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Chiral Perturbation Theory for Vector Mesons
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We derive a heavy vector-meson chiral Lagrangian in which the vector mesons are treated as heavy
static matter fields. The unknown couplings of the chiral Lagrangian are further related using the
1/N, expansion. Chiral perturbation theory is applied to the vector-meson mass matrix. At one loop
there are large corrections to the individual vector-meson masses, but the singlet-octet mixing angle
remains almost unchanged. The parity-violating s-wave t() ~ per weak decay amplitude is derived in
the combined chiral and large N, limits. Rare @ decays provide a sensitive test of nonleptonic neutral
current structure.
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An important application of chiral perturbation theory
is to describe the interactions of matter fields (such
as nucleons [1] or hadrons containing a heavy quark
[2]) with low-momentum pseudo Goldstone bosons
the pions, kaons and, eta. In this paper we use chiral
perturbation theory to describe the interactions of the p,
K*, P, and to vector mesons with low-momentum pseudo
Goldstone bosons. The results of this work are relevant
for experiments at the P factory being built at Frascati [3].
We apply chiral perturbation theory to transitions of the
form V ~ V'X, where V and V' are vector mesons. The
mass differences between the nine lowest-lying vector
mesons are small compared with the chiral symmetry
breaking scale of —1 GeV, so chiral perturbation theory
is applicable as a systematic expansion procedure for
such decays. Chiral perturbation theory has previously
been used to study processes such as p ~ ~~, which
do not have a vector meson in the final state. Decays
such as p ~ ~~ do not have soft pions in the final
state, so the application of the chiral Lagrangian to such
processes is not justified and should be considered as a
phenomenological model.

The pseudo Goldstone boson fields can be written as a
3 X 3 special unitary matrix

2i II
X =exp

where

'/~2+ &/~6

K

~+ r+
~'/~z + ~/~o

—2~/~6
(2)

Under chiral SU(3)t. X SU(3)R, g LIRE, where L E
SU(3)t. and R E SU(3)R. At leading order in chiral
perturbation theory, f can be identified with the pion or
kaon decay constant (f = 132 MeV, f~ ——160 MeV).
It is convenient when describing the interactions of the
pseudo Goldstone bosons with other fields to introduce

i II
s =exp = X. (3)

Under chiral SU(3)t X SU(3)R,

L/Ut = U/Rt (4)

where, in general, U is a complicated function of L, R,
and the meson fields II. For transformations V = L = R
in the unbroken SU(3)v subgroup, U = V.

The vector-meson fields are introduced as a 3 X 3 octet
matrix

po /~2 + @(s)/~6

P~ (5)

and as a singlet
—

@
(o)

Under chiral SU(3)t X SU(3)R,

6~ ~ UG~Ut, S~ ~ S~,

(6)

(7)

! and under charge conjugation,

CO~C ' = —0, CS~C ' = —S~,

CsC (g)
We construct a chiral Lagrangian for vector mesons

by treating the vector mesons as heavy static fields
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[4,5] with fixed four-velocity v", v = 1. The three
polarization states of vector mesons with velocity v&

satisfy v 5 = v 6 = 0. The chiral Lagrange density
which describes the interactions of the vector mesons with
the low-momentum ~, K, and g mesons has the general
structure

kkin + ~int + ~mass ~

Processes such as @ ~ K+K cause a net disappearance
of vector mesons and can be taken into account by
including anti-Hermitian terms in 5 . The vector-meson
widths are small compared with M~ and will be neglected
in our analysis.

At leading order in the derivative and quark mass
expansions

Xk;„= —i St(v . ti)5" —i Tr 6t(v 27)6~ (10)
and

ther e '"""' or e '"" '). (The velocity-dependent
vector-meson fields are related to the vector-meson
fields by Pn = /2m e™"P~ and have dimension
3/2. ) This rescaling removes either p, p or p, s from
Eq. (14), so only the singlet-octet mass difference

ttLp
—p, s is relevant. Phenomenologically, the

parameter Ap. ( 200 MeV is comparable to mass split-
tings of order m, , so in our power counting we treat 5p,
as a quantity of order m~. hp, is of order 1/N, , and so
vanishes in the large N, limit.

We begin by considering the spectrum of vector mesons
produced at leading order in chiral perturbation theory.
The analysis is identical to the well-known SU(3) analysis
[6]. Neglecting isospin breaking due to the up and down
quark mass difference, i.e., m„= md = m, we find that

m& =
jets + 2A2m, m~ = jLs + A2(m + mt),

(16a)

where

X;„t = igi St Tr (6,Ap)v e~' + H.c.

+ i g2 Tr ((6 t, 6,)Ag) v e~'

'D'6~ = ti" 6~ + [v', 6~] (12)

and the @~+ —P~s) mass matrix is

where

2—~At (m, —m)

2—~At (m, —m)

p, s + —, A2 (m + 2m, )
2

(16b)

p, p
——p, p + trpTrM, p, s ——p, s + trsTr~. (17)

The terms in Xk;„appear with minus signs because
the polarization vector is spacelike. Charge conjugation
invariance requires that the product of 6 t and 6, in

the second term of Eq. (11) be an anticommutator. (It
is important to remember that in the matrix 6t the field

p is not equal to p+, etc. In heavy vector-meson
chiral perturbation theory, p+ destroys a p+ but it does
not create the corresponding antiparticle. A separate field

p„ is introduced to create a to .) Finally, to linear order
in the quark mass expansion,

5 ... = pp 515~ + ps Tr 6t6"
+ Ai Tr (6194')S" + H.c.

+ A2 Tr ((61,6~)Wg)
+ o.p Tr M~St5~ + o.s Tr W~Tr 6t6~,

(14)

where M is the quark mass matrix
diag(m„, md, m, ) and

Note that the fields S and 6 appearing in Eqs. (10)—
(12) are understood to be velocity-dependent fields
which are rescaled by a common phase factor (ei-

(Isospin breaking effects have been studied in Ref. [7].)
Using Eqs. (16a) and (16b), it is possible to express the
elements of M in terms of the measured vector-meson

(08)
masses (up to a sign ambiguity for M&q )

(08) 4 1
Mii = m + m@

——mrs. + —mp, (18a)

(pg) 4 1
M22 = —m~* ——m

3 3
(18b)

(o8) {08) 4—mg- ——m —mp co

1
X m@ ——mg + —m p)

The eigenstates of M ) are parametrized by a mixing
angle Ht

(18c)

4 1

m@
—3m~- + 3mp

tanHv = ~ 4, = ~0.76.
3m~~ 3mp m~

(20)

In the large N, limit [8,9], quark loops are suppressed
so that the leading diagrams in the meson sector contain
a single quark loop. As a result, the octet and singlet
mesons can be combined into a single "nonet" matrix

%~=6~+ 5~,
I
3

(21)

~ttt) = sinOt ~P ) —cosOv~@ ), (19a)

~tp) = cosOv ~hatt~ 1) + sin Ov~@~ ~), (19b)

where Eqs. (18) imply the usual SU(3) v prediction for the

tangent of the mixing angle
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which enters the chiral I agrangian. The kinetic, interac-
tion, and mass terms at leading order in 1/N, are

5,;„-—i Tr N,'(v 23)N&, (22)

ig2 Tr (JtNt, N, )Ap)v e~' (23)
and

p, TrN N~ + A2 Tr ((N„,N&)~~). (24)

Comparing with Eqs. (10)—(14), one finds that, in the
N, ~ ~ limit,

Ap, ~0, harp~
2g2 242

gl ~3~ 1

232
~~ —+ 0

1
tan Ov. 2' (26)

the
~ @)state becomes "pure"

p /~2 + co~/

K"'

~ss), and the nonet matrix is
+ K*+

p /~2 + cop/~2 K

K

(27)
If the minus sign is chosen in Eq. (18c), the prediction

for the mixing angle at leading order in chiral perturbation
theory, Eq. (20), is close to its value for large N, At.
leading order in chiral perturbation theory, the partial
width for the Zweig forbidden decay P ~ p~ summed
over all three modes is

2h2( pI (@ ~ pn) =
7rf

The coupling, h, which vanishes as N, ~ ~, is

(28)

h = sin Hv — cosHv .
2 3

(29)

(30)

The measured branching ratio gives h = 0.05, which also
suggests that the couplings are close to the N, ~ ~
values.

In the nonrelativistic constituent quark model, assuming
the ~P) is pure ~ss), g~ = 2/~3 and g2 = 1. In the
nonrelativistic chiral quark model [10], g~ and g2 are
reduced by a factor of 0.75 from their values in the
nonrelativistic constituent quark model.

In chiral perturbation theory the leading corrections to
the expressions for the vector-meson masses in Eqs. (16)

3/2
are of order mq (recall we are treating Ap, as of order
mq) and arise from one-loop self-energy diagrams giving

Bmz = —
g2

—m + 2m& + —m„~ + g&m
3

1 2 3 3 5 3 1
6mK- = g2 m + mK + m +g1mK12qrf2 2 3 6

6M)t = — g, (3m + 4m~ + m„),
(os) 1

12qrf~
(08) 1 2 3 2 3 2 3 2 36M22 = —

2 g2 2m + —mK + —m + g1m127rf2 3 3
(o8) (os) 3 3 36M)2 = 6M2) = gl gp (—3m + 2m~ + m„) .

127rf2

The singlet-octet mixing angle Ov including these correc-
tions is

4 1+ 3 m&
—6m

tanO v ——+-

3 mK* 3 mp m~ +
(31)

where

4
2

Bm~
~

m m~ + m12~f' i3 3
(33)

With g2 = 0.75, Eq. (33) yields Bm = —4 MeV. The
combination of mass shifts, 6m, that affects the mixing
angle Ov is very small even though the corrections to
the individual masses are substantial (e.g. , 6m~ = —300
MeV). 6m, which is of order 1/N„must transform like a
27 of flavor SU(3). The linear combination of the cubed
pseudoscalar meson mass in Eq. (33) transforms like a 27,
and is numerically small. This same linear combination
occurs in the violation of the Gell-Mann —Okubo formula
for baryon masses [11].

For N, large, the @ ~ per decay amplitude is of
—3/2

order Nc, since the leading order 1/QN, amplitude
is forbidden by Zweig s rule. At leading order in chiral
perturbation theory it occurs at tree level because of order
1/N, . deviations from the relations tan Ov = I/~2 and

g~/gp = 2/v 3. At order m, ln m, in the chiral expansion—3/2
the order Nc contribution arises from one-loop vertex
and wave function corrections calculated with vertices
from the nonet Lagrange density. The ~ and g loops do
not contribute when one uses the nonet Lagrangian. The
resulting decay amplitude for each of the three p ~ modes
1s

~(4 —p~) = ~"' ~~(4)~."(p)p—~~v~(2&mqm, )

(34)

where the ellipsis denotes terms of higher order in the
chiral and 1/N, expansions. The .terms of order m, have
a dependence on the subtraction point p, which cancels
that of the logarithm in Eq. (34). With p, = 1 GeV,
g2 = 0.75, the magnitude of the term of order m, lnm,
in Eq. (34) is about 1.5 times as large as the measured

P ~ pqr decay amplitude. This suggests either that g2
is smaller than the chiral quark model value or that there

4 1 (o8)6m = ——6mK + —6m + 6M22
3 P

1 t 2 2 2l 1 3 4 3 3

127rf2( 3 ) 3 3, ~lg, + —g, I

—I ——m»+ I ).
(32)

Using the relation between g2 and g~ in Eq. (26), we
find that
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is a partial cancellation between order I, ln I, and order
I, contributions to the decay amplitude.

The Frascati @ factory is expected to produce of or-
der 10' @'s, allowing even very rare @ decay processes
to be experimentally accessible. The P ~ p7r decay
amplitude has a small parity-violating s-wave amplitude
that is induced by the weak interactions. This ampli-
tude can be predicted in the combined limits of chiral
SU(2)t X SU(2)g symmetry and large N, . In these lim-
its the part of the weak Hamiltonian that dominates the
s-wave P ~ p7r amplitude is due to Z exchange,

find that in the combined chiral and large N, limits

(p'~ I~wl@). ...—=—(p ~ I~wl@).,

GF I 4= —ill I
1 ——sin Ow I~2k 3 )

(39)

and

GF 4
1 ——sin Ow I

2 2 3 )
X (s y~s ) [upy~ysup —dpy" ysdt3]],

(35)

where zl —1.56 [12] arises from QCD scaling between
the weak scale and low energies. In the large N, limit,
logzi is of order I/N, times logarithms of the form
logMw/A, and we have chosen to include corrections of
this form [13]. The P ~ pzr matrix element takes the
form

GF 4
(p~l941@) = zl 1 ——sin Ow Ify &p(p)

2 2 3 )

X ( p zr
I
u y ~ y5 u —d y "y5d10),

where the P decay constant f~ is defined by

(p zr I~wl@)s-wave = 0.

Interference between the s-wave and p-wave amplitudes
is possible for aligned P s, but it requires a final state
interaction phase. The s-wave p+ ~ branching ratio is
10 ", which is too small to be measured at the Frascati

factory. However, an enhancement of the parity-
violating decay rate could make the signal observable.
This provides a very interesting test of new physics,
because it probes nonleptonic neutral currents involving
strange quarks. We will consider the application of chiral
perturbation theory to other processes such as P ~ p y y
elsewhere.
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(oI y 14) = fye (0) (37)

The measured @ ~ e+ e decay width implies that

f@ ——(492 MeV) . The left-handed isovector current
uy &"Pt u —dy&" Pt d transforms as (3t, 1R) under chiral
SU(2) t X SU(2) R. For matrix elements between the
vacuum and a p plus soft pions, this current is represented
by the operator

uyt pt u —dyPt d = Tr($6 gtrf), (38)
2$2mp

where fz is defined analogous to f~ and has the value

f~ = (407 MeV) from the p ~ e+e partial width. In
Eq. (38), s and O„are the 2 X 2 matrix analogs of the
corresponding 3 X 3 matrices used in the case of chiral
SU(3)t. X SU(3)g. The right-handed isovector current
is given by exchanging se and set in Eq. (38). Using
Eq. (38) to evaluate the matrix element in Eq. (36) we
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