the ∆
(σ)
H/S/T and σH/S/T terms keep the SU(3) flavor symmetry. The terms in

L(2)
chiral will contribute to the mass spectrum of the heavy mesons through Fig. 11(a) at O(p2) of the chiral expansion.

The contributions from ∆
(a/σ)
H/S/T are further suppressed by 1/mQ.

Up to the order of 1/mQ and up to the NLO chiral expansion [O(p2)], the mass corrections come from the tree
diagrams [661, 662, 663, 664],

δtree
Pq

= σHm̄ + aHmq − 3
4

(
δb + ∆

(σ)
H m̄ + ∆

(a)
H mq

)
, (170)

δtree
P∗q = σHm̄ + aHmq +

1
4

(
δb + ∆

(σ)
H m̄ + ∆

(a)
H mq

)
, (171)

δtree
Rq

= δS + σS m̄ + aS mq − 3
4

(
δ′b + ∆

(σ)
S m̄ + ∆

(a)
S mq

)
, (172)

δtree
R∗q = δS + σS m̄ + aS mq +

1
4

(
δ′b + ∆

(σ)
S m̄ + ∆

(a)
S mq

)
, (173)

δtree
Yq

= δT + aT mq + σT m̄ − 5
8

(
δ′′b + ∆

(a)
T mq + ∆

(σ)
T m̄

)
, (174)

δtree
Y∗q = δT + aT mq + σT m̄ +

3
8

(
δ′′b + ∆

(a)
T mq + ∆

(σ)
T m̄

)
, (175)

where m̄ = mu + md + ms. The subscript q denotes different light quarks u, d and s.
The one-loop diagrams start to contribute at O(p3) of the chiral expansion. The O(p3) contributions come from

the wave function renormalization diagram in Fig. 11(b). The axial coupling vertices in the loops arise from the
Lagrangians in Eqs. (123), (128)-(132). The intermediate states in the loop can be the same as or different from
the external states. The different intermediate states will include the mass corrections from the other kinds of heavy
mesons. The other one-loops in Fig. 11 will contribute at O(p4). In Fig. 11(c) and (d) diagrams, there are three types
of the O(p2) vertices which stem from aH/S/T , σH/S/T and ∆

(a/σ)
H/S/T terms. The aH/S/T terms keep the HQSS but break

the SU(3)V symmetry. The σH/S/T terms keep the HQSS and yield the flavor-independent contributions to the masses
of the pseudoscalar and vector mesons in the same heavy quark spin doublet. The ∆

(a/σ)
H/S/T terms breaks the HQSS and

their loop corrections will be further suppressed by 1/mQ. At O(p4), the tree diagram in Fig. 11(e) is governed by
the Lagrangians with two insertions of the light quark mass matrix [660]. As an example, the Lagrangians of the H
multiplet at O(p4) are given by

L(4)
chiral = b

〈
HmξmξH̄

〉
+ c Tr(mξ)

〈
HmξH̄

〉
+ d Tr(mξmξ)

〈
HH̄

〉
−1

8
∆(b)

〈
HσµvmξmξH̄σµν

〉
− 1

8
∆(c) Tr(mξ)

〈
HσµνmξH̄σµν

〉
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−1
8

∆(d) Tr(mξmξ)
〈
HσµνH̄σµν

〉
+ . . . , (176)

where b, c, d, and ∆(b/c/d) are the LECs. The Lagrangians for the S and T multiplets are similar.
So far, there exist many theoretical predictions for the heavy mesons using the HHχPT. The early studies only

considered the ground state D and B mesons. The mass splittings of these heavy mesons have been studied in the heavy
quark limit and SU(3) flavor symmetry [492, 495], and receive the 1/mQ and the light quark mass corrections [665,
660, 621, 659, 620, 666, 667, 668, 669, 670, 671, 672] (see Ref. [620] for a review). For instance, the leading mass
splittings mD∗ − mD and mB∗ −mB are proportional to δb as shown in Eq. (170) and Eq. (171). Since δb is proportional
to 1/mQ, one has

mD∗ − mD

mB∗ − mB
=

mb

mc
. (177)

Its leading corrections come from the mass corrections of the heavy quarks and have been studied in HQET [665, 669,
474]

mD∗ − mD

mB∗ − mB
=

mb

mc

(
αs (mb)
αs (mc)

)−9/25

' mB

mD

(
αs (mB)
αs (mD)

)−9/25

, (178)

with the αs the running coupling constant.
Another popular hyperfine mass splitting is [660, 659, 620, 666, 667, 668]

∆MD =
(
MD∗s − MDs

)
− (MD∗+ − MD+ ) , (179)

∆MB =
(
MB∗s − MBs

)
− (MB∗0 − MB0 ) . (180)

The leading order electromagnetic corrections from the s and d quarks are the same due to their equal electric charges.
Hence, both ∆MD and ∆MB vanish in the chiral and heavy quark limit.

In the HHχPT formalism, the lowest order contribution arises from the ∆
(a)
H term in L(2)

chiral through the diagram in
Fig. 11(a) at the order 1/mQ. The mass splittings then satisfy the following relation [666],

∆MB

∆MD
=

mc

mb
, (181)

which is a direct consequence of Eq. (177).
The one-loop diagram in Fig. 11 will provide corrections to ∆MD and ∆MB. In the loop diagrams, the different

masses of the pseudoscalar mesons, mπ/mK /mη, the mass splittings between the heavy spin doublets δb/δ′b/δ′′b , the mass
splittings between the non-strange and strange mesons ∆s=∆

(a)
H (ms −mu/d), as well as the different axial couplings for

the P∗P∗π and P∗Pπ vertex may contribute to the ∆MD and ∆MB. The one-loop correction was given by [660, 620,
667, 668, 659]

∆MD/B
(b) =

g2
bδb

16π2 f 2
ϕ

[
m2

K log
(
Λ2
χ/m

2
K

)
+

1
2

m2
η log

(
Λ2

x/m
2
η

)
− 3

2
m2
π log

(
Λ2
χ/m

2
π

)]
+

g2
bδb

16π2 f 2
ϕ

(6πmK∆s) −
g2

b

24π f 2
ϕ

∆gb

gb

(
m3

K +
1
2

m3
η −

3
2

m3
π

)
, (182)

where the terms in the first line is the so-called chiral logarithm. The terms in the second line are both of order m3/2
q .

∆gb represents the difference between the axial coupling in theH multiplet and stems from the Lagrangian at the order
1/mQ [668],

Lgb
1/mQ

= i
ξ1

mQ

〈
Hγµγ5uµH̄

〉
+ i

ξ2

mQ

〈
HH̄uµγµγ5

〉
, (183)

The ξ1 term is the recoil correction to the leading order interaction term gb in Eq. (123) and leads to a deviation
of the DD∗π and BB∗π couplings. However, the ξ1 term keeps the HQSS and does not contribute to the ∆gb . On the
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other hand, the ξ2 term breaks the HQSS, hence is forbidden in the leading order, which contributes to the coupling
difference as

∆g = 2
ξ2

mQ
. (184)

The calculation can be generalized to the analogous d − u type hyperfine splitting (D∗+ − D+) −
(
D∗0 − D0

)
. Both

the electromagnetic interaction and the current quark mass difference contribute to the isospin violation. Their effects
are quantitatively of the same order. Fortunately, the dominant contribution to the isospin violation from md −mu can
be easily accounted for through the spurion χ so long as one keeps md , mu from the beginning. In the leading order,
the spurion χ leads to the mass splitting of the heavy mesons and baryons, and also the mass splitting of the eight
pseudoscalar mesons. The higher order isospin violating corrections to the heavy hadron masses may arise from the
chiral loop contributions where the intermediate isospin multiplets of the pions or kaons have different masses with
mπ+ , mπ0 etc. Another source of higher order correction is the multiple insertions of the spurion χ in the construction
of higher order Lagrangians. However, both types of higher order corrections are much smaller than the leading order
term. Therefore, one generally considers the leading order correction due to md − mu in literature.

Apart from the light quark mass difference , the electromagnetic effect was also important [660]. The Lagrangians
contributing to the isospin hyperfine splittings read

LQhQh /S
QED = −1

8
∆emαem

〈
Q2

hHσµνH̄σµν
〉
, (185)

LQhQ
QED = aemαem

〈
QhHQ+H̄

〉
, (186)

LQhQ/S
QED = −1

8
∆

(a)
emαem

〈
QhHQ+σµνH̄σµν

〉
, (187)

LQQ
QED = bemαem

〈
HQ+Q+H̄

〉
+ demαemTr(Q+Q+)

〈
HH̄

〉
, (188)

LQQ/S
QED = −1

8
∆

(b)
emαem

〈
HσµνQ+Q+H̄σµν

〉
− 1

8
∆

(d)
emαemTr(Q+Q+)

〈
HσµνH̄σµν

〉
, (189)

where Qh is the heavy quark electric charge and equal to 2
3 and − 1

3 for the charmed and bottom quarks, respectively.
The Q+ = ξ†Qlξ + ξQlξ

† with Ql = diag(2/3,−1/3,−1/3) is the light quark electric charge. The charge factor e2 has
been absorbed in αem. The above Lagrangians are suppressed by αem, which are counted as O(p2) in Refs. [673, 674].
The Lagrangians with the heavy quark charge Qh will contribute to the masses of the charmed and bottom hadrons
due to their different electric charges. The Lagrangians LQhQ

QED , LQhQ/S
QED , the bem term in LQQ

QED, as well as the ∆
(b)
em term

in LQQ/S
QED will contribute to the isospin breaking effect. The Lagrangians with the superscript /S will break the HQSS

and other ones without the /S , i.e., LQhQ
QED and LQQ

QED, conserve the HQSS.
The Lagrangians in Eqs. (185)-(189) will contribute to the d−u type hyperfine splitting at the tree level through the

Fig. 11(a) at O(p2) and up to 1/mQ. The LQhQ
QED and LQQ

QED contribute to the electromagnetic mass splittings at O(p2),

which are of order 2 − 5 MeV for the charmed mesons. The contributions from other Lagrangians LQhQh /S
QED , LQhQ/S

QED ,

and LQQ/S
QED will be further suppressed by the 1/mQ. The electromagnetic correction may also appear at O(p3) through

the photon loop as illustrated in Fig. 12, where the meson-photon interaction vertex arises from the chiral connection
Γµ [given in Eq. (A.3)] in the chiral covariant derivative of the LO Lagrangians. This loop correction vanishes at O(p3)
in heavy hadron regularization and infrared regularization schemes [675]. Up to O(p3) and up to the order 1/mQ, the
electromagnetic contributions to the isospin mass splitting arise from the Lagrangians in Eqs. (186)-(189) at the tree
level.

After the observation of the D∗s0(2317) and Ds1(2460), the HHχPT has been extended to discuss the mass correc-
tions of the excited heavy mesons with spin-parity 0+ and 1+ [618, 661, 662, 676, 30, 677, 678, 679, 680, 663]. In these
works, the two even-parity states [D∗s0(2317),Ds1(2460)] and their non-strange partner states [D∗0(2300),D1(2430)]
were treated as the spin doublets (0+, 1+) with jP

` = 1
2

+(L = 1), which were described by the superfield S. As
mentioned in Sec.1.1, one mystery of the excited charmed mesons is their surprising mass degeneracy,

mD∗s0(2317) − mD∗0(2300) = −25.2 MeV, (190)
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mDs1(2460) − mD1(2430) = 47.5 MeV, (191)

while the typical splittings around 100 MeV are naively expected due to the mass of the strange quark.
This mystery was first investigated in Ref. [678]. The authors calculated the mass difference (mD∗0 −mD)− (mD∗s0

−
mDs ) in the heavy quark limit. Only the Lagrangians preserving the heavy quark symmetry were considered and the
power counting was determined by the chiral expansion only. The chiral corrections were calculated up to O(p3). The
LO Lagrangians in Eqs. (123), (128)-(132) and the aH/S as well as σH/S terms in the next-to-leading order Lchiral
[in Eq.(169)] contribute up to O(p2) at the tree level. The O(p3) corrections come from the one-loop diagram in
Fig. 11(b). The mass difference only depends on the SU(3) breaking counterterm aS − aH , which was determined by
the lattice calculation. The result was obtained as (mD∗0 −mD)− (mD∗s0

−mDs ) ∼ −100 MeV, which is inconsistent with
the experimental value ∼ 100 MeV.

Later, the authors in Ref. [661] included both the heavy quark symmetry breaking effect up to 1/mQ and the SU(3)
breaking effects with the Lagrangians L1/mQ in Eq. (168) and L(2)

chiral in Eq. (169), respectively. They derived the
mass spectrum of theH and S multiplets up to O(p3) and to O(1/mQ) in the HHχPT. There are totally eleven LECs:
three coupling constant gb, g′b, h and eight combinations of the other LECs which appear in the L(2)

chiral [Eq. (169)] and
L1/mQ [Eq. (168)]. There are different combinations of the LECs as shown in Ref. [661] and Refs. [662, 681, 664].
Since the number of the LECs exceeds that of the experimental data (eight charmed mesons), there are multiple
fitting solutions [661, 663]. Therefore, it is impossible to draw firm conclusions. The two fits in Ref. [661] either
underestimate the excited non-strange meson or have unnaturally large LECs at O(1/mQ). Thus the mass difference
(mD∗0 − mD) − (mD∗s0

− mDs ) still remains a big puzzle.
In Ref. [676], Guo et al pointed out that the bare mass of the heavy-light scalar mesons obtained in the quark model

was pulled down significantly by the hadron loop with the HHχPT formalism. The authors in Ref. [30] calculated the
self-energy corrections arising from the hadronic loop in Fig. 11(b) for both the charmed-strange mesons and their
nonstrange partners. They considered the LO Lagrangians in Eqs. (123), (128)-(132) and the 1/mQ correction L1/mQ

in Eq. (168). However, their results showed that the mass degeneracy and the physical masses of D∗s0 and D∗0 cannot
be achieved simultaneously in the HHχPT formalism.

In Refs. [662, 664], the authors used the similar framework as in Ref. [661] and calculated the expressions for the
heavy meson masses up to O(p3). Compared with Ref. [661], the additional loop corrections with the intermediate
spin-3/2 T mesons were considered in calculating the S multiplet masses due to their small mass splitting (. 130
MeV) and the considerable LO couplings. With the masses of the odd-parity and even-party charmed mesons as
inputs, they predicted the near degeneracy of the nonstrange and strange scalar B mesons. The authors also pointed
out that the calculations in Refs. [676, 30] were not complete since they only included the hadronic loops with the
ground mesons in the H doublet but missed the contribution from the S doublets to the self-energy corrections of
the scalar D∗(s)0. In addition, they criticized that the physical masses rather than the bare masses should be used
in evaluating loop functions. Later, the authors in Ref. [30] revisited their calculations in Ref. [33]. Their results
showed that the unsatisfactory mass degeneracy in Ref. [30] can be implemented by adjusting the g′b, h, and the
renormalization scale Λ. The mass degeneracy of the D∗s0 and D∗0 can be quantitatively understood as a consequence
of the self-energy corrections from the hadronic loop. More technical differences in the approach of the HHχPT
among Refs. [620, 661, 676, 658, 30, 33, 662, 663] were given in Refs. [662, 33].

Another mystery of the D∗s0(2317) and D∗s1(2460) is the fine-tuning problem(
mDs1(2460) − mD∗s0(2317)

)
− (mD∗ − mD) ≤ 2 MeV, (192)

which cannot be dictated by the QCD symmetries alone. With the parity doubling model—an analog of the linear
Σ-model for the heavy mesons, the equality was obtained at the tree level [682, 683, 684, 685]. The parity doubling
model embeds the chiral symmetry, its spontaneous breaking and heavy quark symmetry. The heavy spin multiplet
(0+, 1+) with j` = 1/2 is assumed to be the chiral partner of the ground doublet (0−, 1−). Their linear combinations
D (0+, 1+) + D (0−, 1−) and D (0+, 1+) − D (0−, 1−) transform as (approximately) pure (1, 3) and (3, 1), respectively,
under SU(3)L ⊗ SU(3)R chiral symmetry. The Σ transforms as (3̄, 3). With the spontaneously broken chiral symmetry,
the vacuum expectation of the Σ is nonzero leading to the similar effective Lagrangians to those in HHχPT. Compared
with HHχPT, the parity doubling model predicts the same hyperfine splittings in theH and S doublets, for example,
mD∗ − mD = mD∗1 − mD∗0 , at the tree level, i.e., δ′b = δb. In Ref. [661], Mehen et al proved that the equality will survive
in the one-loop level with |gb| = |g′b|. It seems that this model explained the relation in Eq. (192).
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In the section, all the discussions are performed assuming the D∗s0(2317)/D∗s1(2460) states as the P-wave quark-
antiquark mesons. In the same picture, their analogous partner states in the bottom sector, especially the not yet
observed heavy bottom mesons B∗(s)0 and B′(s)1, were discussed with heavy quark flavor symmetry in many theoretical
works, such as Refs. [661, 33, 30, 682, 686, 687, 677]. Since the two positive parity Ds reside very close to the
DK/D∗K thresholds, other explanations, such as the molecular states composed of D(∗) and K mesons, are also quite
popular and will be discussed in Sec. 4.

(a) (b) (c) (d) (e)

Figure 11: The Feynman diagrams contributing to the mass corrections of the heavy hadrons. The solid and dashed lines represent the heavy
hadrons and the Goldstone bosons, respectively. In the loop diagrams, the external and the internal heavy hadrons can be the same or different.
The solid dot and black square denote the vertices at O(p2) and O(p4), respectively. The one-loop diagram (b) is at O(p3) while the other one-loop
diagrams are at O(p4).

Figure 12: The QED one-loop self-energy diagram at O(p3).

3.1.2. Singly heavy baryons
The χPT was first employed to investigate the heavy baryons containing a heavy quark in Refs. [616, 621, 688,

689, 690, 470, 691]. The one-loop chiral corrections to their masses were given in Refs. [692, 693, 675, 694]. In
Ref. [694], Jiang et al systematically calculated the chiral corrections to the heavy baryon masses as well as the
axial charges up to O(p3) using the HHχPT formalism. In this section, we follow their framework to illustrate the
calculation of the heavy baryon masses.

The mass corrections at O(p) come from the Lagrangians in Eq. (136) and Eq. (144) [or Eq. (139) in the superfield
formalism]. At O(p2), the mass splittings arise from the light quark mass difference as well as the electromagnetic
effects due to different electric charges. The Lagrangians at O(p2) contain both the SU(3) flavor breaking Lagrangian
L(2)

bc and the QED Lagrangian L(2)
QED as follows [689, 675, 694, 692]

L(2)
bc = b1Tr

(
B̄6χ+B6

)
+ b5gµνTr

(
B̄∗µ6 χ+B∗ν6

)
+ b6Tr

(
B̄3̄χ+B3̄

)
+c1Tr

(
B̄6B6

)
Tr(χ+) + c5gµνTr

(
B̄µ6 B∗ν6

)
Tr(χ+) + c6Tr

(
B̄3̄B3̄

)
Tr(χ+), (193)

L(2)66
QED = e66

1 Tr
(
B̄6Q2

+B6
)

+ e66
2 Tr

(
B̄6Q+B6

)
Tr(Q+) + e66

3 Tr
(
B̄6B6

)
Tr(Q2

+) + e66
4 Tr

(
B̄6Q+B6QT

+

)
, (194)

L(2)3̄3̄
QED = e3̄3̄

1 Tr
(
B̄3̄Q2

+B3̄

)
+ e3̄3̄

2 Tr
(
B̄3̄Q+B3̄

)
Tr(Q+) + e3̄3̄

3 Tr
(
B̄3̄B3̄

)
Tr(Q2

+), (195)

L(2)6∗6∗
QED = e6∗6∗

1 gρσTr
(
B̄∗ρ6 Q2

+B∗σ6

)
+ e6∗6∗

2 gρσTr
(
B̄∗ρ6 Q+B∗σ6

)
Tr(Q+),

+e6∗6∗
3 gρσTr

(
B̄∗ρ6 B∗σ6

)
Tr(Q2

+) + e6∗6∗
4 gρσTr

(
B̄∗ρ6 Q+B∗σ6 QT

+

)
. (196)

Here, the Q+ = ξ†Qξ + ξQξ† with Q = Qh + Ql = e diag(2, 0, 0) or e diag(1,−1,−1) the charge matrix of the
charmed or bottom baryons. These Lagrangians will contribute to the mass corrections at O(p2) through diagram in
Fig. 11(a). One should note that the above Lagrangians are constructed in the heavy quark limit and no recoil effects
are considered.

The chiral one-loop corrections start to contribute at O(p3) through the diagram in Fig. 11(b). The tree-level QED
contributions ΣQED are at O(p2). The one-loop QED corrections as shown in Fig. 12 stem from the chiral connection

45



term Γµ in the leading order Lagrangians and vanish as in the heavy meson case [675]. All the QED effects may be
very small due to the double expansion in the chiral order and fine-structure constant.

In Ref. [694], the authors derived the chiral corrections up to O(p3) with the contributions from the tree diagrams
in Fig. 11(a) and (b). They determined the values of the involved LECs with the experimental masses as input in
five cases to investigate the role of the different corrections. The LEC values agreed with those in the study of the
light-meson-heavy-baryon scattering lengths [695, 696]. The results for the mass spectrum as well as the decay widths
were consistent with the experimental data.

In Ref. [675], the authors calculated the isospin mass splitting of the spin- 1
2 heavy baryons in the isospin multi-

plets Σc(b) and Ξ′c(b). They calculated the corrections to O(p3) with the chiral perturbation theory using the infrared
regularization. They focused on the isospin splitting and used the experimental splitting values as input. The results
showed that the electromagnetic interaction played an important role in turning the mass order of the Σc isotriplet into
an unnatural pattern (compared with the naive expectation that follows from md > mu). For the Σb states, the natural
mass order is restored.

In Ref. [692], the authors studied the following equal spacing rule between the sextet heavy baryon with the LO
Lagrangian in Eq. (136) and the L(2)

bc in Eq. (193),

1
3

(
MΣ++

c + MΣ+
c + MΣ0

c

)
+ MΩ0

c
−

(
MΞ′+c + MΞ′0c

)
= 0. (197)

Up to O(p2), the relation survives and the O(p3) corrections from the loop in Fig. 11(b) are small. They also studied
the mass splitting between the spin- 3

2 and spin- 1
2 sextet heavy baryons. In this case, apart from the above Lagrangians,

the δa term at O(1/mQ) as shown in Eq. (139) as well as its chiral corrections at O(p2) with the insertion of one
light quark mass matrix needs to be taken into account [697, 698, 692]. Similar to Eq. (197), the hyperfine splitting
δΣc + δΩc − 2δΞc with δ = mB∗ − mB equals zero up to O(p2) and O(1/mQ), and receives small one-loop corrections
from Fig. 11(b) at O(p3).

In Ref. [693], the authors calculated the masses of the Σb, Σ∗b, Λb as well as the mass splitting between the Σb

and Σ∗b by extrapolating the lattice QCD data at the unphysical pion mass to the physical region. The Lagrangian in
Eq. (139) including the 1/mQ correction and the L(2)

bc in Eq. (193) were considered. Up to O(p3), the tree diagram (a)
and the one-loop diagram (b) in Fig. 11 were calculated and the phenomenological function for the extrapolation of
lattice QCD was proposed. They found that the extrapolation was quite different with the naive linear extrapolation
when mπ < 500 MeV.

The parity doubling model mentioned in the heavy meson sector has also been developed to study the heavy
baryons (see Refs. [127, 126, 699, 700, 701, 702, 703, 704] and references therein). With the diquarks qq as the
building blocks, the chiral diquark effective field theory is built based on the SU(3)R ⊗ SU(3)L chiral symmetry
and its spontaneously breaking induced by the nonvanishing vacuum expectation value of the Σ field. The 0+(1S 0)
and 0−(3P0) diquarks are assumed to be the chiral partners and belong to the (3̄, 1) and (1, 3̄) representations of the
SU(3)R ⊗ SU(3)L symmetry, respectively. Analogous to the heavy mesons, the linear-Σ-model effective Lagrangian
is constructed with the Σ field belonging to (3̄, 3) representation. The 1− diquark and 1+ diquark form another chiral
partner doublet. With the chiral effective model, the mass spectra of the singly heavy baryons have been studied.

In addition to the HHχPT, the investigations of the heavy baryon mass spectrum with other effective field theory
methods have been reviewed in Refs. [7, 166], such as the Large Nc, the QCD sum rule in the framework of HQET,
and the non-linear chiral SU(3) Lagrangian, etc.

3.1.3. Doubly heavy baryons
In the doubly heavy baryon sector, the first attempt of calculating their masses up to O(p4) in the baryon chiral

perturbation theory was made in Ref. [705] with the HHχPT formalism. Later, the masses of the doubly charmed
baryons was also calculated with the EOMS formalism up to O(p3) [706] and up to O(p4) [707]. Recently, the authors
of Ref. [708] performed a similar calculation up to O(p3) in HHχPT with new lattice results. The leading order
Lagrangian is given in Eq. (144). The higher order Lagrangians up to O(p4) after the non-relativistic projections
read [705, 707, 625]

L(2) = c1B̄QQBQQTr(χ+) +
c2

2
B̄QQBQQTr(v · u)2 + c3B̄QQ(v · u)2BQQ +

c4

2
B̄QQBQQTr(u2)
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+
c5

2
B̄QQu2BQQ +

c6

2
B̄QQ

[
S µ, S v] [uµ, uv

]
BQQ + c7B̄QQχ̂+BQQ

+
2
m
B̄QQ (S · D)2 BQQ − ig̃1

m
B̄QQ {S · D, v · u} BQQ −

g̃2
1

2m
B̄QQ(v · u)2BQQ + . . . , (198)

L(3) = h1B̄QQS · uBQQTr(χ+) + h2B̄QQS µ
{
χ̂+, uµ

}
BQQ + h3B̄QQS µTr(χ̂+uµ)BQQ

− i
m2 B̄QQS · Dv · DS · DBQQ + . . . , (199)

L(4) = e1B̄QQBQQTr(χ+)Tr(χ+) + e2B̄QQχ̂+BQQTr(χ+) + e3B̄QQBQQTr(χ̂+χ̂+)
+e4B̄QQχ̂+χ̂+BQQ + e5B̄QQBQQTr(χ−)Tr(χ−) + e6B̄QQχ̂−BQQTr(χ−)
+e7B̄QQBQQTr(χ̂−χ̂−) + e8B̄QQχ̂−χ̂−BQQ + . . . . (200)

The relativistic forms are referred to Refs. [705, 707, 625, 707]. The last three terms in L(2) and the last one in L(3)

come from the second term in Eq. (B.11) which is suppressed at least by 1/m in the nonrelativistic projections, while
the others are the non-relativistic forms of their corresponding relativistic operators. Apart from the contributions in
the heavy quark limit, the recoil terms will contribute through the diagrams in Fig. 13. The last term in L(3) will lead
to an additional tree-level diagram at O(p3) as illustrated in Fig. 13(a1). The g̃1/m term in L(2) leads to two additional
loop diagrams at O(p4) as shown in Fig. 13(b1) and (c1). The physical masses can be obtained with Eq. (167). Up to
O(p3), there are four undetermined LECs involved: the bare mass M0 in Eq.(167), the g̃1 in Eq. (144), and the c1, c7
in Eq. (198). In Refs. [705, 706, 707], g̃1 was related to the axial coupling of the singly heavy mesons in the HDAS
as shown in Eqs. (148), (149) and (150).

(a1) (b1) (c1)

Figure 13: The additional Feynman diagrams contributing to the mass spectrum of the heavy hadrons arising from the recoil effect in the HHχPT
formalism. The solid and dashed lines represent the heavy hadrons and the Goldstone bosons, respectively. The solid dot and circled cross denote
the vertices from the vertex at O(p2) and O(p3), respectively. The two one-loop diagrams are at O(p4).

In Ref. [506], a superfiled formalism of HDAS was proposed

L =
〈
H (iD0) H †〉 − g

〈
H σ · uH †〉 +

∆H

4

〈
H †

a ΣiHaσ
i
〉
, (201)

where H is a 5 × 2 matrix field formed by the 2 × 2 matrix field for the heavy baryon Ha = P∗a ·σ + Pa and the 3 × 2

matrix field for the doubly heavy baryon Ta,iβ =
√

2
(
Ξ∗a,iβ + 1√

3
Ξa,γσ

i
γβ

)
. The H and T fields are the nonrelativisitc

forms of ourH and ψµQQ superfields in Sec. 2.6. The g and ∆H can be related to the gb, g̃b and δb, δ̃b in Sec. 2.6. The
Σi is an extended Pauli matrix which is determined by assuming the violation of heavy (di)quark spin symmetry only
arises from the chromomagnetic interaction in Ref. [506].

The LECs c1, c7 and M0 are determined from the lattice QCD data [136, 709, 503, 133, 710, 147, 139]. In
Refs. [705, 706, 707], the authors used the same lattice QCD data for the Ξcc [136], which were calculated with
different mπ and mc. They introduced the mc dependence of the doubly heavy baryon masses through the bare mass
M0 in Eq.(167) as follows [705, 706, 707]

M0 = m̃0 + 2mc + α/mc + O
(
1/m2

c

)
, (202)

where two new unknown parameters m̃0 and α appear to replace M0. m̃0 is the mass of the light d.o.f in the doubly
charmed baryons. α contains two kinds of 1/mc corrections stemming from the Lagrangian terms at O(1/mQ) in the
HQET as shown in Eq. (60).
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In the HHχPT formalism, the contribution from the c1 term was the same for all the doubly charmed baryons so
that it can be absorbed into M0. In Ref. [705], the authors used the lattice results for the Ξcc [136] and Ωcc [136, 709,
503, 133, 710] to determine the LECs m̃0, α and c7 and obtained the following mass spectrum

mΞcc = 3.665+0.093
−0.097 GeV, mΩcc = 3.726+0.093

−0.097 GeV. (203)

In the EOMS formalism, the authors in Refs. [706, 707] also fitted four LECs with the same lattice QCD data [136].
In Ref. [707], the authors also took the finite volume effect into consideration and obtained the masses

mΞcc = 3.591 ± 0.067 GeV, mΩcc = 3.657 ± 0.100 GeV. (204)

The authors of Ref. [708] calculated the masses of the doubly bottom and the charmed-bottom baryons up to O(p3)
with the HHχPT formalism. The authors used the quark model value for g̃1 from Ref. [711] and determined the LECs
M0, c7 by fitting the lattice QCD data [147, 139] without considering the mass dependence on the heavy quark. The
expressions of the mass corrections up to O(p4) were also derived in Refs. [705, 707]. Unfortunately, there are too
many LECs involved and cannot be determined with the current lattice QCD and experimental data.

The mass splittings of the doubly heavy baryons have been studied with the help of the HDAS [506, 712, 713]. The
hyperfine splittings mΞ∗cc − mΞcc − 3

4 (mP∗ − mP) vanishes at the leading order, which is guaranteed by the Lagrangian
constructed in HDAS as illustrated in Eq. (201). In Ref. [506], the authors calculated the one-loop corrections from
Fig. 11(b) at O(p3) and kept the nonanalytic parts. The deviation from the HDAS symmetry was small (< 10 MeV)
and changed slightly with different subtraction scale. In Ref. [713], the authors investigated isospin splittings of the
doubly charmed baryons up to O(p2) with the following Lagrangians,

LISV = −c
〈
H χ+H †〉 − d0

〈
Q̂hH Ql+H †〉 − d1

〈
H

(
Q2

l+ − Q2
l−
)
H †〉 − d2

〈
H Ql+H †〉 Tr(Ql+), (205)

where Ql± is defined with the light quark electric matrix. Q̂h is the heavy quark charge operator and its projections on
the Ha and Ta fields are Q̂hHa = QhHa and Q̂hTa = −2QhTa. No loop corrections were considered. They predicted
the isospin splittings for the spin-3/2 and -1/2 doubly heavy baryons in the heavy quark spin symmetry

MΞ++
cc − MΞ+

cc = 1.5 ± 2.7 MeV, MΞ−bb
− MΞ0

bb
= 6.3 ± 1.7, MeV, MΞ+

bc
− MΞ0

bc
= −0.9 ± 1.8 MeV. (206)

In addition to the above formalisms, some other effective field theory, such as the HQET [714], the parity doubling
model [715, 716] were also used to study the mass spectroscopy of the doubly heavy baryons.

3.2. Axial vector currents, axial couplings and strong decays
The matrix elements of the axial vector currents involving heavy hadrons are very important in flavor physics and

in search for physics beyond the Standard Model. In the weak interaction, the axial charges of the heavy hadrons
are associated with many observables at low energies such as the weak transition form factors [717, 688, 718, 719,
720, 721, 722, 723, 724], decay constants [725, 726, 658] and so on. Meanwhile, the coupling constants of the heavy
hadrons and pseudoscalar Goldstone bosons (axial coupling for short) can be related to the axial charges through the
Goldberger-Treiman relation, which is a natural consequence of the spontaneous breaking of the chiral symmetry. The
axial couplings also play important roles in the strong interaction. The pionic strong decays of the heavy hadrons are
related to the axial coupling constants. In addition, more and more exotic hadrons were observed as the candidates of
the heavy hadronic molecules in the past decades, e.g. the X(3872) as the D̄∗D/D̄D∗ molecule [201], the Pc states as
the Σ

(∗)
c D̄(∗) molecules [2, 3], and the Tcc state as the D∗D molecule [5]. In the molecular picture, the exotic hadrons are

formed by exchanging the light mesons. Therefore, the precise determination of the axial coupling constants is crucial
to understand these molecular structures. The investigations of the molecular hadrons within χEFT will be reviewed
in Sec. 5. One can refer to Refs. [6, 11, 14] for general reviews of hadronic molecules. In short, the matrix elements
of the axial currents and axial coupling constants are essential for understanding both strong and weak interactions of
the heavy hadrons.

We take the axial vector current Aµ between of the pseudoscalar P and vector meson V as an example to illustrate
the Goldberger-Treiman relation [727]. In general, the axial current matrix can be parameterized as follows,

〈P(p′)|Aa
µ|V(p)〉 = εµF1(q2) + 2(ε · q)kµF2(q2) + (ε · q)qµF3(q2), (207)
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where q = p′ − p and k = (p′ + p)/2. ε is the polarization vector of V . F1, F2 and F3 are the scalar functions.
From the Goldstone theorem in Sec. 2.1.1, we know the axial current can annihilate the Goldstone bosons in Eq. (34),
which is a natural consequence of spontaneous broken chiral symmetry. If we introduce the explicit breaking of chiral
symmetry, we can relate the axial current to the pion field with the partially conserved axial current (PCAC) relation
∂µAa

µ = fπm2
ππ

a as shown in Fig. 14(a). Thus, we can get

〈P(p′)|∂µAa
µ|V(p)〉 = 〈P(p′)|πa|V(p)〉 fπm2

π + qµNµ = (ε · q)gVPπ(q2)
1

q2 − m2
π

fπm2
π + qµNµ, (208)

where the axial coupling constant gVPπ is introduced to depict the VPπ vertex and Nµ term represents the non-pole con-
tribution. In the chiral perturbation theory, the non-pole contribution starts to appear from the O(p3) Lagrangian [728].
Therefore, in the following derivation, we neglect the non-pole term as shown in Fig. 14(b).Thus, one can relate the
axial coupling constant gVPπ to the axial current matrix elements,

gVPπ(q2)
1

q2 − m2
π

fπm2
π =

[
F1(q2) + 2(q · k)F2(q2) + q2F3(q2)

]
. (209)

When q2 → 0, one can obtain the Goldberger-Treiman relation,

gVPπ(0) = − 1
fπ

F1(0) ≈ gVPπ(m2
π), (210)

where the F1(0) is the axial charge. The PCAC and Goldberger-Treiman relations are illustrated in Fig. 14. In lattice
QCD, the axial coupling constants and strong decays of the ground heavy hadrons were extracted by calculating the
matrix element of the light quark axial vector current [138, 729, 730, 731, 727, 732].

(a) (b)

Figure 14: The partially conserved axial current and Goldberger-Treiman relations. The circled cross represents an insertion of the axial current.

Since the Goldstone bosons are very light (massless in chiral limit), the chiral corrections cannot be neglected in
the calculation of the axial vector current at low energy (with small q2) or the axial charges. The χPT was first used to
calculate the chiral corrections of the axial vector current of the nucleon systems [511, 733, 734, 735, 736, 737, 738,
739, 740, 741]. The similar formalism combining heavy quark symmetries has been extended to calculate the axial
currents of the heavy hadron systems. As for the strong decays of the ground heavy hadrons such as D∗ → Dπ, the
small phase space for the decays ensures a valid chiral expansion. Therefore, we will review the chiral corrections
to the axial vector current and strong decays within HHχPT. In order to avoid the confusions arising from different
conventions in literature, we will construct the general Lagrangians contributing to the axial vector currents of the
heavy baryons first.

3.2.1. Lagrangians and Feynman diagrams

For the heavy hadrons, the axial coupling terms in the O(p) Lagrangians in Eqs. (124), (139) and (146) will
contribute to the LO the axial vector currents of the heavy mesons, singly heavy baryons and doubly heavy baryons,
respectively. The NLO [O(p3)] axial vector currents arise from both the tree diagrams and one-loop diagrams. The
LO axial vector current multiplied by the wave function renormalization factor of the heavy hadrons will contribute
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(a) (b) (c) (d)

Figure 15: The topological loop diagrams contributing to the axial vector current. The circled cross represents an insertion of the axial vector
current.

to the O(p3) axial vector current. In addition, the loop diagrams in Fig. 15 will contribute to the O(p3) axial current if
the vertices are all LO ones in Eqs. (50), (124), (139) and (146). The chiral correction from the two seagull diagrams
contain a factor v·q, which is suppressed by 1/MH [734] (MH is the heavy hadron mass). In literature, this contribution
was usually neglected if the recoiling effect was not included.

(a) (b) (c) (d)

Figure 16: The topological loop diagrams contributing to strong decays.

The O(p3) Lagrangians will contribute to the O(p3) axial vector currents at the tree level, which are constructed
with the building blocks χ+ and uµ. With the knowledge of representations of the SU(3) group as shown in Table A.10,
we can construct the Lagrangians as follows,

L(3)
H̃ϕ = h1〈 ¯̃H/uγ5H̃〉Tr(χ+) + h2〈 ¯̃H{χ̂+, /u}γ5H̃〉 + h3〈 ¯̃Hγµγ5H̃〉Tr(χ̂+uµ) + ih4〈 ¯̃H[χ̂+, /u]γ5H̃〉, (211)

L(3)
ψQQϕ

= h̃1ψ̄
ν
QQ/uγ5ψQQνTr(χ+) + h̃2ψ̄

ν
QQ{χ̂+, /u}γ5ψQQν + h̃3ψ̄

ν
QQγµγ5ψQQνTr(χ̂+uµ)

+ih̃4ψ̄
ν
QQ[χ̂+, /u]γ5ψQQν, (212)

L(3)
ψQϕ

= ih5εµνρσTr
(
ψ̄
µ
QuρvσψνQ

)
Tr(χ+) + ih6εµνρσTr

(
ψ̄
µ
Q{uρ, χ̂+}vσψνQ

)
+ h7εµνρσTr

(
ψ̄
µ
Q[uρ, χ̂+]vσψνQ

)
+ih8εµνρσTr

(
ψ̄
µ
QvσψνQ

)
Tr(uρχ̂+) + ih9εµνρσTr

(
ψ̄
µ
QvσuρψνQχ̂

T
+

)
, (213)

L(3)
B3̄ϕ

= h10Tr
(
B̄3̄/uγ5B3̄

)
Tr(χ+) + h11Tr

(
B̄3̄{χ̂+, /u}γ5B3̄

)
+ h12Tr

(
B̄3̄γ

µγ5B3̄

)
Tr(χ̂+uµ), (214)

L(3)
ψQB3̄ϕ

= h13Tr
(
ψ̄
µ
QuµB3̄

)
Tr(χ+) + h14Tr

(
ψ̄
µ
Q{χ̂+, uµ}B3̄

)
+ h15Tr

(
ψ̄
µ
Q[χ̂+, uµ]B3̄

)
+ H.c.. (215)

The χ̂+ in the above Lagrangians will introduce the SU(3) flavor symmetry violation in the vertices. According to the
representation reduction of SU(3) group 8⊗ 8→ 81(82), where 81 and 82 are two different reduction ways of the octet
representation (see Appendix A for details), we introduce {χ̂+, uµ} and [χ̂+, uµ] as the building blocks. However,
in the relativistic Lagrangian with two identical matter fields, e.g., Eq. (214), one of them will be eliminated by the
constraint of charge conjugation. Note that the charge conjugation will introduce the transpose of the building blocks
χ̂+ and uµ as shown in Table A.9. The transpose will introduce an extra sign for [χ̂+, uµ] but not for {χ̂+, uµ}. Therefore,
only one of them will survive. However, for the Lagrangians with different matter fields, e.g., Eq. (215), both {χ̂+, uµ}
and [χ̂+, uµ] terms will contribute. In the superfield formalism, we keep both of them in the Lagrangians to include
the two different matter field case. However, one should be cautious about these terms for the processes with identical
matter fields by checking the C-parity conservation. In the practical calculations, if one does not care about the pion
mass dependence, the h1, h̃1, h5, h10 and h14 terms can be absorbed by the LO Lagrangians, since the building block
Tr(χ+) only contributes a constant at the leading order.
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The Lagrangians and Feynman diagrams which contribute to the strong decays are very similar to those of the
axial vector currents. The leading order strong decays arise from the LO axial coupling terms in Eqs. (123), (139)
and (146). At O(p3), the tree level contribution to the strong decays stems from the same Lagrangians of the axial
vector currents in Eq. (215). The LO results multiplied by the wave function renormalization factors will contribute
to the O(p3) strong decay amplitudes. The wave function renormalization of the Goldstone bosons will also give rise
to the O(p3) corrections apart from those of the heavy hadrons. The remaining O(p3) loop corrections arise from
the diagrams in Fig. 16. Among them, the contributions of Figs. 16(a) and 16(b) are suppressed by 1/MH . The
contribution of the diagram 16(d) will be canceled out by the renormalization of the Goldstone bosons [689]. Thus,
if one neglects the recoiling effect, only diagram 16(c) and the wave function renormalization of the heavy hadrons
contribute to the strong decays at the NLO.

3.2.2. Axial couplings and strong decays of the ground state heavy hadrons

In Ref. [621], the authors constructed the chiral Lagrangians embedding the HQSS, which is in fact the LO
Lagrangian of the HHχPT. The axial coupling constants were estimated by relating them to that of the nucleon within
the quark model. With the nucleon axial charge gA = 1.25 as input, the coupling constants in Eqs. (123) and (136)
were,

|gb| = 0.75, g1 =
4
3
× 0.75, g2 = −

√
2
3
× 0.75, (216)

and the strong decay widths were estimated to be

Γ(D∗− → D0π−) = 0.10 MeV, Γ(Σ0
c → Λ+π−) = 2.45 MeV. (217)

The above calculations were improved by including SU(3) symmetry breaking effect [689] and 1/MH correc-
tion [659], respectively. In Ref. [689], the strong decays of the heavy mesons were calculated to the NLO of the chiral
expansion including the SU(3) symmetry breaking effect. With the |gb| = 0.75, the strong decay widths of D∗+ read

Γ(D∗+ → D0π+) = 0.276 MeV, Γ(D∗+ → D+π0) = 0.125 MeV. (218)

In Ref. [659], the authors discussed the 1/MH effect by considering the reparametrization invariance of the heavy
hadron fields and dynamical effect from the 1/mQ terms in HQET.

In Ref. [742], the author calculated the D∗ → Dπ decay within HHχPT. The chiral expansion is truncated at NLO,
which includes the tree and one-loop diagrams. In the analytical calculation, the SU(3) flavor and HQSS breaking
effects were included. Apart from the Lagrangians and Feynman diagrams in Sec. 3.2.1, the author also constructed
the following O(p2) terms,

〈 ¯̃H(iv · ∇/u)γ5H̃〉, 〈 ¯̃H(i/∇v · u)γ5H̃〉. (219)

The two terms give rise to the amplitudes proportional to v · kπ, which are expected to be tiny, considering the small
phase space of D∗ → Dπ. In the numerical analysis, the contributions from these two terms were neglected. In
addition, the effect of the heavy quark spin and flavor breaking operators in Eq. (60) were included by two operators
at the hadron level,

1
mQ
〈 ¯̃H/uγ5H̃〉, 1

mQ
〈 ¯̃HuµH̃γµγ5〉. (220)

The first operator only breaks the HQFS due to the different mQ for the charm and bottom quarks. Apart from the
violation of the HQFS, the second term can break the HQSS by flipping the heavy quark spin. With the ratios of
B(D∗0 → D0γ)/B(D∗0 → D0π0), B(D∗+ → D+γ)/B(D∗+ → D+π0) and B(D∗s → Dsπ

0)/B(D∗s → Dsγ) [743], the
author obtained two solutions, gb = 0.27 or gb = 0.76.

In Ref. [744], the authors studied the decays B∗ → Bγγ and D∗ → Dγγ to determine the gB∗(D∗)B(D)π and gB∗(D∗)B(D)γ
with the LO chiral Lagrangians, In the processes, they considered Feynman diagrams including the B∗(D∗)→ B(D)γ,
B∗(D∗)→ B(D)π, and π0 → 2γ vertices which was fixed by the chiral anomaly.

In Ref. [745], the axial vector current matrix elements of the heavy mesons were calculated to NLO. In order
to perform the chiral extrapolation for the partially-quenched lattice QCD simulations, the partially-quenched chiral
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perturbation theory was adopted for both SU(4|2) and SU(6|3) symmetries [746]. The finite volume effect was also
incorporated. This calculation was used to extrapolate the lattice QCD simulations of the axial couplings of the B∗Bπ,
Σ∗bΣbπ and Σ

(∗)
b Λbπ [134, 138]. The numerical results expressed in our conventions in Eqs. (139) and (123) were

gb = 0.449 ± 0.051, ga = 0.84 ± 0.20, g3 = 0.71 ± 0.13. (221)

In Ref. [694], the axial charges of the ground state heavy baryons were calculated up to NLO within HHχPT
in the isospin symmetry limit but with explicit SU(3) breaking. In the calculations, the recoiling corrections were
discarded. In the numerical analysis, the authors took the values of the axial charges in the chiral quark model [747]
as the pseudo-experimental data. With the pseudo-experimental data as input, the authors determined the LECs and
gave the numerical contributions order by order. The results showed that the convergence of the chiral expansion is
quite good.

In Ref. [506], the authors constructed the LO chiral Lagrangians for the doubly charmed baryons with the HDAS.
The axial coupling constant is related to those of the heavy mesons. Apart from the ground state heavy hadrons, the
authors also constructed the chiral Lagrangians for the excited states. The quenched and partially quenched chiral
Lagrangians were proposed in Ref. [712] to suit the chiral extrapolation in lattice QCD simulations. Later, Mehen
constructed the chiral Lagrangians for the excited doubly heavy baryons and doubly heavy tetarquarks [504].

In Ref. [706], the chiral corrections to the axial vector currents and axial charges of the doubly heavy baryons were
investigated to the NLO (O(p3)) of the chiral expansion. The LO axial coupling constant is determined by the HDAS,
i.e., g̃b = gb in Eqs. (123) and (146). At the NLO, the loop diagrams and corrections are similar to the discussions
in Sec. 3.2.1. At the NLO, the authors also constructed the Lagrangians equivalent to the h̃1,2,3 terms in Eq. (212) to
consider the tree-level diagram contributions. If one only considers the spin- 1

2 doubly charmed baryons, the h̃4 term
vanishes due to the charge conjugation symmetry. In the numerical analysis, the h̃1 term can be absorbed by the LO
axial coupling constant. The remaining LECs h̃2 and h̃3 were estimated by the naturalness assumption.

3.2.3. D∗s → Dsπ
0 isospin violating decays

In the above discussions of the strong decays, the SU(3) breaking effect is kept but the isospin violating effect is
neglected, because it is tiny in general. However, for the specific process D∗s → Dsπ

0, the isospin violating effect is
significant.

The mass difference between the D∗s and Ds is slightly larger than the neutral pion mass by about 2 MeV, which
makes the D∗s → Dsπ

0 and D∗s → Dsγ the dominant decay modes of the D∗s. The strong decay process D∗s → Dsπ
0

violates the isospin symmetry. The double suppressions from the phase space and the isospin violation make this
strong decay width very tiny, around several eVs. The branching fraction of this strong decay mode is (5.8±0.7)%. For
comparison, the branching fraction of the electromagnetic decay mode D∗s → Dsγ is about (93.5±0.7)% [748, 749, 1].
The magnitude of the strong decay mode challenges our physical intuitions about the strong decays and deserves a
refined investigation.

In Ref. [750], the author calculated the D∗s → Dsπ
0 decay rate using HHχPT. The isospin violating effect is

attributed to the π0 − η mixing as shown in Fig. 17. The D∗sDsη vertex stems from the LO axial coupling term in
Eq. (123). The π0 − η mixing effect arises from the mass term in Eq. (50), which reads,

Lmixing = − B0√
3

(mu − md)ηπ0. (222)

One can see the mass difference of the up and down quarks drives the π0 − η mixing and leads to the isospin violating
decays. Another possible origin of the isospin violation is the electromagnetic interaction, which corresponds to the
graph (b) in Fig. 17. The π0γγ vertex is induced by the axial vector current anomaly in QED. However, the diagram
is suppressed by α2

em and can be neglected safely. In Ref. [750], the author got the ratio

Γ(D∗s → Dsπ
0)

Γ(D∗+ → D+γ)
≈ 8 × 10−5. (223)

A similar calculation considering the LO contribution was performed in Ref. [751] as well. The result reads

Rπ/γ =
Γ(D∗s → Dsπ

0)
Γ(D∗s → Dsγ)

≈ 1.8%. (224)
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The calculation of the D∗s → Dsπ
0 decay was performed to the NLO in Ref. [742]. The NLO loop diagrams

include graphs which allow the direct emission of the π0 in Fig. 16. If the mass splittings of the intermediate isospin
multiplets are neglected, the amplitudes will cancel with each other. In the calculation, the mass splittings of the
isospin doublet or triplet in the loops are kept, which give rise to the nonvanishing amplitude. In addition, the loop
corrections to the π0 − η mixing effect contribute to the decay width as well, which correspond to diagrams replacing
the external Goldstone lines in Fig. 16 with the π0 − η mixing.

(a) (b)

Figure 17: The Feynman diagrams of D∗s → Dsπ
0. LO contribution (a) and axial current anomaly contribution (b).

In Ref. [752], the authors calculated the D∗s → Dsπ
0 decay to the NLO. Apart from all the diagrams in Ref. [742],

the authors also constructed the NLO Lagrangians,

〈 ¯̃H/uχ̂+γ5H̃〉, 〈 ¯̃H/uγ5H̃〉Tr
[
χ+

]
, i〈 ¯̃H /∇χ̂−γ5H̃〉, i〈 ¯̃Hγµγ5H̃〉∇µTr

[
χ−

]
, 〈 ¯̃H∇ν /∇uνγ5H̃〉. (225)

In the numerical analysis, two strategies were adopted to estimate the unknown LECs. In the strategy A, the nonan-
alytic dominant approximation is made. Thus, the NLO result only contains the nonanalytic loop corrections and no
contributions from the unknown LECs, which yielded,

Γ(D∗s → Dsπ
0) = 8.1+3.0

−2.6 eV, Γ[D∗s] = 139.0+77.9
−54.6 eV. (226)

Combing the radiative decay Γ(D∗s → Dsγ) = 0.32+0.3
−0.3 keV in Ref. [753], one can get the ratio defined in Eq. (223) as

Rπ/γ ≈ 2.5%. (227)

Here we give the value only using the central value and do not give the rigorous uncertainties because the uncertainties
of the radiative decay width of D∗s are too large to use the conventional error propagating formula. In the strategy B,
the authors made use of the naturalness assumption. The Γ(D∗s → Dsπ

0) was estimated in the range of 5-12 eV. It
is worth noticing that the recent experimental value from BESIII of the ratio is Rπ/γ = (6.16 ± 0.40 ± 0.17)% [754].
Apparently, the theoretical results in Eq. (224) and (227) are of the same order as the experimental value. We cannot
give more information without the rigorous uncertainties in theoretical calculation.

In Ref. [755], the chiral Lagrangian for the strong and radiative decays of the strange heavy mesons was formulated
based on HQET, in which the 1/mQ correction and SU(3) symmetry breaking effect were included. The π0 −η mixing
vertex was estimated with the new data of Γ(η→ 3π0) [1].

3.2.4. Strong decays of the excited heavy hadrons
In principle, the χPT cannot be used to investigate the excited heavy hadrons consistently. The mass splittings

between the excited and ground heavy mesons do not vanish in the chiral limit, which are numerically much larger
than the pion mass. For example mD∗0 − mD ≈ 470 MeV � mπ. We cannot expect good convergence in such a
high energy scale. Meanwhile, the excited heavy hadrons appear as the resonances in the scattering of the ground
state heavy hadrons and pions, which implies the nonperturbative dynamics. However, from the phenomenological
perspective, one can still construct the chiral Lagrangians to depict the chiral dynamics of the excited heavy hadrons,
discarding the rigorous power counting. For example, in Refs. [81, 153], the authors exploited the chiral Lagrangians
to discuss the strong decays of the S -, P-, and higher wave singly charmed baryons. In Refs. [756, 757], the authors
investigated the strong decays of the excited charmed mesons with the chiral Lagrangian and heavy quark expansion.
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Among the excited heavy hadrons, the nature of the D∗s0(2317) and Ds1(2460) remains unsettled decades after their
discovery. Whether they are molecule states or conventional P-wave heavy mesons continues to be a heated topic.

In Ref. [657], the authors constructed the chiral Lagrangians in Eqs. (123), (128) and (130). The coupling con-
stant h is extracted from the experimental decay widths of the D1(1+) and D0(0+) [758, 759, 760], h2 = 0.44 ± 0.11.
With the coupling constants, the authors calculated the isospin violating decays of the D∗s0(2317) and Ds1(2460)
with the tree level π0 − η mixing effect. The results showed that the relevant branching ratios Br[Ds1(2460) →
D∗sγ]/Br[Ds1(2460) → D∗sπ

0] and Br
[
Ds0(2317)→ D∗sγ

]
/Br

[
Ds0(2317)→ Dsπ

0
]

deviate significantly from the ex-
perimental results [23]. After considering the HQSS violating operators (with the LECs determined by the naturalness)
and one-loop chiral corrections to the electromagnetic decays, the theoretical results became consistent with the ex-
perimental data. In Ref. [661], the authors calculated the loop corrections to the coupling constants gb and g′b and
derived their one-loop renormalization group equation as well. This work also investigated the decay patterns in the
molecular scheme, see Sec. 3.3.1 for details.

In Ref. [679], the authors considered the one-loop correction to the gb, g′b and h in Eqs. (123), (128) and (130) and
included the positive parity mesons in the loop diagrams. Although the author also constructed the counter terms, their
contributions were neglected due to lacking of input in the numerical analysis. Thus, the results are regularization-
scale-dependent. With the regularization scale µ ' 1 GeV, they got

LO: gb = 0.61, h = 0.52, g′b = −0.15, (228)
One-loop: gb = 0.66, h = 0.47, g′b = −0.06. (229)

In Ref. [761], the isospin violating decays Ds1(2460)→ Dsππ, Ds1(2460)→ D∗sπ and D∗s0(2317)→ Dsπwere investi-
gated. The gb, g′b and h terms in Eqs. (123), (128) and (130) contribute to the Ds1(2460)→ D∗sπ and D∗s0(2317)→ Dsπ
tree diagrams via the π0 − η mixing effect. The one-loop diagrams for the two decays were similar to those for
D∗s → Dsπ

0. There is no tree-level contribution for the Ds1(2460) → Dsππ decays. The related one-loop diagrams
were presented in Fig. 18. In the calculation, only the diagrams (a), (b) and (c) were taken into consideration. The
counter terms were introduced to absorb the divergence of the loop diagrams and estimated with the experimental
ratios of the decay widths roughly. The numerical results read

Γ(Ds1(2460)+ → D+
s π

+π−) ' 0.25 keV, Γ(Ds1(2460)+ → D+
s π

0π0) ' 0.15 keV, (230)
Γ(Ds1(2460)+ → D∗+s π

0) = 2.7 ∼ 3.4 keV, Γ(D∗s0(2317)+ → D+
s π

0) = 2.4 ∼ 4.7 keV. (231)

The above results are significantly smaller than the hadronic widths predicted in the molecular pictures, see Refs. [762,
763] for examples.The same framework was used to investigate the isospin violating decays of the positive parity Bs

mesons [680]. The numerical results read

Γ
(
B0

s1 → B0
sππ

)
∼ 10−3keV, Γ

(
B∗0s0 → B0

sπ
0
)
≤ 55keV, Γ

(
B0

s1 → B∗0s π
0
)
≤ 50keV. (232)

(a) (b) (c) (d)

Figure 18: The one-loop diagrams for the Ds1(2460)→ Dsππ decay.

3.3. Magnetic moments and radiative transitions of the heavy hadrons
The mass, charge, spin and magnetic moment are intrinsic characteristics of a particle. The magnetic moment µ

of a particle (e.g., the electron) is related to its charge e, mass m and spin S via

µ = g
e

2m
S, (233)
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where g is the Landé g-factor, which usually indicates whether a particle is elementary or composite. A renowned
example is the neutron’s magnetic moment, which is expected to vanish if it is an elementary particle due to its
electro-neutral property [see Eq. (233)]. But the experimental measurement told us that the neutron carries a non-
zero, large and negative magnetic moment [764, 765, 766], which strongly indicated that the neutron is not an
elementary particle. Its inner structure was understood until the quark model was developed in 1960s. Now we know
that the neutron is composed of three constituent quarks udd. The sum of their magnetic moments leads to the neutron
magnetic moment.

The magnetic moment of a hadron is related to its magnetic form factor GM(q2) at q2 = 0. Generally, the electro-
magnetic properties of a hadron are encoded in the following matrix element,〈

H (p′)
∣∣∣J µ

em(q2)
∣∣∣H (p)

〉
, (234)

where J µ
em denotes the electromagnetic current and H is the hadron state. The transferred momentum is q = p − p′,

with p and p′ the 4-momenta of the initial and final states, respectively. The covariant expansion of Eq. (234) depends
on the spins of the specified hadrons and is illustrated in Appendix C.

The proton and neutron are stable against the strong and electromagnetic decays. Their long lifetimes allow the
direct measurements of their magnetic moments and charge radius [767, 768, 769, 770, 771, 772, 773, 774]. But
for the other hadron states, it is generally hard to measure their magnetic moments directly in experiments due to
their very short lifetimes. For example, the magnetic moment of the lightest vector meson ρ was extracted from the
e+e− → π+π−π0π0 process via an indirect way [775], in which the vector meson dominance model was adopted to
describe the γ∗ → 4π vertex. The charge radius of the pion was extracted from the analysis of the e+e− → π+π−

data with the help of the dispersion relations [776]. In contrast to the magnetic moment, the radiative decays of the
heavy hadrons are more accessible in experiments. For instance, the branching fraction of D∗0 → D0γ can reach up
to (35.3 ± 0.9)%. For the D∗s, B∗ and B∗s mesons, the radiative decays even dominate their decay modes.

For a lepton (e.g., electron and muon), the QED quantum fluctuations can introduce sizable and detectable correc-
tions to its magnetic moment. If a hadron contains the light quarks u, d, s as its components, it will naturally couple
to the light Goldstone bosons (such as π, K and η) due to the spontaneous breaking of chiral symmetry in low energy
QCD. Apart from the QED, the chiral corrections (fluctuations of the light Goldstone bosons) will make considerable
contributions to the magnetic moments.

In this section, we focus on the chiral corrections to the low energy electromagnetic properties (e.g. magnetic
moments and electromagnetic decays) of the heavy hadrons within the HHχPT. The tree level and one-loop level
Feynman diagrams are given in Fig. 19. The chiral order O of the diagrams in Fig. 19 is organized by the Weinberg
power counting scheme in Eq. (67). The order of the (transition) magnetic moment is usually defined as

Oµ = O − 1. (235)

(a)

(f) (g) (h) (i) ( j)

(b) (c) (d) (e)

Figure 19: The tree level and one-loop level diagrams for the magnetic moments and radiative transitions of the heavy hadrons. Each one represents
a set of diagrams that have the same topological structure. The solid, dashed and wiggly lines denote the heavy hadrons, light Goldstones and
photon, respectively. The solid dot and solid square stand for the O(p2) and O(p4) vertices, respectively.

55



3.3.1. Heavy mesons
The magnetic moments of the charmed and bottom vector mesons were first calculated by Bose and Singh with

the Bag model in 1980 [777]. Later, the extended Nambu-Jona-Lasinio model and Bag model were used to study
the magnetic moments and radiative transitions of the ground-state vector mesons by Deng et al [778, 779] and
Šimonis [780, 781], respectively. A systematic study in the framework of χPT up to O(p4) was performed by Wang et
al in 2019 [753]. Very recently, Aliev et al also investigated the same entities with the light-cone QCD sum rules [782].

The radiative decays of the heavy vector meson V → Pγ (V and P are the vector and pseudoscalar mesons,
respectively.) were intensively studied in various quark models [783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793],
quark potential models [777, 20, 794, 795, 780, 781], synthesis of heavy quark effective theory and vector meson
dominance model [796], QCD sum rules [797, 798, 799, 800], extended Nambu-Jona-Lasinio model [778, 779],
lattice QCD simulations [729] and χPT [801, 802, 803, 620, 742, 804, 805, 753]. In χPT, the magnetic moments and
radiative transitions are deduced from the same Lagrangians with the same set of parameters. In what follows, we
review the results obtained with χPT and summarize the results from other models in Table 3.

Owing to the synthetical development of χPT and HQET in 1990s [616, 688, 621, 690, 811], the electromagnetic
interactions are gauged into the Lagrangians of HHχPT by Cho and Georgi [801], in which the LO [O(p2)] contribu-
tion [corresponding to Fig. 19(a)] to the D̄∗ → D̄γ decay is considered. It is described equivalently by the following
Lagrangian,

L(2)
Hγ = a〈H̃σµν ¯̃H〉Tr( f +

µν) + â〈 ¯̃Hσµν f̂ +
µνH̃〉, (236)

in which the formulations of f +
µν and f̂ +

µν are given in Eqs. (A.9) and (A.10), respectively. a and â are two independent
LECs, standing for the coupling strengths of the photon with the heavy and light quark parts, respectively. Therefore,
the first and second terms in Eq. (236) represent the heavy quark current and light quark current contributions, re-
spectively. From the properties of the superfields in Eq. (A.25), the first term can flip the heavy spin which breaks the
heavy quark spin symmetry and is suppressed by 1/mQ.

In the quark model, the transition M1 form factor of V → Pγ can be parameterized as [753]

µ′Q̄q = QQ̄
1

ΛQ̄
−Qq

1
Λq

, (237)

where QQ̄ and Qq are the charge matrices of the heavy anti-quark Q̄ and light quark q, respectively. ΛQ̄ and Λq are
the mass parameters that can be understood as the masses of the constituent quarks in the quark model. Heavy quark
symmetry guarantees ΛQ̄ ≈ mQ̄ (see the discussions in Ref. [478]). In Ref. [753], Wang et al adopted the vector meson
dominance (VMD) model [770, 796] to estimate the value of Λq. It turns out that Λu = Λd = 0.366 GeV, Λs = 0.596
GeV. These values are very close to the constituent quark masses mu, md, and ms which are usually adopted in the
quark models.

Expanding Eq. (236) and comparing with Eq. (237) one obtains a ∼ 1/mQ and â ∼ 1/mq. In Ref. [801], Cho et
al fixed the masses of the c and b quarks, while they left the light quark mass and axial coupling gb to be determined
from the branching ratios of V → Pπ and V → Pγ. Cheng et al also studied similar processes with the same
framework [803], in which the a and â were determined from the constituent quark model. Along this line, Wang et
al obtained [753]

a =
1

24mQ
, â = − 1

8mq
. (238)

The NLO contribution comes from the loop diagram in Fig. 19(b) and was first incorporated by Amundson et
al [802]. In diagram 19(b), the relevant vertices are the Hϕ coupling from Eq. (124) and ϕγ coupling from Eq. (50),
respectively. In principle, the diagrams in Fig. 19(c) and (d) also contribute at this order, but their contributions vanish
in the heavy quark limit. We take the Fig. 19(c) as an example. If we are considering the D∗ → Dγ decay, then the
intermediate heavy state is D∗. In this case, its amplitude

A ∝ εµναβεµD∗ε∗αγ vβ
∫

dd`

(2π)d

i`ρ
`2 − m2

ϕ + iε
−i(gρν − vρvν)

v · ` + iε
∼ εµναβεµD∗ε∗αγ vβvρ(gρν − vρvν) = 0, (239)
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Table 3: The radiative decay widths of the charmed and bottom vector mesons calculated in various approaches, where Γ
γ
V denotes the decay width

of V → Pγ, while ΓV represents the total width of meson V . The QM, VMD, QCDSR, NJL, LQCD, and χPT are abbreviations of quark model,
vector meson dominance model, QCD sum rule, extended Nambu-Jona-Lasinio model, lattice QCD, and chiral perturbation theory, respectively.
The averaged value in the last row is given as an average of the corresponding values calculated in the listed references. Since the pion emission
decay for the bottom vector meson is kinematically forbidden, their widths are saturated by the radiative decays, i.e., we approximately have
ΓB∗− ' Γ

γ

B∗− , ΓB̄∗0 ' Γ
γ

B̄∗0 and ΓB̄∗0s
' Γ

γ

B̄∗0s
. Although the D∗s can decay into Dsπ

0 via isospin violating decay, its minor branching ratio [1] makes

the approximation ΓD∗+s
≈ Γ

γ

D∗+s
reasonable. The values in this table are all given in units of keV.

Models
Charmed vector mesons Bottom vector mesons

Refs.
Γ
γ

D∗0 Γ
γ
D∗+ Γ

γ

D∗+s
ΓD∗0 ΓD∗+ ΓD∗+s Γ

γ
B∗− Γ

γ

B̄∗0
Γ
γ

B̄∗0s

QM

∼ 23 ∼ 0.9 ∼ 0.1 − − ∼ 0.1 − − − [783]

35.2 2.4 0.32 78.6 78.0 ∼ 0.32 1.7 0.5 0.2 [784]

12.2 4.3 1.1 59.4 79.0 ∼ 1.1 − − − [787]a

21.8 1.7 − 64.2 86.4 − − − − [788]b

17.9 0.36 0.1 56.0 80.5 ∼ 0.1 0.40 0.13 − [789]c

21.7 0.56 − 65.1 92.0 − 0.43 0.14 − [790]

13.1 0.25 − 38.0 62.0 − − 0.05 − [791]

20.0+0.3
−0.3 0.9+0.02

−0.02 0.18+0.01
−0.01 55+6

−6 Input [806] 0.19+0.01
−0.01 0.4+0.03

−0.03 0.13+0.01
−0.01 0.068+0.017

−0.017 [792]

26.5 0.93 0.21 99.8+19.5
−19.5 Input [807] 0.32+0.06

−0.06 0.57 0.18 0.12 [793]

26.0 0.94 0.2 67.6 94.3 ∼ 0.2 0.6 0.2 0.1 [794]d

11.5 1.04 0.19 − − − 0.19 0.07 0.054 [795]

19.7 1.1 0.4 − − − 0.46 0.15 0.10 [780]

VMD 16.0+12.5
−9.0 0.51+0.69

−0.44 0.24+0.24
−0.24 36.7+9.7

−9.7 46.1+14.2
−14.2 ∼ 0.24+0.24

−0.24 0.22+0.09
−0.09 0.075+0.027

−0.027 − [796]

QCDSR

2.43+0.21
−0.21 0.22+0.06

−0.06 0.25+0.08
−0.08 ∼ 8 ∼ 12 ∼ 0.25 − − − [797]

3.7+1.2
−1.2 0.09+0.40

−0.07 − 11+4
−4 12+7

−7 − 0.10+0.03
−0.03 ∼ 0.04 − [798]

12.9+2
−2 0.23+0.1

−0.1 0.13+0.05
−0.05 ∼ 36 ∼ 46 ∼ 0.13 0.38+0.06

−0.06 0.13+0.03
−0.03 0.22+0.04

−0.04 [799]e

NJL 19.4 0.7 0.09 65.9 124.8 ∼ 0.09 0.25 0.22 0.10 [778]

LQCD 27+14
−14 0.8+7

−7 − 68+17
−17 Input [808] − − − − [729]

χPT

8.8+17.1
−17.1 8.3+8.1

−8.1 − 50.6+61.9
−61.9 97.0+95.6

−95.6 − 0.66+0.93
−0.93 0.13+0.20

−0.20 − [801]f

34 2 0.3 102 141 ∼ 0.3 0.84 0.28 − [803]

− − − 18 26 0.06 − − − [742]g

16.2+6.5
−6.0 0.73+0.7

−0.3 0.32+0.3
−0.3 77.7+26.7

−20.5 Input [809] 0.62+0.45
−0.50 0.58+0.2

−0.2 0.23+0.06
−0.06 0.04+0.03

−0.03 [753]h

Averagei 18.5 1.4 0.3 55.6 71.8 ∼ 0.3 0.5 0.2 0.1
a Radiative decays with zero anomalous moment for the charmed quark are quoted.
b The results in model (c) of Ref. [788] are quoted.
c The results calculated with constituent heavy quark masses (mc,mb) = (1.6, 5.0) GeV are quoted.
d The results with κq = 0.45 are quoted.
e The D∗0 and D∗+ widths are inferred by combining the strong decays of those calculated in Ref. [810].
f We adopt the results calculated with constituent heavy quark masses (mc,mb) = (1.7, 5.0) GeV.
g The results with uncertainties from experiment and counter terms are not quoted here.
g The results in SU(3) case with ∆ , 0 are quoted.
i Only the central values are used.
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where εD∗ and εγ denote the polarization vector of D∗ and photon, respectively. v and ` represent the four-velocity in
the superfield notation and the momentum in the loop, in order. One can consult Ref. [812] for the Lorentz structure
of the loop integral in Eq. (239). Similar relation holds for the amplitude of Fig. 19(d).

In order to absorb the divergence of the loop correction for Fig. 19(b), Wang et al constructed the O(p3) La-
grangian [753],

L(3)
Hγ = −ic〈H̃σµν ¯̃H〉v · ∇Tr( f +

µν) − iĉ〈 ¯̃Hσµνv · ∇ f̂ +
µνH̃〉. (240)

But their contributions can be absorbed by renormalizing the LO LECs a and â, i.e., a→ a + cv · q and â→ â + ĉv · q.
The Feynman diagrams (e)-(j) in Fig. 19 give the O(p4) contributions. The vertices in these diagrams are given

above except those in diagrams 19(g) and (j). For the diagram 19(g), the O(p2) two-pion coupling vertex is given
by [753]

L(2)
Hϕϕ = ib〈 ¯̃Hσµν[uµ, uν]H̃〉, (241)

where b is the coupling constant, and its value was phenomenologically determined through the VMD model in
Ref. [753]. As the uµ transforms as an adjoint representation, one may have three terms Tr(uµuν), [uµ, uν] and {uµ, uν}
(they belong to the 1, 81 and 82 flavor representations, respectively) sandwiched in the paired ¯̃H and H̃ . However,
Tr(uµuν) and {uµ, uν} vanish when contracted with σµν due to their symmetrized Lorentz index. Therefore, only one
single term remains in Eq. (241). The general principles to construct the independent Lagrangians are discussed
in Appendix A.

The tree-level diagram at O(p4) in Fig. 19(j) is governed by the following Lagrangians [753],

L(4)
Hγ = d̂〈H̃σµνχ̂+

¯̃H〉Tr( f +
µν) + d̄〈 ¯̃HσµνH̃〉Tr( f̂ +

µνχ̂+) + d〈 ¯̃Hσµν{χ̂+, f̂ +
µν}H̃〉, (242)

in which the spurion χ̂+ introduces the SU(3) flavor breaking effect. There are six types of flavor structures constructed
with the χ+ and f +

µν as listed in Table A.10, but not all of them survive in the Lagrangians. For example, Tr(χ+) f̂ +
µν

and Tr(χ+)Tr( f +
µν) are assimilated into the O(p2) Lagrangians (236), thus can be replaced by renormalizing â and a,

respectively. Besides, both χ̂+ and f̂ +
µν are diagonal matrices at the LO, which makes the leading term of the [χ̂+, f̂ +

µν]
vanish after the expansion. Therefore, only three terms survive in Eq. (242) eventually.

Summing up the contributions of all the diagrams in Fig. 19 with all possible intermediate states, one obtains
the (transition) magnetic moments of the corresponding vector states (see the analytical expressions in Ref. [753]).
In Refs. [801, 803], Cho et al and Cheng et al calculated the decay widths of D∗ → Dγ and B∗ → Bγ at the tree
level in HHχPT, respectively. The Lagrangians of Ref. [753] are the same as those in Refs. [801, 803] at the LO. In
Ref. [802], Amundson et al investigated the same process with the same framework to the NLO, but the heavy quark
spin symmetry breaking effect was ignored. In heavy quark limit (a → 0), they found µu

V : µd
V : µs

V = 2 : −1 : −1
for the LO results. This ratio relation still holds when the loop corrections are included in the strict SU(3) symmetry
[neglecting the mass splitting of SU(3) multiplets] [753, 802, 805]. In particular, the authors of Ref. [753] noticed
|µV | = |µV→Pγ| in the heavy quark limit by taking mass splittings δb = 0 in the loops. Because the heavy quark spin
completely decouples in the heavy quark limit, the VVγ and VPγ three point Green functions depict the same light
quark dynamics. In a more realistic calculation, the authors of Ref. [753] further showed that the HQSS breaking
effect (the physical value of δb is used in loop integrals) can induce sizable corrections, especially for the charmed
vector mesons, see Table 4.

In Ref. [742], Stewart calculated the decays D∗ → Dπ and D∗ → Dγ up to the one-loop level within HHχPT, in
which the B(D∗+ → D+γ) as well as the ratios of the Dγ and Dπ0 branching fractions were used to extract the D∗Dπ
and D∗Dγ couplings. The D∗Dπ coupling gb is determined to be around 0.3, which is close to the current value from
the D∗+ → (Dπ)+ partial widths.

In addition to the ground state vector states, the excited heavy mesons were also systematically studied in the
HHχPT [615, 619, 813, 814, 815, 682, 816]. The radiative decay D∗s0(2317) → D∗sγ was firstly studied by Colangelo
et al with the HQS and VMD ansatz [816]. They obtained Γ(D∗s0 → D∗sγ) ' 1 keV (decaying to Dsγ is forbidden due
to the angular momentum and parity conservation). In Ref. [657], Mehen and Springer studied the electromagnetic
decays of the D∗s0(2317) and Ds1(2460) in HHχPT considering the chiral loop corrections and HQSS breaking effect.
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Table 4: The magnetic moments of the charmed and bottom vector mesons (in units of nucleon magnetons µN ) calculated with the χPT, Bag model
(Bag), extended Bag model (eBag), extended Nambu-Jona-Lasinio model (NJL) and light-cone QCD sum rules (LCSR), respectively. The results
from χPT are given in SU(2) and SU(3) symmetries as well as in the cases of the mass splittings ∆ = 0 and ∆ , 0, respectively.

States
SU(2) SU(3) The results from other theoretical works

∆ = 0 ∆ , 0 ∆ = 0 ∆ , 0 Bag [777] eBag [781] NJL [779] LCSR [782]
D∗0 −1.38+0.25

−0.25 −1.60+0.25
−0.25 −1.18+0.25

−0.25 −1.48+0.38
−0.22 −0.89 −1.28 − 0.30+0.04

−0.04

D∗+ 1.14+0.15
−0.15 1.39+0.15

−0.15 1.31+0.15
−0.20 1.62+0.08

−0.24 1.17 1.13 1.16 1.16+0.08
−0.08

D∗+s − − 0.62+0.15
−0.15 0.69+0.10

−0.22 1.03 0.93 0.98 1.00+0.14
−0.14

B∗− −1.86+0.25
−0.25 −1.90+0.20

−0.20 −1.71+0.25
−0.25 −1.77+0.30

−0.25 −1.54 −1.56 −1.47 −0.90+0.19
−0.19

B̄∗0 0.75+0.11
−0.11 0.78+0.11

−0.11 0.87+0.11
−0.13 0.92+0.11

−0.15 0.64 0.69 − 0.21+0.04
−0.04

B̄∗0s − − 0.25+0.11
−0.11 0.27+0.10

−0.13 0.47 0.51 − 0.17+0.02
−0.02

In the compact meson scenario, the tree level contribution for {0+, 1+} → {0−, 1−}γ is mediated by the light quark
current coupling with the photon, the Lagrangian reads

LSHγ = β̂〈Sσµν f̂ +
µνH̄〉. (243)

The HQSS violating operators at O(1/mc) are constructed for the S → Hγ decay as

L = iβ′εµναβ〈H̄σµνSγ5〉Tr( f +
αβ) + iβ′′〈H̄σµνSγα〉∂αTr( f +

µν) + H.c., (244)

where the β′ and β′′ are proportional to 1/mc. The NLO corrections receive contributions from Eq. (244) and the loop
diagrams in Fig. 19(b)-(d) with the possible intermediate states in the loops (see Ref. [657]).

For convenience, we define three ratios of the branching fractions for the {0+, 1+} → {0−, 1−}γ and {0+, 1+} →
{0−, 1−}π decays:

R1 =
Br

[
Ds1(2460)→ D∗sγ

]
Br

[
Ds1(2460)→ D∗sπ0] , R2 =

Br
[
Ds1(2460)→ Dsγ

]
Br

[
Ds1(2460)→ D∗sπ0] , R3 =

Br
[
D∗s0(2317)→ D∗sγ

]
Br

[
D∗s0(2317)→ Dsπ0

] , (245)

in which only the R2 was measured to certain ranges by the Belle Collaboration

R2 =

0.38 ± 0.11 ± 0.04 [817]
0.55 ± 0.13 ± 0.08 [24]

, (246)

while for the R1 and R3 only the upper limits were estimated with given confidence level [1]. For example, the bounds
quoted by the CLEO Collaboration [23]

CLEO bounds [23] : R1 < 0.16, R3 < 0.059. (247)

In the compact-meson scenario, Mehen and Springer [657] calculated the R1 and R3 within the LO HHχPT [the R2
was used as input to determine the β̂ in Eq. (243)], but the results exceed the CLEO bounds significantly. The ratios
can be made consistent with the CLEO bounds when the NLO contributions are included (in which the corresponding
LECs are of natural size). They also investigated the electromagnetic decays of the D∗s0(2317) and Ds1(2460) and
assumed these states are the DK and D∗K hadronic molecules with I = 0, respectively. In the molecular scenario,
they obtained [657]

R1 = 3.23, R2 = 2.21, R3 = 2.96. (248)

In a recent study [818], Fu et al studied the ratios in the molecular scenario and obtained

R1 = 0.12 ± 0.02, R2 = 0.38(fixed) ± 0.08, R3 = 0.028 ± 0.009, (249)
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in which the central value of R2 [817] was also used as input to fix the LO counter term in the radiative decays. One
can see the ratios obtained from Ref. [818] are about one order of magnitude smaller than those from Ref. [657]. The
authors of Ref. [818] considered the extra NLO isospin violating vertices which enhance the strong decay widths of
the charmed-strange mesons significantly. A similar investigation was performed by Lutz [762] and Guo [763] to
study the decays of the D∗s0(2317) and Ds1(2460), as well as the effective Lagrangian approach in Refs. [46, 819].

3.3.2. Singly heavy baryons
As the heavy flavor siblings of the nucleons, the electromagnetic properties of the singly heavy baryons at low

energies are sensitive to their inner constituents, structures and the corresponding chiral dynamics of the light diquarks.
The experimentalists are trying to measure the charm baryon dipole moments (particularly Λ+

c ,Ξ
+
c ) at LHC [820].

Before giving the systematic applications of χPT to the electromagnetic properties of the singly heavy baryons, we
first briefly review the works from other frameworks in this field. The electromagnetic properties of the singly heavy
baryons have been studied with the bag models [777, 781, 821, 822, 823], the various quark models [824, 825,
826, 827, 828, 829, 830, 831, 832, 84, 833], the QCD sum rules [834, 835, 836, 837, 838, 839, 840], the hyper
central model [841], the Skyrme model [842, 843], the pion mean-field approach [844, 845, 846], and the bound-
state approach [847]. Meanwhile, the ab initio calculations in lattice QCD have been performed to investigate the
electromagnetic properties of the singly heavy baryons. For example, in Refs. [848, 849], Bahtiyar et al studied the
Ω∗c → Ωcγ and Ξ′c → Ξcγ transitions in 2 + 1-flavor lattice QCD, where the radiative decay widths, electric and
magnetic form factors, as well as the magnetic moments are computed (see also [850, 851] for the charmed and
charmed-strange baryons).

The χPT was systematically applied to the radiative decays and magnetic moments of the singly heavy baryons
in a series of works [803, 852, 853, 854, 855, 856, 857, 624, 858, 859]. The LO calculations were done by Cheng
et al [803], in which the decay rates of Ξ′c → Ξcγ, Σc → Λcγ and Σc → Λcπγ were calculated. The LECs in the
chiral Lagrangians were estimated with the constituent quark model, which paved a way for latter works to determine
the LECs [753, 856, 857, 624, 858]. Cho extended the chiral Lagrangians to the P-wave 3̄ baryons (with the orbital
excitation between the heavy quark and light diquark pair, i.e., j` = 1), in which the JP = 1

2
− and 3

2
− doublets are

described with the superfield Rµi = 1/
√

3(γµ + vµ)γ5Ri + R∗µi [852]. The LO expressions for the one-pion, di-pion
and one-photon transitions are presented. Savage investigated the magnetic dipole (M1) and electric quadrupole (E2)
contributions to the Σ∗c → Λcγ process [853]. The E2 contribution in the process of j` = 1 to j` = 0 is 1/mc suppressed
and vanishes in the heavy quark limit. Savage found that the E2 contribution is actually enhanced by a small energy
denominator arising from the infrared behaviour of the pion loop graphs, which compensates the suppression and
yields a few percent amplitude ratio for AE2/AM1 (this ratio is also affected by the mass splitting of the Σ∗c and
Σc). Bañuls et al calculated the B6 → B3̄γ, B6∗ → B3̄γ and B6∗ → B6γ decays up to NLO [854], where the magnetic
dipole and electric quadrupole contributions were separately computed. Tiburzi studied the same process in a partially
quenched approach [855], which allows the pion mass extrapolation and the zero-momentum extrapolation in lattice
QCD. The updated calculations to higher orders were performed in Refs. [856, 857, 624, 858]. Here we follow the
notations in these references to review how the χPT is employed to study the electromagnetic properties of the heavy
baryons.

The chiral Lagrangians contributing to the electromagnetic properties of the singly heavy baryons were constructed
in Ref. [856] with the field B3̄, B6 and B6∗ fields. Wang el al found the number of LECs can be largely reduced in
the superfield formalism with the HQSS [857, 624, 858]. The superfield ψµQ for the singly heavy baryons is given in
Eq. (A.30). A similar form was obtained by Cheng et al [803] in heavy quark symmetry and quark model calculation.
The LO Lagrangians that contribute to Fig. 19(a) read

L(2)
ψQγ

= iκ1Tr(ψ̄µQ f̂ +
µνψ

ν
Q) + κ′1Tr(ψ̄λQσ

µνψQλ)Tr( f +
µν) + κ2ε

µναβTr(ψ̄Qµ f̂ +
αβvνB3̄) + H.c.

+κ′2iTr(B̄3̄γ
νγ5ψ

µ
Q)Tr( f +

µν) + H.c. + κ′3Tr(B̄3̄σ
µνB3̄)Tr( f +

µν), (250)

where the κ1,2 and κ′1,2,3 terms denote the contributions from the light quark current and heavy quark current, re-
spectively. The κ′1,2,3 terms can flip the spin of the heavy quark and break heavy quark spin symmetry. There is no
contribution from the light quarks for the B3̄B3̄γ, because the spin of the light diquark in the flavor anti-triplet is zero.
The O(p2) di-pion coupling vertices of the heavy baryons in Fig. 19(g) are depicted by

L(2)
ψQϕϕ

= κ4 Tr(ψ̄µQ[uµ, uν]ψνQ) + iκ′4Tr(B̄3̄σ
µν[uµ, uν]B3̄) + iκ5ε

σµνρ Tr(B̄3̄[uµ, uν]vρψQσ) + H.c.
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+iκ6 Tr(B̄3̄abε
σµνρub

iµua
jνvρψ

i j
Qσ) + H.c.. (251)

Most of theO(p3) Lagrangians can be absorbed by renormalizing theO(p2) ones. The remaining terms may contribute
to the lowest-order E2 transitions (see the discussions in Ref. [858]), which read,

L(3)
ψQγ

= n1 Tr(B̄3∇λ f̃ +
µνS

λvµBν6∗ ) + m1 Tr(B̄6∇λ f̃ +
µνS

λvµBν6∗ ) + m̃1 Tr[B̄6S λvµBν6∗ ]∇λ Tr( f +
µν) + H.c. + . . . . (252)

At N2LO, the Lagrangians for the tree-level transitions in Fig. 19(j) were constructed as

L(4)
ψQγ

= iκ7 Tr(ψ̄ab
Qµ{χ+, f̂ +

µν}i j
abψ

ν
Qi j) + κ8 Tr(ψ̄λQχ+σ

µνψQλ) Tr( f +
µν). (253)

In Refs. [854, 857], the Coleman-Glashow relations [860] were obtained at O(p2) for the singly heavy baryons,
which is analogous to that of the octet baryons [861, 862, 863]. But these relations are broken when higher order
contributions are involved [857]. The O(p4) calculations were performed in Refs. [857, 624, 858], in which the LECs
were estimated either from the quark model or fitting the results of lattice QCD simulations (one can also consult
Refs. [857, 624, 858] for the summarized results from their calculations and the other models). Besides, they also
discussed how the inclusion of the 3̄ baryons as the intermediate states in the loops affects the convergence of the
chiral expansion [857, 624, 858].

3.3.3. Doubly heavy baryons
Among the doubly heavy baryons, only the Ξ++

cc was observed in experiments [174]. The electromagnetic proper-
ties of the doubly heavy baryons have been investigated in various quark models [828, 830, 833, 864, 865, 866, 186,
867, 868], the bag model [777, 821], the Skyrme model [842], the light-cone QCD sum rule [869, 870], and lattice
QCD [850, 871].

The HHχPT was used to study the magnetic moments of the spin- 1
2 [711, 872] and spin- 3

2 [873] doubly charmed
and bottom baryons, as well as the radiative transitions from the spin- 3

2 to spin- 1
2 states [874]. The transition ampli-

tudes were calculated up to N2LO in these works, while the numerical results were presented up to NLO, because the
LECs at N2LO cannot be fixed well. As for the heavy mesons, the spin- 1

2 and spin- 3
2 states can be incorporated in the

superfield notations [see the superfield ψµQQ of the doubly heavy baryons in Eq. (A.33)]. The LO Lagrangians for the
electromagnetic interaction read

L(2)
ψQQγ

= ia′ψ̄µQQψ
ν
QQTr( f +

µν) + â′ψ̄ρQQσ
µν f̂ +

µνψ
ρ
QQ, (254)

while the NLO dipion Lagrangian reads

L(2)
ψQQϕϕ

= ib′ψ̄µQQ[uρ, uσ]σρσgµνψνQQ. (255)

The N2LO electromagnetic coupling Lagrangians read

L(4)
ψQQγ

= id̂′ψ̄µQQχ̂+ψ
ν
QQTr( f +

µν) + d̄′ψ̄ρQQσ
µνψQQρTr( f̂ +

µνχ̂+) + d′ψ̄ρQQσ
µν{ f̂ +

µν, χ̂+}ψQQρ. (256)

One can see that the structures in Eqs. (254)-(256) are analogous to those for the heavy mesons in Sec. 3.3.1.
In Ref. [711], Li et al calculated the magnetic moments of the spin- 1

2 doubly heavy baryons. The LO tree level
contributions as well as the axial coupling g̃b are estimated from the quark model. However, the spin- 3

2 states were not
included as the intermediate states of the loops. An improved calculation was performed in Ref. [872], in which the
spin- 3

2 baryons as the intermediate states were considered. They found that the magnetic moment of the Ξ++
cc changes

acutely from −0.25µN to 0.35µN (but note that the positive value is contradictory with the results in other works),
and the changes for the magnetic moments of the Ξ+

cc and Ω+
cc were also very significant. The magnetic moments of

the spin- 3
2 doubly heavy baryons were calculated in Ref. [873]. The mass splittings of the spin- 1

2 and spin- 3
2 doubly

heavy baryons are not fixed in experiments, thus a model dependent value was adopted in Refs. [872, 873]. The results
in Ref. [873] are compatible with most of the other approaches. The radiative transitions from the spin- 3

2 to spin- 1
2

doubly heavy baryons were calculated in Ref. [874], in which the radiative decay widths of the spin- 3
2 states were

estimated to be

Γ[Ξ∗++
cc → Ξ++

cc γ] = 22.0 keV, Γ[Ξ∗+cc → Ξ+
ccγ] = 9.57 keV, Γ[Ω∗+cc → Ω+

ccγ] = 9.45 keV. (257)
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A covariant version of χPT with the extended-on-mass-shell renormalization scheme [514] was employed for the
doubly heavy baryons in Refs. [875, 876, 164]. In Refs. [875, 876], the authors calculated the magnetic moments
of the spin- 1

2 ones via fitting the lattice data [850, 851, 871]. Since the lattice data were only available for the Ξ+
cc

and Ω+
cc, the two LECs at LO cannot be fixed simultaneously. In Ref. [875], the axial coupling was fixed either by

quark model or heavy diquark-antiquark symmetry [506], or fitting the lattice data. By fitting the lattice data, they
obtained a relatively smaller axial coupling than that predicted by either the quark model [711] or the heavy diquark-
antiquark symmetry [876]. The finite volume effect was not considered in these two works [711, 876]. The follow-up
calculations for the spin- 3

2 ones were provided in Ref. [164], in which the magnetic moments of the spin- 3
2 doubly

charmed baryons as a function of m2
π were predicted. The spin- 3

2 states have not been observed yet. Therefore, the
results in all above mentioned works strongly depend on the phenomenological model calculations, such as the mass
splittings between the spin- 3

2 and spin- 1
2 states appearing in the loops, or the axial coupling constant.

4. Scattering of the Goldstone bosons and heavy hadrons

In this section, we review the theoretical progresses about the scattering of the light Goldstone mesons off the
heavy flavor hadrons. In Sec. 4.1, we first review the perturbative calculations of the scattering amplitude for the
scattering of the light Goldstone boson off the heavy mesons in χPT. Then we will review the application of the
chiral unitary approaches (discussed in Sec. 2.5) to uncover the nature of the D∗s0(2317) and Ds1(2460) and related
states in Sec. 4.2. We focus on the nonpertubative calculations with the chiral unitary approaches, which incorporate
both the low energy dynamics governed by the χPT and the unitary condition in a coupled-channel framework. In
Sec. 4.2.1, the scattering amplitudes in χPT are employed as the kernel interactions. The D∗s0(2317) and Ds1(2460)
are identified as the dynamically generated poles originating from the resummations of the Hϕ interactions, and are
interpreted as the D(∗)K molecules. In Sec. 4.2.2, the cs̄ cores are included in addition to the D(∗)K scattering potential.
In Sec. 4.2.3, the two-pole structures of the non-strange charmed mesons in the chiral unitary approaches with the
SU(3) flavor symmetry are reviewed. With the HDAS symmetry, the scatterings of the light Goldstone boson off the
heavy mesons and doubly heavy baryons are related to each others. In Sec. 4.3, we review the scattering of the light
Goldstone mesons off the doubly heavy baryons with the similar frameworks.

4.1. Perturbative scattering amplitude in χPT
We choose the scattering H (p1)ϕ (p2) → H (p3)ϕ (p4) (H and ϕ are the heavy and light mesons, respectively)

as an example. The Mandelstam variables are defined as

s = (p1 + p2)2 , t = (p1 − p3)2 , u = (p1 − p4)2 , (258)

where pi is the momentum of the scattering meson. The power counting rules are

mH ∼ O
(
p0

)
, mϕ ∼ O

(
p1

)
, t ∼ O

(
p2

)
, s − m2

H ∼ O
(
p1

)
, u − m2

H ∼ O
(
p1

)
, (259)

with p the typical small momentum in the chiral expansion. mH = mP/P∗ and mϕ denote the masses of the heavy and
light mesons, respectively. In the χPT, the naive power counting rule is listed in Eq. (54). As discussed in Sec. 2.3, the
mH breaks the naive power counting rule in calculating theHϕ scattering amplitude. If one adopts Eq. (259), the loop
integrals in the relativistic formalism contain the power counting breaking terms which have the lower chiral order
than those given by Eq. (54). To deal with the PCB terms, many regularization approaches have been developed. The
most well-known ones are the HHχPT, extended on-mass-shell and infrared regularization schemes as discussed in
Sec. 2.3.

In the HHχPT, the heavy components of the matter fields are integrated out and only the masses of the light
Goldstone mesons appear in the loop calculation. Thus, the PCB terms disappear in the chiral expansion when the
heavy hadron mass approaches infinity. At the same time, the Lagrangians in HHχPT are also organized by the
inverse of the heavy hadron mass (1/mH ) and the contributions of the heavy components are at least O(1/mH ), which
are usually suppressed and can be included as the recoiling corrections. In the heavy meson limit, the pseudoscalar
and the vector heavy mesons are degenerate and can be treated as the same spin doublet as shown in Sec. 2.6. The
Lagrangians for theHϕ scattering read

LHϕ = L(2)
ϕϕ +L(1)

Hϕ +L(2)
Hϕ +L(3)

Hϕ + . . . , (260)

62



where the numbers in the superscripts denote the chiral orders. The ellipsis represents the higher order Lagrangians.
The LO Lagrangian for the pseudoscalar mesons L(2)

ϕϕ is given in Eq. (43). In the HHχPT, the LO Lagrangian L(1)
Hϕ is

given in Eq. (50). The NLO and N2LO Lagrangians read [39, 877, 878, 879] 10

L(2)
Hϕ = c0

〈
HH̄

〉
Tr (χ+) + c1

〈
Hχ+H̄

〉
− c2

〈
HH̄

〉
Tr

(
uµuµ

)
− c3

〈
HuµuµH̄

〉
−c4

〈
HH̄

〉
Tr (v · uv · u) − c5

〈
Hv · uv · uH̄

〉
, (261)

L(3)
Hϕ = k1

〈
H [

χ−, v · u] H̄〉
+ ik2

〈
H [

uu, [v · ∂, uu]
] H̄〉

+ ik3

〈
H [

v · µ, [v · ∂, v · u]
] H̄〉

, (262)

where the k2 and k3 terms are not given explicitly in Refs. [877, 878] since they can be absorbed by the k1 term at the
threshold. TheHϕ scattering amplitude up to N2LO is given by

A(s, t) = A(WT)
LO (s, t) +A(EX)

LO +A(Tree)
NLO +A(Tree)

N2LO
+A(Loop)

N2LO
. (263)

The corresponding tree and loop Feynman diagrams are shown in Fig. 20, and Figs. 21-22, respectively.
At LO [O(p)], the diagram (a) in Fig. 20 stems from the chiral connection term in L(1)

Hϕ and yields the famous
Weinberg–Tomozawa (WT) term [880, 881].

A(WT)
LO = CLO

s − u
4 f 2

ϕ

, (264)

where CLO is the flavor coefficient for the different scattering process. The tree diagrams (b) and (c) in Fig. 20 arise
from the axial-vector coupling term in L(1)

Hϕ. They contribute to the s- and u-channel exchanging amplitude A(EX)
LO .

Compared to A(WT)
LO , the A(EX)

LO is suppressed by 1/mH and vanishes in the heavy meson limit. At the threshold, the
A(EX)

LO is actually O(p2) and can be encoded into the LECs in L(2)
Hϕ [882, 883, 583].

At NLO [O(p2)], the scattering amplitude A(Tree)
NLO comes from the tree diagram (d) in Fig. 20 , which stems from

the NLO Lagrangian L(2)
Hϕ. The N2LO amplitudes arise from both the tree and loop diagrams. The L(3)

Hϕ contributes

to A(Tree)
N2LO

through the tree diagram 20(e). The loop diagrams in Fig. 21 and Fig. 22 contribute to the A(Loop)
N2LO

. The
chiral corrections from Fig. 21 survive in the heavy meson limit, while the corrections from Fig. 22 are proportional
to 1/mH and vanish in the heavy meson limit. All the vertices arise from L(1)

Hϕ and L(2)
ϕϕ. One can obtain the H ϕ̄

scattering amplitude using the cross symmetry.
Within the HHχPT scheme, the authors of Ref. [877] calculated the S -wave scattering lengths of the heavy pseu-

doscalar and Goldstone bosons (Pϕ) up to N2LO. They considered only the tree diagrams in Fig. 20 and the loop
diagrams in Fig. 21 in the heavy meson limit. The scattering length a was related to the perturbative amplitude at the
threshold (Tth) by 11

Tth = 8π
(
1 +

Mϕ

mH

)
a. (265)

With the scattering lengths from lattice QCD simulations [885], they extracted the LECs and predicted the attractive
isoscalar DK interactions. In this work, the scattering lengths were extracted from the perturbative amplitudes. If
there exists the bound state or resonance, the perturbative calculation will fail. In this case, the perturbative amplitude
can be regarded as the kernel of the nonperturbative calculation. The sign and magnitude of the kernel at threshold 12

still reflect the properties of the interaction and provide the hints for the existence of the possible bound states.
In Ref. [879], the authors applied a similar formalism to study the scattering lengths of the heavy vector and light

Goldstone bosons (P∗ϕ) up to N2LO. Besides the HHχPT scheme, they also calculated the scattering lengths in the

10The LECs c0 and c1 are equivalent to σH and aH in Eq. (169) up to a constant 4B0, respectively.
11There are different definitions, for instance, Tth = −8π

(
mH + mϕ

)
a in Refs. [51, 884].

12In this case, the experimental scattering lengths cannot be extracted from the perturbative amplitude at the threshold. One can extract the aBorn
as shown in Eq. (267).
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framework of the infrared regularization. The results for the pion scattering channels are similar in the two frameworks
and the chiral expansions converge well. The loop contributions for the η and K scattering are large, but canceled by
the N2LO tree diagrams, which leads to the convergent results. In particular, they introduced the contribution of the
Ds1(2460) in the D∗K scattering through the LEC c3 in L(2)

Hϕ.
In Ref. [878], the authors calculated the Pϕ scattering to N3LO [O(p4)] with the HHχPT scheme without consid-

ering the vector P∗ meson. The Lagrangian at N3LO reads,

L(4)
Hϕ = e1

〈
HH̄

〉
Tr [(v · ∂v · u)(v · ∂v · u)] + e2

〈
H(v · ∂v · u)(v · ∂v · u)H̄

〉
, (266)

where the terms with the quark mass matrix χ± in L(4)
Hϕ are not given explicitly since they can be absorbed by the

c0 and c1 terms in L(2)
Hϕ if one is not interested in the light quark mass dependence of the observables. Without the

contribution of the vector mesons, the LO interaction comes from the Weinberg-Tomozawa interaction through the
tree diagram (a) in Fig. 20, while the diagrams (b) and (c) do not exist. At N2LO, the loop diagrams with the same
topological structures as the (a), (b) and (e) diagrams in Fig. 21 contribute and the relevant vertices originate from the
kinetic terms of L(1)

Hϕ and L(2)
ϕϕ. At N3LO, there are additional diagrams as shown in Fig. 23. The tree diagram stems

from L(4)
Hϕ, and the P(∗)P(∗)ϕ vertices in the loops are from both the L(1)

Hϕ and L(2)
Hϕ.

The authors of Ref. [878] calculated the scattering amplitude up to N3LO and extracted the scattering lengths with
two formalisms: the perturbative one as shown in Eq. (265) and iterated method [584]

a = aBorn

(
1 − 1

2
µaBorn

)−1

, (267)

where the µ is a cutoff scale. aBorn contains the contributions of the diagrams except the s-channel loop diagram (c) in
Fig. 21 as well as diagram (d) in Fig. 23, which can be generated through the iteration of the tree diagrams (a) and (d)
in Fig. 20. Their isoscalar scattering lengths with Eq. (267) are consistent with the lattice QCD results [884, 886] as
well as the results in Refs. [877, 54]. They also obtained the scattering length of the meson and doubly charmed baryon
using the heavy diquark-antiquark symmetry. Their results support the existence of the isoscalar K̄ΞQQ (Q = c, b)
bound state.

Another approach to eliminate the PCBs is the EOMS scheme. Instead of performing the nonrelativistic pro-
jections and integrating out the heavy filed in HHχPT, the EOMS performs the chiral expansion with the covari-
ant Lagrangians. Apart from the substraction of the UV divergences, the extra regularization removing the PCB
terms has to be performed. The relevant Lagrangians responsible for the Pϕ and P∗ϕ interactions up to N2LO
read [47, 583, 887, 883, 882] 13

L(1)
PP∗ϕ = DµPDµP† − m2

PPP† − 1
2
F µvF †µν

+m2
P∗P

∗vP∗†v + ig0

(
P∗µuµP† − PuµP∗†µ

)
+

g̃0

2

(
P∗µuα∂βP∗†ν − ∂βP∗µuαP∗†ν

)
εµναβ, (268)

L(2)
PP∗ϕ = P

[
−h0Tr(χ+) − h1χ+ + h2Tr(uµuµ) − h3uµuµ

]
P† +DµP

[
h4Tr(uµuν) − h5 {uµ, uν}

]
DvP†

+P∗ν
[
−h̃0Tr(χ+) − h̃1χ+ + h̃2Tr(uµuµ) − h̃3uµuµ

]
P∗†ν +DµP∗α

[
h̃4Tr(uµuν) − h̃5 {uµ, uν}

]
DvP∗†α ,(269)

L(3)
PP∗ϕ = g1P[χ−, uν]DvP† + g2P[uµ,∇µuv + ∇vuµ]DvP† + g3P[uµ,∇vuρ]DµvρP†

+ig̃1P∗α[χ−, uν]DvP∗†α + g̃2P∗α[uµ,∇µuv + ∇vuµ]DvP∗†α + g̃3P∗α[uµ,∇vuρ]DµvρP∗†α , (270)

where the Dµvρ =
{
Dµ,

{
Dν,Dρ

}}
and Fµν =

(
DµP∗v −DvP∗µ

)
. mP and mP∗ are the masses of the pseudoscalar and

vector heavy mesons, respectively. According to the SU(3) group representation, one has 8 ⊗ 8→ 81(82) as shown in

13In the heavy quark limit, the Lagrangians recover the formalisms constructed with the superfield as shown in Eq. (50), Eq. (261) and Eq. (262).
One has mP = m∗P, hi = h̃i for (i = 1, . . . , 5), gk = g̃k for k = 0, . . . , 3. The LECs in these two kinds of Lagrangians are related to each other, for
instance h0 = 2mHc0 and h1 = 2mHc1, with mH the mass of the heavy meson.
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Table A.9. Apart from the {uµ, uν} building block, there is an additional term with the building block [uµ, uν] in LPP∗ϕ

[47], which was shown to be O(p3) and can be absorbed by the L(3)
PP∗ϕ [583, 887].

The calculation of the tree diagrams is independent of the renormalization scheme, and the corresponding tree
diagrams are listed in Fig. 20. In the EOMS scheme, at the N2LO, the loop diagrams will generate both the UV
divergent and the PCB terms. Taking the Pϕ scattering as an example, the L(1)

PP∗ϕ and the terms with the P field in

L(2)
PP∗ϕ and L(3)

PP∗ϕ will contribute to the Pϕ → Pϕ scattering process up to N2LO, while the terms with the vector
meson P∗ at the NLO and N2LO Lagrangians do not contribute at this order. The bare LECs can be decomposed into
the finite and divergent parts [583, 53]

m2
P = mr2

P (µ) + βm2
P
λ, m2

P∗ = mr2
P∗ (µ) + βm2

P∗
λ, hi = hr

i (µ) + h0
i λ, g j = gr

j(µ) + g0
jλ, (271)

where λ = µd−4
[
(4π)d/2(d − 4)

]−1
with µ the regularization scale and d the dimension. The UV parts will be absorbed

by the divergent term proportional to λ. Up to N2LO, the PCB terms originating from the loop integrals are O(p2) and
can be subtracted by redefining the LECs hr

i and gr
0 as follows

hr
i (µ) = h̃i + h PCB

i , gr
0(µ) = g̃0 + g PCB

0 , (272)

while the other gr
js do not change. The explicit forms of the coefficients βm2/βm∗2/h0/g0 and h PCB

i /g PCB
0 are referred to

Refs. [583, 53]. Eventually, the UV and PCB terms were absorbed by the LECs. With the Lagrangians in Eqs. (268)-
(270), the scattering amplitudes of the heavy and light mesons have been calculated up to LO [688, 616, 621],
NLO [39, 763, 47, 49, 888, 51], N2LO with the EOMS schemes [883, 583, 53]. In Refs. [583, 53], the authors
performed the calculations with and without the contribution of the vector P∗ mesons and found the differences were
negligible in the vicinity of the thresholds. In the above works, the perturbative scattering amplitudes were used as
the kernel interactions in the chiral unitary method and will be discussed in Sec. 4.2.

The Goldstone meson and charmed meson scattering was also investigated in Ref. [42], where the authors studied
both the open and the hidden charmed scalar meson resonances. They extended the chiral Lagrangian to study the
flavor breaking effect in the Skyrme models. They also considered the SU(4) flavor symmetry and its breaking effect.

The Goldstone meson and heavy hadron interaction Lagrangians may contain many unknown LECs. In gen-
eral, the LECs should be determined by fitting the experimental data. However, the experimental information of
the Hϕ scattering is still scarce nowadays. One may reduce the number of LECs in the effective field theory by
taking approximate limits. In the large NC limit, the LECs may have different orders. For instance, the c1(h1)
in Eq. (261) [Eq. (268)] can be obtained by the mass differences between the charmed-strange and charmed non-
strange mesons. Furthermore, in Eq. (268), the h1/h3/h5 terms at the NLO Lagrangians are O(N0

C). The h0/h2/h4
terms are O(N−1

C ) and suppressed in the large NC limit. Their contributions have been neglected in Refs. [762, 49].
In Ref. [883], the authors did not include the h4 and h5 terms since their contributions have the same structures
as those from the h2 and h3 terms in the vicinity of the thresholds. An alternative way is using the lattice QCD
data [884, 886, 889, 890, 891, 892], which have been extensively employed to determine the LECs in the perturbative
or unitarized χPT calculations [47, 884, 893, 882, 877, 883, 888, 53, 54, 894, 895]. The LECs are also estimated using
phenomenological models such as the resonance saturation method [599, 896, 879, 897, 877, 879, 897], where the
effective Lagrangians are first constructed with the resonances and then the resonances are integrated out to estimate
the LECs for the mesonic Lagrangians. In Ref. [897], the authors constructed the effective Lagrangians with the reso-
nances including the scalar charmed mesons, the light vector mesons, and the tensor mesons. Then they estimated the
LECs for the mesonic Lagrangian by integrating out the resonances. The results at NLO were consistent with those
obtained by fitting the lattice QCD data, while those at N2LO had a sizable deviation.

The χPT amplitude is valid and useful in the low energy region where the higher resonance/bound states are
integrated out. The implementation of the unitarity properties will help to extend the χPT amplitude to the higher
regions where the resonances/bound states appear.

4.2. Scatterings of Goldstone bosons off the heavy mesons

As discussed in Sec. 1.1, the D∗s0(2317) and Ds1(2460) are two narrow charm strange mesons with the spin-parity
JP = 0+ and JP = 1+, respectively. They are located around 45 MeV below the DK and D∗K thresholds, respectively.
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(a) (b) (c) (d) (e)

Figure 20: The tree diagrams for the scattering of the pesudoscalar light mesons (dashed line) off the heavy mesons (solid line). Each one represents
a set of diagrams which have the same topological structure. The solid dot and square stand for the O(p2) and O(p3) vertices. The diagrams (a)-(c)
are at LO, while (d) and (e) are at NLO and N2LO, respectively.

(a)

(f)

(b)

(g)

(c)

(h)

(d)

(i)

(e)

Figure 21: The loop diagrams which survive in the heavy quark limit mH → ∞ for the scattering of the pesudoscalar light mesons (dashed line) off

the heavy mesons (solid line). Each one represents a set of diagrams which have the same topological structure.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 22: The topological loop diagrams for the scattering of the pesudoscalar light mesons (dashed line) and heavy mesons (solid line) that vanish
in the heavy quark limit mH → ∞.
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(a) (b) (c) (d) (e) (f)

Figure 23: The N3LO topological loop diagrams contributing to theHϕ scattering amplitude in the heavy quark limit without the vector P∗ meson
as the intermediate state in the loop. The solid dot and the crossed circle stand for the O(p2) and O(p4) vertices stemming from L(2)

Hϕ and L(4)
Hϕ,

respectively.

Since their observation, their inner structures remain puzzling. The two parity-even Ds states cannot be simply
categorized as the cs̄ mesons in the quark model, since their masses are much smaller than the quark model predictions.
Moreover, the mass splittings between the SU(3) flavor partners are unnatural with mD∗s0(2317)−mD∗0(2300) = −25.2 MeV
and mDs1(2460) − mD1(2430) = 47.5 MeV, which are predicted to be around 100 MeV due to the strange quark mass in
the conventional quark model. Various explanations have been proposed, including the quenched and unquenched
cs̄ quark model, the D(∗)K hadronic molecules, the cqs̄q̄ compact tetraquark states, the mixing of the cs̄ state and
tetraquark state, and other possibilities (see Sec. 1.1 for more discussions). The proximity of the two D(∗)

s states to
the D(∗)K thresholds has led to the popularity of the D(∗)K molecular explanation, which suggests that the dominant
component of these mesons is a D(∗)K molecule. The molecular explanation was first proposed in Refs. [41, 40] and
has been further studied in various works (for more details, see the reviews [7, 67, 11, 68]). The molecular framework
provides a consistent explanation of the mass puzzles and the fine-tuning problem in Eq. (192). In this subsection, we
will review research works on the formation of the molecular state through two widely used interaction mechanisms
and the unitary approach, resulting in the molecular state as a pole of the T matrix.

In Sec. 4.2.1, the D∗s0(2317) and Ds1(2460) are identified as the dynamically generated poles originating from
the resummations of the Hϕ interactions, and are interpreted as the D(∗)K molecules. The Hϕ scattering amplitude
expanded in χPT (see Sec. 4.1) was used as the kernel interactions in the chiral unitary approaches. The molecular
picture seemed to successfully describe the experimental data on the Hϕ invariant mass distribution as well as the
lattice QCD simulations.

In Sec. 4.2.2, the kernel potentials contain both the Hϕ hadronic potentials and the contributions from the cs̄
cores. In this case, the physical states are the mixtures of both the cs̄ and the D(∗)K components. The contents
of the components are vital to identify the nature of the resonance. If the molecular components are dominant in
the D∗s0(2317) and Ds1(2460) states, they could still owe their origin to the Hϕ scattering and be understood as the
hadronic molecules.

Apart from the successful explanations of the two positive Ds states, the chiral unitary approaches also provide
important insights into the non-strange charmed mesons with positive parity. In the SU(3) symmetry limit, the Hϕ
systems can be categorized into the 3̄ f , 6 f and 15 f flavor representations as illustrated in Fig. 24. In the non-strange
sector, the coupled channel effects of Dπ, DsK̄ and Dη are considered. The chiral unitary methods predict the two-
pole structures for both the scalar D∗0 and axial-vector D∗1 charmed mesons. Within the two-pole picture, the lower
and higher D∗0 mesons are located around 2100 MeV and 2450 MeV, respectively. They mainly couple with the Dπ
and DsK̄ channels, respectively. The two-pole picture could accommodate the broad D∗0(2300) signal and explain the
mass splitting puzzle in the quark model.

In contrast, there are only one scalar and axial-vector charmed mesons listed in the Review of Particle Physics
(RPP) [1], the D∗0(2300) [was called as D∗0(2400) before] and D1(2430), which are the two lightest scalar and axial-
vertor charmed mesons, respectively. The lattice QCD simulations reported only one resonance, but did not exclude
the second one [891, 898]. There are many theoretical works to understand the “controversial” results in literature and
we will review them in Sec. 4.2.3. With the heavy quark spin symmetry, the similar calculations were generalized to
the bottom sectors, especially the unobserved P-wave B∗s states.
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Figure 24: The flavor representations of the Hϕ system in the SU(3) flavor symmetry and relations with di-hadron basis. The heavy (H) and
light (ϕ) mesons are in the 3̄ f and 8 f representations, respectively. Thus, the possible flavor representations of the Hϕ system are 3̄ f ⊗ 8 f =

15 f ⊕ 6 f ⊕ 3̄ f [899, 42]. “S ” is the strange number. The upper panel is the weight diagrams of representation taken from Ref. [899]. For the
states in the SU(3) symmetry corresponding to the specific di-hadron system, we label them in the upper panel. For the states corresponding to the
mixture of different di-hadron states, we illustrate their mixing angles in the lower panel, including the (S , I) = (1, 1), (1, 0) and (0, 1/2) ones.

4.2.1. D∗s0(2317) and Ds1(2460) in the molecular picture
The LO chiral amplitude of the Hϕ scattering is parameter-free and used as the kernel interactions in the chiral

unitary approaches [37, 44, 43, 42, 900, 45]. Kolomeitsev et al [37] and Guo et al [44, 43] studied the JP = 0+

and JP = 1+ heavy mesons with the similar SU(3) chiral Lagrangians. In the charm-strange sector, two bound states
were found in the isosinglet DK and D∗K channels and identified as the D∗s0(2317) and Ds1(2460) states, respectively.
For the heavy non-strange mesons with isospin I = 1/2, the two-pole structures were predicted for the scalar D∗0/B∗0
and axial vector D1/B1 mesons, respectively. The lower pole is broad and the higher one is narrow. The two poles
belong to the 3̄ f and 6 f representations up to some mixing effects. The partner mesons in the bottom sector were also
predicted. Moreover, the decay widths of the isospin violating decays D∗+s0 (2317) → D+

s π
0 and B∗0s0(5729) → B0

sπ
0

were calculated to be 8.69 keV and 1.54 keV, respectively [44].
In Ref. [42] and Ref. [900], the authors studied the dynamical generations of the open and hidden charm 0+ and 1+

resonances with the SU(4) flavor symmetric Lagrangians. However, the SU(4) flavor symmetry is just an assumption
and not a real symmetry of QCD. In their calculations, the exchange of heavy mesons was suppressed, the SU(4) flavor
symmetry was broken into the SU(3) symmetry by suppressing the exchange of the heavy mesons. The D∗s0(2317) and
Ds1(2460) were identified as the DK and D∗K bound states. The two-pole structures were also found for the charmed
mesons with the strangeness-isospin number (S , I) = (0, 1/2), similar to Refs. [44, 37, 43]. The lower scalar and the
axial vector poles in the 3̄ f representation were identified as the D∗0(2300) and D1(2420) in PDG [1], respectively.
The other higher poles for the charmed mesons with JP = 0+ and JP = 1+ were broader than the predictions in
Refs. [44, 37, 43].

To achieve better accuracy, the NLO chiral amplitude was considered in Refs. [39, 47, 49, 893]. With the scattering
amplitude up to NLO, the mass dependence of the P-wave heavy mesons on the light Goldstone meson masses can be
investigated. In Ref. [47], the authors calculated the S -wave scattering lengths of the Pϕ system with the NLO chiral
amplitude as well as its unitarized version. The unitarized one reproduced the quark mass dependence of the scattering
lengths from lattice QCD [885]. In Ref. [49], the authors studied the masses of D∗s0(2317) and Ds1(2460) as well as
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their bottom partner states. They proposed the linear dependence of the heavy meson masses on mK as a specific
character of a molecule, which can be a criterion for investigating the molecular nature. The difference between the
S -wave DK and D∗K scattering potentials first arises from the u-channel exchange tree diagram as shown in Fig. 20(c).
Compared with the mass splitting of the D and D∗ mesons, the difference of the scattering potentials is O(M2

K/Λ
2
χ) .

Thus, the hyperfine mass splitting between the D∗s0(2317) and Ds1(2460) almost equals the D and D∗ mass difference.
Later, the authors of Ref. [893] also calculated the D∗s0(2317) scattering length and its mass trajectories of mπ/K as
in Ref. [47]. They determined the LECs with the help of the scattering lengths from lattice QCD simulations [885]
rather than applying the large Nc approximation as in Ref. [47].

In 2012, the authors of Ref. [884] studied the Pϕ scattering in lattice QCD simulations and obtained the S -wave
scattering lengths of five channels with several mπ without the disconnected contribution: DK̄ (I = 0, 1), DsK, Dπ (I =

3/2), Dsπ. The chiral extrapolation was incorporated into the unitarized scattering lengths, which were obtained in
their previous works [763, 47]. By fitting the lattice QCD data, they determined the unknown LECs and the subtraction
constant. Their results favored the DK molecular interpretation of the D∗s0(2317). Moreover, the DK was shown to
be dominant in the D∗s0(2317) with the probability 70% by using the Weinberg’s compositeness relation. The decay
width was Γ[D∗s0(2317)→ Dsπ] = (133 ± 19) keV.

With the lattice scattering lengths in Ref. [884] and the data from another group [892, 886, 889] as input, the
light-quark mass and the NC dependencies of the pole positions in the Pϕ channels were analyzed [51]. The pole
positions of the D∗s0(2317) as well as the charmed mesons with the strangeness-isospin number (S , I) = (0, 1/2) were
found to be not like that of the cs̄/cq̄ mesons. They did not tend to fall down to the real axis at large NC . In contrast,
the imaginary part of a genuine cs̄/cq̄ states tends to vanish in the large NC limit.

The fixed LECs and the unitarized NLO Pϕ amplitude in Ref. [884] have been used in the subsequent works [55,
899, 901]. In Ref. [901], the authors summarized the predictions of the pole positions. The results of the low-
est positive-parity D∗s0/Ds1 and B∗s0/Bs1 were consistent with the available experimental data and the lattice QCD
results [890, 902], respectively. For the heavy non-strange ones, two-pole structures were predicted: one flavor an-
titriplet and a nontrivial sextet meson as shown in Fig. 24. The authors of Ref. [55] calculated the energy levels in the
finite volume and compared their results with the lattice QCD simulations. The finite volume effect was taken into
consideration. In a finite box with the size L, the finite-volume effects are induced by discretizing the three momentum
~q ∈ R3 and its integral as follows

~q→ 2π
L
~n, (~n ∈ Z3),

∫
R3

d3q
(2π)3 →

1
L3

∑
n∈Z3

. (273)

The loop function Gii(s) then transforms into its discrete form G̃ii(s, L). Correspondingly, the T -matrix T (s) in the
discrete form (in the cutoff regularization) reads [903],

Gii(s) → G̃ii(s, L) = Gii(s) + lim
Λ→∞

 1
L3

|~q|<Λ∑
~n

Ii(~q) −
∫ Λ

0

q2dq
2π2 Ii(~q)

 , (274)

V(s) → Ṽ(s, L) = V(s), (275)
T−1(s) → T̃−1(s, L) = V−1(s) − G̃(s, L), (276)

where the integrand Ii(~q) can be read from Eq. (90). This formalism gave a nice description of the energy levels of the
0+ and 1+ charmed-strange states in lattice QCD simulations [890] as shown in Fig. 25.

One should note the all the parameters of the unitarized amplitudes have been determined using the scattering
lengths in lattice QCD simulations [884] prior to Ref. [890]. The DK (I = 0) scattering lengths in the two lattice
works are

aI
s = −0.86(3) fm aII

s = −1.49(0.13)(−0.30) fm, (277)

where aI
s and aII

s are the results from Refs. [884, 890], respectively.
In Ref. [54], the authors fitted the finite-volume energy levels and scattering lengths from lattice calculations and

successfully described the lattice data [884, 902, 891]. After performing the chiral extrapolation, they made predic-
tions of the resonance parameters at the physical mπ, including the phase shifts, the inelasticities, the pole position,
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Figure 25: Comparison of the energy levels using the unitarized NLO Pϕ amplitudes of Refs. [884] with the lattice QCD results [890]. The two
panels correspond to two sets of lattice QCD data obtained with mπ = 290 MeV (Ensemble I) and 150 MeV (Ensemble II), respectively. The 68%
CL uncertainty bands originate from the errors of the LECs in Ref. [884]. Figures taken from Ref. [55]

and the residues of the pole. They reproduced the D∗s0(2317) mass and found two possible solutions corresponding
to the bound and virtual states, respectively. The two poles with the strange-isospin number (S , I) = (0, 1/2) persist.
The lower one has the mass around 2100 MeV and width more than 200 MeV, while the higher one has the mass
2300 ∼ 2500 MeV and width 70 ∼ 200 MeV.

The chiral amplitudes were also extended to N2LO [583, 53, 895, 904]. In Ref. [583], the authors calculated the
Hϕ scattering amplitude up to N2LO with the χPT in the EOMS scheme without the contribution of the D∗. With
both BSE and the IAM approaches, they obtained the unitarized amplitude and the scattering length. With the chiral
extrapolation of the meson masses and the decay constants, they got a good fit to the lattice QCD data of the S -wave
scattering lengths [884, 886]. However, most of the parameters suffered from large uncertainties. They also calculated
the diagrams with the D∗ and found its contribution to be negligible. Later in Ref. [53], they performed a complete
calculation with the contribution of the explicit vector charmed meson and used a similar fit procedure as in Ref. [583].
Their results showed that the D∗ contribution was negligible for the S -wave scattering near the threshold. They also
searched for the JP = 0+ poles on the Riemann sheets and presented their trajectories with the varying pion mass. The
LECs still bear large uncertainties. More lattice data are required to obtain more solid conclusions.

In Refs. [895], the authors used the lattice results of both the heavy meson masses and the S -wave scattering
lengths to determine the LECs of the Lagrangians up to O(p4). They calculated the isospin-violating strong decay
width Γ[D∗s0(2317)] = (104 − 106) keV and found a clear signal of the exotic sextet charmed meson in the Dπ [895]
and D∗π [904] S -wave coupled systems, which tended to support the two-pole structure for the charmed meson with
JP = 0+ and JP = 1+. A similar calculation was extended to the bottom sectors [905].

Besides the lattice data, the B decay process also provided a platform to test the molecular explanation. In
Ref. [52], the authors studied the B decays B+ → D̄0D0K+, B0 → D−D0K+ [906] and Bs → π+D0K [907]. The unita-
rized LO amplitude for the DK scattering [44, 45] was used, which contains an unknown subtraction constant a(µ) in
Eq. (89). The D∗s0(2317) appeared as the DK bound state and their presence led to the enhancement in the DK invariant
mass spectra. With the Weinberg’s compositeness condition, they extracted the DK component to be PDK = 70+4 +4

−6 −8%.
In Refs. [901, 908], the authors fitted the LHCb data of B− → D+π−π− [909] and B0

s → D̄0K−π+ [907] with the uni-
tarized NLO amplitudes, which will be explained in Sec. 4.2.3.

The chiral unitary methods were also applied to the other open-charm system. For instance, the X(2900) was
explained as the dynamically generated DK1 resonance. More discussions can be found in Refs. [7, 67, 11, 68].

4.2.2. D∗s0(2317) and Ds1(2460) with the (cs̄) component
In this subsection, we review the works discussing the interplay between the cs̄ and D∗K channels in the study
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of the D∗s states. Since the quark model almost successfully explains the spectrum of the conventional ground state
hadrons, one naturally expects the existence of the P-wave cs̄ mesons. If the masses of the cs̄ mesons and D(∗)K
components are close, their coupled-channel effects may be significant and should be taken into account. The physical
state is a mixture of both the conventional cs̄ meson and the D(∗)K component [40, 910, 911, 65, 912, 595, 886, 889,
55, 890, 894]. The proportion of each component will be related to the strength of their coupling. So far, the interplay
of the molecular and compact components is not yet well understood. In literature, there are a lot of works discussing
their interplay [567, 913, 604, 914, 602, 608, 915]. If the coupling is weak, the physical state will be dominated by
the compact cs̄ component, with the D∗K component dressing the cs̄ core. Recently, an interesting mechanism was
proposed which allows the molecular states to decouple from the compact states in the strong coupling regime [913].
The authors considered N compact resonances and a scattering channel. When these compact resonances strongly
interact with the scattering state, N − 1 compact states are formed as the dressed cores while a single molecular state
emerges as a bound or virtual state. In this molecular state, the compact components are suppressed compared to the
molecular component, leading to the decoupling of the molecular and compact states.

To understand the structure of a particle and pin down whether it is elementary or composite, the probability of
different components is of special importance. As outlined in Sec. 2.5.4, the probability of finding the compact
component of the bound states can be quantified using the field renormalization constant Z, which is equivalent to the
overlap of the bound state wave function with the bare cs̄ core. 1 − Z represents the molecular (two-body scattering)
component. Z ranges from zero to one. A value close to Z ∼ 0 indicates that the physical state is primarily molecular,
while a value close to Z ∼ 1 implies that it is predominantly compact. Moreover, the couplings of the T matrix poles
to different components are related to Z, which conveys the information of the strength of the coupling.

In some works, the D∗s0(2317) and Ds1(2460) states are dominated by the genuine cs̄ states but the masses of the
bare cs̄ core are lowered through their coupling to the D(∗)K channels as discussed in Sec. 3.1.1. In Ref. [911], the
authors studied the cs̄ meson with the quark model [916, 917, 918] and derived its coupling with the DK (D∗K)
channels using the 3P0 model [919]. With both the cs̄ and D∗K degrees of freedom, they obtained the Hamiltonian
with the Resonating Group Method (RGM) [920]. By solving the coupled-channel Schrödinger-type equation, they
found that the coupling with the D(∗)K scattering states will dress the cs̄ state and lead to its mass shift. The dressed
state D∗s0(2317) contained around the 34% DK component. The percentages of the D∗K component in the Ds1(2460)
and Ds1(2536) are around 50%.

In Ref. [921], the authors investigated the D∗s0(2317) state using lattice QCD simulations and found that the
D∗s0(2317) is mainly the cs̄ state in the quark model with a small DK component. However, the DK component was
found to be dominant in the D∗s0(2317) from other lattice QCD calculations [890, 886, 922] and in some theoretical
works [884, 52, 923, 55, 894] with the probability larger than 60%. In Ref. [923], the extracted percentages of the DK
components were 70% in the D∗s0(2317) and (57±21±6)% in the Ds1(2460) state, respectively. The authors reanalyzed
the three energy levels in the lattice QCD simulations [886, 889] beyond the effective range expansion. They used the
auxiliary potentials to construct the unitarized T -matrix in two schemes. In the first scheme, they considered the one-
single channel D(∗)K with two energy dependent potentials. One potential was the linear function of s and the other
one included an additional pole to account for a genuine cs̄ contribution explicitly. In the second scheme, the coupled-
channel unitarized T -matrix with the D(∗)K, D(∗)

s η (energy independent potential) was considered. With an extended
Lüscher method as shown in Eq. (274) [903, 595], they determined the two poles of the T -matrix for the D∗s0(2317) and
Ds1(2460) and identified them as the DK and D∗K bound state. The reformulation of the Weinberg’s compositeness
condition [221, 601] was used to extract the probability of the meson-meson component and its generalization form
reads [924, 925],

−
∑

i

g2
i
∂Gi

∂s
−

∑
i, j

gig jGi
∂Vi j

∂s
G j = 1, (278)

where Gi is the loop function in the ith two-meson channel. Vi j is the potential between the ith and jth two-meson
channels and gi is the coupling of the physical state to the ith two-meson channel. The first term stands for the
probabilities of the meson-meson components.

In Ref. [55], the authors considered both the cs̄ and two-meson channels such as the D(∗)K and D(∗)η to describe the
0+ and 1+ charm-strange energy levels from the lattice QCD calculation [890]. TheHϕ interactions were obtained by
the LO scattering amplitude with the HHχPT. Two sets of the cs̄ bare masses were employed [926]. The Lagrangian for
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the coupling of theHϕ channel with the bare cs̄ mesons is given in Eq. (130) which contains a dimensionless LEC h.
One should note that Eq. (130) has employed the heavy quark spin symmetry in the system. The authors constructed
the unitarized T -matrix with the chiral unitary method and extended it to the finite volume with Eq. (274). They
successfully described the energy levels in the 0+ and 1+ channels in lattice QCD simulations. With the Weinberg’s
compositeness condition in Eq. (278), their results showed that the D∗s0(2317) and Ds1(2460) resonances have the
predominantly hadronic molecular DK and D∗K components, with the probabilities being 65% and 56%, respectively.
Moreover, one additional broad resonance was found in both the 0+ and 1+ channels. The similar formalism was
also applied to study the analogue resonances of the two B∗s states in the bottom sector [927] with the help of the
lattice data [902]. They found two poles in the S -wave B̄(∗)K amplitude with the masses 5709 ± 8MeV (0+) and
5755 ± 8MeV (1+), corresponding to the B̄∗s0 and B̄s1. The molecular B̄(∗)K components were around 50%.

In Ref. [894], the authors included both the cs̄ and the D(∗)K components explicitly and systematically studied the
four positive parity Ds states: D∗s0(2317), Ds1(2460), D∗s1(2536) and D∗s2(2573) with the chiral unitary approach. The
authors employed the Godfrey-Isgur (GI) quark model [20] to specify the cs̄ core explicitly, and refitted the masses
of the well-established mesons. The P-wave bare cs̄ cores were almost automatically accommodated into the heavy
quark spin basis without the pre-implementation of HQSS, which implies that the HQSS is a good approximation in
the Ds sectors. The couple-channel effects (g) between the bare cs̄ core and the D(∗)K channels were described by
the quark pair creation (QPC, aka, the 3P0) model [928, 929, 930, 931, 932, 933, 911, 933, 911]. The interactions (v)
between the two-meson channels D(∗)K were derived with the vector meson exchange Lagrangians [934, 935, 936].

To use the lattice QCD data, they adopted the Hamiltonian effective field theory (HEFT) [937, 938, 939, 940]. The
momentum is discretized according to Eq. (273) in a cubic box with the size L. However, instead of the loop function,
the Hamiltonian matrix is discretized in the HEFT as follows

H0 =
∑
i=1,n

|Bi〉mi〈Bi| +
∑
α,k

|~qk,−~qk〉α
(√

m2
αB

+ q2
α +

√
m2
αM

+ q2
α

)
α

〈
~qk,−~qk

∣∣∣ , (279)

HI =
∑

k

(
2π
L

)3/2 ∑
α

∑
i=1,n

(
|~qk,−~qk〉αg†i,α(s, ~qk) 〈Bi| + |Bi〉 gi,α(s, ~qk)〈~qk,−~qk |

)
(280)

+
∑
k,l

(
2π
L

)3/2 ∑
α,β

∣∣∣~qk,−~qk
〉
α

vα,β(s, ~qk − ~ql)β
〈
~ql,−~ql

∣∣∣ ,
where H0 and HI are the free and interacting Hamiltonian. The i, j and α, β represent the bare cs̄ core and the D(∗)K
channels, respectively. k, l are the indices of the discretized momentum. The discretized energy levels were obtained
from the eigenvalues of the Hamiltonian matrix for each L, which are used to compare with the ones in the lattice
QCD as shown in Fig. 26. In the figure, the data in the 0+ and 1+ sectors was used as input. In the 0+ channel, the
0+ cs̄ core and the S -wave DK channels were involved. In the 1+ one, two cs̄ cores with JP = 1+ as well as the
S -wave and D-wave D∗K channels were considered. The lowest eigenvalue corresponded to the Ds1(2460) and its cs̄
core had a significant mass shift due to the coupling with the S -wave D∗K channel. In contrast, the cs̄ core for the
D∗s1(2536) mainly couples with the D-wave D∗K channel and its energy levels tended to be stable. With the increasing
length, the kinetic energy of the D∗K channel decreased. When its eigenvalue approached that of the D∗s1(2536), an
interesting crossing appeared around L = 3.5 fm. In the 2+ sector, the results for the D∗s2(2573) are the predictions
from the Hamiltonian matrix with the 2+ cs̄ core and the D-wave DK as well as the D∗K channels. The authors
determined the parameters and got the unitarized T -matrix through the Lippmann-Schwinger equation in the infinite
volume. The physical D∗s0(2317) and Ds1(2460) are the mixtures of the bare cs̄ core and D(∗)K component with the
probabilities PD∗s0(2317)(DK) ≈ 68.0% and PDs1(2460)(D∗K) ≈ 47.6%, respectively. The D∗s1(2536) and D∗s2(2573) are
almost dominated by the bare cs̄ core with PD∗s1(2536)(cs̄) ≈ 98.2% and PD∗s2(2573(cs̄) ≈ 95.9%, respectively. The
different mass shifts and mixing patterns of the four Ds states are governed by the heavy quark symmetry. In the
heavy quark limit, the cs̄ cores in the D∗s0(2317) and Ds1(2460) can couple with the S -wave DK and D∗K channels,
respectively. However, the coupling of the cs̄ cores in the D∗s1(2536) and D∗s2(2573) with the S -wave two-meson
channels are forbidden by HQSS. They can only couple with the D-wave ones which are significantly suppressed
in the vicinity of the thresholds. Another prediction was that the mass of the D∗s0(2317) tended to be stable with
increasing mπ which can be checked in the future lattice calculation.
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With the interplay of the cs̄ and D∗K components, the positive parity Ds states can take two forms: either a
compact cs̄ state dressed by the D(∗)K or a molecular state dominated by the D(∗)K components. Both scenarios can
explain the mass shifts observed in comparison to the prediction from the conventional quark model. To distinguish
these two scenarios, the experimental observations of the electromagnetic decays into D(∗)

s γ or strong decays into
the isospin-violating D(∗)π0 channels will be very helpful. In Sec. 3.3.1, the significant differences in the decays of
D∗s0(2317) and Ds1(2460) in the compact and molecular scenarios were discussed. The decay widths for the D(∗)π
modes are less than 10 keV in the compact scenario [816, 761], while the molecular scenario leads to the enhanced
decay widths due to the isospin-breaking effects in the K and D(∗) meson masses via loops. For examples, the widths
were around 100 keV in Refs. [818, 762, 763].

One may also compare the formation mechanisms of the molecular D∗K states. In Sec. 4.2.1, the molecular
state is formed via the D(∗)K interactions in χPT, which are then used as the kernel in the chiral unitary method.
This subsection considers the interplay between the cs̄ component and the D(∗)K. Besides the interactions in the
D∗K channels, the D(∗)K can also interact through exchanging the compact cs̄ state. Both mechanisms without and
with the cs̄ component can describe the physical D∗s0(2317) and Ds1(2460) masses as well as lattice QCD data and
yield the consistent probabilities of the D(∗)K components (over 60%). These probabilities were extracted using
either the Weinberg’s compositness relation or the wave function of the physical state. The contribution of the cs̄
component to the D(∗)K interactions in the latter case is short-range, which may be incorporated into the LECs in the
chiral Lagrangian. These LECs can be determined from experiments or lattice simulations. Then both mechanisms
contain physically similar information and can be considered more or less equivalent in this context as the results are
consistent.
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Figure 26: The comparison of the dependence of lattice binding energies on length L for the D∗s0(2317) (left), the Ds1(2460)/D∗s1(2536) (middle),
and D∗s2(2573) (right) states with the pion mass mπ = 150 MeV [890] and mπ = 156 MeV [889]. The black curves stand for the eigenvalues using
the finite-volume Hamiltonian, while the dashed lines represent those of the bare cs̄ cores and D(∗)K thresholds obtained with the free Hamiltonian
H0. Figures taken from Ref. [894].

4.2.3. Two-pole structures of D∗0(2300) and D1(2430)
The structures of the D∗s0(2317) and the Ds1(2460) have been successfully disentangled with the chiral unitary

methods as discussed in Sec. 4.2.1. Under the SU(3) flavor symmetry, the unitarized scattering amplitude can be
directly extended to study the otherHϕ scattering channels as shown in Fig. 24 and Table 5. The possible strangeness-
isospin quantum numbers of theHϕ channels are

(S , I) = (2,
1
2

), (1, 0), (1, 1), (0,
1
2

), (0,
3
2

), (−1, 0), (−1, 1). (281)

One striking observation is that there are two poles in the channels with the strangeness-isospin quantum numbers
(S , I) = (0, 1/2) where the D(∗)π, D(∗)η and D(∗)

s K̄ are involved in the 0+ (1+) sector as illustrated in Fig. 27.
The presence of the two-pole structures originated from the Weinberg-Tomozawa terms at LO, which read [880,
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Table 5: The possible strange-isospin quantum numbers (S , I) for theHϕ system. The symbols “×”, “⊗”, and “�” represent that the pole does not
exist, exists perhaps, does exist, respectively. The script “Irreps.” denotes the irreducible representations in the SU(3) flavor symmetry.

(S , I) Irreps. channels 〈FH · Fϕ〉Hϕ Poles References

(2, 1
2 ) 15 f DsK 1

2 ×

(1, 1) 15 f ,6 f

 DK

Dsπ


 0 − 1

2

− 1
2 0


 ××

 cusp effect [37, 54],

no experimental relavant pole [899, 39, 42].

(1, 0) 15 f ,3̄ f

 DK

Dsη


 −1 −

√
3

2

−
√

3
2 0


 �

×

 D∗s0(2317) (see Sec. 4.2.1)

(0, 3
2 ) 15 f Dπ 1

2 ×

(0, 1
2 ) 15 f ,6 f ,3̄ f


Dπ

Dη

DsK̄



−1 0 −

√
6

4

0 0
√

6
4

−
√

6
4

√
6

4 − 1
2



�

×
�

 two-pole structures (see Sec. 4.2.3)

(−1, 1) 15 f DK̄ 1
2 ×

(−1, 0) 6 f DK̄ − 1
2 ⊗ cusp effect [37, 54], virtual [899], bound states [39]
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Figure 27: The comparison of the two-pole structures in the chiral unitary approaches for the channels with the strangeness-isospin number
(S , I) = (1, 1

2 ) and RPP [1]. The A, B, C, D represent the results in Ref. [51], Refs. [899, 901], Ref. [54], Refs. [895, 904], respectively.
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881] 14

V (WT)(s, u) ∼ −Cα,Hϕ
(s − u)

4 f 2
ϕ

, Cα,Hϕ = −
〈
2FH · Fϕ

〉
α

= C2(H) −C2(α) + 3, (282)

with α the flavor representation of theHϕ system. FH and Fϕ are the SU(3) generators for the heavy meson and the
light Goldstone boson. C2 is the Casimir operator. For the 15 f ⊕ 6 f ⊕ 3̄ f flavor representations as shown in Fig. 24,
the LO potentials are VWT ∼ (1,−1,−3)w where the w is positive. Thus, the Hϕ potentials are attractive in the 3 f

and 6 f representation, while they are repulsive in the 15 f one. Furthermore, the attractive potentials in the anti-triplet
channel are much stronger than that in the sextet one. In the SU(3) limit, the lower pole therefore belongs to the 3̄ f

which is the partner state of the D∗s0(2317) [Ds1(2460)] state with isospin I = 0, while the higher pole belongs to the
sextet. The two-pole structures have been predicted using the LO unitarized scattering amplitude in the chiral unitary
method [37, 44, 42, 43, 900, 45] as mentioned in Sec. 4.2.1. In literature, there were extensive discussions of the
similar two-pole structures [941] in the K1(1270) [556, 942, 943] and Λ(1405) systems [551, 944, 586, 945].

The chiral amplitudes up to NLO [47, 884, 51, 899, 54] and N2LO [895, 946] do not change the predictions. As
mentioned in Sec. 4.2.1, the authors of Ref. [55] used the same NLO unitarized amplitude and the fixed LECs from
the lattice scattering lengths in Ref. [884] to provide a good description of the energy levels in the 0+ and 1+ charm-
strange channels from the later lattice QCD calculation [890]. In Ref. [899], the authors extended the same formalism
to predict the finite volume energy levels of the strangeness-isospin (S , I) = (0, 1/2) channel with JP = 0+. They
considered the S -wave Dπ, Dη and DsK̄ coupled-channel scatterings and found two poles at (2105+6

−8 − i102+10
−12) MeV

and (2451+36
−26 − i134+7

−8) MeV, which dominantly couples with the Dπ and DsK̄ channels, respectively. Their results
successfully described the finite volume energy levels of the coupled-channel Dπ,Dη and DsK scattering from the
later lattice QCD calculations [891] in the c.m.s as shown in Fig. 28. The consistence seemed to support the existence
of the two pole structures. The same resonance patterns also occurred to their partners in the bottom sector. The
authors also investigated the trajectories of the two poles from the physical to the SU(3) symmetric cases by varying
the meson masses. In Ref. [54], the authors fitted the lattice data [891] in the strangeness-isospin (S , I) = (0, 1

2 )
channels obtained in the c.m.s and the moving frames. The extracted parameters are similar to those in Ref. [899].

The successful descriptions of the lattice QCD results, for instance, the scattering lengths [884, 54, 47, 51, 895,
946], the phase shift [54, 895, 946], the finite energy levels in the charmed strange channels [55, 54] as well as the
charmed channels with (S , I) = (0, 1/2) the Refs. [899, 54], tended to support the existence of the two-pole structures
for the positive D∗0 and D∗1 charmed mesons.

Up to now, only one pole was reported in lattice QCD simulations [891, 898]. In Ref. [891], the Hadron Spectrum
Collaboration reported a scalar D∗0 meson with mπ ' 390 MeV. Very recently, the Hadron Spectrum Collaboration
computed the isospin- 1

2 Dπ scattering amplitudes using lattice QCD at mπ ≈ 239MeV and found a broad D∗0 resonance
around 2200 − i400 MeV [898], which was lighter than D∗s0(2317). Its mass was consistent with the predictions for
the lower D∗0 state in the chiral unitary approaches.

In Ref. [901], the authors argued that the amplitudes in lattice QCD simulations [891] contained an additional pole,
but the pole position depended strongly on the parametrization. The pole might be located too deep in the complex
plane to be captured at mπ ' 390MeV [899, 901, 54]. They concluded the existence of the additional pole was not
ruled out. In Ref. [901], the authors studied the mass trajectory of the sextet pole with different Goldstone boson mass
mϕ by varying the quark masses in the SU(3) symmetric case. The result is displayed in the right panel in Fig. 28.
With the increasing mϕ, the energy-dependent LO WT terms become larger and lead to the stronger Hϕ potentials.
The sextet pole changes from the resonance to the virtual state and even the bound state with a large enough mϕ [901].
The authors of Ref. [58] studied the lightest D∗s0(2317) and D∗0 as well as their axial vector partners at the SU(3)
symmetric point using lattice QCD. They found the evidence for the nontrivial bound sextet state at Mπ = 612(90)
MeV. More lattice calculations are needed to check the extra sextet pole.

There is only one scalar and one axial-vector charmed meson listed in the Review of Particle Physics [1], the
D∗0(2300) and D1(2430). Their resonance parameters were extracted with a simple Breit-Wigner (BW) parametrization

14The potential is obtained with the scattering amplitude in Eq. (264). In some theoretical works, the Cα,Hϕ is related to CLO up to the additional

form factors due to the renormalization, for instance
√(

mHi + EHi

) (
mH j + EH j

)
/
(
4mHi mH j

)
.
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Figure 28: Left panel: Comparison of the predictions from Ref. [899] for the energy levels in the (S , I) = (0, 1/2) channel with the lattice QCD
data [891] (black dots) using mπ ' 391 MeV (red lines and bands). Right panel: Mass of the predicted sextet state M6 at the SU(3) symmetric
point as a function of the Goldstone boson mass Mϕ. The left and right panel are taken from Ref. [899] and Ref. [901], respectively.

in the D(∗)π invariant mass spectrum, which correspond to the constant interaction vertices. The pionic couplings
contain the additional Eπ dependence from the chiral symmetry (Goldstone theorem). The inclusion of the energy-
dependent interaction results in a shift of the pole position from the simple Breit-Wigner parametrization [908].
Moreover, the D∗s0(2300) signal spreads in a wide range and the high energy region overlaps with the S -wave D(∗)η
and the D(∗)

s K̄ thresholds. Thus, the coupled-channel effects should be taken into consideration [908, 947]. The
B− → D+π−π− decay might help to confirm the molecular explanation of the D∗s0 states as well as the two-pole
structures [947]. The unitarized Dπ scattering amplitude seemed to describe the LHCb data quite well as shown in
Fig. 29. In the vicinity of the D∗0(2300) and D1(2430), there are two broad D∗0 and two D∗1 states produced. The
wide D∗(2300) state in RPP is actually a combination of two D∗0 poles. The mass of the lowest D∗0 was predicted to be
around 2.1 GeV.

Figure 29: The best fits of the LHCb angular moments (denoted with the black dot) [909] using the Breit-Wigner parametrization (green band,
χ2/d.o.f = 2.0) and the unitarized amplitude in the chiral unitary approach (blue band, χ2/d.o.f = 1.2).

The existence of the D∗s0(2317) [Ds1(2460)], and the two-pole structures of the charmed meson with (S , I) =

(0, 1
2 ) are closely related to the chiral dynamics through the WT terms. After the spontaneous breaking of the chiral

symmetry, the remaining SU(3) flavor symmetry constrains theHϕ molecules as the multiplet in Table 5. The flavor
representation can be directly used to determine the existence of the pole in the SU(3) limit. According to Eq. (282),
the potentials for the 15 f , 6 f and 3̄ f are repulsive, attractive, and more attractive, respectively. There are no poles
in the (S , I) = (2, 1

2 ), (S , I) = (0, 3
2 ), and (S , I) = (−1, 1) channels in the 15 f representation. The potential in the

(S , I) = (−1, 0) channel is attractive but weaker than that in the 3̄ f channel, hence the existence of the pole is uncertain
and still in discussion.

With the SU(3) symmetry breaking, the states with the other (S , I) are composed of theHϕ channels with different
thresholds as shown in the lower panel of Fig. 24. The mass splittings between different channels break the SU(3)
flavor symmetry and play an important role in the formation of the unnatural states. Especially, their underlying
structures are sensitive to these thresholds. For instance, in the (0, 1

2 ) sector, the DsK̄ is located around 490 MeV
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higher than the Dπ one. The lower D∗0 mainly couples to the Dπ channel while the higher one couples to the DsK̄
channels. Thus, it may be more reasonable to categorize the states using the channels instead of the SU(3) flavor
representations.

In the quark model, there only exists one non-strange scalar charmed meson below 2.4 GeV. In the molecular
scenario, the positive parity D-states can be dynamically generated through the scattering of the pseudo-scalar meson
and the ground state charm meson. Such an interaction arises from the Weinberg-Tomozawa terms at LO. In other
words, the presence of the positive parity molecular D-states is closely related to the chiral symmetry. Moreover, there
exist two broad molecular states. The higher state is around 2.45 GeV while the lower one is around 2.1 GeV. Both
of them have a large width around 200 ∼ 400 MeV. The large widths of the D∗0(2300) and D1(2430) suggest that they
may correspond to two distinct D∗0 and two D∗1 poles respectively. Up to now, the two-pole structures with a large
decay width seemed to describe the experimental data successfully. More lattice QCD calculations from different
groups are needed to examine the two-pole structures of the D∗0 and D∗1 mesons carefully.

4.3. Scatterings of Goldstone bosons off the heavy baryons

The frameworks developed to investigate the D∗s0(2317) and Ds1(2460) were also used to explore the scattering
of the light pseudoscalar mesons (ϕ) off the heavy baryons (BQ or BQQ) and predict the exotic states [948, 695, 949,
950, 951]. Among them, the ϕBQQ systems are the most interesting ones [949, 950, 951] because the BQQ can be
related to the heavy-light mesons in the HDAS as discussed in Sec. 2.2.2. The same chiral dynamics between ϕBQQ

and ϕD(B̄) in the HDAS limit leads to the possible existence of the analogs of D∗s0(2317) and Ds1(2460) in the doubly
heavy sector. We review the calculation within the EFT frameworks. The above systems were also explored in other
approaches (e.g. Refs. [952, 953]).

In Ref. [948], Liu et al investigated the pseudoscalar meson and decuplet baryon scattering lengths to N2LO
within HBχPT. The same framework was extended to calculate the scattering of the pseudoscalar meson off the singly
charmed baryons in Ref. [695]. In their calculation, the mass splittings of the different multiplets were kept in the
small scale expansion scheme [954, 955]. The chiral expansion was performed to N2LO including the diagrams
similar to Figs. 20, 21 and 23. In the numerical analysis, the authors adopted the SU(4) flavor symmetry to determine
the LECs. From the signs of the scattering lengths, one can get a rough idea about the possible existence of the loosely
bound state in each channel.

In Ref. [950], Meng and Zhu investigated the scattering lengths of ϕB(∗)
cc toO(p3) in the HBχPT. Within the HDAS,

the LECs are related to those of the ϕD(∗) scattering in Ref. [877, 879]. The authors proved that the analytical results
for the scattering lengths in the HDAS satisfy

aϕBcc = aϕB∗cc = aϕ̄D = aϕ̄D∗ . (283)

The corrections from the recoil effect and the mass splitting between spin- 1
2 and spin- 3

2 doubly charmed baryons
were tiny. The LECs determined from fitting lattice QCD results [884] and using the resonance saturation model
are consistent with each other. The interactions for the [πΞ

(∗)
cc ](1/2), [KΞ

(∗)
cc ](0), [KΩ

(∗)
cc t](1/2), [ηΞ(∗)

cc ](1/2), [ηΩ(∗)
cc ](0),

and [K̄Ξ
(∗)
cc ](0) channels are attractive, where the superscripts represent the isospin. Among them, the most attractive

channel [K̄Ξ
(∗)
cc ](0) is likely to form the analogs of the D∗s0(2317) [Ds1(2460)] in the doubly heavy sector.

In Ref. [949], Guo predicted several states by investigating the S -wave scattering of the doubly charmed baryons
(Ξ++

cc ,Ξ
+
cc,Ω

+
cc) and the light pseudoscalar mesons (π,K, η) in the unitarized LO chiral effective field theory. They

predicted a ΞccK̄ bound state in the (S , I) = (−1, 0) channel and two resonance structures in the Ξccπ, Ξccη and ΩccK
coupled channels with (S , I) = (0, 1/2). They are the analogs of the D∗s0(2317) and the two-pole structures for the D∗0
in the doubly charmed sector.

In Ref. [951], the authors predicted the negative-parity doubly charmed baryons by investigating the scattering of
the light pseudoscalar off the ground doubly charmed baryons using the unitarized version of χPT up to NLO. The
authors considered the mixing effect between the ϕBcc molecules and the P-wave doubly charmed baryons BP

cc. The
BP

cc is the conventional baryon with the P-wave excitation within the (cc) diquark, which is expected to be the lowest
excitation of the doubly charmed baryons [956, 502, 504]. They predicted two narrow states in (S , I) = (−1, 1/2)
channel and one narrow state in the (S , I) = (0, 1/2) channel, respectively.
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5. Chiral effective field theory for heavy hadronic molecules

In this section, we will review the applications of the EFT in the hadronic molecules composed of two matter
fields. An important analog is the deuteron in the NN systems. In order to investigate the deuteron-like states in the
heavy flavor sector, numerous EFTs are constructed. In this section, we will first review these EFTs from the simple
to complex ones, specifically from the single-channel EFTs to coupled-channel EFTs, from the pionless EFTs [/πEFTs
(contact EFTs)] to the chiral EFT, from the perturbative pion EFTs to nonperturbative pion EFTs. After that, we will
review applications of these EFTs to specific hadronic molecular candidates. One may also consult the review in
Ref. [11]. Since we are only interested in the energy regions close to two hadron thresholds, the EFTs for the hadronic
molecules are usually nonrelativistic.

Unlike the χEFT for the NN systems which is constrained by the precise NN phase shifts from the experiments,
the EFTs constructed for the hadronic molecules are still preliminary. In this section, we will also review some frame-
works that are not rigorous EFTs but incorporate the spirits of EFT. From our perspective, an EFT is the quantum
field theory which should include quantum fluctuations and renormalizations. Therefore, we will pay more attentions
to the frameworks which include quantum fluctuations (either by calculating loop corrections or iterating nonpertur-
batively) and scale-independent renormalizations. After all, the tree-level results or the cutoff-sensitive results from
the so-called EFTs are usually equivalent to some classical frameworks. Meanwhile, the EFTs are based on separated
scales and specific symmetries. In this section, we will discuss some frameworks making use of separated scales and
symmetries. In principle, the EFTs are performed according to the power counting which originates from the scale
analysis and should manifest convergence in high order calculations. According to the present experimental status, it
is usually hard to fix the LECs in higher order calculations. Therefore, in this section, we have to pay some attentions
to the validity of the scale analysis.

5.1. Pionless EFT

5.1.1. Single-channel systems
We start from the LO pionless EFT in the single-channel for the S -wave systems. The interaction between

particles A and B is V(p, p′) = vΘ(Λ − p)Θ(Λ − p′). We choose a cutoff UV regulator Θ(Λ − p) in this section. One
can also use other regularization schemes such as the PDS in Sec. 2.7.1, which will not change the results qualitatively.
In order to reproduce a bound state or virtual state, we resum the interaction nonperturbatively via LSEs,

T (p, p′) = V(p, p′) +

∫
d3q

(2π)3 V(p, q)G(E, q)T (q, p′), G(E, q) =
1

E − q2

2µ + iε
. (284)

For such a separable interaction, we can assume the T -matrix is also separable, i.e., T (p, p′) = tΘ(Λ − p)Θ(Λ − p′).
Then the LSEs can be solved as

t = v + vFt, =⇒ t−1 = v−1 − F, (285)

where the F is

F(E) =

∫ Λ d3q
(2π)3

1

E − q2

2µ + iε
≈

− µ
2π

(
2
π
Λ + ik

)
with E > 0, k ≡ √

2µE
− µ

2π

(
2
π
Λ − κ

)
with E ≤ 0, κ ≡ √−2µE

. (286)

In the cutoff regularization, the F has the linear UV behavior which is similar to that of PDS in Eq. (158) up to a
factor for Λ. One can see the relation of the cutoff regularization and dimensional regularization for the nonrelativistic
system in Ref. [957]. Meanwhile, the (v−1 − F) should be cutoff-independent to make the T -matrix renormalization
group invariant. The pole of the T -matrix obtained in the real axis from v−1−F(E) = 0 corresponds to the bound state
(in the first Riemann sheet) or virtual state (in the second Riemann sheet) of the AB system.

It was shown that the /πEFT is equivalent to the ERE [628]. We will illustrate the equivalence at the LO. One can
perform the ERE as

t−1 = − µ
2π

(k cot δ − ik) = − µ
2π

(
− 1

as
− ik +

1
2

r0k2...

)
78



= v−1 − F = − µ
2π

(
−2π
µ

v−1 − 2
π

Λ − ik
)
. (287)

One can obtain the k0 and k1 terms from the LO /πEFT, which matches to the ERE truncated at the LO. The scattering
length term and t−1 read, respectively,

1
as

=

(
2π
µ

v−1 +
2
π

Λ

)
, t−1 ∼

(
− 1

as
− ik

)
. (288)

The k1 term is required by the unitarity. The approximation of using the contact interaction without derivative is
equivalent to keeping the LO ERE (only the scattering length term). The effective range and higher order terms are
neglected. For as > 0, one can see the E = −γ2/(2µ) = −1/(2µa2

s) corresponding to a bound state pole with the
binding momentum γ = 1/as. For as < 0, one can see that E = −1/(2µa2

s) at the second Riemann sheet corresponds
to a virtual state.

For the system with a bound state, the T -matrix can be reexpressed as

t−1 ∼ (−γ − ik). (289)

Another interesting quantity is the coupling constant g of the bound state X and its components A and B. As shown
in Fig. 30(a), the vertex of XAB is gΘ(Λ − p). The T -matrix of the A and B scattering is saturated by the bound state.
The coupling constant is obtained from the residue of t at its pole position [958, 959], i.e.,

t ∼ g2

E − EX
, =⇒ g =

4MX
√
πγ√

µ
. (290)

The coupling constant only depends on the binding energy which is determined by the scattering length. The relation
between the coupling constant and

√
γ is also derived from the Weinberg compositeness criterion [221] in the case of

a pure molecule.
One can construct the composite operator X̂(x) ≡ Â(x)B̂(x), where Â and B̂ are the field operators of A and B,

respectively. The bound state can also be determined by the pole of the two-point Green’s function of X̂ [960],

G(E) =

∫
d4xe−iEt〈0|T {X†(x)X(0)}|0〉 = i

Z(EX)
E − EX + iε

, (291)

where T {...} represents the time-ordered product. The Green’s function can be calculated from the diagrams in
Fig. 30(b) as

G = Σ + Σ (−ivΣ) + Σ (−ivΣ)2 + ... =
Σ(E)

1 + ivΣ(E)
=

iF
1 − vF

, (292)

where the Σ = iF is used. We obtain the same equation of the binding energy 1 − vF = 0 as that from the LSEs. The
wave function renormalization factor Z is determined as

Z(EX) =
1

2π

(
2
π

Λ − γ
)2

γ. (293)

One notes that the dimension of Z is M3. In our calculation, we adopt the fields of the Â and B̂ with the dimension
M3/2 as in most of the NREFT calculations. Thus, the composite operator X̂(x) ≡ Â(x)B̂(x) carries the dimension M3

and finally gives rise to the Z with M3. In the present discussion, we focus on the relations of Z with the cutoff and
binding momentum.

The above results about the bound state can also be obtained in the language of quantum mechanics. We investigate
the same bound state in Schrödinger equation,

q2

2µ
φ(q) +

∫
d3 p

(2π)3 V(q, p)φ(p) = − γ
2

2µ
φ(q). (294)
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(a) (b)

Figure 30: (a)The scattering of A and B is saturated by their bound state X. (b) The two point Green’s function of X̂(x) ≡ Â(x)B̂(x).

The wave function is
φ(p) = ξ

Θ(Λ − p)

− γ2

2µ − p2

2µ

, ξ2 ≈ γ

4π2µ2 , (295)

where the normalization constant ξ is determined by
∫
|φ(p)|2d3 p = 1. The wave function can be related to the

scattering length as

φ(p) =
1

π
√

as

1
1/a2

s + p2 , ϕ(r) =
1√

2πas

e−r/as

r
, (296)

where we have taken the cutoff to infinity. ϕ(r) is the wave function in the coordinate space. Another interesting
quantity is the wave function at the origin,

ϕ(0) = − γ1/2

(2π)1/2

(
2
π

Λ − γ
)
, (297)

which is cutoff-dependent and linear divergent.
One can set up two corresponding relations between the languages of quantum mechanics and quantum field

theory,
〈p|V̂ |φ〉 ∼ gΘ(Λ − p),

√
Z ∼ ϕ(0). (298)

One can take the approximation of the LSEs near the pole,

T̂ = V̂ + V̂
1

E − Ĥ + iε
V̂ , =⇒ T (p, p′) ∼ 〈p|V̂ |φ〉〈φ|V̂ |p

′〉
E − EX

, (299)

with

〈p|V̂ |φ〉 = 〈p|H − H0|φ〉 =

(
E0 − p2

2µ

)
〈p|φ〉 = ξΘ(Λ − p). (300)

One can see that the 〈p|V̂ |φ〉 corresponds to the XAB vertex gΘ(Λ − p) in quantum field theory language. The bound
state can be represented as

|X(P)〉 ≡
∫

d3 p
(2π)3 φ(p)|A(p1)B(p2)〉, P ≡ p1 + p2, p ≡ p1 − p2

2
. (301)

From Eq. (291), we know the wave function renormalization factor Z can be extracted from

〈X(P)|X̂(x)|Ω〉 =
√

ZeiP·x. (302)

With Eqs. (301) and (291), one notices that
√

Z ∼ ϕ(0) up to some constant factors. Both the quantum mechanics
(e.g., [961, 962]) and quantum field theory (e.g., [963]) languages were used in literature.

From the above calculation, one can see that the binding energy, the wave function of the bound state and the
low energy scattering properties are determined by one parameter as. For the two body system which admits a
shallow bound state with an unnatural large scattering length, the low-energy behavior is universal and depends on the
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scattering length only. For such a system, the LO ERE and LO contact interaction will be a good approximation (see
Ref. [523] for a review of the universality).

In the LO single-channel contact interaction, since as is real, the pole of the T -matrix can only appear in the real
axis corresponding to either the bound state or the virtual state. In order to interpret the resonance with a width, one can
introduce the LO coupled-channel contact interaction or resort to the NLO contact interaction (e.g., [964, 311, 313]).
In the LO coupled-channel contact scheme, one may obtain the effective as for the elastic channel with an imaginary
part (e.g., [965]) considering the inelastic channel. It will be discussed in Sec. 5.1.2. Meanwhile, using the NLO
contact interaction is equivalent to keeping the effective range term in ERE (e.g., see Refs. [346, 327, 605]).

We take the S -wave interaction to the NLO as an example,

V(p, p′) =
ca

Λ
+

cb

Λ3 (p2 + p′2), (303)

where ca and cb are the LECs. For simplicity, we assume the interaction is independent on energy. For such a separable
interaction, we adopt the techniques in Ref. [966] and obtain,

1
T (k)

=
−G0Λ5ca − 2G2Λ3cb +

(
G2

2 −G0G4

)
c2

b + Λ6

Λ5ca + cb
[
cb

(
G0k4 − 2G2k2 + G4

)
+ 2k2Λ3] , with Gn =

∫
d3q

(2π)3

qn

E − q2

2µ + iε
.

(304)

In the hard cutoff regularization scheme, we obtain the analytical expressions of Gn as

G0 =
4π

(2π)3 2µ
[
k tanh−1

(
k
Λ

)
− Λ − i

π

2
k
]
, Gn = k2Gn−2 − µ

π2

Λn+1

n + 1
. (305)

Performing the effective range expansion, T−1(k) = − µ
2π

(
− 1

as
− ik + 1

2 r0k2 + ...
)
, we obtain that

as =
9πµ

(
5π2ca − µc2

b

)
Λ

(
30π2µ (3ca + 2cb) − 8µ2c2

b + 90π4
) , (306)

r0 =
4
(
30π2µ2c2

b (10cb − 9ca) + 225π4µ
(
3c2

a + 5c2
b

)
+ 52µ3c4

b + 1350π6cb

)
27πΛµ

(
µc2

b − 5π2ca

)
2

. (307)

Now, we obtain the non-vanishing r0. The resonance poles can be obtained from T−1 = 0 in the NLO ERE for-
mula [605].

With the above expressions, we can check the validity of of the extension of the argument of Landau and Smorodin-
sky in the non-local potential [536]. It was proved that the effective range is always positive (r0 > 0) if the local poten-
tial is attractive everywhere, i.e., V(r) < 0 everywhere in their textbook [536]. The argument was cited in Ref. [222] to
claim that “the molecular case gives always r0 > 0”. We use Eq. (303) as an example of the non-local potential case.
For simplicity, we take Λ = 1 GeV and µ = 1 GeV. We constrain the interaction in Eq. (303) via admitting a bound
state with the binding energy Eb = 1 MeV, which will constrain the relation of the two LECs as shown in the left
panel of Fig. 31. In the middle panel, we present the as and r0 numerically. One can see that the negative r0 is allowed
for such a non-local interaction. In the right panel, we present the variation of the root-mean-square radii rrms with the
coupling constants. One can see these states are all loosely bound states with rrms around 2−3 fm. Therefore, it is
biased to conclude that the molecule solution implies the always positive effective range. See [540] for more detailed
discussions on this issue.

5.1.2. Coupled-channel systems
In Ref. [967], Cohen, Galman and van Kolck proposed a coupled-channel EFT for two channels with different

thresholds. For the LO contact interaction, the renormalization is given explicitly. Within the hard cutoff regulariza-
tion, the interaction reads

V(p, p′) =

[
v11 v12
v12 v22

]
Θ(Λ − p)Θ(Λ − p′). (308)
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Figure 31: The scattering length and effective range for the system in the non-local interaction in Eq. (303) with a binding energy Eb = 1 MeV.
The relation of ca and cb is constrained by permitting a bound state with the binding energy Eb = 1 MeV (left panel). The as and r0 depend on the
coupling constants (middle panel). The root-mean-square radii rrms vary with the coupling constants (right panel).

For the separable interaction, one can transform the LSEs into the algebraic equation of the coefficient matrices v and
t, i.e.,

T = V + VGT, =⇒ t = (1 − vF)−1v, (309)

where the F = diag{Fa, Fb} with

Fa(E) =

∫ Λ d3 p′′

(2π)3

1
E − Ea,p′′

, Ea,p′′ = δa +
p′′2

2µa
. (310)

We can choose the δ1 = 0 and δ2 = δ. We use the µi to represent the reduced masses of two channels. With the
definitions κ1 ≡

√−2µ1E and κ2 ≡
√−2µ2(E − δ), the solution of the LSEs is

t−1 =
1
D

 1
µ1

b11b2
12 (1 − b22κ2) 1√

µ1µ2
b11b12b22

1√
µ1µ2

b11b12b22
1
µ1

b2
12b22 (1 − b11κ1)

 , (311)

where D = 1
2π

[
b2

12 (b11κ1 − 1) (b22κ2 − 1) − b11b22

]
. The b11, b22 and b12 are cutoff-independent parameters defined

by 
1

b11
= 2π

µ1

(
v22

v11v22−v2
12
− F1

)
+ κ1

1
b22

= 2π
µ2

(
v11

v11v22−v2
12
− F2

)
+ κ2

1
b12

= 2π√
µ1µ2

v12
v11v22−v2

12

. (312)

The cutoff dependence in the F1 and F2 is canceled out by the cutoff-dependent coupling constants vi j. Thus, the
renormalization of the EFT is given explicitly. In literature, when a similar contact interaction as in Eq. (308) was
used to depict the neutral and charged channels of X(3872), it was often assumed that v11 = v22 = v12 = v21, which
is equivalent to the vanishing isovector interaction. However, we can see that the v12 and v11, v22 in Eq. (312) have
to cancel out the quite different divergent behavior. In such an EFT framework, one can set v11 = v22. However, it is
illegitimate to introduce the vii = v12 or v21 in order to meet the renormalization group invariance.

For the coupled-channel system, if one expands the 1/t11 according to the ERE as

1
t11

= − µ1

2π

[
− 1

aeff

+
1
2

reffk2 − ik + ...

]
, (313)

one can get the expression of the parameters aeff and reff as

1
aeff

=
1

b11
+

1
b2

12

[ √
2δµ2 − 1

b22

]−1

, reff = − 1√
2δµ2

b2
22(

b12
√

2δµ2 − 1
)

2
, (314)
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where aeff and reff represent the effective scattering length and effective range, respectively. If the second threshold
is below the first one, i.e., δ < 0, the inelastic channel (the second channel) renders aeff a complex number. Another
interesting conclusion is reff < 0 if the second threshold is larger than the first one, i.e., δ > 0. In such a coupled-
channel system, the bound state is allowable by tuning the parameters, but with the negative effective range, which is
another example challenging the statement in Ref. [222].

Meanwhile, if aeff is unnaturally large, the long-range behavior only depends on aeff, which is the universality for
the coupled-channel system [965]. From the expression of aeff, one can see that the universality can be obtained by
fine-tuning either the interaction or the threshold difference of the two channels.

If there exists the bound state solution with E0 < 0, one can obtain the residues of the T -matrix (see Ref. [968] for
details),

lim
E→E0

(E − E0)t =
2π
µ2

[
γ1 cos2 θ

√
γ1γ2 sin θ cos θ√

γ1γ2 sin θ cos θ γ2 sin2 θ

]
, (315)

with limE→E0 κi ≡ γi, and tan2 θ ≡ b22γ1(b11γ1−1)
b11γ2(b22γ2−1) . The b12 is eliminated by setting D = 0. For convenience, we omit

the difference of two reduced masses and set µ1 = µ2 = µ. The coupling constants between the bound state and two
channels are

g1 =
4MT

√
πγ1√
µ

cos θ, g2 =
4MT

√
πγ2√
µ

sin θ. (316)

One can obtain similar results in quantum mechanics. The wave function of the bound states is

〈p|ψ〉 = c1φ1(p)|1〉 + c2φ2(p)|2〉, φi(p) = ξi
Θ(Λ − p)

E0 − p2

2µ − δi

, ξ2
i ≈

γi

4π2µ2 . (317)

Similar to the single-channel case, one gets

〈p, i|V̂ |ψ〉 = 〈p, i|H − H0|ψ〉 =

(
E0 − p2

2µ
− δi

)
〈p, i|ψ〉 = ciφi(p) = ciξiΘ(Λ − p). (318)

When one relates 〈p, i|V̂ |ψ〉 with giΘ(Λ− p), one can see that c1 = cos θ and c2 = sin θ. Therefore, the θ angle defined
in the quantum field theory language is just the mixing angle of the two channels.

5.2. XEFT

The XEFT is a nonrelativistic EFT to depict the long-range properties of the X(3872), in which the D∗0, D̄0 and
π0 are explicit degrees of freedom [963]. It is very similar to the KSW scheme for the NN system in Sec. 2.7.1. In
this section, we will take the X → D0D̄0π0 and D0D̄∗0/D∗0D̄0 scattering as examples to illustrate this formalism.

Figure 32: The one-pion exchange interaction for the D0D̄∗0/D∗0D̄0 scattering. The double (solid plus dashed) line denotes the D∗0/D̄∗0, while
the single solid and dashed lines denote the D0/D̄0 and π0, respectively.

For the D0D̄∗0/D̄0D∗0 scattering, the D∗0D0π0/D̄∗0D̄0π0 vertices contribute to the OPE interaction (see Fig. 32).
The mass splitting ∆ = MD∗0 − MD0 will enter the pion propagator. The static OPE potential is 15

15The fπ in Ref. [963] is different from that in this review by a factor
√

2.
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Table 6: Some scales associated with the X(3872). The T n = MD∗0 + MD0 and T c = MD∗+ + MD+ are the neutral and charged thresholds.
Emax
π0 = (M2

X − 4M2
D0 + m2

π0 )/(2MX) is the maximum energy of the pion in the X → D0D̄0π0 decay.

∆ = MD∗0 − MD0 = 142 MeV, mπ0 = 135 MeV

Energy scale
Ec

X ≡ T c − MX EX ≡ T n − MX δ = ∆ − mπ0 Emax
π0 − mπ0

8.4 MeV 0.2 MeV 7 MeV 6.6 MeV

Momentum

γc =
√

2µEc
X

∼ pD∗ ∼ pD

γ =
√

2µEX

∼ pD∗ ∼ pD

u =
√

∆2 − m2
π0

∼ √2mπ0δ

∼ pπ

pπ =
√

2mπ(Emax
π − mπ)

128 MeV 20 MeV 45 MeV 42 MeV

Velocity
vD(∗) =

pD(∗)
MD(∗) vD(∗) =

pD(∗)
MD(∗) vπ =

pπ
mπ

vπ =
pπ
mπ

0.06 0.01 0.32 0.31

Process − − OPE X → D0D̄0π0

g2
b

4 f 2
π

(q · ε′†)(q · ε)
q2 − u2 , (319)

where u2 is defined as u2 = ∆2 − m2
π0 . The above static propagator is an economy choice in most studies, but the cost

is the analytic structure of OPE is changed due to the omission of the energy term, see Sec. 5.5.1 for details.
In Table 6, we list the estimation of different scales associated with X(3872). One can see the momentum of the

D(∗)0 estimated by the binding momentum of the X(3872), the momentum of the π0 in the OPE and the X → D0D̄0π0

are all small scale. In comparison, the momentum associated with the charged channel is about 3 − 6 times larger.
Therefore, in the XEFT, the charged channel is integrated out. In fact, some KSW-type EFTs containing the charged
channel have been developed . In this review, we use the terminology “XEFT” to denote the EFT without the charged
channel as in the original paper [963]. Meanwhile, the ∆ and mπ0 are also large scales compared with u ∼ pπ. Thus,
in XEFT, the expansion is performed in the powers of pD ∼ pD∗ ∼ pπ ∼ u ∼ γ. We use Q to label these small scales.
The velocities of the explicit degrees of freedom, D0, D̄∗0 and π0 are much smaller than 1, thus they are all treated
nonrelativistically. The Lagrangians are constructed as follows (convention-II in Table A.11),

L = D∗† ·
i∂t +

~∇2

2mD∗

 D∗ + D†
i∂t +

~∇2

2mD

 D + D̄∗† ·
i∂t +

~∇2

2mD∗

 D̄∗ + D̄†
i∂t +

~∇2

2mD

 D̄

+π†
i∂t +

~∇2

2mπ
+ δ

 π +
gb

2 fπ

1√
2mπ

(
DD∗† · ~∇π + D̄† D̄∗ · ~∇π†

)
+ H.c.

−C0

2

(
D̄∗D + D∗D̄

)† · (D̄∗D + D∗D̄
)

+
C2

16

(
D̄∗D + D∗D̄

)† · (D̄∗(
←→∇ )2D + D∗(

←→∇ )2D̄
)

+ H.c.

+
B1√

2

1√
2mπ

(
D̄∗D + D∗D̄

)† · DD̄~∇π + H.c. + . . . , (320)

where
←→∇ =

←−∇ − −→∇. The power counting can be summarized as follows,

pD ∼ pD∗ ∼ pπ ∼ u ∼ γ ∼ Q, (321)

Propagators: ∼ 1
ED

/
1

ED∗
/

1
Eπ
∼ Q−2, (322)

Loop integrals: ∼ Q5, (323)
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Figure 33: Feynman diagrams in Ref. [969] for the D0D̄∗0/D∗0D̄0 scattering in the JPC = 1++ channel to NLO.

D∗0D0π0 vertex: ∼ Q, OPE interaction:
g2

b

4 f 2
π

q · ε′†q · ε
q2 − u2 ∼ Q0. (324)

Like the LO contact interaction in the KSW scheme, the NDA of C0 is 1/(MDΛ). However, for a system with
unnaturally large scattering length, the scale of C0 is 1/(MDQ) as shown in Table 2. One can find that

C0 =
2π
µDD∗

1
1
as
− µ , (325)

where µ is the renormalization scale in PDS, and µDD∗ is the reduced mass of the D0 and D̄∗0 pair. The corresponding
vertex is at the order of Q−1. An extra loop with an extra vertex C0 will introduce an extra factor at order 1 [Q5 ×
(Q−2)2 × Q−1 ∼ Q0] as shown in Sec. 2.7.1 (see Fig. 9). Therefore, the C0 should be resummed nonperturbatively. In
this unnatural case, the LEC C2 is at the order of Q−2 and the Lagrangian with the C2 term is at the order of Q0, which
is the NLO contribution as the OPE. The NLO and higher order vertices can be included perturbatively. It seems that
the XEFT should be different from KSW because the pion mass is treated as a large scale in XEFT. However, the u
is another small scale and serves as the similar role as the pion mass in the KSW framework. There also exists the
KSW-type EFTs containing the D∗D̄∗ system, where the pion mass is treated as a small scale as in Refs. [960, 522].
However, in this review, we restrict the terminology “XEFT” for the neutral D∗D̄ system without the D∗D̄∗ channel
as in the original paper of Fleming et al [963], which is extended to investigate the D∗D system at most.

With XEFT, one can calculate the D0D̄∗0/D∗0D̄0 scattering process (e.g., [969]). The Feynman diagrams up to
NLO are listed in Fig. 33. One can see that the C0 term is treated nonperturbatively, while the OPE and NLO contact
terms are calculated perturbatively. With the scattering amplitude, one can extract the coupling constants of the
X(3872) with D0D̄∗0/D∗0D̄0 by calculating the residue of the T -matrix as shown in Fig. 30(a).

The Feynman diagrams contributing to X → D0D̄0π0 is presented in Fig. 34. The diagram (a) contributes to the
LO decay widths. The circled cross represents the vertex (form factor) of XD∗D̄ and its charge conjugations, which
is obtained by iterating the C0 terms. The diagrams (b)-(g) contributing to the NLO. The pion vertices, C2 and B1 are
included as perturbation. The LEC B1 is at the same order of Q−2 as C2. The Cπ and C0D terms are omitted in the
original work of XEFT [963] and first pointed out in Ref. [11], which will be discussed in details in Sec. 5.5.4.

5.3. Chiral effective field theory

In Sec. 5.1, we have discussed the /πEFT, in which the pions are totally integrated out. In Sec. 5.2, we elucidated
the XEFT, in which the pions are treated perturbatively. Modern theory of nuclear forces (χEFT) is built upon the
Weinberg scheme (see Sec. 2.7), in which the pion is an explicit d.o.f and treated nonperturbatively. The EFTs
with different treatment of the pion are valid in different low energy scales [970, 644], see Sec. 5.5.1 for details. In
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(a) (b) (c) (d) (e) (f) (g)

Figure 34: Feynman diagrams for X → D0D̄0π0 up to NLO in XEFT. The circled cross represents the vertex (form factor)XD∗D̄ and its charge
conjugations.

this section, χEFT is generalized to heavy hadron systems combining both the chiral symmetry and the heavy quark
symmetry. The expansion parameter in this case is Q/Λ, where the corresponding low energy scale Q can be either the
pion mass mπ, the momentum of pion, or the residual momenta of heavy hadrons, while the high energy scale Λ can be
either the chiral symmetry breaking scale Λχ or the heavy hadron masses. As stated in Sec. 2.7, Weinberg’s proposal
is to extract the effective potentials from the two particle irreducible diagrams. The importance of the corresponding
irreducible diagrams is measured via the power counting given in Eq. (67). In this part, we take the DD̄∗/D̄D∗ system
as an example to illustrate the generalizations of χEFT in the heavy hadron systems.

5.3.1. Leading order interactions
According to the power counting in Eq. (67), the LO effective potentials of DD̄∗/D̄D∗ receive contributions from

the contact terms and one-pion exchange (OPE) interaction, see the diagrams in the first row of Fig. 35. For a more
concrete case, we consider the DD̄∗/D̄D∗ system with IG(JPC) = 1+(1+−) (C-parity for the neutral systems only),
which corresponds to the Zc(3900) with flavor wave function

|1+(1+−)
〉

=
1√
2

(DD̄∗ + D∗D̄), (326)

where the relative sign is determined by the convention ĈD∗ → −D̄∗ (convention-I in Table A.11). One can derive the
static OPE potential of this state with the LO chiral Lagrangians in Eqs. (123) and (124), which reads

VOPE = − g2
b

4 f 2
π

(q · ε)(q · ε′†)
q2 + m2

π

, (327)

with q = p − p′ the transferred momentum. p (p′) denotes the momentum of the initial (final) states in the center
of mass system (c.m.s). ε (ε′†) is the polarization vector of the initial (final) D∗ or D̄∗ meson. Besides, the Breit
approximation V = −M/

√
Πi2miΠ f 2m f [mi (m f ) stands for the mass of initial (final) state] has been used to relate

the effective potentialV to the scattering amplitudeM [971]. Note that the term p0 − p′0 ≈ mD∗ −mD = δb is ignored
in the denominator of Eq. (327). One recovers the structure of Eq. (319) once the mass difference is considered.

In Refs. [972, 973], the time-ordered perturbation theory (TOPT) (see [974, 975] for the details of the Feynman
rules in TOPT) is adopted to derive the nonstatic (energy dependent) OPE potential. Two typical contributions are
shown in Figs. 36(a) and 36(b), which read

V (a)
OPE = − g2

b

4 f 2
π

(q · ε)(q · ε′†)
2Eπ(Eπ + ED∗ + ED̄∗ − E − iε)

, (328)

V (b)
OPE = − g2

b

4 f 2
π

(q · ε)(q · ε′†)
2Eπ(Eπ + ED + ED̄ − E − iε)

, (329)

where

Eπ =

√
q2 + m2

π, Ei = mi +
p2

i

2mi
, (i = D∗, D̄∗,D, D̄), (330)

and E represents the total energy of the system.
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Figure 35: The LO, NLO and N2LO Feynmann diagrams of the DD̄∗/D̄D∗ scatterings in χEFT, where the double (solid plus dashed) line denotes
the D∗/D̄∗, while the single solid line and dashed line denote the D/D̄ and pion, respectively. The small dot (‘•’) denotes the LO vertex, such
as the vertices in Lagrangias (331), (123) and (124). The vertex denoted by black square (‘�’) in diagram (b1) comes from the NLO contact
Lagrangian (335). The large dot (‘•’) denotes the NLO vertex, such as the two-pion coupling vertices in (e1) − (e4) and (g1) − (g7) from the NLO
Lagrangian (344), and vertices in diagrams (f1) − (f3) from the Lagrangian (345). The diagrams (b2) − (b15) represent the one-loop corrections to
LO contact term, while the diagrams (c1) − (c12) are the one-loop corrections to OPE.
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Figure 36: The OPE diagrams for the DD̄∗/D̄D∗ scattering in time-ordered perturbation theory. The notations are the same as those in Fig. 35. The
red-dashed horizontal line indicates the time at which the intermediate state is evaluated. In diagrams (a) and (b), the propagators are retarded and
advanced ones, respectively. The corresponding intermediate states in diagrams (a) and (b) are D∗D̄∗π and DD̄π, respectively.

If we only focus on the SU(2) case [see Ref. [976] for the SU(3) case], the LO contact potential is obtained from
the following Lagrangian without derivatives [976, 977, 978],

L(0)
ct = Da

〈 ¯̃HH̃〉〈HH̄〉
+ Db

〈 ¯̃Hγµγ5H̃〉〈Hγµγ5H̄〉
+Ea

〈 ¯̃HτiH̃〉〈HτiH̄〉
+ Eb

〈 ¯̃Hγµγ5τiH̃〉〈Hγµγ5τiH̄〉
, (331)

where Da, Db, Ea and Eb are four LECs. The τi is the isospin Pauli matrix. There are other forms of couplings such
as

〈 ¯̃HγµH̃〉〈HγµH̄〉
, which is equal to

〈 ¯̃HvµH̃〉〈HvµH̄〉
with heavy field reduction and is absorbed by adjusting the

Da. The term
〈 ¯̃Hγ5H̃〉〈Hγ5H̄〉

vanishes in the heavy quark limit. The remaining terms
〈 ¯̃HσµνH̃〉〈HσµνH̄〉

and〈 ¯̃Hσµνγ5H̃〉〈Hσµνγ5H̄〉
can also be absorbed by adjusting the Db (see the properties of the gamma matrices under

the heavy field reduction in Ref. [477]).
It is worth mentioning that the contact Lagrangians introduced here as well as those in Secs. 5.1 and 5.2 should be

regarded as the parameterization of the dynamics that occur at the scale which is much shorter than the scale we are
working, but they are not the true zero-range interaction, e.g., see the discussions in Ref. [979], which implies that the
regularization is necessary from the outset.

With the Lagrangian (331), the LO contact potential of the state (326) is

V (0)
ct = (−Da − Db + Ea + Eb)ε · ε′†, (332)

where the LECs may be separately determined either by fitting the experimental data or from the phenomenological
meson exchange model such as the resonance saturation model (RSM) [599, 980].

Here, we append a brief introduction to the RSM. The basic idea of RSM is to localize the resonance-exchange
contribution if one is interested in the region q2 � m2

e , e.g., see the illustration in Fig. 37. The exchanged resonances
may contain many types with different quantum numbers, such as the scalar (s), pseudoscalar (p), vector (v), axial-
vector (a), and tensor (t), etc. We take the NN interaction as an example. Within the framework of the one-boson
exchange (OBE) model, the effective potential of NN can be written as

VNN = Vπ +
∑

e=s,p,v,a,t

Ve, (333)

where Vπ denotes the one-pion exchange contribution, which is usually regarded as the long-range force both in the
OBE model and the χEFT. In the region q2 � m2

e , one can make the following expansion for Ve,

Ve = (N̄ΓiN)
(

g2
eδ

i j

q2 − m2
e

)
(N̄Γ jN) = − g2

e

m2
e

[
(N̄ΓiN)(N̄ΓiN) +

q2

m2
e

(N̄ΓiN)(N̄ΓiN) + . . .

]
, (334)

where ge, q and me denote the coupling constant, the transferred momentum and the mass of the exchanged resonance
in order. Γi are the projectors on the appropriate quantum numbers for a given resonance exchange. From Eq. (334),
the interaction is changed into the contact form in the soft-momentum approximation. One then can estimate the LECs
via comparing the structures in Eq. (334) and those from the contact chiral Lagrangians. The LECs estimated with
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the RSM in the meson-meson [599], meson-baryon [981], and baryon-baryon [980] sectors are close to the values
determined from the experimental data. The RSM is also applied to the heavy-heavy sectors [291, 329, 897]. One
should note that the RSM can work only for a certain range of regulators. For example, the momentum cutoff for the
OBE potentials in the NN case is in the range 1 − 2 GeV, while it is commonly around 0.5 GeV for the chiral NN
potentials [980]. Therefore, though one may use the RSM to estimate the LECs in EFTs, one should consistently use
the cutoff constrained by the validity of the EFTs rather than that of the OBE model.

Figure 37: An illustration of the resonance saturation model. The wiggly line denotes the exchanged resonances. The circle and square blobs
represent the contact vertices with zero and two derivatives, respectively. The ellipsis stands for the higher order terms (with more derivatives).

5.3.2. Next-to-leading order interactions
The NLO interactions can be divided into four parts. The first part is the one-loop corrections to the LO OPE

[see Figs. 35(c1)-(c12)], which include the corrections to the D∗Dπ vertex, the renormalizations of the wave functions
of the pion and D mesons. The second part arises from the one-loop corrections to the LO contact diagrams [see
Figs. 35(b2)-(b15)]. These two contributions have been systematically considered for the DD∗ [268], BB∗[812] and
ΣcN [982] systems. Partial diagrams were also calculated for the X(3872) [983] (see the criticisms in Ref. [984]).
However, these two parts do not induce new structures. Thus, if one does not care about the mπ dependence of the
DD̄∗ forces, their contributions can be included by using the physical values of mπ, gb, fπ, mD, mD∗ and the LO
contact LECs (see also the discussions on the one-loop corrections in the NN cases [985, 475, 476], and the possible
appearance of Goldberger-Treiman discrepancy at this order [986]).

The third part comes from the NLO contact Lagrangian [see diagram 35(b1)], which carries two derivatives or has
an insertion of the light quark mass terms,

L(2)
ct =

4∑
i=1

DµDµ〈 ¯̃HOiH̃〉〈HOiH̄〉 +
6∑

i=5

DµDν〈 ¯̃HOµ
i H̃〉〈HOiνH̄〉 +

4∑
i=1

χ〈 ¯̃HOiH̃〉〈HOiH̄〉, (335)

where the Oi are defined as O1 = I,O2 = γµγ5,O3 = τi,O4 = γµγ5τi,Oµ
5 = γµγ5,Oµ

6 = γµγ5τi. The two covariant
derivatives terms stand for the following allocations,

DµDµ〈 ¯̃HOiH̃〉〈HOiH̄〉 ≡ Cd
i1

(
〈Dµ

¯̃HH̃〉〈HDµH̄〉 + 〈 ¯̃HDµH̃〉〈DµHH̄〉
)

+Cd
i2

(
〈Dµ

¯̃HH̃〉〈DµHH̄〉 + 〈 ¯̃HDµH̃〉〈HDµH̄〉
)

+Cd
i3

(
〈D2 ¯̃HH̃〉〈HH̄〉 + 〈 ¯̃HD2H̃〉〈HH̄〉

)
+Cd

i4

(
〈 ¯̃HH̃〉〈D2HH̄〉 + 〈 ¯̃HH̃〉〈HD2H̄〉

)
+Cd

i5

(
〈Dµ

¯̃HDµH̃〉〈HH̄〉 + 〈 ¯̃HH̃〉〈DµHDµH̄〉
)
. (336)

The χ〈 ¯̃HOiH̃〉〈HOiH̄〉 terms are the m2
π related terms, allowing the following forms

χ〈 ¯̃HOiH̃〉〈HOiH̄〉 ≡ Cχ
i1〈 ¯̃HOiH̃〉〈HOiH̄〉Tr(χ+) + Cχ

i2〈 ¯̃H χ̂+OiH̃〉〈HOiH̄〉 + Cχ
i3〈 ¯̃HOiH̃〉〈H χ̂+OiH̄〉, (337)

where χ̂+ = χ+ − 1
2 Tr(χ+) in the SU(2) case. These terms can be absorbed into the LO contact interaction, if one does

not care about the pion mass dependence.
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Similar to the NN case [987], it is more convenient to extract the operator structures of the DD̄∗/D̄D∗ interactions
in momentum space. There are four independent operators for the DD̄∗/D̄D∗ system [988],

O1 = ε′† · ε, O2 = (ε′† × ε) · (q × k),

O3 = (q · ε′†)(q · ε), O4 = (k · ε′†)(k · ε), (338)

with k = (p′ + p)/2 the average momentum. A similar term [ε′† · (q× k)][ε · (q× k)] contributes to the N3LO (or even
higher order) potentials [987]. Note that the remaining two terms (q× ε′†) · (q× ε) and (k× ε′†) · (k× ε) in Ref. [988]
are not independent since (q × ε′†) · (q × ε) = q2(ε′† · ε) − (q · ε′†)(q · ε). With the operators in Eq. (338), the NLO
contact potential of the state (326) can be parameterized as follows,

V (2)
ct = (C1q2 + C2 k2)O1 +

4∑
i=2

Ci+1Oi, (339)

in which the m2
π related terms are omitted. The Cis are the linear combinations of the LECs in Eq. (335). An additional

term C6m2
πO1 should be added into Eq. (339) if one is interested in the mπ dependence, see e.g., [969, 989, 990, 982,

991]. The V (2)
ct only contributes to the S - and P-wave interactions. The D-wave interaction needs contact terms at

least at O(p4) [476]. Projecting the V (2)
ct into S -wave (considering the S - and D-wave mixing) with the partial wave

decomposition (PWD) [992], one obtains

[V (2)
ct ]LL′ =

[
V3S 1 V3S 1−3D1

V3D1−3S 1 V3D1

]
=

[
C̃s + Cs(p2 + p′2) Csd p2

Csd p′2 0

]
, (340)

where

C̃s = 4π(−Da − Db + Ea + Eb),

Cs = π(4C1 + C2 +
4
3

C4 +
1
3

C5),

Csd = −
√

2
3
π(4C4 + C5). (341)

The C3 does not appear in Eq. (341). Because the related operator O2 is responsible for the spin-orbit (S -L) coupling,
which vanishes in the S -wave (L = 0) case. In performing PWD, the polarization vectors ε and ε′† are related
to the conventional spin operators of the vector particles with the spin transition operators (see the Appendix C of
Ref. [364]).

The fourth part of the NLO effective potential originates from the two-pion exchange (TPE) diagrams [see
Figs. 35(d1)-(d10)], in which the one-pion and two-pion coupling vertices are governed by the axial coupling terms
and chiral connections of the LO Langrangians (123) and (124), respectively. The TPE contributions up to NLO have
been considered for heavy hadron systems in a series of works [976, 983, 268, 812, 355, 364, 993, 994, 982, 417,
93, 988, 312, 453, 995]. These systems will be discussed later. The planar box diagram 35(d6) contains the 2PR
component (see the definitions about 2PR and 2PIR in Sec. 2.7), which can also be generated from the iterated OPE
when the OPE potential is fed into the nonrelativistic Lippmann-Schwinger equation via

V it
d6

(p, p′) =

∫
d3q

(2π)3 VOPE(p, q)
2µDD∗

p2 − q2 + iε
VOPE(q, p′). (342)

The V it
d6

is proportional to the reduced mass of DD̄∗, thus it breaks the naive power counting in Eq. (67). Therefore,
one needs to subtract the 2PR contribution in Vd6 , which can be done with the old-fashioned TOPT [996, 653] or
the covariant perturbation theory [651]. In the Appendix B of Ref. [364], the authors demonstrated another trick to
make the 2PR subtraction with the mass splitting δb kept, which is based on the principle-value integral within the
framework of covariant perturbation theory. Notably, the 2PR contribution also emerges in the one-loop corrections
of the LO contact term, e.g., diagrams 35(b9) and 35(b11), which can be easily seen via replacing one of the VOPEs in
Eq. (342) with the LO contact potential (332).
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For the graphs 35(d5), 35(b10) and 35(b12), there is no pinched singularity if one keeps the mass splittings of
the intermediate states and outer legs. One can choose either to not perform 2PR subtraction or perform the 2PR
subtraction with the inclusion of the inelastic channel DD̄∗ ↔ D∗D̄∗ in the LO tree diagrams. In the first choice, the
coupled-channel effect of D∗D̄∗ is included via loop diagrams while in the second choice the coupled-channel effect
is included by iterating the tree diagrams.

In strict heavy quark symmetry limit, i.e., mQ → ∞, the exact HQSS guarantees δb → 0. Then the 2PIR TPE
potential at NLO can be formulated in a compact form [988],

VTPE = −O1
24(4g2

b + 1)m2
π + (38g2

b + 5)q2

2304π2 f 4
π

+ O1
6(6g2

b + 1)m2
π + (10g2

b + 1)q2

768π2 f 4
π

ln
m2
π

(4π fπ)2

+O1
4(4g2

b + 1)m2
π + (10g2

b + 1)q2

384π2 f 4
π y

$ arctan
y
$
, (343)

where $ =
√

q2 + 4m2
π, and y =

√
2pp′ cosϑ − p2 − p′2 (with p(′) = |p(′)|, and ϑ the scattering angle in the c.m.s of

DD̄∗). The O2,...,4 terms vanish and only the central potential, i.e., the O1 term survives [355].

5.3.3. Next-to-next-to-leading order interactions
The N2LO interactions of the DD̄∗/D̄D∗ system are composed of three types of diagrams [see Figs. 35(e1)-(e4),

(f1)-(f3) and (g1)-(g7)] due to the absence of the four-body contact Lagrangians at this order. In these diagrams, the
following subleading vertices [997, 998, 471, 618] are inserted,

L(2)
Hϕ = c̃1

〈HH̄〉
Tr(χ+) + c̃2

〈HuµuνvµvνH̄〉
+ c̃3

〈HuµuµH̄〉
+ic̃4

〈H[uµ, uν]σµνH̄〉
+ c̃5

〈H χ̂+H̄〉
, (344)

L(1)
HHϕ = d̃1

〈 ¯̃HH̃〉〈H/uγ5H̄〉
+ d̃2

〈 ¯̃H/uγ5H̃〉〈HH̄〉
, (345)

where the c̃i and d̃i are corresponding LECs. One can accordingly obtain the L(2)
H̃ϕ for the anticharmed ones (see

Sec. 2.6.1). Eq. (344) contributes to diagrams 35(e1)-(e4), (g1)-(g7), and Eq. (345) contributes to diagrams 35(f1)-(f3),
respectively.

The subleading NNππ couplings can be extracted [998, 981, 999, 1000] with the benefit of abundant πN scattering
data [1001, 1002], while for theHHππ (H̃H̃ππ) couplings, only a few terms in Eq. (344) were estimated for specific
problems [39, 37, 763, 877, 879, 882, 583, 51, 53, 901, 895], or see discussions in Sec. 4.2.

It is pointed out that calculating the TPE loop diagrams with dimensional regularization induces unphysically
attractive forces in the isospin scalar NN channel [1003, 1004], which results from the heavily involved higher mo-
mentum modes of the intermediate states. An alternative approach, the spectral function regularization (SFR), was
adopted to calculate the TPE contributions [1003, 1004], in which a cutoff Λ̃ (usually chosen to be 0.5 < Λ̃ < 1.0
GeV) is used in the dispersion relation to suppress the high momentum modes and restrict the potentials in the low-
energy region where χEFT works healthily (see more details in [985]). Recently, in the new generation of nuclear
force, the local or semi-local regularization is adopted for the pion exchange contributions [646, 645], which resolves
all the issues mentioned above.

At present, the N2LO TPE potentials for the DD∗ system have been attained in Ref. [291]. The higher order
contributions, such as the three-pion exchange interactions are still absent. However, they deserve the systematical
studies in the future since they are crucial for us to establish a uniform picture between the nuclear forces and their
analogues in the heavy hadron sectors.

5.3.4. Nonperturbative renormalizations
We have handled the regularization of the loop diagrams in deriving the effective potentials above. The potentials

will be iterated into the LSEs to generate the possible molecular states in the DD̄∗/D̄D∗ system. Once again, one needs
to impose regularization on LSEs to suppress the higher momentum contributions [655]. In addition, regularizing the
LSEs is also required from the outset—the contact interaction is used to mimic (model) the short-distance physics
but not the incarnation of the idealized zero-range forces [979]. The renormalization of the Weinberg scheme is not
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as transparent as that of the KSW scheme but has been proved more practical in the NN systems (see discussions in
Sec. 2.7). In practical calculations, the LSEs is regularized by multiplying a form factor on the potentials, i.e.,

V(p, p′)→ V(p, p′)F (p, p′,Λ), (346)

where the regulator F (p, p′,Λ) is usually chosen to be the Gaussian form

F (p, p′,Λ) = exp
[
−

( p
Λ

)2n
−

( p′

Λ

)2n]
, with n ≥ 1, (347)

or the hard cutoff form

F (p, p′,Λ) = Θ(Λ − p)Θ(Λ − p′), with Θ the step function, (348)

in which Λ is the cutoff parameter.
The value of Λ is constrained in the applicable region of χEFT (such as Λ ∼ 0.5 GeV in the NN case). Putting

the Λ beyond the breaking scale of χEFT may render the results uncontrollable and lose its predictive power. Here,
we adopt the elucidations of nonperturbative renormalizations in Refs. [655, 476], which are based on the spirit of
Lepage [1005]: As long as the cutoff pertains to the working region of χEFT and the associated errors induced by
its finite value are within the theoretical uncertainty at the given order, the χEFT gradually achieves ‘nonperturbative
renormalization’ when the calculation is put to higher orders and the resulting physical observables become more and
more insensitive to the different values of the cutoff, e.g., see the performance of nuclear forces [1006, 648].

5.4. Heavy quark symmetry and SU(3) flavor symmetry in heavy hadronic molecules

One prominent feature of the interactions in the heavy hadron systems is the embedding of heavy quark symmetry
and light quark flavor symmetry simultaneously. In the light-meson-exchange picture, the interactions between the
heavy hadrons are mediated by exchanging the soft light mesons [roughly the SU(3) flavor multiplets], which do
not depend on the heavy quark masses and spins in the heavy quark limit. The interactions constrained by HQS and
SU(3) flavor symmetry are reflected in the spectrum of the heavy hadronic molecules. With these symmetries, one can
make abundant predictions with a few inputs. In the following, we take the S -wave B(∗)B̄(∗) system as an example to
illustrate the HQS and SU(3) light flavor symmetry in the heavy hadronic molecules. The possible symmetry breaking
effects are also discussed.

In the SU(3) flavor symmetry limit and the heavy quark limit, the di-meson spectrum is classified by the irreducible
representation of SU(3) group and the total spin of the light d.o.fs. In the spin space, the total angular momentum
of the B(∗)B̄(∗) system can be J = 0, 1, 2 if the S-wave orbital angular momentum is presumed. One can make the
following decomposition for J, 

J = 0, BB̄, B∗B̄∗

J = 1, BB̄∗(B∗B̄), B∗B̄∗

J = 2 B∗B̄∗
. (349)

For the BB̄∗(B∗B̄) system, one can define the C parity even and C parity odd basis as [C parity for the neutral ones in
the following]

C parity even :
1√
2

(BB̄∗ − B∗B̄), (350)

C parity odd :
1√
2

(BB̄∗ + B∗B̄), (351)

in which the convention ĈB∗ → −B̄∗ is implied (convention-I in Table A.11). For the B̄(∗) and B(∗) mesons, we
denote the spins of the mesons as the sum of the internal heavy quark and light quark as j1(B̄(∗)) = s1(b) + `1(q̄),
j2(B(∗)) = s2(b̄) + `2(q). In the strict HQSS, it is more convenient to use the basis |`1`2S `, s1s2S h; JM〉, where the
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Figure 38: The SU(3) flavor multiplets with the strict flavor symmetry. We use red and blue to label the state with one and two (anti)strange quark,
respectively.

heavy spin, light spin and total spin are defined as Sh = s1 + s2, S` = `1 + `2, J = j1 + j2 = Sh + S`. Since the
interaction does not depend on the Sh, the hadronic molecules form two multiples labeled by the S `,

S ` = 0 :
{
|0−+

h ⊗ 0−+
` , 0++〉, |1−−h ⊗ 0−+

` , 1+−〉
}
,

S ` = 1 :
{
|0−+

h ⊗ 1−−` , 1+−〉, |1−−h ⊗ 1−−` , 0++〉, |1−−h ⊗ 1−−` , 1++〉, |1−−h ⊗ 1−−` , 2++〉
}
. (352)

The above discussion in the spin space can be extended to the system with strange (anti)quark in the strict SU(3) flavor
symmetry. The Eqs. (350) and (351) are also the states with fixed G parity once their isospin were determined. For the
systems with (anti)strange quark, one can introduce GU/V parities to label the B∗s B̄/BsB̄∗ states [311]. With the strict
SU(3) flavor symmetry, the B(∗)

(s) B̄
(∗)
(s) will form two multplets 8F and 1F as shown in Fig. 38. With the strict HQSS and

SU(3) flavor symmetry, the interaction of qq̄ can be parameterized as

Vqq̄ = c1 + c2`1 · `2 + c3C2 + c4(`1 · `2)C2. (353)

C2 = −∑8
i=1 λ

i
Fλ

i∗
F is the Casimir operator in the flavor space. There are four independent operators in spin and flavor

space in the symmetry limits.
Apart from the interaction terms, the mass terms will violate the symmetries. There are two related mass splittings

[see also Eqs. (61) and (62)],

mB(∗)
s
− mB(∗) ' 90 MeV, mB∗(s)

− mB(s) ' 45 MeV, (354)

which break the SU(3) symmetry and HQSS, respectively. For the near-threshold states, the interaction is weak
compared to the above mass splittings. Although we can still assume the interactions satisfy the symmetries, in
Eq. (353), the mass splitting in the Eq. (354) will separate the di-meson systems into several blocks.

spin space: {B(s)B̄(s)}, {B(s)B̄∗(s)/B∗(s)B̄(s)}, {B∗(s)B̄
∗
(s)},

flavor space: {B̄(∗)B(∗)}, {B(∗)
s B̄(∗)}, {B̄(∗)

s B(∗)}, {B(∗)
s B̄(∗)

s }. (355)

The mixing between states in different blocks is suppressed by the mass splittings in Eq. (354). In fact, it is shown to
be suppressed by at least two orders in EFT power counting in Ref. [978]. Thus, we need only focus on the mixing
effect inside each block.

The two particle basis in Eq. (349) can be expanded with the HQSS basis |S h ⊗ S `〉 via the 9 j symbols, if the
orbital angular momentum L = 0 is presumed. Then we have [1007][ |BB̄〉

|B∗B̄∗〉
]

0++

=

 1
2

√
3

2

−
√

3
2

1
2

 [ |0−+
h ⊗ 0−+

` 〉
|1−−h ⊗ 1−−` 〉

]
, (356)
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Figure 39: The order of the six D̄(s)(∗) D(∗)
(s) states according to interaction in Eqs. (360)-(365). The arrows indicates that the interaction becomes

more attractive or repulsive according to the sign of c̃2.

| 1√
2

(BB̄∗ − B∗B̄)〉1++ = −|1−−h ⊗ 1−−` 〉, (357)[ | 1√
2
(BB̄∗ + B∗B̄)〉
|B∗B̄∗〉

]
1+−

=

 1√
2
− 1√

2
− 1√

2
− 1√

2

 [ |1−−h ⊗ 0−+
` 〉

|0−+
h ⊗ 1−−` 〉

]
, (358)

|B∗B̄∗〉2++ = −|1−−h ⊗ 1−−` 〉, (359)

where the subscripts at the left hand side denote the JPC of the B(∗)B̄(∗) system, which are expressed by S PhCh
h ⊗ S P`C`

`
.

One can also include the G parity, such as |B∗B̄∗〉0+(2++) = −|0−(1−−h ) ⊗ 0−(1−−` )〉, and |B∗B̄∗〉1−(2++) = −|0−(1−−h ) ⊗
1+(1−−` )〉.

The simultaneous conservation of J and Sh means that the S` is also a conserved quantity. Therefore, the interac-
tion is largely simplified for an effective Hamiltonian Ĥeff ≡ c̃1 + c̃2`1 · `2 that satisfies the HQS. The conservation of
S` requires

Cα0 = 〈S h ⊗ 0;α|Ĥeff |S h ⊗ 0;α〉 = c̃1 − 3
4

c̃2, (360)

Cα1 = 〈S h ⊗ 1;α|Ĥeff |S h ⊗ 1;α〉 = c̃1 +
1
4

c̃2, (361)

where Cα0 and Cα1 (α denotes the other conserved quantities, such as the isospin) are the corresponding LECs in the
S ` = 0 and S ` = 1 sectors, respectively. Then the effective potentials read

Vα
0++ =

 1
4 (Cα0 + 3Cα1 )

√
3

4 (−Cα0 + Cα1 )√
3

4 (−Cα0 + Cα1 ) 1
4 (3Cα0 + Cα1 )

 =

 c̃1

√
3

4 c̃2√
3

4 c̃2 c̃1 − 1
2 c̃2

 , (362)

Vα
1+− =

[ 1
2 (Cα0 + Cα1 ) 1

2 (−Cα0 + Cα1 )
1
2 (−Cα0 + Cα1 ) 1

2 (Cα0 + Cα1 )

]
=

[
c̃1 − 1

4 c̃2
1
2 c̃2

1
2 c̃2 c̃1 − 1

4 c̃2

]
, (363)

Vα
1++ = Cα1 = c̃1 +

1
4

c̃2, (364)

Vα
2++ = Cα1 = c̃1 +

1
4

c̃2. (365)

An equivalent description is performed through the superfield representations, e.g., see Refs. [1008, 1009, 1010]. Here
we demonstrate Eqs. (364) and (365) by expanding the LO Lagrangian (331),

Vα
1++ = (−Da + Db + Ea − Eb)ε′† · ε, (366)

Vα
2++ = (Ea − Da)(ε† · ε)(ε′† · ε′) + (Eb − Db)

[
(ε′ · ε)(ε′† · ε†) − (ε′† · ε)(ε† · ε′)

]
, (367)

where α = 1. One can easily verify that Vα
1++ = Vα

2++ with the substitution ε′† · ε → 1, (ε† · ε)(ε′† · ε′) → 1,
(ε′ · ε)(ε′† · ε†)→ (S1 · S2)2 − 1, (ε′† · ε)(ε† · ε′)→ S1 · S2 + (S1 · S2)2 − 1, where S1 and S2 denote the spin operators
of the B∗ and B̄∗, respectively.

Since the mixing effect induced by the off-diagonal terms in Eqs. (362)-(365) is suppressed, we only focus on the
diagonal terms. In the parameterization with c̃1 and c̃2, the interactions for the six states have the same coefficient of
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c̃1 and are arranged in order of c̃2 in Fig. 39. The trivial prediction in the heavy quark symmetry is the existence of the
[D∗D̄∗]2++

molecule state whose interaction is the same as that of the X(3872). In addition, if there exists any other
bound state with the binding energy larger than that of the X(3872) among the other four channels, one can naturally
expect the existence of all the six molecular states [1009, 1011]. The arrow in Fig. 39 indicates the more attractive
trend. See more related discussions in Refs. [1012, 1013, 1014, 1015, 257, 1016, 1017, 1018, 1019, 1020, 1021, 1022,
1023].

The above formalism can be extended to the other systems, such as the Σ
(∗)
c D̄(∗). In this case,

I = α :


J = 1

2 , ΣcD̄,ΣcD̄∗,Σ∗cD̄∗

J = 3
2 , ΣcD̄∗,Σ∗cD̄,Σ∗cD̄∗

J = 5
2 , Σ∗cD̄∗

, (368)

where α = 1/2, 3/2. The two particle basis can then be expanded with the HQSS basis as

 |ΣcD̄〉
|ΣcD̄∗〉
|Σ∗cD̄∗〉


J= 1

2

=


1
2 − 1

2
√

3

√
2
3

− 1
2
√

3
5
6

√
2

3√
2
3

√
2

3 − 1
3



|0h ⊗ 1

2 `〉
|1h ⊗ 1

2 `〉
|1h ⊗ 3

2 `〉

 , (369)

 |ΣcD̄∗〉
|Σ∗cD̄〉
|Σ∗cD̄∗〉


J= 3

2

=


1
3 − 1√

3

√
5

3

− 1√
3

1
2

1
2

√
5
3√

5
3

1
2

√
5
3

1
6



|1h ⊗ 1

2 `〉
|0h ⊗ 3

2 `〉
|1h ⊗ 3

2 `〉

 , (370)

|Σ∗cD̄∗〉J= 5
2

= |1h ⊗ 3
2 `
〉. (371)

Similarly, there are two independent LECs,

Cα1/2 = 〈S h ⊗ 1
2

;α|Ĥeff |S h ⊗ 1
2

;α〉, (372)

Cα3/2 = 〈S h ⊗ 3
2

;α|Ĥeff |S h ⊗ 3
2

;α〉. (373)

It is straightforward to obtain the effective potentials Vα
1/2, Vα

3/2 and Vα
5/2, see details in Ref. [411]. The related SU(3)

flavor symmetry was investigated in Ref. [1024].

5.5. X(3872) and T +
cc states

There is no doubt that X(3872) is the superstar in the exotic hadron family. In this section, we will review the
theoretical progress of the X(3872) and its analogue T +

cc as the hadronic molecules in EFTs.

5.5.1. Methodology
We will first review some characters of the X(3872) and T +

cc from the theoretical perspectives. These characters
will hint which kind of EFT is suitable for the X(3872) and T +

cc states. In Fig. 40, we summarize the valid scales and
relevant d.o.fs of different EFTs for the X(3872). The details are as follows.

• Molecular interpretation. There are different interpretations for the X(3872), e.g., the molecular picture [1025,
1026, 1027, 266], compact tetraquark state [66, 1028], radial excitation of the charmonium [1029, 1030], etc..
Naturally, one can blend the above mentioned pictures, e.g., the coupled-channel picture of the cc̄ and di-meson
d.o.fs [1031, 1032, 1033, 1034, 1035, 568, 1036]. We refer to Refs. [6, 9, 14] for general reviews and Ref. [1037]
for the specialized review of the X(3872) as a molecule. The evidences supporting the molecular interpretation
of X(3872) include its mass coinciding with the D0D̄∗0/D∗0D̄0 threshold mD0 + mD∗0 − mX(3872) = (0.00 ± 0.18)
MeV and large branching ratio of R[X(3872)→ (D0D̄0π0, D̄∗0D0)] ≈ 80% [1]. In this section, we focus on the
molecular picture, which suits to be depicted in the EFT at the hadronic level. For the EFT at the quark-gluon
level, e.g., Born-Oppenheimer EFT, we refer to Ref. [14] for reviews.
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Figure 40: The validity range of the EFTs for the X(3872). We here choose the D0D̄∗0/D∗0D̄0 threshold as the baseline. For simplicity, we use
the “invalid energy range or scale” to denote the scale where the EFT breaks down. For the X(3872), the invalid energy range of the EFTs without
considering the three-body dynamics, pionless EFTs (conditionally valid), EFTs with only the neutral channel, EFTs with the perturbative pion
and EFTs with the nonperturbative pion are given in order. The three-body dynamics should be considered from the D0D̄∗0/D∗0D̄0 threshold,
because the D0D̄0π0 threshold is below it. Therefore, the pionless EFTs cannot work rigorously without considering the three-body effect. If one

treats the D∗0 as a stable state, the pionless EFTs will be valid conditionally up to the scale |u| =
√
|m2
π − (MD∗ − MD)2 |. The invalid scale of the

EFTs with only the neutral channel is estimated by the momentum corresponding to the threshold difference. In the figure, Tc, Tn and µ are the
charged threshold, neutral threshold and reduced mass, respectively. The invalid scale of the perturbative pion is from Ref. [978]. The EFTs with
the nonperturbative pion (e.g., the χEFT) will be valid to the chiral breaking scale Λχ.

• Universality. As shown in Fig. 41, the X(3872) is below the D0D̄∗0/D∗0D̄0 threshold about 0.2 MeV. The T +
cc

is below the D∗+D0 threshold about 0.3 MeV. If we regard the X(3872) or T +
cc as the bound state of the related

particles, the binding energy is unnaturally small as compared to the typical scale m2
π/(2µDD∗ ) ∼ 10 MeV. The

shallow S -wave bound state indicates the unnaturally large scattering length as compared to 1/mπ, and the low-
energy universality. The universality motivated numerous works based on LO contact interaction to depict the
long-range dynamics of the X(3872), e.g., [961, 1031, 965]. However, the universality is a two-edged sword,
which makes the long-range dynamics only depend on one parameter (binding-energy or scattering length),
and also makes the mechanism of forming the X(3872) hard to be detected. As pointed out in Ref. [1031],
there are two fine-tuning mechanisms to form the X(3872), the fine-tuning of the D0D̄∗0/D∗0D̄0 interaction
and reduced mass to form a loosely bound state, and the fine-tuning of the P-wave charmonium, i.e., χc1(2P),
to the proximity of the D0D̄∗0/D∗0D̄0 threshold. It is worthwhile to stress that in the latter mechanism, the
cc̄ component plays a crucial role to form the X(3872) but its proportion could be very small (suppressed by
1/as). In order to discriminate the two mechanisms, one has to detect the dynamics beyond the “universal”
region—tens of MeV from the threshold. In Ref. [570], Artoisenet et al proposed an EFT mixing the zero-
range amplitude and Flatté scattering amplitude [1038, 568] to discern the two different mechanisms from the
line shape.

• Pion-exchange interaction. The OPE interaction in the DD̄∗/D∗D̄ and D∗D systems only allows the D∗Dπ/D̄∗D̄π
vertex as shown in Fig. 32. The mass difference of the D∗ and D will appear in the propagator of the pion as

(q2 − m2
π)
−1 =

[
(ED∗ − ED)2 − (q2 + m2

π)
]−1 ≈

[
(MD∗ − MD)2 − (q2 + m2

π)
]−1 ≡ −(q2 + ũ2)−1, (374)

where the energy dependence other than the mass splitting of the D∗ and D is neglected (static approximation).
ũ ≡ √

m2
π − (MD∗ − MD)2 is introduced as the effective mass in the propagator. The values ũ for the states with

different charges are given in Table 7. If we use ũ as a natural scale to estimate the natural binding energy, the
result is 0.3−1.0 MeV. Among them, the D∗0D0π0 one is about 1.0 MeV. The estimation hints that the convergent
range of the /πEFT is p < |ũ| ∼ 44.12 MeV rather than p < mπ. The universality is valid in a smaller range.
Therefore, the OPE interaction is needed to exploit the larger-range dynamics, e.g., in [963, 597]. It should be

96



stressed that for the T +
cc and X(3872), the lowest relevant two-body thresholds are above some DDπ or DD̄π

three-body thresholds as shown in Fig. 41. The pionless EFTs cannot work rigorously without considering the
three-body effect. If one treats the D∗ as a stable state, the pionless EFTs will be valid conditionally up to the
scale |ũ|.

• Perturbative pion versus nonperturbative pion. In the 3S 1 NN system, the perturbative treatment of the OPE
interaction fails in the expansion in the KSW scheme [637]. However, the relative ratios of the two-pion and
one-pion exchange interaction for the NN system and D̄∗D system are estimated as

D̄∗D :
g2

bµDD∗ |ũ|
8π f 2

π

≈ 1
16
, NN :

g2
AµNNmπ

8π f 2
π

≈ 1
2
. (375)

Compared with the NN system, the expansion parameter for the D̄∗D system is relatively small. Therefore, one
expects that the validity range of the perturbative pion for the D̄∗D system is larger. The OPE interaction is
included perturbatively in XEFT [963]. In the Weinberg scheme, the OPE interaction is resummed nonpertur-
batively [972, 989, 990, 283, 268, 812, 597]. In Ref. [978], the breaking-down scale of the perturbative pions
is estimated to be around 200− 300 MeV for the X(3872) via a technique to analyze the scattering in the power
law singular potentials based on the renormalization group [1039, 636].

• Three-body dynamics. One may notice that the effective mass ũ defined in Eq. (374) can be imaginary as shown
explicitly in Table 7. The corresponding potential from Eq. (374) in coordinate space is an oscillating function
rather than the conventional Yukawa potential [1040]. In other words, the exchanged pion can be on mass-shell.
The imaginary part of the potential arises from the opening of the three-body threshold. The X(3872) is above
the D0D̄0π0 threshold about 6.8 MeV and the T +

cc state is above the D0D0π+ and D0D+π0 thresholds about 5.5
MeV, e.g., see Fig. 41. In order to consider this effect, the three-body dynamics should be incorporated properly.
There are two types of three-body cuts (see Fig. 42) that were studied in Refs. [1041, 972, 969, 597, 283]. In the
previous discussions, the pion propagators in the OPE interactions are mentioned many times, see Eqs. (319),
(327), (328), (329) and (374). However, among them, only Eqs. (328) and (329) keep the three-body cuts
properly, which should be a better choice in the calculation.

• Factorization versus non-factorization. The productions and decays of the X(3872) should be associated with
the short-range dynamics unavoidably. For example, in the X → J/ψπ+π−, the formation of the J/ψ would
involve the short-distance interaction around its size, which is much shorter than the size of the X(3872) as a
hadronic molecule. In the process B → XK, the production of the c and c̄ quark is a high-energy dynamics
compared with the binding momentum of the X(3872). With the separated scale, Braaten et al proposed the
factorization formula [1042], which can be derived from the operator product expansion in Ref [1043]. In the
literature, the factorization formula was used either implicitly or explicitly [1044, 1045, 1046, 569, 1047, 1048,
1049, 1050, 1051, 1052]. We take the decays involving the short-range dynamics X → H [where H denotes the
final states produced through short-range dynamics, such as J/ψρ(ω)] as an example. The amplitude reads

T [X → H] ∼
∫

d3q
(2π)3ψ(q) ×Ashort

[{D(q)D̄∗(−q)}+ → H
]

∼ Along(E) ×Ashort
[{DD̄∗}+ → H

]
, (376)

where ψ(q) is the wave function of the X(3872). The superscript of {DD̄∗}+ represents the even C parity state.
Strictly speaking, the short-range part will (insensitively) depend on the momentum of D(D̄∗). One can ignore
the q-dependence and factorize out the long- and short-range parts. The long-range part is the molecular wave
function at origin. The factorization formula can simplify the calculation by circumventing the complicated
loop integrals sometimes. What is more important, it is easy to establish the relation between two processes
with the same short- or long-range dynamics, within the factorization approach (this will be illustrated later).
Meanwhile, one can depict the same dynamics by calculating the loop diagrams (non-factorization approach),
which incorporates the long- and short-range dynamics simultaneously. In general, it aims to include more
dynamical details than the factorization approach. However, apart from the tedious calculations, a caveat is
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Table 7: Mass scales in the OPE interactions for the DD̄∗/D∗D̄ and D∗D systems (in units of MeV). The ∆i ≡ D∗i − Di, mi
π and ũi ≡

√
mi2
π − ∆i2

are listed in order, where i represents different charges.

∆i|mi
π|ũi D∗0 D∗+

D0 142.02 | 134.98 | i44.12 145.43 | 139.57 | i40.83

D+ 137.20 | 139.57 | 25.61 140.61 | 134.98 | 39.39

that the dynamics at different energy scales should be incorporated properly in a unified framework, which is a
subtle work. We will compare the factorization and non-factorization frameworks in detail later.

𝐷0ഥ𝐷0𝜋0 𝐷0ഥ𝐷0∗ 𝐷+𝐷−∗𝐷+𝐷−𝜋0

𝐷0𝐷+𝜋− 8.4−6.8 0.2𝑋(3872)

Energy (MeV) Energy (MeV)𝐷∗+𝐷0 𝐷∗0𝐷+ 𝐷+𝐷+𝜋−

−5.6 −5.4 0.3 1.7 4.1

𝐷0𝐷0𝜋+ 𝐷0𝐷+𝜋0

𝑇𝑐𝑐
+

Figure 41: X(3872) (left one) and T +
cc (right one) related two-body and three-body thresholds.

(a) (b)

Figure 42: Two types of three-body cuts for the three-body dynamics of X(3872) or T +
cc.

In order to fit these characters of the X(3872) or T +
cc, many attempts have been made to include new ingredients in

EFTs. We will review the progresses in EFT frameworks to investigate the X(3872) or T +
cc. We will discuss the XEFT

with revised power counting, the Galilean invariant XEFT, the perturbative scale of the pion-exchange interaction,
the formulation of the three-body dynamics, factorization and non-factorization schemes for the processes with short-
distance dynamics.

In the original version of XEFT [963], the mπ and MD(∗) are integrated out as the large scales. However, they will
appear in the kinetic energy terms in the calculation. In Ref. [963], the mπ/MD expansion is performed to simplify
the calculation, though it is not implemented systematically in the power counting scheme. In Ref. [1053], a modified
power counting for XEFT is proposed. In this power counting, ∆ and mπ is treated as O(Q) and δ is treated as O(Q2).
Accordingly, the power counting of other quantities is

∆, mπ, pD ∼ Q,

u, pπ ∼ Q3/2,

δ, p2
π/(2mπ), p2

D/(2MD) ∼ Q2. (377)

This power counting is very convenient to match with the HHχPT. In Ref. [1053], it was employed to simplify the
loop diagrams rather than constructing the Lagrangians order by order.

It was pointed out by Braaten [1054] that there are several problems which prevented the original XEFT [963]
from obtaining accurate predictions. First, in the original XEFT, the results are not frame-independent, which was
specified, e.g., in the center-of-mass frame. Meanwhile, the UV divergence in the NLO calculation can be canceled out
only when the low order mπ/MD expansions are kept. In addition, the renormalization scheme in the original XEFT
made it hard to include the decays with large momentum in the final state, such as D∗0 → D0γ. In order to overcome
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these shortcomings, Braaten proposed the Galilean-invariant XEFT based on the feature that MD∗ ≈ MD + mπ [1054].
In a nonrelativistic theory, the Galilean boost with velocity v will change the momentum and energy as

p→ p + mv, E → E + mv · p +
1
2

mv2. (378)

The combination E− p2

2m is Galilean invariant. Thus, the kinetic terms of the π0 and D0 in Eq. (320) satisfy the Galilean
invariance. In Ref. [1054], the author chose a different baseline of the mass and eliminate the δ term in the π0 kinetic
term. In the Galilean-invariant XEFT, the D∗ is regarded as the combination of D and π, thus its kinetic mass is M + m
(where M and m are the masses of D0 and π0, respectively). The kinetic term of the D∗0 reads

LD∗0 = D† ·
[
i∂0 +

∇2

2(M + m)
−

(
δ − i

Γ∗0
2

)]
D, (379)

where Γ∗0 denotes the D∗0 width. The partial width of D∗0 → D0γ can be included in the Γ∗0 term. For the interaction
terms, the Galilean invariant Lagrangian can be obtained from modifying those in Eq. (320) as follows

• In the D† · D−→∇π term, the operator
−→∇ is replaced by (M

−→∇ − m
←−∇)/(M + m);

• In the (D̄D)† · D̄(
←→∇ )2 D, the

←→∇ should be replaced by 4(M
−→∇ − (M + m)

←−∇)2/(2M + m)2;

• In the interaction (D̄D)† · D̄D
−→∇π, the

−→∇ should be replaced by (2M
−→∇ − m

←−∇)/(2M + m).

The above results are obtained by satisfying two conditions—the Galilean invariance and recovery of the original
XEFT in the center-of-mass frame. We can see the Galilean invariance easily in the form, e.g., (m−1−→∇ − M−1←−∇)µM,m,
where m−1−→∇ and M−1←−∇ are proportional to the velocity operators. In the Galilean-invariant XEFT, apart from the
conservation of Nc ≡ ND0 +ND∗0 and Nc̄ ≡ ND̄0 +ND̄∗0 , an extra conservation of the pion number Nπ ≡ Nπ0 +ND∗0 +ND̄∗0

is guaranteed by the Galilean symmetry. Constrained by the Galilean symmetry, it is hard to include the D∗D∗π vertex.
The heavy quark spin symmetry has to be given up. In the calculation, the complex on-shell renormalization scheme
was used, which introduces an extra counter term,

L = −δD0

2
(D̄D)† ·

[
i∂0 +

∇2

2(2M + m)

]
(D̄D). (380)

With the constraints of the Galilean symmetry, the cutoff-dependence is eliminated to all orders of m/M. In Ref. [1055],
the Galilean-invariant XEFT was reformulated in a more simple way by introducing the auxiliary field and adopting a
new complex threshold renormalization scheme.

In Ref. [978], Valderrama investigated the power counting in the heavy meson molecules, such as the X(3872),
Zb(10610) and Zb(10650). They argued that the coupled-channel effect from the HQSS partner channels (e.g., DD̄,
DD̄∗/D∗D̄ and D∗D̄∗) is suppressed by at least two orders, which can be safely neglected in the low order calculation.
Meanwhile, the energy scale that the pion can be treated perturbatively was explored within a framework developed
in atomic physics to handle the singular power-law potential [1039] (which was employed successfully in the NN
system [644]). It was shown that the validity of the perturbative pion is related to the 1/r3 singularity in the short
range part of the tensor force in the OPE interaction [644]. Expanding the Schrödinger equation with the power-law
potential in the Bessel functions makes it possible to obtain the analytical solutions nonperturbatively and determine
the radius of convergence [644]. In the Ref. [978], the approach was extended to the heavy meson systems. For the
IG(JPC) = 0±(1+±), the critical momentum of the perturbative pion is about 290+120

−80 MeV, which corresponds to the
critical binding energy 42+46

−19 MeV. Therefore, it is reasonable to adopt the perturbative pion in XEFT. One can see that
the γc in Table 6 is below the critical momentum. Thus, in the EFT, considering the charged channel D+D∗−/D∗+D−,
one can treat the OPE interaction as the NLO contribution perturbatively as well.

In Ref. [1041], the author proposed a toy model to investigate the three-body dynamics of the X(3872) with an
equivalently perturbative pion-exchange interaction, which is the first work to discuss the three-body dynamics of the
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Figure 43: Nonperturbative DD̄∗ amplitude in Ref. [597].

X(3872). In this toy model, three spin-zero mesons D1, D2 and φ are used to mimic the D, D∗ and pion, respectively.
The Lagrangians are

Lfree =
∑
i=1, 2

D†i

(
i
∂

∂t
− Mi +

1
2Mi
∇2

)
Di + φ†

(
i
∂

∂t
− m +

1
2m
∇2

)
φ, (381)

Lint = −λ0D†1D†2D1D2 − g
(
D†2D1φ + D†1φ

†D2
) − δMD†2D2. (382)

In the calculation, the vertex λ0 is summed to all orders but the vertex g is treated perturbatively. The cutoff dependence
was removed by renormalizing the D2 mass, the λ0 and short-range coefficients in the operator product expansion.
In the NLO, the nonzero width of the D2 mesons was introduced by either summing its self-energy correction to all
orders or using the complex mass scheme to remove the nonphysical IR divergence. In Ref. [969], the binding energy
of the X(3872) is investigated up to NLO in XEFT, where the one-pion-exchange interaction is treated perturbatively.
Two types of three-body cuts in Fig. 42 were considered, which will be reviewed in detail in Sec. 5.5.2.

In Ref. [972], the three-body dynamics of the X(3872) was investigated in a Faddeev-type framework with non-
perturbative pion dynamics for the first time. In Ref. [597], Schmidt et al proposed an EFT with D0, D̄0 and π0 as the
basic degrees of freedom for the X(3872) with the exact Galilean invariance. The D∗0 is dynamically generated as the
P-wave resonance of D0π0. The LO Lagrangians are (convention-II in Table A.11)

L = Lkin + (LDπ +LD̄π) +LDD̄π, (383)

Lkin = D†
[
i ∂0 +

∇2

2MD

]
D + D̄†

[
i ∂0 +

∇2

2MD

]
D̄ + π†

[
i ∂0 +

∇2

2mπ

]
π, (384)

LDπ = D†
∆0 + ∆1 i ∂cm +

∑
n≥2

∆n (i ∂cm)n

 D + g
[
D† · (π←→∇ D

)
+ H.c.

]
, (385)

LDD̄π = −C0
1
2

[
D̄D + DD̄

]† · [D̄D + DD̄
]
, (386)

where i∂cm ≡ i∂0 + ∇2/(2M) (with M ≡ MD + mπ) and
←→∇ ≡ µDπ

(
m−1
π

←−∇ − M−1
D
−→∇)

are Galilean-invariant deriva-
tives [1054, 1055]. µDπ is the reduced mass of the D and π. The D (D̄) is the auxiliary vector field to embed the
P-wave interaction. The auxiliary field can be eliminated by the path integral or the equations of motion. In general,
the value ∆1 can be taken as ∆1 = ±1, in which the ∆1 = +1 makes the D a physical field. The Feynman diagrams
are presented in Fig. 43. The three-body cut associated with the self-energy of the D∗ is included by incorporating the
full propagator of the D∗. The pion exchange potential is given by

i V i j (p, q; E) ≡ i g2 (α p + q)i (α q + p) j

E − p2

2µ − q2

2µ − p·q
mπ

+ iε
, (387)

where i and j are the indices of the polarization vector. The α is defined as α = MD/M. The three-body dynamics for
the pion-exchange interaction is included as well. Meanwhile, at NLO the charged channel is included in the kernel
Ic as shown in Fig. 43.

With the separated scale, Braaten et al adopted the factorization formula [1042] to explore the decays and produc-
tions of the X(3872) when the short-range dynamics is involved. The amplitude of the decays involving short-rang
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dynamics is given in Eq. (376). The long-range part involves the wave function at origin. Another equivalent approach
to writing down the long-range dynamics is

d3q
(2π)3ψ(q) ∼

∫
d3q

(2π)3

g

E − q2

2µ

, (388)

where the coupling constant and two-body nonrelativistic propagator are introduced. The equivalence has been shown
in Sec. 5.1.1. According to Eq. (297), the long-range and short-range parts are both cutoff-dependent. One can define
the cutoff-independent factorization formula by absorbing the linear divergent part in the wave function at origin into
the short-range part,

T [X → H] ∼ Ãlong(E) × Ãshort[{DD̄∗}+ → H], (389)

where we use Ã to represent the cutoff-independent amplitude. Similarly, the production of the X(3872) as shown in
Fig. 44(b) can be formulated as

T [B→ XK] ∼ Ãshort[B→ {DD̄∗}+K] × Ãlong[{DD̄∗}+ → X]. (390)

If one wants to investigate the line shape of B→ DD̄∗K as shown in Fig. 44(c), the factorization reads

T [B→ DD̄∗K] ∼ Ãshort[B→ {DD̄∗}+K] × Ãlong[{DD̄∗}+ → {DD̄∗}+]. (391)

For the line shape B→ KJ/ψππ in Fig. 44(d), the factorization is

T [B→ HK] ∼ Ãshort[B→ {DD̄∗}+K] × Ãlong[{DD̄∗}+ → {DD̄∗}+] × Ãshort[{DD̄∗}+ → H]. (392)

It is worthwhile to mention that the charged D+D∗−/D∗+D− channel can be regarded as either the short-range dynam-
ics [965] or long-range dynamics [1050] depending on the specific framework.

(a) (b) (d)(c)

Figure 44: Examples to use the factorization formula in Ref. [1042].

Apart from the factorization framework, the non-factorization approach is also used when calculating these short-
range involved dynamics. An example is the NREFT expanded with the velocity of particles [1056, 1057, 1058,
1059, 1060, 11]. We take the hadron loop diagrams in Fig. 45 as an example. In the loop diagrams, the momentum
and energy of the three nonrelativistic intermediate states are counted as O(v) and O(v2), respectively. Thus, the
propagators are counted as O(v−2) and the loop integral

∫
d4l is counted as O(v5). The general amplitude is counted

as

M ∼ v5qn

(v2)3 . (393)

where qn is the scale arising from the derivative coupling vertices.
The relation of these two approaches was investigated by Mehen [1061] with the X(3872) → χcJπ

0 process as
an example. In the non-factorization approach (also known as the hadronic loop approach) the diagrams are listed in
the Fig. 45. The DD̄χc0 and D∗D̄∗χc0 vertices were constructed in HMχPT. The loop integral in the non-factorization
approach is finite (an extra regulator is not needed). In the factorization approach, the short-distance dynamics is
depicted by the DD̄∗χc0π vertex in XEFT, which is matched to the HMχPT diagrams. In the factorization approach,
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the charged channel D+D∗−/D∗+D− is integrated out. The short-distance dynamics in these two approaches arise from
the same DD̄χc0 and D∗D̄∗χc0 vertices in HMχPT. However, one cannot expect these two approaches to give the same
results. The two approaches do include the same dynamics in the region p < γc, where γc is the binding momentum
with respect to the charged threshold. When the cutoff Λ ∼ γc is introduced, the non-factorization approach will give
the same results as the factorization approach [1061]. However, in the region p > γc, these two approaches contain
different UV behaviors, which will lead to different results. Mehen pointed out [1061] that the X(3872)→ χcJπ

0 rate
in the non-factorization approach including the charged channels will be similar to the results from the factorization
approach because of the cancellations of the contribution from the UV region in the neutral and charged channels
for the specific process. However, this is just a specific example. In Ref. [11], it was found that the contributions of
the charged and neutral channels for X(3872) → χcJππ are constructive. Thus, these two approaches (even with the
charged channel in the non-factorization approach) will give different results.

Figure 45: X(3872)→ χc0π in the non-factorization scheme (hadron loop) and factorization scheme (matching HMχPT to the XEFT).

We can analyze the scales appearing in the above example following Ref. [1062]. The binding momenta for the
neutral and charged channels are γn ∼ 20 MeV and γc ∼ 120 MeV, respectively (see Table 6 for details). The vertex
XD̄∗D is dressed by the one-pion exchange interaction with the typical scale |u| ∼ 45 MeV. The typical scale of
the vertex D∗Dπ is estimated as

√
2mπ|mD∗ − mD − mπ| ∼ |u| ∼ 45 MeV in the nonrelativistic approximation. The

vertex D(∗)D̄(∗)χc0 is relevant to the rearrangement of the charmed quarks into a bound state. Here we use the binding
momentum of the charmonium, mcv ∼ 900 MeV to estimate the typical scale, where the v ∼ 0.3 is the typical velocity
of charm quark. One can see that there are at least three well-separated scales in total, |u| ∼ γn, γc and mcv. In
the above examples, one should be cautious of taking the cutoff Λ to infinity, because one cannot expect the hadronic
vertices still work properly at very high energy scale. One cannot even expect that one single cutoff is enough to mimic
all the form factors of the vertices at (widely) separated scale. Meanwhile, in the NREFT, there exist two velocities
as pointed out in Ref. [11]. The power counting might fail due to the two separated velocities and the appearance
of triangle singularity (see Ref. [1063] for reviews). However, in order to include the effect of triangle singularity,
one has to resort to the non-factorization approach [1064, 1065, 1066, 1067, 1068]. Therefore, the non-factorization
approach is trying to embed details of higher energy scales than those in the factorization approach. The cost for
the non-factorization approach is the arbitrariness of choosing UV behaviors. Moreover, the appearance of multiple
scales would destroy the convergence of EFT. In the specific process, the two approaches might give different results,
which need to be checked by experiments.

5.5.2. Mass corrections

In Ref. [983], the authors investigated the DD̄∗/D∗D̄ scattering in the unitarized HHχPT with the pion exchange
and a contact interaction. In the calculation, the O(p0) amplitudes come from the (a) and (b) diagrams in Fig. 46.
The diagrams (c)-(f) are counted as O(p2) from Weinberg’s power counting. However, the amplitudes of such two-
particle reducible diagrams are enhanced by a factor M/p if one keeps the kinetic energy terms to remove the pinched
singularity as shown in Eq. (152). The amplitudes in diagrams (c)-(f) counted as O(p) can be generated by iterating
the tree-level amplitudes in (a) and (b). The authors obtained a unitary amplitude T phy = T (0)2/(T (0)−T (1)) on the basis
of the leading order Padé approximation (see Ref. [1069] for Padé approximation and see Ref. [577] for the similar
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unitary method for the ππ scattering). The authors concluded that (i) the pion-exchange interaction is sufficient to form
a bound state without the contact interaction, (ii) the result is not sensitive to the strength of the contact interaction,
and (iii) the X(3872) pole disappears when the pion mass is larger than 142 MeV.

(a) (b) (c) (d) (e) (f)

Figure 46: Feynman diagrams contribute to T (0) and T (2) in Ref. [983].

However, the authors of Ref. [984] illustrated in an explicit cutoff-regularization scheme that the OPE interaction
is well defined only in the context of the definite contact interaction because the divergent part of the iterating pion-
exchange interaction should be canceled out by the contact counter term. Thus, the separation of the pion-exchange
and contact contributions is scheme-dependent. In Ref. [972], the cutoff dependence of the contact coupling constants
was obtained (see Fig. 47), in which a bound state was imposed with a binding energy 0.5 MeV in an interaction
with the dynamical pion. One notices that the C0 = 0 corresponds to the cutoff Λ ≈ 1.0 GeV. Thus, the bound state
was naively attributed to the OPE interaction when the cutoff is around 1.0 GeV (e.g., [1025, 1070]), which seems a
scheme-dependent conclusion.

In Ref. [989], the authors investigated the mπ-dependence of the binding energy of the X(3872) within a nonrel-
ativistic Faddeev-type three-body equation for the DD̄π system in the JPC = 1++ channel. In the calculation, the
dynamical pion was included nonperturbatively, and the mπ-dependence of the D(∗) mass [49], pion decay constant
fπ [485] as well as the D∗Dπ coupling constant g [732] were determined by χPT or lattice QCD. However, the mπ-
dependence of the contact interaction is hard to determine, which is conjectured on the basis of the X(3872) as a bound
state and the cutoff-independent binding energy EB. The form of the contact interaction is assumed as

C0(Λ, ξ) = Cph
0 (Λ)

1 + f (Λ)
mph2
π

M2 (ξ2 − 1)
 . (394)

The superscript “ph” represents the quantities at the physical pion mass. The ξ is defined as ξ ≡ mπ/m
ph
π . M is a

large scale around mρ ≈ 800 MeV. The unknown f (Λ) is evaluated with the requirement that the binding energy Eph
B

and its slope S EB ≡ (∂EB/∂mπ)|mπ=mph
π

should be cutoff-independent at the physical point. The final results depend on
the specific value of S EB . A two-pion-exchange diagram was used to estimate the natural results of f (Λ) and S EB .
The final result is given with varying S EB in a natural scale as shown in the middle subfigure of Fig. 48. The results
indicated that the behavior of the quark-mass dependence of the X(3872) strongly depends on the contact interaction.
In other words, ignoring the contact interaction might yield misleading results. Meanwhile, the X(3872) can turn into
a virtual state only when the S EB is in a unnatural range, which is different from the results in Ref. [983].

In Ref. [990], the chiral extrapolation of the binding energy of the X(3872) was investigated in a similar framework
with that in Ref. [989], but in the modified Weinberg formulation [1071]. The modified Weinberg formulation was
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Figure 47: The cutoff dependence of the contact coupling constant obtained in Ref. [972] by imposing a bound state with a binding energy 0.5
MeV in an interaction with the dynamical pion.
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Figure 48: Left panel: The LO results including the fully three-body dynamics (black solid curve) and in the simple static OPE (blue dotted curve)
in Ref. [990] within the modified Weinberg formulation. Middle panel: The NLO results in the conventional Weinberg formulation (black hatched
band) in Ref. [989] and modified Weinberg formulation (red dotted band) in Ref. [990]. The dot-dashed curve comes from the calculation without
pions. The dot with error bars represents the results from lattice QCD simulations [1073]. Right panel: The NLO results (gray band) in XEFT in
Ref. [969], where the unknown d2 and r0 are estimated with naturalness. The red solid curve represents the result considering the LO contact and
OPE interaction. The green dashed curve represents an example of unnatural parameters.

proposed to solve the problem which was referred to as the “inconsistency of Weinberg’s approach” [1072]. The idea
is to make the UV behavior milder by interchanging the expansion order of 1/Λ and 1/m. For example, within the
cutoff regularization, the relativistic loop function reads

I =
4 i

(2 π)4

∫
d4k θ(Λ − |k|)[

k2 − m2 + i 0+
] [

(P − k)2 − m2 + i 0+
] , (395)

where P = (2
√

m2 + p 2, 0 ). The integral is logarithmically divergent. Our conventional nonrelativistic expansion
based on p � Λ � m will give rise to a linear divergence. However, if one first performs the 1/Λ expansion and
then performs the 1/m expansion based on p � m � Λ, one can retrieve the logarithmic divergence and solve
the inconsistency of Weinberg’s approach. With this modified Weinberg formulation, the theory is perturbatively
renormalizable and all divergence can be removed by renormalizing the LECs of the LO contact interaction. Unlike
the approach of Ref. [989], where additional input is needed to maintain the renormalization, the modified Weinberg
approach can predict the mπ-dependence of the binding energy without extra parameters. At the leading order the
contact coupling constant C0 is mπ-independent. The LO results are shown in the left subfigure of Fig. 48, in which
the binding energy of the X(3872) will decrease and finally become unbound with the increasing of mπ. However, the
NLO results shown in the middle subfigure of Fig. 48 will change the tendency and become consistent with those in
Ref. [989]. It is worthwhile to stress that the NLO results were based on some assumptions and naive dimensional
analysis.

In Ref. [969], the binding energy of the X(3872) was investigated in XEFT, where the D0D̄∗0/D∗0D̄0 scatter-
ing in the JPC = 1++ channel was calculated up to NLO as shown in the diagrams of Fig. 33. Apart from the
Lagrangian (320), an extra NLO Lagrangian was introduced to include the mπ-dependence of the contact term
(convention-II ) in Table A.11,

LNLO = −D2u2

2
(D̄D + DD̄)† · (D̄D + DD̄), (396)

where u2 is defined as u2 = ∆2 − m2
π. Compared with the KSW scheme for the NN system, a novel feature is

the A(VI)
0 . The contribution of the diagram for the NN system is canceled out by the counter term in the on-shell

renormalization scheme because the pions are always off-shell which only contribute to the real part of the pole of
the nucleon propagator. For the XEFT, the pions could be on-shell and contribute to the imaginary part of the pole of
the D∗ which cannot be removed in the on-shell renormalization scheme. In the calculation, the authors showed that
theA(VI)

0 is IR divergent if one dresses the D∗0 propagator with one loop. Instead, the author used the full propagator
of the D∗0 that is dressed to all orders. If the full propagator is used in A−1 and A(I,...,V)

0 , the contribution of A(VI)
0 is

included automatically. To the NLO, the cutoff-dependence of the C2 and D2 is obtained by the renormalization up
to two unknown parameters, r0 and d2. With the naturalness estimation of the two parameters, the mπ-dependence of
the binding energy is given in the right subfigure of Fig. 48. In the numerical analysis, the mπ-dependence of the pion
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decay constant, D meson axial coupling constant and masses of the D(∗) were taken from Refs. [485, 1074, 732, 47].
One can see that the binding energy of the X(3872) depends on the pion mass moderately. In Ref. [1075], the
calculation was extended to the X(3872) in the finite volume. The finite volume correction to the binding energy was
obtained explicitly and fully determined by the infinite volume parameters. The numerical results showed that the
finite volume effect is significant even for a large box with the length around 20 fm.

In Ref. [268], Xu et al calculated the DD∗ interaction in χEFT up to NLO with the Weinberg scheme. In their
calculation, the LO contact term, OPE and the NLO TPE interactions were investigated. The LECs of the LO contact
terms were estimated in the resonance saturation model [599, 1076, 981, 980, 897]. The numerical results showed
that there is no bound state in the isovector channel. In the isoscalar channel, there exists a bound state with the
binding energy 17.5+4.1+18.3

−3.9−14.0 MeV, where the first and second uncertainties arise from the inclusion of the f0, a0 and
a1, f1 mesons in the resonance saturation model, respectively. The prediction was confirmed by the observation of
the T +

cc [5, 4]. The similar χEFT was adopted to investigate the B̄(∗)B̄(∗) systems in Ref. [976, 812]. It was shown that
there exist the B̄B̄∗ and B̄∗B̄∗ bound states with I(JP) = 0(1+). The former one is naturally the heavy quark flavor
symmetry partner of the T +

cc state.

5.5.3. Partners of X(3872)
The X(3872) as a hadronic molecule implies the existence of other states which are related to the X(3872) through

various symmetries such as the heavy quark spin symmetry, heavy quark flavor symmetry, SU(3) flavor symmetry and
so on. In this section, we review the partner states of the X(3872) as predicted in various EFT frameworks. We will
also pay attention to the caveats of these predictions.

In Ref. [977], the author adopted the /πEFT with heavy quark symmetry to explore the partners of the X(3872). It
was found that the existence of the D0D̄∗0/D∗0D̄0 bound state does not exclude and support the existence of the D0D̄0

bound state. As shown in Eqs. (362), (363) and (365) there are two independent coupling constants in the D(∗)D̄(∗)

systems. The interactions for the DD̄∗/D∗D̄ and DD̄ systems are independent in the heavy quark spin symmetry limit.
In Ref. [1020], Nieves et al discussed the BB̄∗ bound states deduced from the weakly bound X(3872) within EFT

framework including the contact and OPE interactions. The heavy quark symmetry was used to relate the cutoffs in the
charmed and bottom systems by ΛB = ΛX + O( 1

mQ
). The contact dynamics is determined from the phenomenological

model in Refs. [42, 900]. Within the phenomenological model, the contact interaction in the neutral-charged basis can
be expressed as

〈k|VC |k′〉C=+1 = 〈k|VC |k′〉C=−1 = CDD̄∗
0

(
1 1
1 1

)
. (397)

One can see that the model exerts two constrains. First, the diagonal and off-diagonal terms are constrained to be
equal, which implies the vanishing interaction in the isovector channel. Meanwhile, the states with odd and even
parities have the same interaction. With the relations, the authors predicted the IG(JPC) = 0±(1+±) BB̄∗/B∗B̄ bound
states in the 3S 1 −3 D1 waves and an even C parity 3P0 states. The conclusions in Ref. [1020] strongly rely on the
validity of the phenomenological model [42, 900].

Nieves et al investigated the heavy quark spin symmetry partners of the X(3872) within the pionless EFT [1009].
Apart from the trivial prediction of the JPC = 2++ state [see Eq. (365)], the authors predicted a total six D(∗)D̄(∗)

molecular states with the extra assignment of the X(3915) as the 0++ D∗D̄∗ molecule. The result is very natural, which
has been explained in Sec. 5.4 according to Fig. 39. In Ref. [1009], the author also considered the subleading effect,
like the HQSS breaking effect, OPE interaction and coupled-channel effect, which brought uncertainties of about
40 − 50 MeV to the binding energy of the most bound cases.

In Ref. [1010], Hidalgo-Duque investigated the partner states of the X(3872) in HQSS and light flavor symmetry.
In this work, the coupled-channel effects related to the mass splittings MD∗ − MD and MDs − MD are neglected. As
shown in Eq. (353), there are four independent coupling constants to depict the general D(∗)D̄(∗) systems in the HQSS
and SU(3) flavor symmetry. The four independent coupling constants are determined by treating the X(3872) as
the DD̄∗/D∗D̄ state, X(3915) as the D∗D̄∗ state, Y(4140) as the D∗sD̄∗s state and the isospin violating decay ratio of
X(3872) (the isospin violating decay ratio depends on the binding energy and mixing angle of the neutral and charged
components, see Sec. 5.5.5). In the numerical analysis of Ref. [1010], the isospin partner of the X(3872) is ruled out.
Meanwhile, the author predicted the D(∗)

(s)D̄
(∗)
(s) full molecular spectrum.
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In Ref. [1011], Meng et al predicted the [D̄∗sD∗s]
0++

, [D̄∗sDs/D̄sD
∗
s]

1+−
, and [D̄∗sD∗s]

1+−
bound states as the partners

of the X(3872) in the HQSS and SU(3) flavor symmetry, which is the consequence of the existence of the [D̄sDs]0++

bound state supported by the lattice QCD calculation [1077] and the observation of χc0(3930) by the LHCb Collab-
oration [1078, 1079]. In the single-channel scheme, the authors obtained the results by assuming X(3872) as the
weakly bound D0D̄∗0/D∗0D̄0 state, which can be related to the D̄∗sDs/D∗sD̄s state in the SU(3) flavor symmetry. Then,
according to Fig. 39, one can infer that the arrow in Fig. 39 represents the more attractive interaction if the [D̄sDs]0++

is the deeper bound state. In the Ref. [1011], the authors also considered the coupled-channel effect for the X(3872).
Within a cutoff-independent framework, it was shown that treating X(3872) as a coupled-channel molecule will not
change the results qualitatively, instead will make it become a deeper bound state.

In Ref. [1021], the authors explored the consistence of the strict heavy quark limit and the OPE interaction. The
calculation showed that the implication of HQSS, degeneration of |0−+

H ⊗ 1−−L , 1+−〉, |1−−H ⊗ 1−−L , 0++〉, |1−−H ⊗ 1−−L , 1++〉
[X(3872)], and |1−−H ⊗1−−L , 2++〉 are still robust considering the OPE interaction when all the partial waves and channels
are included. The similar consistences of chiral dynamics and the heavy quark symmetry were also explored in
Ref. [950]. In Ref. [1021], the 2++ channels were investigated with the nonperturbative pions considering the heavy
quark symmetry breaking effect. The results showed that the nonperturbative pion approach will lead to significant
shifts of the mass and width about 50 MeV as compared to the perturbative pion approach.

Recently, Xu explored the S -wave interaction for the DD̄∗ system with IG(JPC) = 0+(1++), 0−(1+−), 1+(1+−) and
1−(1++) within the χEFT [995]. The calculation was performed up to NLO, including the contact term, OPE and
TPE interactions with the Weinberg scheme. The results indicated the existence of the 0−(1+−) and 1+(1+−) molecular
states in addition to the X(3872) as the 0+(1++) molecule.

In Ref. [1023], the HDAS was used to investigate the triply heavy partners of X(3872) in contact EFT. With this
symmetry, X(3872) as the molecule implies several isoscalar baryonic molecules composed of Ξ

(∗)
QQ′D

∗ and Ξ
(∗)
QQ′ B̄

∗.
In Ref. [1080], the hadronic atom D±D∗∓ was investigated, which is formed mainly by the Coulomb interaction.

Unlike the conventional hadronic atoms [1081, 1082], the strong interaction correction to the Coulomb interaction is
treated nonperturbatively due to the pole of the X(3872). In their calculation, the strong interaction in the neutral and
charged bases was introduced as

V = C0

(
1 1
1 1

)
, (398)

where the vanishing isovector interaction is presumed. With this interaction, the correction to the binding energy of
the hadronic atom is

∆En =
2α3µ2

c

n3
√

2µc∆

[
−1 − i + O

(
α

√
µc

∆

)]−1

, (399)

where µc is the reduced mass and n is the principal quantum number. ∆ is the threshold difference of the charged and
neutral channels. The correction is independent of the binding energy of the X(3872) and depends on the threshold
difference. The authors evaluated the ratio of the production rate of the X atom with respective to the X(3872) in B
decays and at hadron collider. The null observing of the X atom will give lower limit of the binding energy of the
X(3872).

Canham studied the scatterings of the D and D∗ mesons off the X(3872) as a weakly bound state of the D0D̄∗0/D∗0D̄0

in a contact EFT [1083]. In Ref. [1084], the scattering of the ultrasoft pion and X(3872) was investigated in XEFT.
The breakup cross section of π+X(3872)→ D∗+D̄∗0 was calculated. In Ref. [1085], the hadronic systems composed of
three and four X(3872) were investigated. A 4X(4++) octamer and a bound 3X(3++) were predicted with strict HQSS.

5.5.4. Long-range dynamics

In Ref. [961], Voloshin investigated the X(3872) → D0D̄0π0 and X(3872) → D0D̄0γ decays driven by D∗0 →
D0π0(γ) and its charge conjugation D̄∗0 → D̄0π0(γ). The Feynman diagram of the X(3872) → D0D̄0π0 decay
corresponds to Fig. 34(a). The universal wave function in Eq. (296) up to a different normalization was adopted. The
decay patterns for different C parities of the X(3872) are distinct due to the different interference of the contributions
from the D∗0 and D̄∗0 decays. Although the calculation was not performed in an EFT framework, it is equivalent to
the results from the LO contact EFT as shown in Sec. 5.1.1.
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Figure 49: The differential distribution in the pion energy. The solid and dashed curves correspond to the decays driven by D∗0 → D0π0 (or its
charge conjugation) and contracting the D∗0 propagator into a contact vertex, respectively.

In the original work of XEFT [963], the X → D0D̄0π0 was calculated up to NLO. The contributions of Feynman
diagrams (a), (b), (c), (e) and (f) in Fig. 34 were investigated. The decay rate for X → D0D̄0π0 was given as a function
of the binding energy. The results showed that the nonanalytical correction from the perturbative pion exchange is
very small, about 1% of the decay rate. The calculation was updated in Ref. [1086] by including the π0D0, π0D̄0 and
D0D̄0 rescattering effect. Apart from the Lagrangians in Eq. (320), two extra terms were included, which were first
pointed out in Ref. [11],

LNLO =
Cπ

2mπ
(D†π†Dπ + D̄†π†D̄π) + C0DD†D̄†DD̄, (400)

where the first and second terms correspond to the Cπ and C0D vertices in diagrams (d) and (g) of Fig. 34, respectively.
The two new interactions change the uncertainties of the decay rate and the binding energy. In the calculation, the
interaction of D0D̄0 was resummed to include the rescattering effect from the bubble diagram to all orders. The results
showed that the rescattering effect of D0D̄0 only leads to a small modification. The differential distribution in the pion
energy, i.e., dΓ/dEπ was studied, which is sensitive to the binding energy and the correct inclusion of the virtual
D∗0/D̄∗0 propagator as shown in Fig. 49. The differential decay width becomes very different when one contracts the
virtual D∗0/D̄∗0 propagator into a contact vertex.

In Ref. [1087], Guo et al investigated the X(3872) → D0D̄0π0 in the coupled-channel contact (/π) EFT (see
Sec. 5.1.2). The neutral (D0D̄∗0/D∗0D̄0) and charged (D+D∗−/D∗+D−) channels were both considered. The diagrams
(a) and (g) in Fig. 34 were calculated considering the charged channel. The two coupling constants were fixed by
fitting the X → J/ψρ and X → J/ψω line shapes [1088] and those of Zb(10610) [307]. The cutoff is specified as
Λ = 0.5 GeV and 1.0 GeV. In the calculation, the final state interaction of DD̄ was induced by solving the LSEs,
which is important numerically.

In Ref. [1050], Meng et al obtained the decay widths of X(3872) → D0D̄0π0 and X(3872) → D0D̄0γ as a
by-product of investigating its isospin violating decays in the coupled-channel /πEFT. The cutoff-dependence was
removed in such an EFT. The LECs were determined by the isospin violating decay ratio and the binding energy of
the X(3872). The decay widths are presented in Fig. 54. The strong and radiative decay widths are about 30 keV
and 10 keV, respectively, for the binding energy from −300 keV to −50 keV. The calculation details will be given in
Sec. 5.5.5.

In Ref. [968], Meng et al investigated the kinetically allowed T +
cc → D0D0π+, T +

cc → D+D0π0 and T +
cc → D+D0γ

decays within the coupled-channel EFT (see Sec. 5.1.2). The T +
cc was treated as the bound state of D∗0D+/D∗+D0. In

the coupled-channel EFT, the coupling constants of the T +
cc with the two channels were related to the binding energy

and mixing angle of two components. This framework includes the possible isospin violating effect and satisfies the
renormalization group invariance. The numerical results were given in Fig. 50. The results showed that the largest
decay mode is the T +

cc → D0D0π+, which is just the experimental discovery channel. The total width (strong plus
radiative decays) in the single-channel and isospin singlet limits are 59.7+4.6

−4.4 keV and 46.7+2.7
−2.9 keV, respectively, which
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Figure 50: The strong and radiative decay widths of the T +
cc obtained in Ref. [968]. Left panel: the mixing angle dependence of the partial widths,

where the colored shadow represents the uncertainties stemming from the T +
cc mass. Middle and right panels: the dependence of the partial widths

on the binding energy of the T +
cc in single-channel limit (θ = 0◦) and isospin limit (θ = −45◦), respectively.
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Figure 51: The topological diagrams contributing to DD̄∗ → χcJπ and DD̄∗ → χcJππ in HMχPT [1089]. The thin solid line represents D or D̄∗.

is much smaller than the width first reported (about 410 keV) in experiment [4]. However, the theoretical calculation
was supported by the subsequent experimental analysis in a unitarized profile, which gives Γ = 47.8 ± 1.9 keV [5].
In Ref. [278], Fleming et al obtained similar results with the similar two-channel contact EFT but in a relativistic
form. Apart from the decay widths, the differential spectra as a function of the invariant mass of the final state
DD pair was given. The effect of the possible bound state from the DD system was discussed. In Ref. [271], the
authors obtained consistent results with those in Ref. [968] within a single-channel phenomenological approach in the
presumed isoscalar channel.

In Ref. [275], the subleading contributions to the strong and electromagnetic decays of the T +
cc state were inves-

tigated within the framework of EFT, including the contribution of the seagull two-body operator, the DD final state
interaction, the isospin violating effect of the molecular wave function and the contribution of the compact tetraquark
component. Although it is hard to determine all the parameters in calculation, the authors provided some reasonable
estimation of these effects.

Du et al [283] adopted a coupled-channel EFT including the three-body dynamics (e.g., see Fig. 42) to fit the
observed line shape in the D0D0π+ channel [4]. With the analysis, the scattering length and effective range of the
D∗D scattering was extracted and the compositeness parameter of the T +

cc was calculated, which is close to the unity
indicating the molecular nature of the T +

cc. Employing the HQSS, a D∗D∗ molecular partner of the T +
cc with I(JP) =

0(1+) was predicted. In Ref. [282], the partners of the T +
cc state in the HQSS were investigated.

5.5.5. Short-range dynamics

In Ref. [1089], Fleming et al calculated the X(3872) → χcJ(π0, ππ) processes with the factorization formula. The
short-range dynamics is depicted by the local operators [for the D0D̄0χcJ(π0, ππ) vertices] in XEFT. The coupling
constants of the local operators are determined by matching to the HMχPT as shown in Fig. 51, where g1 and c1 are
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Figure 52: Schematic illustration of the kinematic mechanism of the large isospin violating decay of the X(3872). The red and blue curves are
the Breit-Wigner distribution of ρ and ω mesons. The dashed vertical line corresponds to the MX(3872) − MJ/ψ. The two small subfigures are the
rescaled plots.

unknown couplings. The results showed that the two pion transitions are highly suppressed compared with the one
pion transition, except the X → χc1π

0π0, which is almost at the same order as the X → χc1π
0. The enhancement

of X → χc1π
0π0 arises from regulating the IR divergence (when the D meson is on-shell) with the D∗0 width. In

Ref. [1052], the author corrected the calculation with the operator product expansion by regulating the IR divergence
with the binding energy of the X(3872). From the updated results , the X → χc1ππ process does not receive the large
enhancement.

We move on to the X → J/ψh decays (h denotes the light hadrons or photon). An interesting issue is the isospin
violating decay of the X(3872) as reviewed in Sec. 1.3.1. The isospin conserving decay mode driven by X → J/ψω
is strongly suppressed kinetically as shown in Fig. 52. Only a small portion of the Breit-Winger distribution of the
ω meson is in the kinetically allowed region. In contrast, about half of the Breit-Winger distribution of the ρ meson
is allowed by kinetics. In addition to the kinetic restriction, there are also dynamical reasons for the large isospin
violating decays of X(3872).

The X → J/ψh was investigated by Braaten et al with the factorization formula [965], where h stands for π+π−π0,
π+π−, π0γ or γ. It was assumed that these decay modes are driven by the X → J/ψρ and X → J/ψω (see Fig. 53).
The amplitudes V → h (V ≡ ρ or ω) were determined by the effective Lagrangian approaches with the partial decay
widths of the ρ and ω as inputs. The isospin violating decay ratio was determined as

Γ
[
X → J/ψπ+π−π0

]
Γ
[
X → J/ψπ+π−

] = 0.087

∣∣∣GXψω

∣∣∣2∣∣∣GXψρ

∣∣∣2 . (401)

The part-II (V → h) of Fig. 53 contributes a factor about 0.087, which incorporates the kinetic effect. In the part-
I (X → J/ψV) of Fig. 53, the author adopted the factorization formula. The long-range part was obtained by the
universality, which is equivalent to the single-channel (D0D̄∗0/D∗0D̄0) /πEFT, while the short-range part was fixed by
a model proposed by Swanson [1090, 1091]. The partial width of X → J/ψπ+π−π0 was predicted as a function of the
binding energy and total width of the X(3872).

In Ref. [1050], Meng et al also investigated the isospin violating decays, in which the ratio is divided into two
parts.

R ≡ B
I=0(X → J/ψπ+π−π0)
BI=1(X → J/ψπ+π−)

= R1 × R2, (402)

where the R2 includes the kinetic mechanism, and it was estimated in two approaches from Refs. [959, 965] (which
give R2 = 0.147 and 0.087, respectively). The R1 was handled in the factorization formula. The long-range part is
investigated in the coupled-channel EFT (see Sec. 5.1.2), in which the isospin violating effect in the wave function
was considered. In the short-range part, the isospin symmetry is exact and the unknown matrix element cancels out in
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Figure 53: Isospin violating decays of X(3872). The X → J/ψπ+π−(π0) decays are divided into two pieces, the X → J/ψV and V → π+π−(π0)
with V ≡ ρ and ω.
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Figure 54: Numerical results in Ref. [1050]. Left panel: probability of the neutral channel in the wave function of the X(3872). The binding
energies are labeled near the related curves. Right panel: the partial widths of the X(3872) with the mixing angle of neutral and charged channels
extracted from the left subfigure.

the ratio while the isospin Clebsch-Gordon coefficients survive. The R1 reads

R1 =

(
g1F1 − g2F2

g1F1 + g2F2

)2

≈
(

g1 − g2

g1 + g2

)2

=

c1γ
1/2
1 − c2γ

1/2
2

c1γ1/2 + c2γ1/2

2

, (403)

where the Fi, gi and γi are defined in Sec. 5.1.2. c1 and c2 are the coefficients of the neutral and charged channels
in the wave function of the X(3872), respectively. The proportion of the neutral channel was determined using the
experimental R as shown in the left panel of Fig. 54. With both values of R2, the proportion R is over 80%. With the
proportion as input, the partial widths of the X → D̄0D0π0 and X → D̄0D0γ were calculated (see the right panel of
Fig. 54). To derive Eq. (403), the difference of F1 and F2 is neglected, which is different from Ref. [958]. In Ref. [958],
the authors presumed g1 = g2 and kept the difference of F1 and F2 to make R1 non-vanishing. The isospin violation
effect of the conventional hadrons can stem from the not fully offset loop integrals due to the displaced charged and
neutral thresholds. However, such effects are usually tiny. For the case of the X(3872), the isospin violation effects
from the difference of F1 and F2 depend on the cutoff and are too small to explain the large isospin violation effect
with a reasonable cutoff. Thus, the authors made a different assumption that g1 and g2 are different while F1 and F2
are the same as in Ref. [1050]. In fact, the relation g1 = g2 is by no means guaranteed. In Ref. [958], the validation
of g1 = g2 is based on the constraint v11 = v22 = v12 in Eq. (308), namely, the vanishing interaction in the isovector
channel. However, the LECs vi j are cutoff-dependent, which cannot be equal to each other with the varying cutoff [see
Eq. (312)]. On the other hand, the couplings gi are related to the mixing angle of the two channels, binding energy and
mass difference of the two thresholds [see Eq. (316)], which are all physical observables. Therefore, it is reasonable
to infer the more important effect resulting from different coupling constants. One can find comparisons of these two
works in details in Ref. [1050].

Mehen et al calculated the radiative decays of X(3872)→ ψ(2S )γ and ψ(4040)→ X(3872)γ with the factorization
formula by matching the short-range dynamics in HHχPT to the operators of XEFT [1051]. In these two decays, the
photon energy is about 181 MeV and 165 MeV. In the long-range dynamics, the X(3872) is regarded as a bound state
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Figure 55: Feynman diagrams for the production of the X(3872) in the radiative transitions of the vector charmonium(-like) states, including
ψ(4040), ψ(4160), ψ(4415) and the Y(4260) in Ref. [1059].

of the D0D̄∗0/D∗0D̄0. In the X → J/ψγ decay, the energy of the photon is about 700 MeV, which lies beyond the
working range of HHχPT. Thus, in this framework, one cannot obtain the branching fraction

R = Γ[X → ψ(2S )γ]/Γ[X → J/ψγ], (404)

which has been measured in experiments [1092, 1093, 1094]. However, it was shown that the polarization of ψ(2S )
in X → ψ(2S )γ and the angular distribution of X in ψ(4040) decays can be used to determine the quantum number of
X(3872). Similar framework was also used to study the ψ(4160) → X(3872)γ [1095], where the correlation between
the polarization of ψ(4160) and angular distribution of the final states can be utilized to explore the structure of the
X(3872).

Guo et al investigated the production of the X(3872) in the radiative transitions of the vector charmonium(-like)
states—including the ψ(4040), ψ(4160), ψ(4415) and Y(4260) [1059] within NREFT according to the powers of the
velocities in Eq. (393). The Feynman diagrams are presented in Fig. 55. With the naturalness assumption of the
vertices, the production of the Y(4260) → X(3872)γ is enhanced as compared to those of the other channels if the
Y(4260) is treated as the DD̄1 molecule. A similar approach was adopted to explore the production of the Xb—the
HQFS partner of the X(3872) from the decays of Υ(5S , 6S )→ Xbγ [1096]. In Ref. [1060], the same NREFT was used
to explore the radiative decays of the X(3872), i.e., X → J/ψγ and X → ψ(2S )γ. With the naturalness assumption
for the coupling constants, their results indicate that the experimental ratio in Eq. (404) does not conflict with the
molecule-dominant structure of the X(3872).

In Refs. [1044, 1045, 1046, 569, 1047, 1048, 1049], the productions of the X(3872) and the related line shapes
were investigated with the factorization formula, e.g., see Fig. 44. In fact, a heated topic about the X(3872) is its sub-
stantial prompt production [209, 210, 211, 212, 213, 214], which was often used as an evidence against the molecular
interpretation of the X(3872) [208]. In the hadron collider, the X(3872) can be produced from either bottom hadron
decays or QCD mechanism. If X is produced by the QCD mechanism, its production vertices will be very close to
the collision point, which is refereed as the prompt production. On the contrast, the production vertex from bottom
hadron will be displace from the collision point (non-prompt production). Intuitively, the prompt production is the
high energy process, in which only the almost relatively static two hadrons can form into loosely bound states. Thus,
one would expect the suppressed prompt production for hadronic molecules. In general, the inclusive production of
the X(3872) can be formulated as follows (convention-II in Table A.11),

dσ[X(3872)] =
1

flux

∑
y

∫
dΦ(D∗D̄)+y

∣∣∣∣∣∣
∫

d3k
(2π)3ψX(k)

AD∗0D̄0+y(k) +AD0D̄∗0+y(k)√
2

∣∣∣∣∣∣2 1
2µD∗D

=
1

flux

∑
y

∫
dΦ(D∗D̄)+y

∣∣∣∣∣∣
∫

d3k
(2π)3ψX(k)AD∗0D̄0+y(k)

∣∣∣∣∣∣2 1
2µD∗D

, (405)

where y represents all the possible final states and Φ(D∗D̄)+y is the phase space for the composite (D∗D̄) and y. The
validity of the second equality arises from the cancelling-out interference effect. In Ref. [208], the authors adopted
the Schwarz inequality to obtain that

dσ[X(3872)] ≤ 1
flux

∑
y

∫
dΦ(D∗D̄)+y

∫
|k|<kmax

d3k
(2π)3 |ψX(k)|2 ×

∫
|k|<kmax

d3k
(2π)3

∣∣∣AD∗0D̄0+y(k)
∣∣∣2 1

2µD∗D
. (406)
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(a) (b)

Figure 56: The Feynman diagrams for the inclusive productions of the X(3872) and D0D̄∗0/D∗0D̄0.

One finally obtains the following inequality due to the normalized wave function ψX(k),

σ[X(3872)] < σ[D∗0D̄0(|k| < kmax)]. (407)

With the Monte Carlo event generators like Herwig and Pythia, the authors obtained σ[D∗0D̄0(|k| < kmax)] truncated
at kmax and then estimated the maximum production cross section of the X(3872). The theoretical result is about
two orders smaller than the experimental ones. Therefore, the authors concluded that the results refute the molecular
nature of the X(3872). However, one subtle issue in the above calculation is the choice of kmax. In Ref. [208], the
authors argued that the momentum scale should be set by the binding momentum of the X(3872) and took kmax = 35
MeV. However, the setting is challenged by Albaladejo et al [216], Artoisenet et al [215] and Braaten et al [217].

In Ref. [216], the authors argued that for the deuteron the kmax ∼ 300 MeV ∼ 2mπ could be a good approximation
of the effect of its wave function and the same kmax was expected for X(3872). Meanwhile, the authors calculated
the inclusive production of the X(3872) by simulating the short-range dynamics with Monte Carlo event generators
and combining the long-range interaction in an EFT with a Gaussian regulator cutoff Λ. The Λ can roughly amount
to 2
√

2/πkmax in the sharp regulator. With a cutoff corresponding to kmax ∈ [300, 600] MeV, the cross section is
consistent with the experimental results. In Ref. [1097], the authors defended their own conclusions in Ref. [208] and
argued that the kmax should be determined independently without surmising the explicit form of the wave function.

In Ref. [215], the authors challenged Ref. [208] and pointed out that the upper bound should be at the scale of
mπ due to the rescattering effect of D∗D̄, which leads to the consistent result with the experimental measurement. In
Ref. [217], the authors established the relation of the production of the X(3872) and DD̄∗ as shown in Fig. 56 with
the factorization formula. We show the derivation in Ref. [217] with the notation in Sec. 5.1.1. For the long-range
dynamics, one has

M(X) ∼
∫

d3qψX(q) ∼
∫

d3q
g

EX − q2

2µ + iε
,

M
[
{D0D̄∗0(E)}+

]
∼

∫
d3q

1

E − q2

2µ + iε
T (E), (408)

where g ∼ √γX and T ∼ (i
√

2µE+γX)−1 are given in Eqs. (290) and (289), respectively. The integrals are linear diver-
gent as shown in Eq. (286), thus one can eliminate the cutoff Λ by calculating the ratio ofM(X) andM[{DD̄0∗(E)}+].
One can set up the following relation,

M
[
{D0D̄∗0(E)}+

]
∼ M(X)

g
T (E) ∼ M(X)/

√
γX

i
√

2µE + γX
. (409)

The explicit result for the cross section was given in Ref. [217], which reads

dσ
[
D0D̄∗0

]
= dσ[X(3872)]

π/γX

γ2
X + k2

d3k
(2π)3 . (410)
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(a) (b)

Figure 57: Two production processes for the X(3872) with the triangle singularities.

In the derivation of Eq. (410), an implicit constraint is the cutoff Λ to regulate the linear divergence, which is at
the scale of mπ. From Eq. (410), the authors obtained that σ[X(3872)] = σ[D0D̄∗0(k < 7.73γX)]. Thus, the upper
bound is kmax = 7.73γX , in which the theoretical cross section for the prompt production of X is consistent with the
experimental measurements.

Guo pointed out that the short-distance creation of the S -wave D0D̄∗0 pair [the Feynman diagram in Fig. 57(a)]
can produce a narrow peak in the X(3872)γ invariant mass spectrum due to the triangle singularity [1064]. Another
similar narrow peak in the X(3872)π from triangle singularity was pointed out by Braaten et al [1066, 1067] due
to the short-range creation of the D∗D̄∗ pair as shown in Fig. 57(b). Recently, the similar triangle singularity was
investigated for the production of the T +

cc [286]. We refer to the review [1063] for details of triangle singularity.
In order to investigate the triangle singularity, one has to adopt the non-factorization formula [1064, 1065, 1066,
1067, 1068]. In Refs. [1066, 1067], the productions of the X(3872) accompanied by a soft pion at hadron colliders
and in B meson decays were investigated, where the rescattering of D∗D̄∗ → Xπ is embedded in XEFT (which is
similar to Ref. [1084]). The production of the T +

cc in heavy-ion collisions and in hadron colliders were investigated in
Refs. [288, 1098], respectively.

5.6. Charged charmoniumlike and bottomoniumlike states without and with the strangeness

In this section, we review the applications of /πEFT, χEFT and other related calculations in heavy hadron systems.
The Zc(3900), Zc(4020), Zcs(3985), Zb(10610), Zb(10650) and so on are very good candidates of hadronic molecules
due to their proximity to the corresponding thresholds. There are extensive studies and intensive debates on the inner
configurations of these states, see Sec. 1.3.2 and some reviews [6, 11, 13, 8, 9, 14, 10, 12, 309, 200]. In the following
we review the progress on how the EFTs help us understand the nature of these states (see an analogical analysis of
nuclear forces and their counterparts in heavy hadron systems [1099]).

5.6.1. Zc, Zb and partners
In the BW fits which ignored the nearby thresholds, the Zc(3900), Zc(4020), Zb(10610) and Zb(10650) (in what

follows we will denote them as Zc, Z′c, Zb, and Z′b, respectively) lie few MeVs above the DD̄∗, D∗D̄∗, BB̄∗ and B∗B̄∗

thresholds, respectively. In addition to the similarities of their decay patterns, the mass differences of (Zc,Z′c) and
(Zb,Z′b) almost equal to those of (D,D∗) and (B, B∗), respectively. Thus, they are suggested to be the molecular twin
partners in HQSS and HQFS. It will be very instructive to classify these states into one group and study their behaviors
in a uniform framework.

With the EFT formalism, there are two directions toward understanding the nature of these states. The first one is
to calculate the mass spectrum with /πEFT, in which the LO LECs are related with HQS and they are fixed with the help
of the assumption that X(3872) and Zb are the DD̄∗ and BB̄∗ bound state respectively [1100]. The second one resorts to
fitting the invariant mass spectrum from which the particle is observed [964, 1101, 1102, 915, 1103, 1104, 973, 988].
In this case, the D∗D̄(∗)/B∗B̄(∗) rescatterings are treated perturbatively or nonperturbatively. For the former case, one
deems that the Z(′)

Q (Q ≡ c, b) states are generated from the kinematic effect [1105, 1106, 1107, 1108]. But this
is criticized in Ref. [1109], in which Guo et al built a solvable model to fit the elastic (DD̄∗) and inelastic (J/ψπ)
invariant mass distributions of the Zc. In order to fit the experimental line shapes, the interaction strength of DD̄∗

needs to be adjusted to large values, which in turn negates the perturbative assumptions. Therefore, the pronounced
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near-threshold narrow peaks in experiments cannot be ascribed to the pure kinematic effect. The strong interacting
DD̄∗ should be resummed in an infinite series of loops, which generates pole(s) in the S -matrix.

There are several lattice QCD studies on the Zc states. The corresponding results disfavored the Zc state as
a conventional resonance. The first kind is based on the finite volume energy levels. For example, Ref. [1110]
considered the DD̄∗ and J/ψπ channels with mπ = 266 MeV, but did not find the signal of the Zc except the non-
interacting two meson energy levels (see also [1111, 1112] for similar results). Ref. [1113] simulated the single-
channel—(DD̄∗)± scattering with mπ = 485, 420, 300 MeV, where the authors found the DD̄∗ interaction with three
different mπ is weakly repulsive. In Refs. [526] and [1114], the coupled-channel Lüscher formula together with the
Ross-Shaw theory is used to study the near-threshold scattering of the DD̄∗. The results indicated that neither the
threshold effect interpretation nor the resonance interpretation is favored. HAL QCD Collaboration considered the
three channel couplings among J/ψπ, DD̄∗, and ηcρ with mπ = 410 − 700 MeV [1115, 1116]. Their simulations
revealed that the coupled-channel potentials are dominated by the off-diagonal terms, i.e., the couplings of J/ψπ-DD̄∗

as well as ηcρ-DD̄∗, which makes the Zc look more like a cusp effect but not a conventional resonance state.
Unlike the lattice QCD results, the combinations of EFT and experimental data do support the Z(′)

Q to be the virtual
states or resonances generated from the nonrelativistic D∗D̄(∗)/B∗B̄(∗) interactions. From Eq. (363), one obtains that

Vα
1+− (BB̄∗) = Vα

1+− (B∗B̄∗)
HQFS

= Vα
1+− (DD̄∗) = Vα

1+− (D∗D̄∗), (411)

where the HQSS and HQFS are employed to relate the potentials of [D∗D̄(∗), B∗B̄(∗)]1+− . For the single channel case,
there is only one LEC if we define Cαz = (Cα0 + Cα1 )/2. Assuming the Zb as a [BB̄∗]1+− bound state, Ref. [1100]
obtained the virtual state solution for the Z(′)

c . However, one should be cautious about the HQFS relation in Eq. (411).
For example, in Ref. [977], a general dimensional analysis shows that the LO contact LECs are scaled as 1/M, where
M is proportional to the heavy meson mass. In Ref. [1117], it is argued that the renormalizibility requires that the LO
LECs introduced in Sec. 5.4 decreases at least as 1/M in the limit M → ∞. Thus, it is even claimed that there cannot
be a common EFT for different heavy quark masses. A coercive using of the HQFS to relate the double-charm and
-bottom sectors may lead to predictions with uncontrolled uncertainties.

Albaladejo et al analyzed the pole distributions of the Zc via fitting the DD̄∗ and J/ψπ invariant mass spectra [964],
in which they modeled a coupled-channel—J/ψπ and DD̄∗ effective potential in the framework of /πEFT,

Vi j =

[
0 C̃
C̃ C + C′ p2

]
, (412)

where the interaction of J/ψπ is set to be zero due to their weak coupling [1118, 1119]. The DD̄∗-J/ψπ coupling
is momentum independent assuming it is dominated by the S -wave interaction, while the DD̄∗ interaction is kept to
the NLO. In Ref. [964], different explanations for the Zc are given when the C′p2 term is switched on and off. When
C′ , 0, the Zc state is a resonance that lies above the DD̄∗ threshold. If C′ = 0, the Zc becomes a virtual state that
lies below the DD̄∗ threshold (with a small width from the J/ψπ decay). For the case of the virtual state, the line
shape of the inelastic channel—J/ψπ peaks exactly at the threshold of the DD̄∗, which is a generic feature that has
been discussed by Frazer et al [1120] (for more general discussions on the pole distributions and classifications in
different Riemann sheets, we refer to [1120, 1121, 547]). Besides, this approach is also reformulated in a box [1122]
to compare with the lattice QCD energy levels [1111].

An elaborated approach to parameterizing the line shapes of the near-threshold states was developed in Refs. [1102,
915] based on the coupled-channel LSEs. The Z(′)

b states were observed in the Υ(5S ) → B∗B̄(∗)π, Υ(nS )ππ, and
hb(mP)ππ decays in the B∗B̄(∗), Υ(nS )π and hb(mP)π invariant mass spectra. For the Z(′)

b states, the relevant elastic
and inelastic channels are BB̄∗, B∗B̄∗, and Υ(nS )π (n = 1, 2, 3), hb(mP)π (m = 1, 2), respectively. The coupled-channel
effective potential (the bare pole is not considered here, see discussions in [973]) is given with the (Ne + Ni)× (Ne + Ni)
matrix (with Ne = 2 and Ni = 5 the numbers of the elastic and inelastic channels, respectively),

V =

[ Vαβ(p, p′) Vαi(p, ki)
V jβ(k′j, p′) V ji(k′j, ki)

]
, (413)

where the α, β denote the elastic channels and i, j denote the inelastic channels, respectively. In order to simplify the
calculation, the authors made some assumptions and approximations such as the V ji ≈ 0 because the coupling of
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the heavy quarkonium and pion is rather weak [1118, 1119]. With this approximation, the inelastic channels can be
disentangled from the elastic ones. The inelastic channel contributions are reduced to the additive terms in the contact
potentials of Vαβ [1102, 915, 973], which is equivalent to using the description of the optical (complex) potential16,
i.e.,

Vct
αβ(E, p, p′) = vαβ − i

2πE

∑
i

mHi mhi giαgiβk
2li+1
i , (414)

with vαβ the contact potential of the elastic-to-elastic scattering. The mHi (mhi ), ki and li are the mass of the heavy
(light) meson, the momentum and the angular momentum in the ith inelastic channel, respectively. The E represents
the invariant mass of the system. The second term in Eq. (414) comes from the transition vertex of the elastic-to-
inelastic

Viα(ki, p) = Vαi(p, ki) = giαkli
i , (415)

and the inelastic loop. For more details, see Refs. [1102, 915]. If one assumes that the direct production vertex is
saturated by the B∗B̄(∗)π channels, the production amplitudes for the elastic and inelastic channels read, respectively,

Uα(E, p) = Mα(E, p) +
∑
β

∫
d3q

(2π)3Vαβ(E, p, q)Gβ(E, q)Uβ(E, q), (416)

Ui(E, k) =
∑
β

∫
d3q

(2π)3Viβ(k)Gβ(E, q)Uβ(E, q), (417)

where

Gβ =
2µβ

p2
β − q2 + iε

, p2
β ≡ 2µβ(E − mβ

th), (418)

with µβ and mβ
th the reduced mass and threshold of the βth elastic channel, respectively. The Eqs. (416) and (417) were

also illustrated via a diagrammatic representation in Fig. 58.

(a) (b) (c)

Figure 58: A diagrammatic representation of Eqs. (416) and (417), where the (thin) solid and dashed lines denote the vector (pseudoscalar) B
mesons and pion, respectively, while the thick solid line denotes the bottomonium. The circled cross represents the production source. The shaded
box stands for the rescattering T -matrix of the elastic channels.

With this approach, Refs. [1102, 915, 973] fitted the invariant mass spectrum of the B∗B̄(∗) and hb(mP)π, as well
as those of the Υ(nS )π in Ref. [1125] with the inclusion of the ππ final state interaction via the dispersion relation.
In Refs. [1102, 915], the B∗B̄(∗) interactions are built upon the pionless framework, the LO contact potentials are
constrained by the HQS (see Sec. 5.4). A good overall description of the data is consistent with the Zb as a virtual
state and Z′b as a resonance. Their poles both reside very close to the BB̄∗ and B∗B̄∗ thresholds, respectively [915].

16The optical potential has both the real and imaginary parts, which is usually introduced to describe a process where the explicitly considered
flux is not conserved. This is general in hadronic physics, such as the pp̄ annihilation at low energies [1123], where the opened channels—multi
light hadrons cannot be explicitly described by the theory, e.g., the χEFT [1124].
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An improved fitting with the Weinberg scheme is given by Ref. [973] with the potentialVαβ of the contact terms (LO
plus NLO), OPE and one-eta exchange (OEE),

Vαβ = Vct
αβ + VOPE

αβ + VOEE
αβ , (419)

where the three-body dynamics in OPE/OEE is considered via the TOPT formalism (see Sec. 5.3.1). Seven different
fitting schemes are considered by including the OPE/OEE, S−D mixing, HQSS violation and NLO contact potentials
by order. They obtained that the line shapes are insensitive to the central part of the S -wave OPE potential since it can
be absorbed by adjusting the LO LECs, while the effect of the tensor force from OPE (though it is partially balanced
by the S−D transition terms of the NLO contact terms) leads to visible modifications of the line shapes [where the
regulator (348) is used and the (hard) cutoff is around 1.0 GeV]. The effect of the OEE interaction is rather weak, and
the higher order terms for the contact potentials of the inelastic channels seem not necessary. The Fig. 59 shows the
real and imaginary parts of the Zb and Z′b poles, where the fitting schemes A (only with the LO Vct

αβ) and G [with the
full form of Eq. (419) as well as the S−D mixing] indicate that the Zb and Z′b are virtual and resonant states residing
below the BB̄∗ and above the B∗B̄∗ thresholds, respectively.
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Figure 59: The real and imaginary parts of the poles of the Zb (left panel) and Z′b (right panel) states obtained in fit Scheme A and G, respec-

tively [973], where the x-axes are defined as EZb = Mpole
Zb
− mB − mB∗ , EZ′b = Mpole

Zb
− 2mB∗ .

An extensive study of the Z(′)
c and Z(′)

b states was provided by Ref. [988] in χEFT, in which the effective potentials
of the D∗D̄(∗) and B∗B̄(∗) were calculated up to NLO (e.g., see Sec. 5.3.2). Unlike the Refs. [1102, 915, 973], this work
is performed in the single-channel framework (ignoring the coupled-channel effect induced by the S−D mixing),
and the inelastic channels are not considered. The coupled-channel effect (e.g., DD̄∗ → D∗D̄∗ and BB̄∗ → B∗B̄∗)
is (partially) included in the TPE diagrams. The corresponding invariant mass distributions of the elastic channels
were fitted, see Fig. 60, and the extracted poles of the Z(′)

c and Z(′)
b all reside in the unphysical Riemann sheet and

lie above the D∗D̄(∗) and B∗B̄(∗) thresholds, respectively. Therefore, they are explained as the D∗D̄(∗) and B∗B̄(∗)

resonances, respectively. One virtue of Ref. [988] is that the soft cutoff Λ (≤ 0.5 GeV) is natural and consistent with
the validity of χEFT (see discussions in Sec. 5.3.4). In Ref. [973], the typical momentum scale for the coupled-channel
is pty =

√
2µB∗ B̄(∗)δb ≈ 0.5 GeV. In order to effectively involve the coupled-channels, the relatively hard cutoff (∼ 1.0

GeV) was used.
In the HQSS limit, there are six B(∗)B̄(∗) systems in the isovector channel including the Zb and Z′b, which were

proposed by Bondar et al [1012]. The other four isovector states with negative G parities are named as W (′)
bJ [1013]

|BB̄〉1−(0++) : Wb0 → ηbπ, χbπ,Υρ, (420)
|B∗B̄∗〉1−(0++) : W ′b0 → ηbπ, χbπ,Υρ, (421)
|BB̄∗〉1−(1++) : Wb1 → χbπ,Υρ, (422)
|B∗B̄∗〉1−(2++) : Wb2 → χbπ,Υρ, (423)

where their possible decay modes are also presented. Because they have the negative G-parity, these states can be
detected in the radiative decays of the Υ(5S )/Υ(6S ) rather than the of pionic transitions (for a review, see [1126]).
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With pionfully nonperturbative treatment of the B∗B̄(∗) interactions and using the parameters of the Z(′)
b as inputs, the

W (′)
bJ states are predicted as the virtual states or resonances that reside near their corresponding thresholds [1127, 1128].
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Figure 60: The fitted invariant mass spectra of the D∗D̄(∗) and B∗ B̄(∗) distributions in e+e− → πV(V)P (where V and P denote the vector and
pseudoscalar D (B) mesons, respectively) transitions from Ref. [988]. The data with error bars in figures (a), (b) and (c)/(d) are taken from
Refs. [295], [297] and [301] at

√
s = 4.26, 4.23, and 10.86 GeV, respectively. The figures are taken from Ref. [988].

5.6.2. Zcs and partners
The above frameworks were also transplanted to study the recently observed Zcs(3985) by the BESIII Collabora-

tion [310] as well as the Zcs(4000) and Zcs(4220) by the LHCb Collaboration [345].
In Ref. [311], the Zcs(3985) was treated as the U/V-spin partners of Zc state in flavor SU(3) symmetry. The notion

of the isospin was extended to the U and V-spins in exact SU(3) symmetry. The corresponding GU and GV parities
were defined (see Sec. 2.1.2). The Zcs(3985) can be connected to the Zc via

Z−c (cc̄dū) Û←→ Z−cs(cc̄sū), Z+
c (cc̄ud̄) V̂←→ Z̄0

cs(cc̄sd̄), (424)

where Û (V̂) denotes the U (V)-spin rotation. One can consequently define the GU/V parity even and odd basis through
the two particle basis D̄sD∗ and D̄∗sD (convention-I in Table A.11) as

|GU = η〉 =
1√
2

(|D−s D∗+〉 + η|D∗−s D+〉) , (425)

|GV = η〉 =
1√
2

(
|D−s D∗0〉 + η|D∗−s D0〉

)
, (426)

where η = +1 corresponds to the Z̄0
cs and Z−cs, respectively. The potential (412) was expanded to the three-channel

case, (J/ψπ, DD̄∗, D̄∗D∗) for the Zc and (J/ψK, D̄sD∗, D̄∗sD∗) for the Zcs(3985). The four LECs (see Ref. [311])
were fixed using the mass and width of the Zc (Zb) and Z′c (Z′b) as inputs. In addition, the molecular resonances in the
D̄∗sD∗, BsB̄∗ and B∗s B̄∗ channels were predicted.

The calculation for the D̄sD∗ system within χEFT was performed in Ref. [312], where the effective potential
was given up to NLO including the OEE and two-kaon exchange (TKE) interactions. Based on the parameters by
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fitting the line shapes of the Z(′)
c and Z(′)

b in Ref. [988], the line shape and resonance parameters of the Zcs(3985) were
reproduced [312]. For example, a sharp peak automatically emerges in the D̄sD∗ invariant mass spectrum (see Fig. 61),
and the extracted mass and width (m,Γ) = (3982.4+4.8

−3.4, 11.8+5.5
−5.2) MeV are very consistent with the experimental value.

The possible resonances in the D̄∗sD∗, BsB̄∗ and B∗s B̄∗ systems were also predicted, which established a complete
spectrum of the charged heavy quarkoniumlike states with the positive GI/U/V parities (see Fig. 61).

Other similar studies within the /πEFT were presented in Refs. [313, 319, 339]. For example, with the framework
of Ref. [964], Ref. [313] fitted the invariant mass spectrum of the D̄sD∗ with either the LO or NLO effective potential
of the D̄sD∗ system in the energy range below 4.03 GeV, where the production is enhanced by the triangle singularity.
As a consequence, the Zcs(3985) and its HQSS partner are virtual states or resonances depending on the potential. An
extension to the whole energy region in experiments was performed through introducing the coupled-channel D̄∗sD∗

with the LO contact potential constrained by the HQSS [339]. Ref. [319] used the potential (363) with the parameters
Cα0 , Cα1 fixed by fitting the data of the Z(′)

c and Zcs(3985). They predicted the possible existence of the W (′)
cJ , W (′)

csJ either
as the bound states or virtual states.
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Figure 61: Left panel: the K+ recoil-mass spectrum distributions obtained with the fitted parameters of the Zc(3900) [988] as inputs. The data with
error bars are taken from [310] at

√
s = 4.681 GeV. Middle and right panels: the spectrum of the charmoniumlike and bottomoniumlike states with

positive GI/U/V parities predicted in Ref. [312]. The blue solid line and red band denote the central value and range of errors of the mass. The
observed and predicted states are marked with † and boldface, respectively. The figures are taken from Ref. [312].

About four months after the observation of Zcs(3985) [310], the LHCb discovered two states Zcs(4000) and
Zcs(4220) in the invariant mass spectrum of J/ψK+ for the B+ → J/ψK+φ decay with the significance of 15 σ
and 5.9 σ, respectively [345]. The mass of the Zcs(4000) is also very close to the D̄sD∗ threshold but its width is
around 130 MeV, which is about 10 times larger than that of the Zcs(3985) as shown in Fig. 62. The Zcs(4220) is also
much broader than any theoretical predictions of the HQSS partners of Zcs(3985). Therefore, whether the Zcs(3985)
and Zcs(4000) are the same states observed in different processes [330] or they are utterly two different states [346]
deserves serious analyses.

From Eqs. (425) or (426) we know that there are two orthogonal basis with η = +1 and −1, respectively. In the
above investigations [312, 311, 313, 319, 339], the Zcs(3985) was assigned as the η = +1 state. Meng et al derived
some important implications by treating the Zcs(3985) and Zcs(4000) as two different states [346] corresponding to
the states with η = −1 and η = +1, respectively. With this assumption, the SU(3) partners of the Zc and Z′c are
assigned as the Zcs(4000) and Zcs(4220), respectively, see details in Fig. 63. In such a scenario, the SU(3) breaking
effect in the D∗D̄(∗) and D̄∗sD(∗) systems should be very significant since ΓZcs(4000) � ΓZc(3900), ΓZcs(4220) � ΓZc(4020), and
mZcs(4220) −mZc(4020) ≈ 2[mZcs(4000) −mZc(3900)]. With strict HQSS, the GI/U/V parity even and odd states are orthogonal,
whereas the mixing occurs when the HQSS is broken to some extent. In Ref. [346] the HQSS breaking effect was
investigated via introducing the following coupled-channel potential,

V1+ (p, p′){+,−} =

 c+
a +δca

Λ

δca
Λ

δca
Λ

c−a +δca

Λ

 +

 c+
b (p2+p′2)

Λ3

c−b (p2+p′2)
Λ3

 , (427)
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where the c+
a (c−a ) and c+

b (c−b ) denote the LO and NLO LECs for the η = +1 (−1) channel, respectively. The δca

designates the strength of the off-diagonal term. A conversion of the potential (427) into the {D̄sD∗, D̄∗sD} basis
defines a measure of the HQSS breaking scale, RHQSSB = 4δca/|c+

a + c−a |. Ref. [346] found that the pole trajectories of
the Zcs(3985) and Zcs(4000) are not sensitive to RHQSSB (the corresponding mixing angle θ changes from −3◦ to 3◦)
when the RHQSSB is varied from −0.4 to 0.4, see Fig. 62.
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Figure 62: Left panel: the x-axis denotes the masses of the Zc(3900), Zc(4020), Zcs(3985), Zcs(4000) and Zcs(4220) with respect to the correspond-
ing thresholds D̄D∗/D̄∗D, D∗D̄∗, D̄sD∗/D̄∗s D, D̄∗Ds/D̄D∗s and D̄∗D∗s , respectively, while the y-axis represents their widths [295, 1129, 310, 345].
Right panel: the pole trajectories and the mixing angle range of |D̄sD∗/D̄∗s D,+〉 and |D̄sD∗/D̄∗s D,−〉 basis for the Zcs(3985) and Zcs(4000) states
when varying RHQSSB from −0.4 to 0.4. The figures are taken from Ref. [346].

If the Zcs(3985) and Zcs(4000) are different states [346]: (1) HQSS is a good symmetry for the D̄(∗)
s D(∗) systems.

(2) The Zcs(4000) and Zcs(4220) are the HQSS partners. (3) The Zcs(3985) and Zcs(4000) are pure GU/V parity odd
and even states, respectively. (4) There exists a tensor resonance |D̄∗sD∗〉2+ as the HQSS partner of the Zcs(3985). Its
mass and width are predicted to be (m,Γ) = (4126±3, 13±6) MeV. (5) For the Zcs(3985) and Zcs(4000), the branching
ratio R(Zcs → D̄∗sD/Zcs → D̄sD∗) ≈ 0.5. (6) The decay mode Zcs(3985) → J/ψK is suppressed in the HQS limit
[see Eq. (357)]. (7) The SU(3) breaking effect is significant for the systems without and with the strangeness. The
implications (4) and (6) could serve as a criterion for experiments to test the scenario proposed in Ref. [346] .
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Figure 63: Two assignments for the Zcs(3985) and Zcs(4000) states in Ref. [346] and the corresponding consequences. Subfigure (a): The Zcs(3985)
is treated as the SU(3) partner of the Zc(3900) with the positive GI/U/V parities. Subfigure (b): the SU(3) partner of the Zc(3900) is Zcs(4000) (with
significant symmetry breaking), while the Zcs(3985) is assigned as a negative GU/V parity state. The projected flavor wave function in the open-
charm and hidden-charm channels, as well as the corresponding IGI /UGU /VGV (JPC) quantum numbers can be traced back to Sec. 5.4. The
particles listed in green and yellow cards represent the observed and predicted states, respectively. The double head arrows denote the partner states
in HQSS and SU(3) symmetries (the symmetries hold well in this case), while the ones slashed by the oblique lines represent the breaking of SU(3)
symmetry. The two partner channels given in the white cards are required by the symmetry, but they are not considered in Ref. [346].
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5.7. Hidden-charm molecular pentaquarks without and with the strangeness
5.7.1. Pc and partners

In 2019, the LHCb analyzed both the run-I and run-II data [3], and found the previously observed Pc(4450) sig-
nal [2] actually contains two substructures—the Pc(4440) and Pc(4457). Meanwhile, another new structure Pc(4312)
was discovered, while the broad Pc(4380) [2] lost its significance in the J/ψp invariant mass spectrum. One may still
notice a bump around the 4.38 GeV. However, this bump is too narrow (see Ref. [385] for a quantitative fit) to be
identified as the same state in the first analysis. Their isospin I = 1/2 can be easily inferred from the final state J/ψp.
The community instantly noticed that the Pc(4312) and Pc(4440), Pc(4457) reside very close to (and below) the ΣcD̄
and ΣcD̄∗ thresholds, respectively. This triggered a flood of works toward the molecular explanations with various
models, e.g., see Sec. 1.3.3.

In Ref. [352], the /πEFT and HQSS was combined to parameterize the interactions of the ΣcD̄, ΣcD̄∗, Σ∗cD̄ and Σ∗cD̄∗

by two LECs, which are equivalent to the Cα1/2 and Cα3/2 of Eqs. (372) and (373) but within the uncoupled-channel
framework. The two LECs are fixed using the binding energies of the Pc(4440) and Pc(4457) via treating them as
the S -wave ΣcD̄∗ molecules with JP = 1

2
− and 3

2
−. The JP quantum numbers of the Pc(4440) and Pc(4457) are not

determined yet, so there are two options:

canonical spin order: Pc(4440): JP = 1
2
−
, Pc(4457): JP = 3

2
−
, (428)

non-canonical spin order: Pc(4440): JP = 3
2
−
, Pc(4457): JP = 1

2
−
, (429)

where the spin order in Eq. (428) is called canonical because the empirical pattern from the hadron spectra is that the
higher spin states usually have larger masses [1]. It was shown that the canonical order is more preferable considering
the induced binding energy of the Pc(4312) is closer to the experimental data. Another four bound states in the Σ∗cD̄
and Σ∗cD̄∗ systems with JP = 3

2
− and 1

2
−, 3

2
−, 5

2
− were predicted with binding energies around 3 − 27 MeV. The fits

in Ref. [356] show that the two arrangements in Eqs. (428) and (429) work equally well without pions. However, in
a recent study based on the machine learning [1130], the authors claimed that the JP quantum numbers of Pc(4440)
and Pc(4457) can be discriminated even within the /πEFT, and the canonical spin order is supported in the neural
network-based approach.

The OPE interaction for the ΣcD̄∗ system was included in Refs. [363, 387] (see a more general discussion on the
role of OPE for heavy hadron systems [1131]), in which the hard cutoff Λ & 1.0 GeV was used to regularize the
Schrödinger equation. The results showed that the JP of the Pc(4440) and Pc(4457) turns into the non-canonical order
of Eq. (429). A systematic study of the Σ

(∗)
c D̄(∗) interactions within the χEFT was performed in Refs. [355, 364],

where the contact interactions, the OPE and TPE were considered. The contact Lagrangian of the Σ
(∗)
c D̄(∗) is given as

L = D̃a〈 ¯̃HH̃〉Tr(ψ̄µQψQµ) + iD̃bεσµνρvσ〈 ¯̃Hγργ5H̃〉Tr(ψ̄µQψ
ν
Q)

+Ẽa〈 ¯̃HτiH̃〉Tr(ψ̄µQτiψQµ) + iẼbεσµνρvσ〈 ¯̃Hγργ5τiH̃〉Tr(ψ̄µQτiψ
ν
Q), (430)

where the corresponding LECs are denoted as D̃a, D̃b, Ẽa and Ẽb, respectively. The ψµQ represents the superfield of
the singly heavy baryons in Sec. 2.6.3. Expanding Eq. (430) one obtains

Vct
ΣcD̄ = −D̃a − 2Ẽa(I1 · I2), (431)

Vct
ΣcD̄∗ = −D̃a − 2Ẽa(I1 · I2) +

2
3

[
− D̃b − 2Ẽb(I1 · I2)

]
σ · T, (432)

Vct
Σ∗c D̄ = −D̃a − 2Ẽa(I1 · I2), (433)

Vct
Σ∗c D̄∗ = −D̃a − 2Ẽa(I1 · I2) +

[
− D̃b − 2Ẽb(I1 · I2)

]
σrs · T, (434)

where I1 (I2) denotes the isospin operator of the Σ
(∗)
c (D̄(∗)). The spin operator of the Σc (Σ∗c) is related to the σ (σrs)

via S1 = σ/2 (S′1 = 3σrs/2), while the spin operator of the D̄∗ is defined as S2 = −T = iε† × ε, e.g., see the Appendix
C of Ref. [364]. Meanwhile, the effective potentials from the OPE and NLO TPE interactions can be derived from
Eqs. (124) and (139). The OPE only survives in the ΣcD̄∗ and Σ∗cD̄∗ systems, which read

VOPE
ΣcD̄∗ = −(I1 · I2)

gg1

2 f 2
π

(q · σ)(q · T)
q2 + m2

π

, (435)
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Figure 64: The parameter regions of three Pc states in the cases of (a)-not considering the contribution of the Λc in the loop diagrams, (b)-
considering the contribution of the Λc in the loop diagrams, (c)-using the non-canonical spin order for the Pc(4440) and Pc(4457). The green, red
and blue bands denote the binding energies of the [ΣcD̄]J=1/2, [ΣcD̄∗]J=1/2 and [ΣcD̄∗]J=3/2 systems in the region [−30, 0] MeV, respectively, while
the arrow for each one denotes the direction that the binding becomes deeper. The corresponding three black straight lines represent the central
values of the binding energies obtained from the experimental data [3].

VOPE
Σ∗c D̄∗ = (I1 · I2)

gg5

2 f 2
π

(q · σrs)(q · T)
q2 + m2

π

. (436)

As in the NN interactions within the χEFT [475, 476], the static OPE potential is introduced for the ΣcD̄∗ and Σ∗cD̄∗

systems. For the OPE potential with the kinetic energies of the heavy particles in the framework of TOPT, e.g., the
expressions like those in Eqs. (328) and (329), one can consult the supplemental materials of Ref. [356].

The TPE expressions including the mass splittings are lengthy and can be found in Refs. [355, 364]. For the
specified total isospin I = I1 + I2, the matrix element 〈I1 · I2〉 = [I(I + 1) − I1(I1 + 1) − I2(I2 + 1)]/2. From
Eqs. (431)–(434), we can redefine

D1 = D̃a + 2Ẽa(I1 · I2), D2 = D̃b + 2Ẽb(I1 · I2), (437)

where D1 and D2 represent the strength of the central potential and spin-spin interaction of the light d.o.f, respectively.
One can build a connection between D1, D2 and Cα1/2, Cα3/2 through matching the potentials in the corresponding
channels.

In Refs. [355, 364], the values of D1 and D2 were varied in the ranges [−100, 150] GeV−2 and [−100, 100] GeV−2

with the cutoff Λ = 0.5 GeV. They investigated the results without and with the Λc as the intermediate state in the
TPE loop diagrams in the case of the canonical spin order for the Pc(4440) and Pc(4457), see Figs. 64(a) and 64(b).
The result with the contributions of the Λc is better than that of without the Λc. This is a natural consequence of the
strong coupling between Σ

(∗)
c and Λcπ as well as the accidental degeneration of the ΣcD̄ and ΛcD̄∗ (the mass difference

mΣcD̄ − mΛcD̄∗ ' 28 MeV � mπ). With the configuration of the canonical spin order, one gets |D1| � |D2| [see
Fig. 64(b)], which implies that the potential is dominated by the central term and the spin-spin interaction only serves
as a ‘perturbation’ to tune the binding energies of the [ΣcD̄∗]1/2 and [ΣcD̄∗]3/2 slightly (where the subscript denotes
the total angular momentum J). It is worth noting that the role of Λc is still under debate. For example, it turns out
that the inclusion of the Λc channels does not necessarily lead to improved fits in an updated fit in Ref. [385].

Wang et al also explored the possibility of the non-canonical spin order [364], see Fig. 64(c). It was shown that
the experimental data can be equally well reproduced as that in Fig. 64(b), but one has to largely enhance the spin-spin
interaction, such as |D1| ∼ |D2| in this case. From the experience of the NN interaction, the LECs CT for the spin-spin
interaction is much smaller than the CS for the central interaction, which is a manifestation of the Wigner symmetry
in the large Nc limit [1132]. With the help of the quark model as shown in the Appendix of Ref. [417], one can always
relate the contact terms of the Σ

(∗)
c D̄(∗) to those of the NN systems. Thus, one expects the suppression of the D2.

Therefore, the canonical spin order is favored in Ref. [364].
With the fixed D1 and D2, the full spectrum of the Σ

(∗)
c D̄(∗) hadronic molecules with I = 1/2 was established, see

Fig. 65(a). The [Σ∗cD̄]3/2 system is the most deeply bound one with a mass at 4348 MeV (but this result is sensitive to
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Figure 65: Left panel: The mass spectrum of the Σ
(∗)
c D̄(∗) molecular pentaquarks. Right panel: The predicted mass spectrum of the Σ

(∗)
b B(∗)

molecular pentaquarks. The mass ranges obtained from the experimental measurements and theoretical estimations are denoted by the red and
yellow bands, respectively, while the central values calculated in Ref. [364] are represented by the blue solid line.

the cutoff, see Table 3 of Ref. [364]), which might correspond to the previously reported Pc(4380) [2] or the recently
announced Pc(4337) [408] (for alternative explanations of the Pc(4337), see [409, 381, 410]). A prediction of the
possible molecular pentaquarks in the hidden-bottom Σ

(∗)
b B(∗) systems was also given, see Fig. 65(b).

The invariant mass spectrum of the J/ψp was fitted by Du et al [356] within the framework of Refs. [1102, 915,
973]. The LO contact potentials Vαβ of the elastic channels Σ

(∗)
c D̄(∗) were derived from Eqs. (369)-(373), and the

contribution of the inelastic channel J/ψp was added into the Vαβ via an imaginary term due to the weak coupling
of J/ψp [1133], which is analogous to Eq. (414). Besides, the OPE for the ΣcD̄∗ and Σ∗cD̄∗ systems was considered
and treated nonperturbatively. The LSEs (416) and (417) were regularized with the hard cutoff [see Eq. (348)], where
Λ is chosen to be in the range 1.0 − 1.5 GeV. The fitted line shape is shown in Fig. 66. There are two schemes to
fit the data: Scheme I—only the LO contact potential was considered; Scheme II—the OPE was incorporated. The
results in Scheme I are shown in Fig. 66(I), where there are two solutions as those of Ref. [352], i.e., two optional spin
orders in Eqs. (428) and (429), and the corresponding fitting quality χ2/d.o.f = 1.01 and 1.03, respectively. However,
including the OPE (Scheme II) gives the unique solution with the slightly improved χ2/d.o.f = 0.98. In this case, the
spin-parity of the Pc(4440) and Pc(4457) abide by the non-canonical spin order. In both schemes, a bound state was
produced in the [Σ∗cD̄]3/2 channel with a narrow width, which qualitatively matches the inconspicuous bump around
4.38 GeV. An improved fitting with the additional inelastic ηc p and ΛcD̄(∗) channels was done in Ref. [385] (see also
Ref. [359]), which supported the conclusion of Ref. [356], and predicted the line shapes in the invariant mass spectra
of the ηc p and ΛcD̄(∗), respectively.

The results in Refs. [364, 363, 352, 387, 356, 385] showed the Pc(4440) and Pc(4457) in the non-canonical spin
order imply that the spin order in the Σ∗D̄∗ system is also non-canonical, i.e., m[Σ∗D̄∗]1/2

> m[Σ∗D̄∗]3/2
> m[Σ∗D̄∗]5/2

. In
Refs. [363, 387, 356, 385], the OPE was all included with a hard cutoff Λ & 1.0 GeV to regularize the iterative
equation with the coupled-channel dynamics, which is indeed a very hard scale from the experience of the single-
channel NN interaction [475, 476]. In the single-channel NN case, choosing Λ ∼ mρ or even larger values was already
found to result in spurious deeply bound states in the NN systems [646]. Besides, the nuclear lattice simulations of
Refs. [1134, 1135] also correspond to smaller cutoff values.

The decays of the Pc states into the J/ψ∆, J/ψN, and ηcN were investigated within /πEFT in Refs. [390, 388]. The
Pc(4457) is much closer to the ΣcD̄∗ threshold than the other Pc states to their corresponding thresholds. The isospin
of the ΣcD̄∗ can either be 1/2 or 3/2, which can be expressed with the two particle state,

[ |ΣcD̄∗; I = 1
2 , I3 = 1

2 〉
|ΣcD̄∗; I = 3

2 , I3 = 1
2 〉

]
=


√

2
3 − 1√

3
1√
3

√
2
3


[ |Σ++

c D∗−〉
|Σ+

c D̄∗0〉
]
. (438)

Because the Pc(4457) is very close to the thresholds, the difference of thresholds has a significant effect on the
component of the Pc(4457). The binding energies of the Pc(4457) with respect to the Σ++

c D∗− and Σ+
c D̄∗0 thresholds
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Figure 66: The fitted invariant mass spectrum of the J/ψp in Ref. [356]. The data with error bars are the weighted experimental data from Ref. [3].
Left panel: Only the contact potentials were considered in the fit. There exist two possible solutions with almost equal χ2/d.o.f and they correspond
to canonical (blue dashed curves) and non-canonical (red solid curves) spin orders for the Pc(4440) and Pc(4457). The blue dot-dashed and red
dotted curves are the corresponding backgrounds, respectively. Right panel: Apart from the contact terms, the OPE interactions were also included
in the fit (shown with the red solid curves).

read [390],

mΣ++
c D∗− − mPc(4457) = 6.9+1.8

−4.1, mΣ+
c D̄∗0 − mPc(4457) = 2.5+1.8

−4.2. (439)

Since mΣ+
c D̄∗0 −mPc(4457) � mΣ++

c D∗− −mPc(4457), one may expect the significant isospin violating decays for the Pc(4457)
as for the X(3872) [for the isospin violating decays of the X(3872), see Sec. 5.5.5]. In Ref. [390], Guo found that the
isospin breaking ratio

R∆+/p =
B[Pc(4457)+ → J/ψ∆+]
B[Pc(4457)+ → J/ψp]

, (440)

is in the range from O(10−2) to 30%, where the large uncertainty mainly comes from the mass of the Pc(4457).
With the HQSS inspired potential for the Σ

(∗)
c D̄(∗) systems [352], Sakai et al calculated their S -wave decays into

the J/ψN and ηcN, respectively [388], i.e.,{
[ΣcD̄]1/2, [Σ∗cD̄]3/2, [ΣcD̄∗]1/2, [ΣcD̄∗]3/2, [Σ∗cD̄∗]1/2, [Σ∗cD̄∗]3/2

}
→ J/ψN, (441){

[ΣcD̄]1/2, [ΣcD̄∗]1/2, [Σ∗cD̄∗]1/2

}
→ ηcN. (442)

They found that among the six states in Eq. (441), at least four states (including two [Σ∗cD̄∗]1/2 and [Σ∗cD̄∗]3/2) decay
more easily into J/ψN than the Pc(4312). Meanwhile, the partial width of the Pc(4312) → ηcN is larger than that of
the J/ψN. The ratio Γ([ΣcD̄∗]1/2 → J/ψN)/Γ([ΣcD̄∗]1/2 → ηcN) differs a lot for the canonical and non-canonical spin
orders. See also the related calculations using a quark interchange model [360].

5.7.2. Pcs and partners
Based on Ref. [364], Wang et al studied the interactions of the ΞcD̄(∗), Ξ′cD̄(∗) and Ξ∗cD̄(∗) up to NLO [417], where

the flavor symmetry group was enlarged to the SU(3) [the isospin Pauli matrix τi in Eq. (430) should be replaced by
λi in this case]. In order to delineate the short-range interactions between the antitriplet singly heavy baryon B3̄ and
anticharmed mesons, they constructed the following contact Lagrangian,

LH̃B3̄
= D̃′a〈 ¯̃HH̃〉Tr(B̄3̄B3̄) + D̃′b〈 ¯̃Hγργ5H̃〉Tr(B̄3̄γργ5B3̄)

+Ẽ′a〈 ¯̃HλiH̃〉Tr(B̄3̄λiB3̄) + Ẽ′b〈 ¯̃Hγργ5λiH̃〉Tr(B̄3̄γργ5λiB3̄), (443)

from which the contact potentials of the ΞcD̄ and ΞcD̄∗ are derived as

VΞcD̄ = 2D̃′a + 4 (I1 · I2 − 1/12) Ẽ′a, (444)
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VΞcD̄∗ = 2D̃′a + 4 (I1 · I2 − 1/12) Ẽ′a +
[
2D̃′b + 4 (I1 · I2 − 1/12) Ẽ′b

]
σ · T. (445)

The potentials of the Ξ′cD̄(∗) and Ξ∗cD̄(∗) are similar to those of the ΣcD̄(∗) and Σ∗cD̄(∗), respectively [the I1 · I2 in
Eqs. (431)–(434) should be replaced by (I1 · I2 − 1/12)]. The HQSS cannot be used to relate the D̃′a, . . . , Ẽ

′
a to the

D̃a, . . . , Ẽa, since the B3̄ and B(∗)
6 are not HQSS partners. In Refs. [982, 417], Meng et al proposed a ‘microscopic’

approach to build connections between the LECs in different systems containing the light quarks, e.g., Eqs. (443)
and (430). Such an approach is analogous to the resonance saturation model [980], but carries the concepts of the
quark-hadron duality and quark model. They constructed a quark level Lagrangian,

Lqq = g̃sq̄Sq + g̃aq̄γµγ5Aµq, (446)

where q = (u, d, s)T . Unlike the OBE model, the exchanged particles are not specified (e.g, ρ, ω, f0, . . . ). The scalar
field S and axial-vector field Aµ are two fictitious fields (g̃s and g̃a are the corresponding coupling constants). They
are introduced to produce the central potential and spin-spin interaction between two light quarks, respectively. They
are assumed to take the same matrix form as that of Eq. (41), but carry the quantum numbers of the scalar and axial-
vector particles, respectively. The second terms is analogous to the axial-vector coupling of the light quarks and
Goldstone bosons which stem from the chiral symmetry, e.g., see Sec. 2.1.1. The toy Lagrangian in Eq. (446) is
introduced to predict the spectrum of Pcs states with the data of the Pc states as input. In principle, one should also
include the vector-exchange interactions. However, if we only focus on the HQSS symmetry, the unit operator and
spin-spin operator in the spin space have been included by the two terms in Eq. (446) after nonrelativistic reduction.
The effect of the vector meson exchange interaction will be absorbed by the present two terms to some extent. For the
predictions of the heavy flavor hadronic molecules using the above toy Lagrangian, see Refs. [281, 1136].

With the Lagrangian (446), the short-range interaction of the ΣcD̄∗ system can be written as

VΣcD̄∗ = 〈ΣcD̄∗|Lq̄q|ΣcD̄∗〉 = − g̃2
s

6m2
S
− g̃2

s

m2
S

(I1 · I2) +
g̃2

a

9m2
A
σ · T +

2g̃2
a

3m2
A

(σ · T)(I1 · I2), (447)

where q2 � m2
S,A is assumed and mS (mA) denotes the effective mass of the S (Aµ) field. Therefore, if one determines

the square of the “charge-to-mass ratios” g̃2
s/m

2
S and g̃2

a/m
2
A, one could use them to determine the short-range potentials

of the other systems containing light quarks. The g̃2
s/m

2
S and g̃2

a/m
2
A are fixed by matching Eqs. (447) and (432) [also

using the redefinition of Eq. (437)],

g̃2
s

m2
S

= −6
5
D1,

g̃2
a

m2
S

=
6
5
D2, (448)

where the D1 and D2 are fixed using the data of the Pc states. Similarly, one can calculate the contact potentials
of the Ξ′cD̄∗ and ΞcD̄∗ with the quark level Lagrangian (446), and then match with the potentials obtained with the
Lagrangians (430) and (443) in the SU(3) case, respectively (for more details, see Refs. [982, 417]).

Using the approach described above and the Pc data as inputs, Wang et al predicted ten molecular pentaquarks in
the isoscalar ΞcD̄(∗), Ξ′cD̄(∗) and Ξ∗cD̄(∗) systems [417], see Table 8. The binding solutions in the ΞcD̄(∗) systems were
also supported by the following works [416, 428, 432, 423]. The authors of Ref. [417] found that the contribution
of the OEE is rather feeble, but the contribution of the TPE is very significant for the Ξ′cD̄ and ΞcD̄∗ systems due
to their approximate accidental degeneration, e.g., mΞcD̄∗ − mΞ′cD̄ ' 32 MeV� mπ. They also found that no bound
states exist in the isovector channels. They proposed to search for these isoscalar strange hidden-charm molecular
pentaquarks in the J/ψΛ invariant mass spectrum from the decays Λb(Ξb)→ J/ψΛK(η) [1137, 1138, 413]. There do
not exist bound states in the ΛcD̄(∗)

s , Σ
(∗)
c D̄(∗)

s and Ω
(∗)
c D̄(∗)

s systems [417]. The non-existence of the binding solution of
the ΛcD̄(∗) systems were pointed out long time ago in Refs. [1139, 347]. As for the Ω

(∗)
c D̄(∗)

s system, the bound states
were obtained with a large cutoff in the OBE model in Ref. [1140].

Very recently, the LHCb Collaboration reported a structure in the J/ψΛ invariant mass spectrum in the Ξ−b →
J/ψΛK− decay with a significance of 3.1 σ [419]. The mass and width were measured to be (m,Γ) = (4458.8 ±
2.9+4.7
−1.1, 17.3 ± 6.5+8.0

−5.7) MeV. The mass of this structure is very consistent with that of the predicted state [ΞcD̄∗]1/2 in
Ref. [417], see Table 8. There are two states in the ΞcD̄∗ system with the total angular momentum J = 1/2 and 3/2,
respectively. The LHCb also tested the two-peak hypothesis, and found that in this case the masses and widths of
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these two states are (m,Γ) = (4454.9 ± 2.7, 7.5 ± 9.7) MeV and (4467.8 ± 3.7, 5.2 ± 5.3) MeV, respectively. The data
obtained with two peaks also support the predictions in Ref. [417], but the analysis of the current data sample cannot
confirm or refute the two-peak hypothesis [419].

Table 8: The binding energies ∆E and masses M for the isoscalar [Ξ′cD̄(∗)]J , [Ξ∗cD̄(∗)]J and [ΞcD̄(∗)]J (where the subscript “J” denotes the total
spin of the system) systems predicted in Ref. [417]. The state denoted by “]” may be nonexistent at the upper limit. The results are given in units
of MeV.

System [Ξ′cD̄] 1
2

[Ξ′cD̄∗] 1
2

[Ξ′cD̄∗] 3
2

[Ξ∗cD̄] 3
2

[Ξ∗cD̄∗] 1
2

[Ξ∗cD̄∗] 3
2

[Ξ∗cD̄∗]]5
2

[Ξc D̄] 1
2

[Ξc D̄∗] 1
2

[Ξc D̄∗] 3
2

∆E −18.5+6.4
−6.8 −15.6+6.4

−7.2 −2.0+1.8
−3.3 −7.5+4.2

−5.3 −17.0+6.7
−7.5 −8.0+4.5

−5.6 −0.7+0.7
−2.2 −13.3+2.8

−3.0 −17.8+3.2
−3.3 −11.8+2.8

−3.0

M 4423.7+6.4
−6.8 4568.7+6.4

−7.2 4582.3+1.8
−3.3 4502.9+4.2

−5.3 4635.4+6.7
−7.5 4644.4+4.5

−5.6 4651.7+0.7
−2.2 4319.4+2.8

−3.0 4456.9+3.2
−3.3 4463.0+2.8

−3.0

Following the experiments of LHCb [419], the newly observed Pcs(4459) was systematically studied in Ref. [420]
with three closely connected methods: the effective range expansion (see Sec. 2.4), the extended Weinberg’s com-
positeness relation [608], and fitting the line shape within /πEFT, see Fig. 67. The authors considered the interplay
between the three channels, J/ψΛ, Ξ′cD̄ and ΞcD̄∗, where their interactions are constrained by the HQSS. The two
particle states Ξ′cD̄ and ΞcD̄∗ are expanded with the |S h ⊗ S `〉 basis as

|Ξ′cD̄〉J= 1
2

= −1
2
|0h ⊗ 1

2 `
〉 +
√

3
2
|1h ⊗ 1

2 `
〉, (449)

|ΞcD̄∗〉J= 1
2

=

√
3

2
|0h ⊗ 1

2 `
〉 − 1

2
|1h ⊗ 1

2 `
〉, (450)

|ΞcD̄∗〉J= 3
2

= |1h ⊗ 1
2 `
〉. (451)

According to Sec. 5.4, there is only one LEC in principle, i.e., the Cα1/2. In Ref. [420], the following S -wave channel
couplings were considered,

I : J/ψΛ − ΞcD̄∗, J =
1
2
,

3
2

II : J/ψΛ − Ξ′cD̄, J =
1
2

III : J/ψΛ − Ξ′cD̄ − ΞcD̄∗, J =
1
2
, (452)

where J denotes the total angular momentum of the coupled system. The corresponding effective potentials for the
J = 1/2 (3/2) in the two-channel and three-channel couplings may be read from Ref. [420]. The fitted line shapes of
the three cases in Eq. (452) are shown in Fig. 67, where each subfigure is marked with (abc), and a, b, c refer to

a − the number of channels : 2 ≡ (J/ψΛ − ΞcD̄∗ or J/ψΛ − Ξ′cD̄), 3 ≡ (J/ψΛ − Ξ′cD̄ − ΞcD̄∗), (453)

b − the number of partial waves : 1 ≡ (J =
1
2

or J =
3
2

), 2 ≡ (J =
1
2

and J =
3
2

), (454)

c − without or with the energy-dependent term in the potentials : 0 ≡ (without), 1 ≡ (with). (455)

In Figs. 67(210) and 67(220), the authors considered the two-channel J/ψΛ − ΞcD̄∗ coupling. The dot-dashed line
in Fig. 67(210) is obtained by solving the pole of the T -matrix with the mass and width of the Pcs(4459) as inputs,
while the solid line comes from the fit. The authors also introduced an energy-dependent term to mimic the role of
the CDD pole in the case of the ΞcD̄∗ single-channel scattering, but the resulting outputs are unacceptable, which
implies the dynamically generated nature of the Pcs(4459). In Fig. 67(220), the fit result of including the J = 3/2
partial wave is shown. The result is better than that of Fig. 67(210). There are two peaks in the line shape, which
correspond to two poles of the T -matrix. In Fig. 67(210)′, the authors considered the J/ψΛ − Ξ′cD̄ coupling. They
tested permitting constant terms (the solid line) and CDD pole (dashed line) in the potential. Neither of them can well
reproduce the data. In Fig. 67(320), the result with the three-channel J/ψΛ − Ξ′cD̄ − ΞcD̄∗ coupling is illustrated. The
fitting result contains two peaks as that of 67(220). They found the role of the Ξ′cD̄ channel is perturbative but it leads
to the mass splitting between J = 1/2 and J = 3/2 states (see also Ref. [423]). From an overview of Fig. 67, the two
fits in the right column are much better than those in the left one, which indicates both the partial waves J = 1/2 and
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Figure 67: The fitted invariant mass spectrum of the J/ψΛ in Ref. [420], where the data with error bars are taken from Ref. [419]. The greenish
area corresponds to the energy region used in the fit. The two dotted vertical lines from left to right correspond to the Ξ′cD̄ and ΞcD̄∗ thresholds,
respectively. The indications of the fitted curves are marked in each subfigure, and more explanations are given in the context.

J = 3/2 are important. However, in the signal region, the fits in the right column are both far too good. The lines
almost go through all data points, which indicates it is hard to tell the different coupled-channel dynamic mechanisms
forming the Pcs(4459) under the present statistic significance. They also found the J = 1/2 and J = 3/2 states obey
the canonical spin order, i.e., m[ΞcD̄∗]1/2

< m[ΞcD̄∗]3/2
, and the corresponding masses are consistent with those from the

two-peak hypothesis of LHCb [419], but with smaller widths.

5.8. Other similar systems
In the above sections, we mainly focused on the experimentally observed molecular candidates. However, there

exist theoretical predictions of many other hadronic molecules. Some of these predicted states may potentially be
observed in the future experiments. Searching for these states would help us to assemble the jigsaw puzzles of the
hadronic molecular physics. Therefore, we briefly review these efforts in this section.

It is instructive to enlarge the basis of the heavy matter fields. We consider the ground-state heavy matter fields
containing light quarks, which include the nucleon17, singly heavy mesons, singly heavy baryons, doubly heavy
baryons and their antiparticles. Their possible combinations may lead to the molecular matrix with the following
form,


N

MQ
BQ
BQQ

 ⊗̂



N

MQ
BQ
BQQ
N̄

M̄Q
B̄Q
B̄QQ



T

⇒


NN NMQ NBQ NBQQ NN̄

MQMQ MQBQ MQBQQ MQN̄ MQM̄Q
BQBQ BQBQQ BQN̄ BQM̄Q BQB̄Q

BQQBQQ BQQN̄ BQQM̄Q BQQB̄Q BQQB̄QQ



17Sometimes, the K∗ meson may be regarded as the heavy matter field to some extent (mK∗ ∼ mN ). The X0(2900) and X1(2900) observed by the
LHCb are very close to the D̄∗K∗ threshold [1079, 1078]. They are explained as the S - and P-wave D̄∗K∗ molecules, respectively [1141].
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⇒


deuteron Λc(2940)?, . . . � � X(1835)?

Tcc, . . . � � � X(3872),Z(′)
c(s),Z

(′)
b , . . .

� � � Pc(s), . . . �
� � � � �

 , (456)

where we use the N, MQ, BQ, and BQQ to denote the sets of the nucleons, singly heavy mesons, singly heavy baryons
and doubly heavy baryons in order, while the overhead bar represents their antiparticles. The charge conjugate is
implied in the matrix of the first line, e.g., we only show the MQN̄ explicitly, while its charge conjugate NM̄Q is not
given. The states in the matrix of the second line stand for the observed molecular candidates in the corresponding
combinations, and the ellipses indicate that there might exist more states. The empty box denotes the observation in
the corresponding combinations is still absent in experiments. If the future experiments could further fill up the empty
boxes in Eq. (456) or give crucial evidences for the molecular nature of the observed states, the general pattern of the
molecular spectrum would provide crucial insight into the underlying dynamics of the hadronic molecules.

5.8.1. ND(∗), NΣ
(∗)
c , NΞ

(∗)
cc

ND(∗) systems

The interactions of the ND and ND∗ are closely related to the inner structures of the charmed baryons Σc(2800) and
Λc(2940), since these two states are very close to the thresholds of the ND and ND∗ (mND = 2805 MeV, mND∗ = 2946
MeV), respectively. The I(JP) quantum numbers of the Σc(2800) and Λc(2940) are 1(??) and 0( 3

2
−) [note that the

J = 3/2 for Λc(2940) is favored but not certain], respectively [1]. Especially for the Λc(2940), if it is the 2P state in
the charmed baryon spectroscopy, its mass is about 60 − 100 MeV smaller than the quark model calculations [1142,
80, 129, 106], which is very similar to what happened for the Λ(1405), D∗s0(2317) and X(3872). For more details, see
Sec. 1.2 and the extensive discussions in the recent review [17]. Moreover, understanding the ND(∗) interactions is
important for investigating the charmed mesic nuclei [1143, 1144] and the properties of the charmed mesons in the
nuclear matter [1145, 1146]. Haidenbauer et al have constructed the ND̄ and ND interactions based on the meson-
exchange model [1147, 1148, 1149].

In Ref. [93], Wang et al studied the ND(∗) interactions in χEFT up to NLO, where the contribution of the ∆(1232)
resonance was also included in the loops of the TPE. The LO LECs are fixed from the NN̄ interactions [1124] with
the help of quark model and SU(3) symmetry as in Eq. (446). Three singly charmed molecular pentaquarks in the
isoscalar ND(∗) [as well as the B̄(∗)N] systems were predicted. However, there are no bound states in the isovector
channels, which supports the interpretation of the Σc(2800) as the compact charmed baryon. In Ref. [1150], by fitting
the invariant mass spectrum of the pD0 in the decay Λb → pD0π−[72], Sakai et al extracted the scattering length of the
ND system (nD+ and pD0) in the coupled-channels [967]. They found the scattering length in the isovector channel
is very large, and obtained a bound state pole in the isospin symmetry limit, which is assigned as the Σc(2800).

If the Λc(2940) is indeed the molecule of the ND∗ [93], the observed peak of the Λc(2940) by BaBar [70],
Belle [71] and LHCb [72] should contain two subpeaks with J = 1/2 and 3/2, respectively (recall that the similar
story has happened for the Pc states after increasing the data sample, e.g., see Sec. 5.7.1). In this case, in contrast to
the J = 3/2 one, the J = 1/2 component can easily decay into the pD0 and Σcπ modes via the S -wave.

In Ref. [1151], the authors considered the interplay between the compact udc core and D∗N channel in an un-
quenched framework. They interpreted the recently observed Λc(2910) [73] and the Λc(2940) as the conventional
charmed baryons but dressed with the D∗N channel. They also showed that the spin-parity of Λc(2910) prefers 3/2−,
while the Λc(2940) is more likely to be JP = 1/2− state.

NΣ
(∗)
c systems

The NYc (Yc = Σc,Λc) interactions are essential for understanding the charmed hypernuclei [1152, 1153, 1154]
and the in-medium properties of the charmed baryons [1145]. In recent years, the experimental proposals at the
J-PARC [1155] and GIS-FAIR [1156] have stimulated many investigations on the NYc interactions and charmed
hypernuclei [1157, 1158, 623, 1159, 1160, 1161, 1162, 1163, 1164]. In Refs. [1163, 1165], the HAL QCD Col-
laboration calculated the phase shifts of the NΛc and NΣc scatterings from lattice QCD at the unphysical pion
mass mπ = 410 − 570 MeV. The extrapolations of lattice QCD results to the physical pion mass were done in
Refs. [1164, 982, 991, 1166, 1167, 1168, 1169] with (covariant) χEFT. It was shown that the attractive interaction of
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Figure 68: The fitted phase shifts of the ΣcN scattering in the I = 1/2 and 3S 1 channels at unphysical pion mass (black solid curves), and the chiral
extrapolation of the phase shifts to the physical pion mass (given in the third column) [982]. The data with error bars are the phase shifts from
lattice QCD calculations [1165]. The results in the first and second rows are fitted with n = 1,Λ = 0.8 GeV and n = 2,Λ = 1.0 GeV, respectively.

the NΛc is too moderate to form a bound state in this system18, while the bound states in the 4NΛc or 5NΛc might be
possible [1164].

In Ref. [982], Meng et al performed the chiral extrapolation of the NΣc interaction in χEFT up to NLO, where the
one-loop corrections to OPE and LO contact interactions are explicitly considered due to their mπ-dependence. They
introduced a Gauss form factor F (q) = exp(−q2n/Λ2n) to transform the momentum-space potential to the coordinate
space. They considered two scenarios to fit the phase shifts of the NΣc scatterings from lattice QCD [1165]. In
scenario I: n = 1 and Λ = 0.8 GeV, while in scenario II: n = 2 and Λ = 1.0 GeV. The corresponding results from
scenario I and II are shown in the first and second row of Fig. 68. An extrapolation of the NΣc interaction to the
physical pion mass gives the scattering length in scenario I and II as

scenario I : as = −0.53+0.10
−0.11 fm ,

scenario II : as = −1.83+0.32
−0.42 fm. (457)

The result shows that the interaction in the 3S 1(I = 1/2) NΣc system is weakly attractive, but no bound solution can
be found.

However, one should be aware that only the naive extrapolation was done in the above work, e.g., the finite volume
effects were not considered. On the other hand, the lattice calculation was performed at a very large pion mass region
(about 3mπ − 4mπ). The chiral extrapolation uncertainties at such a large pion mass are hard to control.

NΞ
(∗)
cc systems

The first calculation of the NΞcc interaction was given in Refs. [1170, 1171], in which NΞcc was linked to the
NN system with the quark model, and the binding energy was predicted to be from several to several hundred MeVs
depending on the concrete potential models. A recent calculation from the OBE model also predicted the bound states
in the NΞcc and N̄Ξcc systems [1172].

5.8.2. Σ
(∗)
c D(∗), Σ

(∗)
c Σ̄

(∗)
c , Σ

(∗)
c Σ

(∗)
c

Σ
(∗)
c D(∗) systems

18However, the phenomenological calculations in Refs. [623, 1159] yielded bound states in the NΛc system with JP = 0+ and 1+ once the
coupled-channel effect among Λc, Σc and Σ∗c are taken into account.
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Based on Refs. [355, 364], the doubly charmed molecular pentaquarks Pcc composed of the Σ
(∗)
c D(∗) systems were

explored by Chen et al [453]. They predicted seven analogous molecules as those of Σ
(∗)
c D̄(∗) in the isospin I = 1/2

channels, see Fig. 69, while no bound states were found in the I = 3/2 channels. Since the quark components of
the Pcc is [cqq][cq̄], the decay patterns are very different from those of the Pc states. There exist two types of decay
modes for the Pcc states, i.e., the [cqq] + [cq̄] and [ccq] + [qq̄] modes. The Λcπ and Dπ are the dominant decay modes
of the Σ

(∗)
c and D∗, respectively. Thus the Pcc states with J = 1/2 can easily decay into ΛcD through S -wave via the

OPE interaction. The lowest decay channel is Ξccπ with the threshold at 3760 MeV, which is much lower than the Pcc

states and it is not shown in Fig. 69. Besides, the Pcc states with the components Σ
(∗)
c D∗ can also decay into Ξccρ and

Ξccω. For more thresholds of the possible decay channels, such as the ΛcDπ and ΛcDππ, see Fig. 69. Ref. [453] also
predicted possible molecules in the charmed-bottom Σ

(∗)
c B̄(∗), Σ

(∗)
b D(∗), and doubly bottom Σ

(∗)
b B̄(∗) systems.
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Figure 69: The mass spectrum of the Pcc molecular pentaquarks in the I = 1/2 Σ
(∗)
c D(∗) systems predicted in Ref. [453]. The thresholds of the

Σ
(∗)
c D(∗) and possible decay channels are denoted with the blue and red dashed lines, respectively.

The doubly charmed pentaquarks were also investigated in the color-magnetic interaction model [448, 449], the
chiral quark model [451], the QCD sum rule [1173], and the meson-exchange model [452, 952, 450, 273].

Σ
(∗)
c Σ̄

(∗)
c and Σ

(∗)
c Σ

(∗)
c systems

The existence of the hidden-charm pentaquarks Pc stimulates the theorist to investigate whether the (double)
hidden-charm hexaquarks exist likewise. In Ref. [1174], the authors found that the isoscalar ΛcΛ̄c, Σ

(∗)
c Σ̄

(∗)
c and

isovector ΛcΣ̄
(∗)
c as well as their doubly charmed and doubly bottom counterparts are good candidates of the molecular

hexaquarks. The calculations in various models [1175, 622, 1176, 1177, 1178, 273, 358, 281, 1136, 1179, 1180] do
indicate that the interactions in the isoscalar and isovector Σ

(∗)
c Σ̄

(∗)
c and Σ

(∗)
c Σ

(∗)
c systems are strong enough to form

bound states.

5.8.3. Ξ
(∗)
cc D(∗), Ξ

(∗)
cc Σ

(∗)
c , Ξ

(∗)
cc Ξ̄

(∗)
cc

The Ξ
(∗)
cc [Ξ̄(∗)

cc ] can be related to the D̄(∗) [D(∗)] with the heavy diquark-antiquark symmetry,

Ξ(∗)
cc HDAS←−→ D̄(∗), Ξ̄(∗)

cc HDAS←−→ D(∗). (458)

Therefore, the systems containing the doubly charmed baryons can be regarded as an extension of the systems with
the charmed mesons. As a consequence of the HDAS, the Ξ

(∗)
cc D(∗), Ξ

(∗)
cc Σ

(∗)
c and Ξ

(∗)
cc Ξ̄

(∗)
cc systems can be related to the

D̄(∗)D(∗), D̄(∗)Σ(∗)
c and D̄(∗)D(∗), respectively. Thus, the existence of the molecular states in the D̄(∗)D(∗) and D̄(∗)Σ(∗)

c
systems should also imply the existence of the molecular states in the Ξ

(∗)
cc D(∗), Ξ

(∗)
cc Σ

(∗)
c and Ξ

(∗)
cc Ξ̄

(∗)
cc systems.
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In Ref. [1023], the authors predicted the triply heavy pentaquarks with I(JP) = 0( 3
2
−), 0( 5

2
−) with the X(3872) as

input, as well as the 1( 1
2
−) and 1( 3

2
−) ones with the Zb(10650) as input (see also the calculations of Chen et al with the

OBE model [1181]).
In Ref. [412], the authors proposed an alternative way to determine the spins of the Pc(4440) and Pc(4457) from

the spectrum of the Ξ
(∗)
cc Σ

(∗)
c systems with the help of lattice QCD [1182]. They predicted ten bound states in the

Ξ
(∗)
cc Σ

(∗)
c systems with the Pc states as inputs. Different spin orders of the Pc(4440) and Pc(4457) are also reflected in

the Ξ
(∗)
cc Σ

(∗)
c spectrum. For the possible molecular states in Ξ

(∗)
cc Σ

(∗)
c systems, see also Ref. [1183].

In Ref. [1184], Yang et al investigated the possible bound states in the Ξ
(∗)
cc Ξ

(∗)
cc /Ξ̄

(∗)
cc systems, and predicted the

molecular candidates in the isoscalar and isovector channels.

6. Summary and outlook

The chiral dynamics is very important not only for the hadrons composed of light quarks (e.g. pion and nucleon)
but also for the heavy flavor hadrons with one or two light quarks (e.g. heavy-light meson and singly heavy baryons).
Combining the heavy quark symmetry, the chiral perturbation theory was successfully extended to the singly heavy
systems to calculate the chiral correction to their masses, axial vector current, electromagnetic form factors and so
on. Inspired by the recently observed Ξcc state, the χPT was also employed to investigate the chiral dynamics of the
doubly heavy systems, especially the doubly charmed baryons. The heavy diquark-antiquark symmetry enhances the
prediction powers of the χPT in the doubly heavy sector.

Since 2003, many exotic hadrons with heavy flavor were observed in experiments, some of which lie very close
to the two-hadron threshold and are good candidates of the loosely bound hadronic molecules. The chiral effective
field theories helped us understand the ππ scattering, πN scattering, NN scattering and related resonances in the past
decades. The same chiral dynamics which plays a pivotal role in the formation of the f0(500), Λ(1405) and deuteron
also manifests themselves in the heavy flavor sector. The chiral effective field theories were also extended to explore
these heavy flavor hadronic molecules.

Combining the lattice QCD simulation, the ϕD(∗)
(s) scattering were investigated with the unitarized χPT. The low

mass puzzle of the D∗s0(2317) and Ds1(2460) could be resolved either through the dynamical generation of the res-
onance in the molecular picture or through the channel couplings between the cs̄ core and ϕD(∗)

(s) scattering state.
Especially, the molecular picture leads to the two-pole structure of the D∗0(2300) and D1(2430), which awaits the
confirmation of the experimental measurements and lattice QCD simulations in the future.

In the two matter field sector, there have been impressive progresses in the consistent description of the near-
threshold states such as X(3872), T +

cc, Zb, Zc, Zcs, Pc within the frameworks of the chiral effective field theory. Their
masses, decays, lineshapes, production rates, etc. were reproduced well. The χEFT gives very useful predictions
including their spin and flavor partner states, unobserved decay modes, branch ratios, production rates etc, which
provide important clues for the future experiments.

However, the natures of the above exotic candidates have not been pinned down unambiguously. From the theoret-
ical perspective, the nonperturbative QCD cannot be solved analytically. Except the ab initio lattice QCD formalism,
it is still hard to set up the bottom-up theoretical frameworks with usability and predictive power. Meanwhile, the
heavy flavor mesons and baryons are not available as the scattering target. The heavy flavor exotica were mainly
observed in the complicated reactions or decay processes, which limit the experimental precision. Thus, in order to
reveal their underlying structures, the joint efforts from the effective field theories, phenomenological models, lat-
tice QCD simulations and more experimental measurements are necessary. In the following, we will summarize the
wish list to clarify the main puzzles and challenges, focusing on the EFT perspective combining the lattice QCD and
experiments.

• X(3872)

– The masses of the X(3872) coincides exactly with the D0D̄∗0/D∗0D̄0 threshold. Such a fine tuning is very
interesting, which becomes acute when the similar fine tuning appears again in the Tcc system.

– The refined measurement of the X(3872) mass with respect to the D0D̄∗0/D∗0D̄0 threshold and the precise
measurement of the lineshape of X(3872)→ D0D̄∗0/D∗0D̄0 will be very helpful. Now, the limiting factor
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for the mass measurement is the experimental resolution. Thus, the measurement needed seems to be
possible only at PANDA, once it will be in operation.

– The experimental search of the partner states of the X(3872) in the heavy quark symmetry and SU(3)
flavor symmetry will help to explore its inner structure.

– It should be figured out what clues the production of the X(3872) in heavy ion collisions can provide
regarding its underlying structure.

• Tcc

– The combined investigation and comparison of prompt productions of the doubly charm family, i.e. T +
cc,

Ξ++
cc and Ξ+

cc (absent in the present observations) in pp collision may provide the clue to their structures.

– The similarity of the Tcc and X(3872), especially their similar fine tuning, needs to be understood in an
unified framework.

– The spin and flavor partner states of the T +
cc.

• D∗s0(2317) and Ds1(2460)

– More independent lattice QCD simulations about the D∗s0(2317)/Ds1(2460) or D∗K scattering.

– There is only one scalar charm meson in quark model around 2.3 GeV, while the chiral unitary approaches
generate two poles. These two models can be distinguished from the identification of the higher pole of
the D∗0 in experiments and lattice QCD simulations.

• Zc, Zb and Zcs

– The precise measurements of the lineshapes of the heavy quarkonia plus the pion can help to resolve the
virtual state and resonance controversies of the Z(′)

Q(s) (Q = c, b).

– The experimental search of the HQSS partners of the Z(′)
Q(s), such as the W (′)

cJ , W (′)
bJ , Z′cs and Z(′)

bs .

– Lattice QCD simulations of the DD̄∗/BB̄∗ scattering near the physical pion mass will be very helpful.

– Whether the Zcs(3985) from BESIII and Zcs(4000) from LHCb are the same or different states should be
checked carefully with the criteria in Ref. [346].

• Pc and Pcs

– The measurement of the JP quantum numbers of the Pc states can resolve the spin-order problem of the
Pc(4440) and Pc(4457).

– The experimental search of the predicted Σ∗cD̄ [Pc(4380)?] and Σ∗cD̄∗ molecular states.

– The experimental clarification of the relationship between the Pc(4337) and Pc(4312)/Pc(4380).

– The confirmation of the Pcs(4459) as well as the search for the other ΞcD̄(∗), Ξ′cD̄(∗) and Ξ∗cD̄(∗) molecular
candidates.

• General aspects of EFTs

– The EFTs with the resonances should be further developed (see [1185] for an example).

– The criteria to discern the “elementary” and “composite” particles in spirit of EFT, namely the decoupling
of the high energy and low energy physics, need to be further developed. Distinguishing the “elemen-
tary” and “composite” particles should depend on the resolving scale. In the Weinberg’s compositeness
criterion, the low-energy scattering information (scattering length and effective range) is used. In princi-
ple, the short-range structure of a loosely bound state cannot be probed by the low-energy scattering. A
quantity measuring compositeness should be defined in a resolving-scale-dependent way, which has been
addressed in Refs. [609, 610, 612] to some extent.

131



– EFT based frameworks to extract the interactions and structures from the lattice QCD data (see [903, 1186,
573, 940] for examples) should be further developed, especially for the coupled-channel systems.

– EFT based amplitude analysis methods (see [203, 5] for two examples and the related review [1187])
should be further developed.

– Higher order calculations from χEFT are indispensable. The role of the large mass intermediate states
should be examined carefully.

The discovery of the X(3872) in 2003 launched the new era of hadron spectroscopy. The striking experimental
progresses, like the discovery of many X,Y,Z states, the Pc states and Tcc state, remind us once again that this is a
golden age of ambition and wisdom. We are essentially working on the clustering phenomena of the quark and gluon
degrees of freedom of QCD and following the footsteps of the pioneers uncovering the structures at other levels such
as the molecules, atoms, and nucleus. The few body physics of the quarks and gluons is very different from either
the electron-electron interaction within the atom or the nucleon-nucleon interaction within the nucleus because the
color confinement renders the basic d.o.fs nontransparent. Meanwhile, the underlying interactions (QCD) of hadrons
are highly nonperturbative at the low energy scale. Although the endeavors in the past decades have brought us huge
amounts of fresh perspectives, there is still a long long way to fully understand their internal structures. However,
in the coming future, the accumulated data from the BaBar, Belle, BESIII, CDF, D0, LHCb, ATLAS and CMS
Collaborations will continuously contribute to the discovery of the exotica with heavy flavors. At the same times,
the ongoing, upgrading and upcoming experiments, including the GlueX [1188], Belle II [1189], BESIII [1190],
LHCb [1191] and PANDA [1192, 1193] shall bring us more surprises. The amazing promotion of the computational
capabilities will make more precise lattice QCD simulations available. The developments of theoretical frameworks,
especially the EFTs, shall refresh our understanding about the exotic hadrons and add the new knowledge of the
nonperturbative QCD dynamics.

Acknowledgments

We would like to thank all the collaborators who contributed to the present investigations, in particular to Dian-
Yong Chen, Hua-Xing Chen, Kan Chen, Rui Chen, Wei Chen, Xiao-Lin Chen, Cheng-Rong Deng, Wei-Zhen Deng,
Meng-Lin Du, Jun He, Bo-Lin Huang, Peng-Zhi Huang, Nan Jiang, Hao-Song Li, Ning Li, Zi-Yang Lin, Xiang Liu,
Xiao-Hai Liu, Yan-Rui Liu, Zhan-Wei Liu, Zhi-Gang Luo, Li Ma, Zhi-Feng Sun, Xin-Zhen Weng, Li-Ye Xiao, Hao
Xu, Zhong-Cheng Yang, Lu Zhao. L.M. is grateful to the helpful discussions with Evgeny Epelbaum and Jambul
Gegelia. G.J.W. thanks the useful discussions with Makoto Oka. S.L.Z. dedicates this review to his beloved mother
Bao-Feng Huang. This project is supported by the National Natural Science Foundation of China under Grants
No. 11975033 and No. 12070131001 and No. 12105072, the Youth Funds of Hebei Province (No. A2021201027) and
the Start-up Funds for Young Talents of Hebei University (No. 521100221021). This project is also funded by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, Project ID 196253076-TRR 110) and JSPS
KAKENHI under Grant No. 20F20026.

Appendix A. Building blocks and the superfields

Appendix A.1. Building blocks

In order to fulfill the chiral symmetry, C, P, T symmetries and Hermitian, the chiral Lagrangians are often con-
structed using several ‘building blocks’ with known transformation behaviors under these symmetries. To avoid
confusions, we use Tr(X) to represent the trace in the flavor space and 〈X〉 to represent the trace in the spinor space.
The traceless building block X̂ in the SU(3) case are defined as

X̂ = X − I
3

Tr(X). (A.1)

The corresponding results in SU(2) flavor symmetry can be deduced easily.
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The building blocks to accommodate the Goldstone bosons were constructed as follows,

U = ξ2 = exp(iϕ/ fϕ), ϕ =


π0 + 1√

3
η

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η
√

2K0
√

2K−
√

2K̄0 − 2√
3
η

 , (A.2)

where fϕ is the decay constant in the chiral limit. With the Goldstone bosons, left-handed external fields lµ, right-
handed external fields rµ, scalar external fields s and pseudoscalar external fields p, one can construct the following
building blocks.

Γµ =
1
2

[
ξ†(∂µ − irµ)ξ + ξ(∂µ − ilµ)ξ†

]
, (A.3)

uµ =
i
2

[
ξ†(∂µ − irµ)ξ − ξ(∂µ − ilµ)ξ†

]
, (A.4)

χ = 2B0(s + ip), (A.5)
χ± = ξ†χξ† ± ξχ†ξ, (A.6)
f R
µν = ∂µrν − ∂νrµ − i[rµ, rν], (A.7)

f L
µν = ∂µlν − ∂νlµ − i[lµ, lν], (A.8)

f ±µν = ξ† f R
µνξ ± ξ f L

µνξ
†, (A.9)

f̂ ±µν = f ±µν −
1
3

Tr( f ±µν). (A.10)

The scalar external field s = diag(mu,md,ms) is used to introduce the quark mass effect. If the pseudoscalar external
field p = 0, the expansion of the χ+ yields

χ+ = 2B0diag(mu,md,ms) = diag(2m2
π, 2m2

π, 4m2
K − 2m2

π), (A.11)

where we have kept the leading order terms only. B0 is related to the quark condensate, see Eq. (51) and its context
for details.

If the external source is the electromagnetic field (rµ = lµ = −eQAµ), the right- and left- field strength tensors f R
µν

and f L
µν are given as

f R
µν = f L

µν = −eQ
(
∂µAν − ∂νAµ

)
. (A.12)

For the charmed and bottom mesons, Q denotes the electric charge matrix of their SU(3) multiplets, which reads Q =

diag(0,−1,−1) for the (D̄(∗)0,D(∗)−,D(∗)−
s ), and Q = diag(1, 0, 0) for the (B(∗)+, B(∗)0, B(∗)0

s ), respectively. Expanding
the terms in Eqs. (A.9) and (A.10), respectively, one notes that f +

µν contains the Q, while f̂ +
µν is proportional to the

electric charge matrix Ql of the light quark current J `
µ = 2

3 ūγµu − 1
3 d̄γµd − 1

3 s̄γµs, i.e., Ql = diag(2/3,−1/3,−1/3).
In order to investigate the isospin violation from the electromagnetic interaction, the left and right charges were

often introduced [673, 674]. Their chiral transformations read

QL/R → gL/RQL/Rg†L/R (A.13)

One can define the building block Q±,

Q± = ξ†QRξ ± ξQLξ
†. (A.14)

The chiral orders, chiral transformation, space inversion, charge conjugation and Hermitian conjugation of the
above building blocks are given in Table A.9. The time reversal symmetry is usually guaranteed by the CPT theo-
rem. In the practical calculation, there are some techniques to reduce the independent terms of the Lagrangians (see
Refs. [998, 471, 618, 625] for examples).
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Table A.9: The chiral order (D) and transformation properties of the building blocks under the chiral transformation (CH), space inversion (P),
charge conjugation (C) and Hermitian conjugation (H.c.). We take the doublet nucleon ψ as an example, in which the covariant derivatives are
defined asDµ = ∂µ + Γµ andD′µ = ∂µ − Γµ. The covariant derivatives for the other mater fields are listed in the main text.

U ξ χ f R
µν f L

µν

D 0 0 2 2 2
CH gRUg†L gRξK†or Kξg†L gRχg†L gR f R

µνg
†
R gL f L

µνg
†
L

P U† ξ† χ† f Lµν f Rµν

C UT ξT χT −( f L
µν)

T −( f R
µν)

T

H.c. U† ξ† χ† f R
µν f L

µν

χ± f ±µν uµ Q± hµν

D 2 2 1 1 2
CH Kχ±K† K f ±µνK

† KuµK† KQ±K† KhµνK†

P ±χ± ± f ±µν −uµ ±Q± −hµν

C χT
± ∓( f ±µν)

T (uµ)T QT
± (hµν)T

H.c. ±χ± f ±µν uµ Q± hµν

Γµ ψ ψ̄ Dµψ gµν

D 1 0 0 0 0
CH KΓµK† − ∂µKK† Kψ ψ̄K† KDµψ gµν
P Γµ γ0ψ ψ̄γ0 γ0Dµψ gµν

C −(Γµ)T Cψ̄T ψT C CD′Tµ ψ̄T gµν
H.c. −Γµ ψ̄γ0 γ0ψ ψ†

←−D′µ gµν

ψ̄γµψ ψ̄γµγ5ψ ψ̄γ5ψ ψ̄σµνψ εµνρσ

D 1 0 1 0 0
CH ψ̄γµψ ψ̄γµγ5ψ ψ̄γ5ψ ψ̄σµνψ εµνρσ

P ψ̄γµψ −ψ̄γµγ5ψ −ψ̄γ5ψ ψ̄σµνψ −εµνρσ
C −̄ψγµψ ψ̄γµγ5ψ ψ̄γ5ψ −ψ̄σµνψ εµνρσ

H.c. ψ̄γµψ ψ̄γµγ5ψ −ψ̄γ5ψ ψ̄σµνψ εµνρσ
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The representation theory of SU(3) group can guide the construction of the Lagrangians to avoid omitting some
terms. For example, for the heavy flavor system, the common and nontrivial reductions of the representation are as
follows,

3 ⊗ 6 = 8 ⊕ 10, (A.15)
6̄ ⊗ 6 = 1 ⊕ 8 ⊕ 27, (A.16)
8 ⊗ 8 = 1 ⊕ 81 ⊕ 82 ⊕ 10 ⊕ 10 ⊕ 27, (A.17)
3̄ ⊗ 8 = 15 ⊕ 6 ⊕ 3̄. (A.18)

The above 81 and 82 are actually the same irreducible representation (irrep.) of the SU(3) group, namely, {p, q} = {1, 1}
irrep., where the first row has one more box than the second row and the second row has one more box than the third
row in Young diagram. However, in the tensor method to perform reduction (see [1194] for details), the irrep. with
eight dimensions corresponds to a tensor with rank (1, 1). The two (1, 1) tensors Ai

j and Bi
j have two ways to form the

new (1, 1) tensors,

F i
a = Ai

jB
j
a − Bi

jA
j
a, Di

a = Ai
jB

j
a + Bi

jA
j
a − 2

3
δi

aS (A.19)

where S = Ai
aBa

i is the tensor of rank (0, 0). Apparently, the F and D are the antisymmetric and symmetric reductions,
respectively. Therefore, we use 81 and 82 to label the two different reductions. In the Table A.10, we illustrate the
reductions of two nonets X and Y , B̄6 and B6, B̄3̄ and B6, respectively.

Table A.10: Reductions of two nonets X and Y , B̄6 and B6, B̄3̄ and B6. The notations of the (anti)symmetrization are (XY){a,b} = XaYb + XbYa and
(XY)[a,b] = XaYb − XbYa.

Group representation 1 ⊗ 1→ 1 1 ⊗ 8→ 8 8 ⊗ 8→ 1 8 ⊗ 8→ 81

Flavor structure Tr(X)Tr(Y) Tr(X)Ŷ or Tr(Y)X̂ Tr(X̂Ŷ) [X̂, Ŷ]

Group representation 8 ⊗ 8→ 82 8 ⊗ 8→ 10 8 ⊗ 8→ 10 8 ⊗ 8→ 27

Flavor structure {X̂, Ŷ} (X̂Ŷ){i, j}[a,b] (X̂Ŷ)[i, j]
{a,b} (X̂Ŷ){i, j}{a,b}

Group representation 6̄ ⊗ 6→ 1 6̄ ⊗ 6→ 8 6̄ ⊗ 6→ 27 3 ⊗ 6→ 8 3 ⊗ 6→ 10

Flavor structure Tr(B̄6B6) B̄6abBca
6 B̄6abBi j

6 B̄3̄abBca
6 B̄3̄i jBab

6

In literature, there are two conventions of the charge conjugation transformation for D∗ in constructing the di-
meson states with fixed C-parity. The two conventions were spelled out in Ref. [1026] and Refs. [1070, 972], respec-
tively. We summarize the them in Table A.11. In the main body, we will label the specific convention when the related
Lagrangians or wave functions appear.

Table A.11: Two conventions for the charge conjugation of D∗. The convention-I and -II are spelled out in Ref. [1026] and Refs. [1070, 972],
respectively.

Interpolating current Charge conjugation

convention-I
D = q̄γ5c, D̄ = c̄γ5u ĈDĈ−1 = D̄, |D̄〉 = Ĉ|D〉

convention-II

convention-I D∗ = q̄γµc, D̄∗ = c̄γµq ĈD∗Ĉ−1 = −D̄∗, |D̄∗〉 = −Ĉ|D∗〉
convention-II D∗ = q̄γµc, D̄∗ = −c̄γµq, ĈD∗Ĉ−1 = D̄∗, |D̄∗〉 = Ĉ|D∗〉

Appendix A.2. Superfields
The superfield is a technique to embed the heavy quark symmetry into the Lagrangians. In Ref. [615], Falk

illustrated the constructions of the superfields with arbitrary spins. In this section, we present some commonly used
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superfields. In principle, it is free to choose the relative phase of different components in the superfield. Therefore,
one may see different definitions of superfields up to a phase in literature. We first introduce two projection operators,
Λ+ = (1 + /v)/2 and Λ− = (1 − /v)/2.

The superfields for the ground state heavy mesons can be understood as the (tensor) product of the two spinors of
the quark and antiquark [615],

H ∼ uhv̄l, H̃ ∼ ulv̄h, H̄ ∼ vlūh,
¯̃H ∼ vhūl, (A.20)

where l and h represent the light and heavy quarks, respectively. At the hadronic level, the superfields read

H = Λ+(P∗µγ
µ + iPγ5), H̃ = (P̃∗µγ

µ + iP̃γ5)Λ−. (A.21)

The H̃ andH are related to each other through

H̃ = C[CHC−1]T C−1, (A.22)

where C and C are the charge conjugation acting on the field operator and Dirac matrix with

CPµC−1 = −P̃µ, CPC−1 = P̃, C = iγ2γ0. (A.23)

The conjugation of the fields are defined by H̄ = γ0H†γ0 and ¯̃H = γ0H̃†γ0. The general Lagrangians using the
superfield were [e.g., see Eqs. (123) and (124)]

L ∼ 〈ūlΓlulv̄hΓhvh〉 = 〈vhūlΓlulv̄hΓh〉 ∼ 〈 ¯̃HΓlH̃Γh〉, (A.24)
L ∼ 〈ūhΓhuhv̄lΓlvl〉 = 〈uhv̄lΓlvlūhΓh〉 ∼ 〈HΓlH̄Γh〉, (A.25)

where Γh and Γl are the Dirac matrices in the bilinear forms of the heavy and light (anti)quarks, respectively . With
Eqs. (A.24) and (A.25), one can easily construct the Lagrangians to keep or break the heavy quark spin symmetry by
choosing the pertinent Γh.

For the excited P-wave heavy mesons, the superfield of the (0+, 1+) doublet reads

S = Λ+

[
R∗µγµγ5 − R

]
, with S ∼ uhv̄lγ5, S̄ ∼ −γ5vlūh, (A.26)

where the vl is the effective spinor corresponding to combination of the light antiquark and the l = 1 angular momen-
tum. The general form of the Lagrangians read [e.g., see Eq. (128)]

L ∼ 〈v̄lΓlvlūhΓhuh〉 = 〈uhv̄lγ5γ5Γlγ5γ5vlūhΓh〉 = −〈Sγ5Γlγ5S̄Γh〉 = −〈S̄ΓhSγ5Γlγ5〉. (A.27)

Meanwhile, the superfield of the (1+, 2+) doublet reads

T µ = Λ+

Yµνγν −
√

3
2

Yνγ5

[
gµν − 1

3
(γµ − vµ)γν

] , with T ∼ uhv̄µl , T̄ ∼ vµl ūh, (A.28)

where the vµl denotes the vector-spinor of the light d.o.f with jl = 3
2 . Similarly, the most general Lagrangians should

have the following form [e.g., see Eq. (129)],

L ∼ 〈ūhΓhuhv̄µl Γ
µν
l vνl 〉 = 〈vνl ūhΓhuhv̄µl Γ

µν
l 〉 = 〈T̄ νΓhT µΓuν

l 〉 = 〈T µΓuν
l T̄ νΓh〉. (A.29)

For the singly heavy baryon with the symmetric light diquark (flavor sextet), the spin- 1
2 and - 3

2 states form the
doublet in the heavy quark spin symmetry. The superfield is constructed as [615]

ψ
µ
Q = B∗6µ +

√
1
3

(γµ + vµ)γ5B6. (A.30)
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The superfield can be understood as the
ψ
µ
Q ∼ uhAµ

l , (A.31)

where uh and Aµ
l represent the spinor of the heavy quark and vector light diquark, respectively. A general interaction

Lagrangian containing the ψµQ only has the following form [e.g., see Eq. (139)],

L ∼ Tr[(ūhΓhuh)(A∗µl ΓlµνAν
l )] ∼ Tr[ūhA∗µl ΓhΓlµνuhAν

l )] ∼ Tr(ψ̄µQΓhΓlµνψ
ν
Q). (A.32)

in which the Lorentz index of Γlµν contracts with that of the light d.o.f. If one wants to keep the heavy quark spin
symmetry, the Γh should be the unit matrix.

For the ground state doubly heavy baryons, two identical heavy quarks form a vector diquark. The spin- 1
2 and

spin- 3
2 states form the spin doublet in the heavy quark spin symmetry. The superfield is constructed as [950]

ψ
µ
QQ = B∗QQ

µ
+

√
1
3

(γµ + vµ)γ5BQQ. (A.33)

The superfield can be understood as
ψ
µ
QQ ∼ ulA

µ
h, (A.34)

where the ul and Aµ
h denote the spinor of the light quark and vector heavy diquark, respectively. The general interaction

may have the following form [e.g., see Eq. (146)],

L ∼ (ūlΓlul)(A
∗µ
h ΓhµνAν

h) ∼ (ūlA
∗µ
h ΓlΓhµνulAν

h) ∼ ψ̄µQQΓlΓhµνψ
ν
QQ. (A.35)

If one wants to keep the heavy diquark spin symmetry, the Lorentz indices should contract with each other directly,
i.e., Γhµν = αhgµν (with αh a constant).

Although the superfields of the singly heavy and doubly heavy baryons have very similar forms, there are essential
difference considering the light and heavy d.o.fs. The rules to construct the Lagrangians in the heavy (di)quark spin
symmetry are totally different.

Appendix B. Heavy field expansion

We take the spin- 1
2 fermion field Ψ as an example to illustrate the heavy field expansion. The momentum p of the

field can be decomposed into the mass term and the residual momentum term,

pµ = Mvµ + qµ, (B.1)

where M is the mass, vµ satisfies v2 = 1, and q is the residual momentum. The field Ψ is divided into the light field H
and the heavy field h,

H = eiMv·xΛ+Ψ, h = eiMv·xΛ−Ψ, (B.2)

where the projectors are defined as Λ± = 1
2 (1 ± /v). With this decomposition, the most general Lagrangian becomes

L = H̄AH + h̄BH + H̄γ0B†γ0h − h̄Ch. (B.3)

Using the free Lagrangian L = Ψ̄(i /D− M)Ψ as an illustration, the correspondingA, B and C are

A = iv · D, B = i /D⊥, C = i(v · D) + 2M, (B.4)

where Xµ
⊥ ≡ Xµ − (v · X)vµ. One can see that the H is massless, while the mass of the h is 2M.

The meanings of the H and h is clear with the Dirac representation of the spinor and gamma matrices. The positive
energy plane wave solution to the free Dirac equation reads

ψs
p(x, t) =

√
E(p) + M

[
χs

σ·p
E(p)+Mχ

s

]
e−ip·x, (B.5)
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with χs the spin wave functions of two components. With a convenient choice vµ = (1, 0), one gets

H(x, t) =
√

E(p) + M
[
χs

0

]
e−i[E(p)−M]t+ip·x,

h(x, t) =
√

E(p) + M
[

0
σ·p

E(p)+Mχ
s

]
e−i[E(p)−M]t+ip·x. (B.6)

Therefore, the light field H and heavy field h correspond to the large and small components of the wave function,
respectively, in which h is 1/M suppressed in comparison with H.

In order to obtain the effective field theory with the light field H only, one can either substitute the h with the
assistance of the equation of motion [474] (in the classical sense) or integrate out the heavy field h in the path integral
approach [512, 474] (in the quantum sense). We here present the latter derivation explicitly. The generating functional
of the Lagrangians is

Z[η, η̄, v, a, s, p] =

∫
[dΨ][dΨ̄][du]ei[S +

∫
d4 x(η̄Ψ+Ψ̄η)], (B.7)

where the η and η̄ are the external fields. The v, a, s and p are possible external fields in the action S . u is the field
(e.g., the Goldstone field) other than the fermion field Ψ. The external field η can be decomposed into the light part
and heavy part,

R =
1
2

(1 + /v)eiMv·xη, ρ =
1
2

(1 − /v)eiMv·xη. (B.8)

The action corresponding to Lagrangian (B.3) can be rewritten as

S +

∫
d4x(η̄Ψ + Ψ̄η) =

∫
d4x[H̄AH + H̄γ0B†γ0C−1BH − h̄′Ch′ + R̄H + H̄R], (B.9)

with the substitution h′ = h − C−1(BH + ρ). Integrating out h′, one obtains

Z[η, η̄, v, a, s, p] =

∫
[dH][dH̄][du]∆hei

∫
d4 x[H̄AH+H̄γ0B†γ0C−1BH+R̄H+H̄R], (B.10)

where ∆h is the resulting constant by integrating out h′. Therefore, we obtain the effective Lagrangian,

Leff = H̄(A + γ0B†γ0C−1B)H, (B.11)

where the H̄AH is the LO in the heavy field expansion. The second term is the recoiling effect suppressed by the
powers of 1/M. In the example in Eq. (B.4), the expansion of C−1 read,

C−1 =
1

2M
− i(v · D)

(2M)2 + .... (B.12)

In the definition of H and h, we introduce a specific v with v2 = 1. In the strict notation, the light field and heavy
filed should be Hv and hv depending on the choice of v. The introduction of v will break the Lorentz invariance.
However, one can constrain the theory independent of the choice of v to restore the Lorentz symmetry partially, which
is called the reparameterization invariance [811, 658]. For example, iH̄vv · DHv, the Lagrangian in the heavy field
limit of Eq. (B.4) cannot fulfill the reprarameterization invariance. One can introduce the flollowing tranformation,

iH̄vv · DHv → iH̄vv · DHv + H̄v
(iD)2

M
Hv + O

(
1

M2

)
, (B.13)

where the recoiling effect is introduced to make the term the reparameterization invariant up to the discrepancy at
O(1/M2).

In the heavy field expansion, it is very convenient to introduce the Pauli-Lubanski vector

S µ =
i
2
γ5σ

µνvν = −1
2
γ5(γµ/v − vµ). (B.14)
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Table B.12: The reductions of the Dirac matrices in heavy baryon formalism (H.B.F) via Λ+ΓΛ+, where Λ+ = 1
2 (1 + /v).

Γ 14×4 γ5 γµ γµγ5 σµν σµνγ5

H.B.F 14×4 0 vµ 2S µ −2εµνρσvρS σ 2i(vµS ν − vνS µ)

The Dirac matrices can be reexpressed with the relations in Table B.12. In the spacetime with d = 4,

v · S = 0, {S µ, S ν} =
1
2

(vµvν − gµν), [S µ
v , S ν

v] = −iεµνρσvρS v
σ. (B.15)

where the Levi-Civita symbol is defined as 19:

εµναβ =


+1 even permutation
−1 odd permutation
0 others

. (B.16)

Under the heavy field reduction, the propagators of the spin- 1
2 and spin- 3

2 particles are

P1/2 =
i

v · q + iε
, Pµν3/2 =

−iPµν

v · q + iε
, (B.17)

where Pµν = gµν − vµvν + 4
d−1 S µS ν is the projection operator which singles out the spin- 3

2 component from the Rarita-
Schwinger field.

For the scalar and vector fields, the free Lagrangian is

L = DµΦDµΦ† − M2ΦΦ† − 1
2

FµνF†µν + M2Φ∗µΦ∗†µ , (B.18)

where Fµν = ∂µΦ
∗
ν − ∂νΦ∗µ. The heavy field expansions for the particle P(∗µ) and antiparticle P̃(∗µ) are

√
MΦ(∗µ) = e−iMv·xP(∗µ), ⇒ L = −2Piv · DP† + 2P∗µiv · DP∗†µ , (B.19)
√

MΦ(∗µ) = eiMv·xP̃(∗µ)†, ⇒ L = 2P̃†iv · DP̃ − 2P̃∗†µiv · DP̃∗µ. (B.20)

With the above reductions, the propagators of the scalar and vector heavy particles are

P0 =
i

2v · q + iε
, P1 = − i(gµν − vµvν)

2v · q + iε
. (B.21)

Appendix C. Electromagnetic form factors

Appendix C.1. Vector mesons of spin-1
The magnetic moment of vector state is extracted from the matrix element of electromagnetic current as defined

in Eq. (234). The explicit expression parameterized in a Lorentz covariant form reads [1196],

G µ(q2) = 〈V(p′, ε′∗)|J µ
em(q2)|V(p, ε)〉

= −G1(q2)(ε · ε′∗)(p + p′)µ + G2(q2)
[
(ε · q)ε′∗µ − (ε′∗ · q)εµ

]
+ G3(q2)

(ε · q)(ε′∗ · q)
2m2

V

(p + p′)µ, (C.1)

19The Levi-Civita symbol is different from that in Refs. [477, 1195] by a sign.
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where p(p′) and ε(ε′) are the momentum and polarization vector of initial (final) state. mV is the mass of vector meson
V . Gi(q2) are called electromagnetic form factors that can be related to the charge, quadrupole and magnetic dipole
form factors in the Breit frame. The kinetics in Breit frame are given as

qµ = (p − p′)µ = (0,Q), Q = Qẑ, pµ = (p0, 1
2 Q),

p′µ = (p0,− 1
2 Q), −q2 = Q2 ≥ 0, p0 =

√
m2

V + 1
4 Q2. (C.2)

The time and space components of Lorentz vector G µ(q2) in Breit frame are derived as

G 0(Q2) = 2p0
{
GC(Q2)(ε · ε′∗) +

GQ(Q2)
2m2

V

[
(ε · Q)(ε′∗ · Q) − 1

3
(ε · ε′∗)Q2

]}
, (C.3)

G (Q2) = G2(Q2)
[
(ε′∗ · Q)ε − (ε · Q)ε′∗

]
= 2p0 GM(Q2)

2mV

[
(ε′∗ · Q)ε − (ε · Q)ε′∗

]
, (C.4)

where GC , GQ and GM are the so-called charge, electric quadrupole and magnetic dipole form factors. They are bridged
to Gi as defined in Eq. (C.1) via

GC = G1 +
2
3
ηGQ, GQ = G3 + G2(1 + η)−1 +

1
2
G1(1 + η)−1, GM = G2, (C.5)

where η = Q2/(4m2
V ). Note that in deriving Eqs. (C.3) and (C.4), the transverse conditions p · ε = 0, and p′ · ε′∗ = 0

have been used. Then the magnetic moment of a vector meson is defined as

µV = GM(Q2)
∣∣∣
Q2→0. (C.6)

The radiative decay width can be expressed in terms of the transition magnetic moment µ′(q2), and which is
extracted from the following transition matrix element,

〈P(p′)|J µ
em(q2)|V(p, ε)〉 = e

√
mVmPµ

′(q2)εµναβvνqαεβ. (C.7)

Performing the standard procedure for calculating the decay width of 1 → 2 process, the radiative decay width of
V → Pγ is given as

Γ
[
V → Pγ

]
=
α

3
mP

mV

∣∣∣µ′(0)
∣∣∣2 |q|3, (C.8)

with α = 1/137 the fine structure constant. The transition magnetic moment µV→Pγ is defined as

µV→Pγ =
e
2
µ′(0). (C.9)

Appendix C.2. Baryons of spin- 1
2 and spin- 3

2

The parameterizations of the electromagnetic currents for the spin- 1
2 [857] and spin- 3

2 [624] baryons (or the transi-
tion processes [858]) have been given with the relativistic and nonrelativistic forms (or see [1197, 1198, 1199, 1200]).
The (transition) magnetic moments can be extracted from the corresponding electromagnetic form factors. We sum-
marize the nonrelativistic froms in the following,

(1) Spin- 1
2 baryons:

〈B3̄
(
p′

) ∣∣∣J µ
em

∣∣∣ B3̄(p)〉 = ū
(
p′

) [
vµGE(q2) +

[S µ, S · q]
mB

GM(q2)
]

u(p), (C.10)

where GE and GM are the electric and magnetic form factors, respectively. S µ = i
2γ

5σµνvν is the covariant spin
operator. The magnetic moment is given by µB = e

2mB
GM(0). Although it is given with the 3̄ f baryons, the 6 f

ones take the same form.
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(2) Spin- 3
2 baryons:

〈B∗6
(
p′

) ∣∣∣J µ
em

∣∣∣ B∗6〉 = ūρ
(
p′

)
Oρµσ

(
p′, p

)
uσ(p), (C.11)

with

Oρµσ
(
p′, p

)
= −gρσ

[
vµ (F1 − τF2) +

[S µ, S α]
mB

qα (F1 + F2)
]
−qρqσ

4m2
B

[
vµ (F3 − τF4) +

[S µ, S α]
mB

qα (F3 + F4)
]
,

(C.12)
from which the charge, electric quadrupole, magnetic dipole, and magnetic octupole form factors are defined as

GC(q2) = F1 − τF2 +
2
3
τGE2, GQ(q2) = F1 − τF2 − 1

2
(1 + τ) (F3 − τF4) ,

GM(q2) = F1 + F2 +
4
5
τGM3, GM3(q2) = F1 + F2 − 1

2
(1 + τ) (F3 + F4) . (C.13)

where τ = −q2/(4m2
B). The magnetic moment is then given as µB = e

2mB
GM(0).

(3) Spin- 1
2→spin- 1

2 + γ transitions:

〈ψ (
p′

) ∣∣∣J µ
em

∣∣∣ψ(p)〉 = eū
(
p′

) [(
vµ − δ

q2 qµ

)
GE(q2) +

2 [S µ, S ν] qν
m + m′

GM(q2)
]

u(p). (C.14)

The decay width is expressed by the magnetic form factor GM(0) as

Γ =
4α|pγ|3

(m + m′)2 |GM(0)|2 . (C.15)

(4) Spin- 3
2→spin- 1

2 + γ transitions:

〈ψ6∗
∣∣∣Jemµ

∣∣∣ψ〉 = eūρ
(
p′

) [
2G1(q2)

(
qρS µ − q · S gρµ

)
+ G2(q2)

2m′

m + m′
(
qρvµ − q · vgρµ

)
q · S

]
u(p), (C.16)

which is suitable for the on-shell transitions (for complete form, see Ref. [858]). This form factor corresponding
to leading M1 and E2 transitions are given by

GM(q2) =
1
4

[
G1

m+ (3m′ + m) − q2

m′
+ G2

(
m+m− − q2

)
+2 (G3 + G2) q2

]
,

GQ(q2) =
1
4

[
G1

m+m− + q2

m′
+ G2

(
m+m− − q2

)
+2 (G2 + G3) q2

]
,

(C.17)

with m± = m′ ± m. Then one can find the ratio

GQ(0)
GM(0)

=
m−
m

(
1
4

+
G2

4G1

)
(C.18)

shall be very small due to a suppressed factor m−/m, which can qualitatively interpret the ratio obtained by
Savage [853]. The decay widths are given with the helicity amplitudes as

Γ =
mm′

8π

(
1 − m2

m′2

)2 [
A2

3/2(0) + A2
1/2(0)

]
, (C.19)

with the helicity amplitudes

A3/2

(
q2

)
= −

√
παω

2m2

[
GM

(
q2

)
+ GQ

(
q2

)]
, A1/2

(
q2

)
= −

√
παω

6m2

[
GM

(
q2

)
− 3GQ

(
q2

)]
, (C.20)

where ω = (m′2 − m2 + q2)/2m′.
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