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Chiral phonons were initially proposed and further verified experimentally in two-dimensional
(2D) hexagonal crystal lattices. Many intriguing features brought about by chiral phonons are
attributed to the pseudo-angular momenta which are associated with the threefold rotational sym-
metry of hexagonal lattices. Here, we go beyond the hexagonal crystals and investigate the chiral
phonons in systems with fourfold rotational symmetry. We clarify the symmetry requirements for
the emergence of chiral phonons in both 2D square lattices and 3D tetragonal lattices. For 2D, the
realization of C4 chiral phonons requires the breaking of time-reversal symmetry; while for 3D, they
can exist on the C4-invariant path in a chiral tetragonal lattice. These phonons have the advantage
that they can be more readily coupled with optical transitions, which facilitates their experimental
detection. We demonstrate our idea via model analysis and first-principles calculations of concrete
materials, including the MnAs monolayer and the α-cristobalite. Our work reveals chiral phonons
beyond the hexagonal lattices and paves the way for further exploration of chiral phonon physics in
square/tetragonal materials and metamaterials.

I. INTRODUCTION

As collective vibrations of crystal lattices, phonons
play an important role in solid-state physics, underpin-
ning many fundamental phenomena ranging from specific
heat to superconductivity. In 2015, the concept of chi-
ral phonons was proposed, for which the vibration modes
acquire a definite sense of chirality, either right-handed
or left-handed [1]. Chiral phonons naturally exhibit se-
lective coupling with other chiral quantities/excitations,
such as circularly-polarized light [1–5], magnetization [6],
phonon Berry curvature [7, 8], and chiral structures [9],
which are expected to generate novel physical effects. As
a result, chiral phonons have been attracted great interest
in recent years. Combined theoretical and experimental
efforts have revealed their important contributions to var-
ious optical and excitonic effects in two-dimensional (2D)
semiconductors [2, 10, 11], magneto-optical response in
topological semimetals [12], electronic or structural phase
transitions [13, 14], valley phonon Hall effect [15], and
etc [16–22].

In studying chiral phonons, the focus is on the phonon
modes at high-symmetry points of the Brillouin zone
(BZ). This is because besides sizable intrinsic angular
momenta, due to symmetry, these modes also possess
well defined pseudo-angular momenta (PAM) [1], which
can enable their selective coupling to optical transitions
and other excitations. Indeed, the first experimental con-
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firmation of chiral phonons in 2018 was based on the in-
frared circular dichroism in monolayer WSe2 [2], where
the chiral phonons at K and K ′ high-symmetry points of
the hexagonal BZ selectively participate in the intervalley
optical transitions.

It follows that the properties of chiral phonons should
depend on the type of the crystal lattice, since different
lattices have different high-symmetry points with differ-
ent constraints on the phonon modes. Previous stud-
ies on chiral phonons have covered a variety of lattice
models, such as the honeycomb lattice [1], Kekule lat-

tice [23], kagome lattice [24],
√

3×
√

3 honeycomb super-
lattice [25], and also realistic materials and heterostruc-
tures, such as graphene/BN [26], 2D transition metal
dichalcogendies [2], WN2 [5], and α-quartz [9]. However,
one notes that all those works are limited to the hexago-
nal crystal system, there the PAM of chiral phonons are
associated with the threefold rotational symmetry C3.

Then, a question naturally arises: Can chiral phonons
be extended beyond the hexagonal crystal system?

In this work, we address the above question. Since
the translational symmetry of a lattice is compatible
with only 2-, 3-, 4-, and 6-fold rotational axes, it ap-
pears that a natural candidate is a system with fourfold
rotational axis. In 2D, this corresponds to the square
lattice. We clarify the underlying symmetry condition
for the emergence of chiral phonons in a square lattice
with C4 symmetry. Particularly, since the C4-invariant
points in the BZ are all time-reversal-invariant momen-
tum (TRIM) points, we show that chiral phonons there
can only appear when the time reversal symmetry T is
broken. We demonstrate the idea explicitly by a model
calculation. We show that different from previous cases,
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here, chiral phonons can appear at the Γ point, for which
the chirality connected with nonzero PAM of ±1 under
the C4 rotation. Importantly, for chiral phonons at Γ,
they can directly couple with optical transitions, either
by resonant excitation or by Raman scattering, rather
than the intervalley transition required before. We per-
form a rough estimation for the effect in a realistic ma-
terial, the 2D ferromagnetic MnAs monolayer, and find
that the effect is typically weak due to the usually weak
spin-lattice coupling. Nevertheless, we show that by ex-
tending to 3D systems, chiral phonons with C4 symmetry
can appear on the high-symmetry path. In this case, T
breaking is not needed, but the lattice has to be chi-
ral, as demonstrated by our first-principles calculation
on α-cristobalite. Our work extends the concept of chi-
ral phonons beyond the hexagonal crystal system, which
offers platforms for studying chiral phonons with novel
properties and potential applications.

II. GENERAL ANALYSIS

Let’s first give a general consideration for 2D square
lattices with C4 symmetry. As discussed, our interest
is on the possible chiral phonons at the high-symmetry
points in BZ which respect the C4 symmetry. These
points are marked in Fig. 1(a), which include the Γ point
and the M (π, π) point. The points X and Y are also
high-symmetry points, but they generally retain only the
C2 symmetry. A crucial observation is that all the high-
symmetry points of the square lattice are TRIM points,
i.e., T is a symmetry at these points. It then follows that
phonon modes at these points cannot have a net chiral-
ity. This is because the T operation flips the chirality
of a phonon mode. Hence, a left-handed phonon mode
must have a right-handed time reversal partner, and they
are degenerate at the same energy, annihilating the net
chirality (the degenerate pair can always be decomposed
into nonchiral linear modes).

In comparison, for hexagonal class lattices studied be-
fore, their BZ is a hexagon (see Fig. 1(b)). There are
high-symmetry points, namely the K and K ′ points,
which are not TRIM points. Therefore, we are allowed
to have chiral phonon modes at K and K ′. Under T ,
K goes to K ′ and vice versa. As a result, a left-handed
mode at K has its right-handed time reversal partner at
K ′. The separation in momentum space ensures their
well defined chirality.

From this analysis, we see that a necessary condition
to have chiral phonons in a square lattice is to break the
T symmetry. Then, chiral phonons may emerge at the
Γ and M points of the square BZ. Chiral phonons at Γ
are of particular interest, because they can be directly
coupled with light, without worrying about the crystal
momentum mismatch. In the following, we shall explore
these ideas, first in a simple model and then in a realistic
material.

(a) (b)
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FIG. 1. Brillouin zones for (a) a square lattice and (b) a
hexagonal lattice.

(b)

Fr
eq
ue
nc
y

x

y

z ГX M X
0
2
4
6
8
10

A

B
KBB

KAA

KAB

(a)

FIG. 2. (a) Schematic illustration of the square lattice model.
There are two basis sites A and B in a unit cell (marked
by the shaded square). The couplings between AB, AA and
BB sites are considered in the model. (b) Phonon disper-
sion of the model. In the calculation, we set the force con-
stants {kβL, k

β
Ti, k

β
To} for a bond β = AB, AA and AB as AB:

{20, 12, 10}, AA: {8, 2, 1}, and BB: {6, 1, 0.4}, respectively.

III. 2D SQUARE-LATTICE MODEL

Let us consider the simple 2D square lattice model il-
lustrated in Fig. 2(a). Since we are interested in the
chiral phonon modes in the optical branches, we need at
least two atomic sites in a unit cell: A is at the corner
of a square and B is at the center. The structure clearly
preserves the C4 symmetry.

The harmonic oscillations of the square lattice is de-
scribed by the standard Hamiltonian:

H0 =
1

2
pT p+

1

2
uTKu (1)

where u is a column vector of displacements from lat-
tice equilibrium positions for each atom, multiplied with
the square root of atomic mass mA/B for A/B site; p
is the conjugate momentum vector, and K is the force
constant matrix. For simplicity, in the model, we keep
the couplings up to the second neighbors. These include
the coupling through the AB, AA, and BB bonds, as in-
dicated in Fig. 2(a). Each bond β is characterized by a

longitudinal force constant kβL and two transverse force

constants kβTi (in-plane) and kβTo (out-of-plane). Since
our target feature is dictated by symmetry, including
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more neighbors or variation in model parameters will not
change the qualitative result.

The phonon modes uk,σ and the spectrum ωk,σ are
solved from the eigenvalue problem

D(k)uk,σ = ω2
k,σuk,σ, (2)

where the dynamic matrix D is the spatial Fourier trans-
form of K, and the index σ labels the phonon branches.

A representative spectrum of the model is shown in
Fig. 2(b). There are totally six phonon branches: three
acoustic branches and three optical branches, in accor-
dance with the two sites in a unit cell. Let’s focus on
the modes at the Γ point. The three acoustic modes are
degenerate at zero energy, as expected. As for the three
optical modes, one is non-degenerate (the 4th branch),
and the other two (the 5th and the 6th branches) form a
degenerate pair.

To check the possible chirality of these phonons, we
evaluate their circulation polarization [1]. For a 2D sys-
tem, we are interested in the circulation polarization
along the out-of-plane (z) direction, which is given by

sk,σ = u†k,σŜzuk,σ, (3)

where

Ŝz =
∑
α

(|Rα〉〈Rα| − |Lα〉〈Lα|) (4)

is the circular polarization operator, the summation is
over all the sites in a unit cell, |Rα〉 (|Lα〉) is the right
(left) circularly polarized vibration basis at site α. Hence,
sk,σ > 0 (< 0) will indicate that the mode uk,σ is right
(left) handed, and it was shown that the value ~sk,σ gives
the angular momentum of the phonon along z.

Straightforward evaluation confirms that the optical
modes at Γ, including the non-degenerate mode and the
doubly degenerate pair, have a vanishing chirality. This
is consistent with our general analysis. The degenerate
pair can be decomposed into a right-handed phonon and
its left-handed time reversal partner, so they together
have a zero net chirality. The similar discussion applies
also to the other high-symmetry points.

Next, we break the T symmetry in this model and
show that chiral phonons with C4 symmetry can appear.
Following Ref.[7, 27, 28], we add a T -breaking perturba-
tion to the model, such that the Hamiltonian takes the
form of

H =
1

2
(p− Ãu)T (p− Ãu) +

1

2
uTKu, (5)

where Ã is an anti-symmetric real matrix. Clearly, the
term pÃu breaks the T symmetry. Physically, such a
perturbation may result from different origins, such as
the Lorentz force on charged ions [27], Raman-type spin-

phonon interaction [7], or Coriolis force [29, 30]. Ã is
block diagonal in the site indices α, with each 3×3 block

Λα corresponding to the site α being given by

Λi =

 0 λα 0
−λα 0 0

0 0 1

 , (6)

with some constants λα signaling the strength of T break-
ing. Intuitively, this resembles the effect of a Lorentz
force acting on moving ions from an out-of-plane mag-
netic field, where λα would be proportional to the field
strength.

After adding the perturbation, the phonon spectrum
is changed to that in Fig. 3(a). Compared to Fig. 2(b),
one finds that several degeneracies in the spectrum are
lifted by the perturbation. At the Γ point, one acous-
tic mode splits from the other two and acquires a finite
gap, which was noted in a recent work [28]. More im-
portantly, for the optical modes, the original doubly de-
generate pair gets separated. By evaluating their circular
polarization, we find that the mode uΓ,5 of the 5th branch
is left handed, whereas uΓ,6 is right handed. Their chi-

rality would flip when Ã changes sign, as it should be.
The phonon chirality can be directly visualized from

the vibration pattern, as plotted in Fig. 3(b) for the three
optical modes at Γ. One can see that the mode uΓ,4 is
non-chiral as vibrations of the two sites are linear and
along the z direction. For uΓ,5, the two sites perform left
handed circular rotation around their equilibrium posi-
tions, consistent with the left handed chirality. Mean-
while, uΓ,6 has similar circular vibration pattern as uΓ,5,
except that orientation is right handed. The two are
connected by the T operation, hence they are degener-
ate when T is preserved. These results confirm that by
breaking the time reversal symmetry, we can indeed have
chiral phonons in a square lattice with C4 symmetry.

As mentioned, due to C4, the modes at Γ have a well
defined PAM. The PAM is determined by the C4 eigen-
value of the phonon mode. Explicitly, we have

Rz(π/2)uk,σ = e−i(π/2)`k,σuk,σ, (7)

where Rz(π/2) is the C4 operator acting on the phonon
wave function, k ∈ {Γ,M} here is restricted to the C4

invariant points, and the PAM ` ∈ {0,±1, 2}. In Table I,
we show the PAM values for the three optical modes at Γ.
One observes that the right-handed (left-handed) chiral
phonon has PAM of +1 (−1). For this simple lattice, the
PAM is directly connected to the chirality.

To better understand the PAM, we note that as dis-
cussed in Ref. [1], the phase factor on the right hand side
of Eq. (7) has two contributions: an intracell contribution
from the vibration at a site i and an intercell contribution
from the Bloch phase factor eik·r when site α is moved
to neighboring cell under rotation. Regarding their con-
tributions to the total PAM `, the former is termed as
the spin PAM (`s) and the latter is termed as the orbital
PAM (`o). And the relation ` = `αs + `αo holds for each
site α. Now, at the Γ point, the orbital PAM vanishes
identically because k = 0. Hence, the PAM is completely
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TABLE I. Results for optical phonon modes at Γ and M
points in Fig. 3(a). Here, the columns with “C4” and “`ph”
give the C4 eigenvalues and phonon PAM, respectively. R/L
indicates the right/left handed chirality.

Γ M
C4 `ph chirality C4 `ph chirality

Γ,6 −i 1 R −i 1 R
Γ,5 i −1 L i −1 L
Γ,4 1 0 - 1 0 -

contributed by the spin PAM, which is determined by the
vibration pattern at any C4 invariant site (A or B here).
It then follows that PAM of ±1 corresponds to left/right
handed phonon in our square lattice model.

We have also investigated chiral phonons at the other
C4-symmetric point M . The results are shown in Table I.

Chiral phonons at Γ point have the advantage that
they can directly couple with light. Because the wave-
length of light in the infrared to visible range is much
larger than the crystal lattice scale, its momentum can
only match the phonon modes at very small k, i.e.,
around the Γ point. In previous experiments, to probe
chiral phonons at K and K ′ points of the hexagonal 2D
transition metal dichalcogendies materials, one has to in-
voke an intervalley scattering process, where the momen-
tum mismatch is compensated by an electron. Now, if we
have chiral phonons at Γ point, they may be resonantly
excited by an infrared circularly polarized light, which
follows the selection rule

`ph = m, (8)

where `ph is the PAM of the target chiral phonon mode,
and m = ±1 for right/left circularly polarized light. In
addition, for chiral modes that are Raman active (not in
this simple model), they can also be probed in the Raman
spectrum.

IV. CALCULATION FOR A REAL MATERIAL

We have shown that it is possible to have chiral
phonons in a square lattice with C4 symmetry. A neces-
sary condition is that the T symmetry must be broken.
In solid materials, T may be broken by external mag-
netic field or by internal magnetic ordering. Here, we
perform a calculation on a realistic material, the mono-
layer MnAs. The details of the calculation are presented
in Appendix A.

The structure of monolayer MnAs is shown in Fig. 4(a)
It adopts the FeSe-type structure with space group
P4/nmm (No. 129) and point group D4h. The Mn atoms
form a horizontal plane, and the As atoms are located on
the two sides of this plane. Each Mn is sitting inside
a tetrahedron formed by four neighboring As atoms. A
unit cell contains two Mn and two As atoms. As pro-
posed by Wang et al. [31], monolayer MnAs is intrinsi-

(b)
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FIG. 3. (a) Phonon dispersion of the square lattice model
with T -breaking perturbation. The arrows mark the two C4

chiral optical phonon modes at Γ. (b) Vibration patterns for
the three optical phonon modes uΓ,4, uΓ,5 and uΓ,6.

cally a half metal with out-of-plane magnetization. Our
first-principles calculations (see Appendix A for details)
confirm this ferromagnetic ground state. The local mo-
ment is mainly from the Mn 3d orbitals and is about
4µB per Mn site. Notably, the out-of-plane magnetiza-
tion preserves the C4 symmetry of the system and breaks
the T symmetry.

In Fig. 4(b), we plot the calculated phonon spectrum
of the system without considering the T -breaking effects.
There are 12 phonon branches, corresponding to the four
atoms in a unit cell. Focusing on the optical phonon
modes at the Γ point, we see that these modes are ei-
ther non-degenerate or doubly degenerate. Each doubly
degenerate pair corresponds to a two-dimensional irre-
ducible representation (Eg or Eu) of the D4h group. As
expected from our general analysis, it can be regarded
as consisting of a right-handed mode and a left-handed
mode, which are connected by the time reversal opera-
tion, so the net chirality vanishes. The non-degenerate
modes correspond to out-of-plane vibrations, which are
also non-chiral. These points are explicitly verified by
the calculation of the phonon circular polarization sph

for these modes, as shown in Table II.
Next, we try to include T breaking effects on phonons.

We note that currently, there is no established method
to include such effects in first-principles calculations. A
recent work by Sun et al. [32] proposed an attempt to in-
clude magnetic field effects on phonons, based on adding
the spin-phonon interaction term as in model (5). The

block Λα for site α in the Ã matrix is expressed by

Λα =
e

4mα
(ZT

α ×B + B ×Zα), (9)
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where mα is the mass of the ion at site α, Zα is its
Born effective charge dyadic, B is the magnetic field, and
here the matrix Λα is also expressed in the dyadic form:
Λ =

∑
ij Λijeiej with ei the Cartesian basis vectors. For

the special case when the field is along z and the Born
effective charge tensor is given by the simple product of
some charge qα and the identity matrix, Λα would reduce
to the form in Eq. (6) with λα = −qαB/(2mα).

We follow this approach and perform the calculation
for monolayer MnAs. We first consider the effect from an
external B field. Figure 4(c) shows the obtained phonon
spectrum for a B field of 105 T along the +z direction.
Consistent with our expectation, one observes that by
breaking the T symmetry, the double degeneracies in
Fig. 4(c) for the optical modes at Γ are lifted. Then,
each split mode from the original degeneracy carries a
net chirality and well defined PAM. These values are
presented in Table II. For example, the top two modes
at Γ evolve from the original degeneracy at ω = 6.644
THz. They are left and right handed, respectively. The
in-plane vibration patterns of these two modes are illus-
trated in Fig. 4(d). Similar analysis can be done also for
the phonon modes at M , and the results are consistent
with our general consideration in Sec. III.

Clearly, the splitting between the chiral modes scales
linearly with the field strength. We note that from
our calculation, sizable splitting of the degeneracy only
occurs at very large field strength. For example, in
Fig. 4(c), the splitting is on the order of 0.1 THz at B
field of 105 T. The similar behavior was also observed in
Ref. [32]. Evidently, such huge magnetic field cannot be
achieved under current lab condition. Since monolayer
MnAs is a ferromagnetic material, the internal magne-
tization breaks T and should also produce a splitting.
However, there is so far no developed approach to cap-
ture this effect in first-principles calculations. Here, we
may do a very rough estimation by attributing the spin

TABLE II. Results for optical phonon modes at the Γ point
in MnAs monolayer. The frequency ω is in unit of THz, IRR
shows the irreducible representation of the modes, and sph is
the phonon circular polarization. R/L indicates the right/left
handed chirality. The left panel is for the results without
T breaking (Fig. 4(b)), where the modes do not have a net
chirality. The right panel is for the case with T breaking
perturbation from a B field of 105 T (Fig. 4(c)).

Without T breaking B = 105 T
ω IRR `ph ω `ph sph

6.644 Eg (1,−1)
6.696 1 L
6.593 −1 R

6.261 Eu (1,−1)
6.283 −1 L
6.240 1 R

5.482 A2u 0 5.482 0 -
4.034 A1g 0 4.034 0 -
3.325 B1g 2 3.325 2 -

2.598 Eg (1,−1)
2.642 1 R
2.554 −1 L
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FIG. 4. (a) Top and side views of MnAs monolayer. (b)
Calculated phonon dispersion of MnAs monolayer without T
breaking. (c) The corresponding dispersion by taking a T -
breaking perturbation with B = 105 T. One notes the split-
ting of the original double degeneracy at Γ in (b). The result-
ing split modes are chiral. The arrows indicate two such split
modes (corresponding to 11th and 12th branches), and their
vibration patterns are illustrated in (d).

splitting in the material (splitting between two spin chan-
nels) to an “internal” B field and taking this field in
Eq. (9). From the calculated band structure (see Ap-
pendix B), the spin splitting is found to be ∆ ∼ 2 eV,
hence B ∼ ∆/µMn ∼ 104 T. As a result, the splitting
in phonon spectrum is at least one order of magnitude
smaller than that in Fig. 4(c).

V. C4 CHIRAL PHONONS IN 3D SYSTEMS

From the above discussion, we see that chiral phonons
with C4 symmetry can exist in 2D square lattices when
the T symmetry is broken. However, the estimation with
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FIG. 5. (a) Top view of the α-cristobalite lattice, which has
tetragonal symmetry. (b) A chain of SiO4 tetrahedra along
the z direction, showing the pattern of a left handed spiral.
(c) Brillouin Zone. Here, the high-symmetry path Γ-Z with
kz > 0 and kz < 0 are labeled with (+) and (−) signs, since
they are not equivalent regarding the properties of phonon
modes. (d) Calculated phonon dispersion for α-cristobalite.
Here, we focus on the two phonon branches within the range
of 17 - 22 THz. The red/blue color indicates the mode is
right/left handed. The values ±1 indicate the PAM.

monolayer MnAs indicates that effects of T breaking on
phonons could be rather weak, such that the splitting
between modes with opposite chirality could be difficult
to detect under current lab condition.

The problem may be circumvented when extending the
discussion to 3D systems. For a 3D lattice with C4 sym-
metry, i.e., a tetragonal lattice, the C4 symmetry is pre-
served on the whole path Γ-Z of the BZ, not just the high-
symmetry points, as shown in Fig. 5(c). Note that T is
not a symmetry for a generic point on the path, so there
is no degeneracy caused by T for chiral modes at such
a point and hence no need to break T . In other words,
chiral phonons can appear on C4 invariant paths for 3D
lattices that preserve the time reversal symmetry. Never-
theless, for such cases, some crystal symmetries must be
broken. In particular, a necessary condition is that the
system cannot preserve any mirror symmetry. This can
be easily understood by noting that any vertical mirror
(like Mx) or the combined symmetry TMz would enforce
degeneracy between left and right handed phonons on the
C4 invariant paths. In retrospect, this condition should
also be met in 2D systems, and indeed, in our previous
examples, these symmetries are automatically broken by
the B field or magnetization.

To demonstrate our idea, we perform the calcula-
tion for a 3D material α-cristobalite that satisfies the
above condition. α-cristobalite is a well known poly-
morph of silica (SiO2) [33]. Note that a crystal that

lacks any mirror symmetry belong to the chiral space
group. α-cristobalite crystallizes in a pair of enantiomor-
phic tetragonal chiral space groups P41212 (No. 92) and
P43212 (No. 96). Figure 5(a) and (b) show the structure
of α-cristobalite in the space group No. 92. Here, each Si
atom stays in a tetrahedron of four nearby O atoms and
has a tetrahedral coordination, and two nearby tetrahe-
dra are connected at a corner O atom. From Fig. 5(b),
one can see that the SiO4 tetrahedra form a left handed
spiral chains along z. As for the enantiomorphic struc-
ture in space group No. 96, the handedness of the spiral
would be the opposite. Importantly, the structure pre-
serves a fourfold screw rotation along z, which allows us
to discuss C4 chiral phonons with well defined PAM.

The calculated phonon dispersion of α-cristobalite is
plotted in Fig. 5(d) (see Appendix A for computational
details). There are 36 phonon branches, corresponding to
the four formula units in a primitive cell. As discussed,
our target here is on the phonon modes on the Γ-Z path.
The little group on this path is C4. The modes on this
paths are generally non-degenerate, except for some acci-
dental crossing points. We have checked that they indeed
have nonzero phonon circular polarization (along z) and
well defined PAM. For example, let’s focus on the two
branches from about 17 to 22 THz, since they are well
separated from other branches. In Fig. 5(d), we mark
their chirality by colors: red for right-handed modes and
blue for left-handed modes. The PAM values for these
modes are also labeled in the figure. One observes that
as expected, the C4 phonons on this paths are chiral
and have PAM of ±1. Moreover, as noted in Ref. [9],
for a chiral crystal, the phonon chirality is tied with its
propagation direction. Here, the blue colored branch is
propagating in the +z direction, whereas the red colored
branch goes in the opposite direction.

VI. DISCUSSION AND CONCLUSION

In this work, we have extended chiral phonons to
square/tetragonal crystal systems with fourfold rota-
tional symmetry. In 2D, to have C4 phonons with net
chirality, a necessary condition is to break the time re-
versal symmetry. Our estimation shows that the phonon
splitting due to symmetry breaking effects from applied
magnetic field or magnetic ordering could be rather weak
for realistic materials under currently achievable lab con-
ditions. For example, recent experiments on hexagonal
magnets did not resolve the phonon splitting due to mag-
netic ordering [12, 34]. Nevertheless, we have to stress
that the estimation is very crude. So far, we do not have
a good microscopic theory to account for the T breaking
effects on phonons, and to capture such effects in first-
principles calculations is an important open problem to
be explored in future research. We hope our current work
provides an additional stimulus for the development.

We have shown that in 3D, C4 chiral phonons can ap-
pear on the high-symmetry path of a chiral tetragonal
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crystal, without the need to break T . For these chi-
ral phonons, the optical selection rule in (8) still holds.
For example, consider the chiral phonons in Fig. 5(d)
for α-cristobalite and an incident light along +z. If the
light is peaked around 18 THz, it will primarily interact
with the two colored optical phonon branches. Then, the
light with left (right) circular polarization can only res-
onantly excite left (right) handed phonon branch. Since
the phonon chirality is tied to the propagation direction,
this selectivity can be detected experimentally by the dif-
ferent heat flow direction.

Finally, although our discussion is mainly on phonons
in solid materials, the analysis from symmetry perspec-
tive is general and also applies to artificial systems such
as acoustic crystals and mechanical networks. Some ef-
fects may be more pronounced and more easily realized
in artificial systems. For example, the T breaking may
be achieved in artificial systems by other means, such as
Coriolis force or optomechanical coupling [35].

In conclusion, we have explored chiral phonons beyond
the hexagonal lattice systems. We show that C4 chiral
phonons can in principle exist. We clarify the required
symmetry conditions for both 2D and 3D systems. For
2D, C4 chiral phonons require broken T , which could be
stringent for real materials. For 3D, the condition is less
stringent but requires a chiral tetragonal crystal struc-
ture. These phonons have the advantage that they can
directly couple with light, which would facilitate the ex-
perimental study. Our work enriches the fundamental
understanding of chiral phonons in a new crystal system
and offers a foundation for further investigating their in-
teresting physical properties.
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Appendix A: First-principles Computation Method

We performed first-principles calculations to study
the electronic and phononic properties of MnAs and α-
cristobalite. The calculations were done based on the
density functional theory (DFT) as implemented in the
Vienna ab initio simulation package (VASP) [36, 37].
The exchange-correlation functional was modeled within
the generalized gradient approximation (GGA) with the
Perdew-Burke-Ernzerhof realization [38]. The projector
augmented wave method [39] was adopted. The plane-
wave cutoff energy was set to 500 eV. The energy and
the force convergence criteria were set to be 10−7 eV and
10−2 eV/Å, respectively. The phonon spectra were ob-
tained by using the density functional perturbation the-
ory (DFPT) method and the PHONOPY code [40]. For
MnAs, the GGA + U method [41] with Ueff = 4 eV was
applied for the d orbitals of Mn atoms to describe the
strong correlated interaction of d electrons. The 3×3×1
supercell and a size of 3 × 3 × 1 Γ-centered k mesh [42]
in the BZ were used for the phononic calculation. For α-
cristobalite, to obtain the phonon spectra, the 2× 2× 2
supercell was used with a 3×3×3 Γ-centered k mesh [42]
in the BZ. The method of non-analytical term correction
(NAC) [43] was applied to get the dynamical matrix for
α-cristobalite.

Appendix B: Electronic Band Structure for MnAs
Monolayer

The electronic band structure for monolayer MnAs ob-
tained from our DFT calculation is shown in Figure 6.
From the spin-resolved density of states, the spin split-
ting in the material is found to be ∼ 2 eV.
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FIG. 6. Electronic band structure and spin-resolved density
of states for MnAs monolayer.
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