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The properties of infinite matter and finite nuclei are studied using the chiral sigma model
in the framework of relativistic mean field theory. We reconstruct an extended chiral sigma
model in which the omega meson mass is generated dynamically by sigma condensation in
the vacuum in the same manner as the nucleon mass. All the parameters of the chiral sigma
model are essentially fixed by the hadron properties in free space. In nuclear matter, the
saturation property is described correctly, but the incompressibility is too large, and the
scalar and vector potentials are about half as large as their phenomenological values. This
fact is reflected in the properties of finite nuclei. We carry out calculations for N = Z even-
even mass nuclei between N = 16 and N = 34. The extended chiral sigma model without
the pion mean field leads to the result that the magic number appears at N = 18, instead
of N = 20, and the magic number does not appear at N = 28, due to the above mentioned
nuclear matter properties. The latter problem, however, could be removed through the
introduction of a finite pion mean field with the appearance of the magic number at N = 28.
We find that the energy differences between the spin-orbit partners are reproduced by the
finite pion mean field, which is a completely different mechanism from the standard spin-orbit
interaction.

§1. Introduction

Chiral symmetry is known to be the most important symmetry in hadron physics.
This is because quantum chromo-dynamics (QCD), in which the up and down quarks
have essentially zero masses, is the underlying theory of the strong interaction. Chiral
symmetry governs the quark dynamics. In the real world, quarks are confined and
chiral symmetry is spontaneously broken. As the Nambu-Goldstone boson of the
spontaneous breaking of chiral symmetry, the pion emerges with almost zero mass.

At the hadron level, chiral symmetry is described nicely by the linear sigma
model introduced by Gell-Mann and Levy. 1) Its non-linear version was proposed
by Weinberg. 2) Chiral symmetry and the generation of the hadron mass are de-
scribed clearly in the Nambu-Jona-Lasinio Lagrangian with fermion fields. 3) These
Lagrangians have been used to describe various phenomena in hadron physics. We
obtain a good description of the pion-nucleon properties in terms of these La-
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76 Ogawa, Toki, Tamenaga, Shen, Hosaka, Sugimoto and Ikeda

grangians. 4) The pion, which was introduced by Yukawa as the mediator of the
nucleon-nucleon interaction, received its foundation through spontaneous chiral sym-
metry breaking. 5)

It is then very natural to use the chiral sigma model Lagrangian for the de-
scription of nuclei. Such descriptions were derived by several groups employing the
relativistic mean field approximation. 6)–10) It was found that the chiral sigma model
in its original form is not satisfactory for the description of nuclear matter. An
interesting solution of this problem was proposed by Boguta et al., who introduced
the dynamical generation of the omega meson mass in the same way as the nucleon
mass. 7) They were able to reproduce the saturation properties of infinite matter with
the extended chiral sigma (ECS) model. However, the effective mass predicted by
their theory is too large and the incompressibility is very large. The extended chi-
ral sigma model was applied to finite nuclei by Savushkin et al. 9), 10) The predicted
binding energies are reasonable, but the spin-orbit splitting is too small in the RMF
framework.

Recently, an interesting proposal was made regarding the role of the pion in
finite nuclei by some of the present authors. 11) They carried out relativistic mean
field calculations with a finite pion mean field using the TM1 parameter set. 12) In
order to treat the pion mean field, they developed a formalism in which parity-mixed
single particle states are introduced. Using the free space pion-nucleon coupling
constant, they found that the pion mean field becomes finite. This effect appears to
be particularly favorably for jj-closed shell nuclei, and the mass dependence of the
energy gain associated with the pion behaves like the nuclear surface, 〈Vπ〉 ∼ A2/3.
Hence, the name “surface pion condensation” was introduced for this phenomenon.

In this paper, we study the properties of infinite matter in terms of the ECS
model by analyzing the non-linear equation of motion for the sigma field and obtain
the saturation property of nuclear matter. We apply the ECS model to finite nuclei
and study the properties of the binding energies and the single particle properties.
Because the role of the finite pion mean field in determining the binding energies
and the spin-orbit splitting is demonstrated in a recent publication, 11) we use the
same formalism with the ECS model to treat the finite pion mean field. We study
the appearance of the spin-orbit splitting due to the pion mean field by studying
carefully the single particle spectra of finite nuclei.

In §2, we discuss the RMF formalism with the pion mean field. In §3, we study
the saturation property of infinite nuclear matter with the original chiral sigma model
and with the extended chiral sigma model. In §4, we study finite nuclei with the ex-
tended chiral sigma model without yes introducing the pion mean field and, further,
study the properties of single particle states. Then, in §5, we introduce the finite
pion mean field and discuss the mechanism of the appearance of the magic number
effect and the energy splittings between the spin-orbit partners. We summarize the
present study in §6, together with discussion of further study.
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Sigma Model Description of Nuclei 77

§2. Chiral sigma model in the relativistic mean field theory

We start with the linear sigma model with an omega meson field, which is defined
by the following Lagrangian: 1)

Lσω = Ψ̄(iγµ∂
µ − gσ(σ + iγ5�τ · �π) − gωγµω

µ)Ψ

+
1
2
∂µσ∂

µσ +
1
2
∂µ�π∂

µ�π − µ2

2
(σ2 + �π2) − λ

4
(σ2 + �π2)2

− 1
4
ωµνω

µν +
1
2
g̃ω

2(σ2 + �π2)ωµω
µ

+ εσ. (2.1)

The fields Ψ , σ and π are the nucleon, sigma and pion fields. µ and λ are the sigma
model coupling constants. Here we have introduced the explicit chiral symmetry
breaking term εσ and, in addition, the mass generation term for the omega meson due
to the sigma meson condensation, as in the case of the nucleon mass in free space. 7)

The σ-ω coupling term of this structure can be derived from the bosonization 13) of
the Nambu-Jona-Lasinio model. 3)

In a finite nuclear system, it is believed to be necessary to use the non-linear
representation of the chiral symmetry. This is because the pseudoscalar pion-nucleon
coupling in the linear sigma model makes the coupling of the positive and negative
energy states extremely strong, and we have to treat the negative energy states very
carefully. We can derive the non-linear sigma model by introducing new variables
and making a suitable transformation,

σ + i�τ · �π = ρU, U = ei�τ ·�π/fπ ,

σ + iγ5�τ · �π = ρU5, U5 = eiγ5�τ ·�π/fπ . (2.2)

We further implement the Weinberg transformation for the nucleon field as ψ =√
U5Ψ . We then obtain the sigma-omega model Lagrangian in non-linear represen-

tation,

L′
σω = ψ̄(iγµ∂

µ − gσρ− γµv
µ − γ5γµa

µ − gωγµω
µ)ψ

+
1
2
∂µρ∂

µρ+
ρ2

4
tr∂µU∂

µU † − µ2

2
ρ2 − λ

4
ρ4

− 1
4
ωµνω

µν +
1
2
g̃ω

2ρ2ωµω
µ + ερ

1
2
(U + U †). (2.3)

In the above Lagrangian, the vector field vµ and the axial vector field aµ contain
the pion terms. The vector and axial vector fields are expanded in terms of the pion
field as

vµ =
−i

8fπ
2 (�τ · �π�τ · ∂µ�π − �τ · ∂µ�π�τ · �π) + · · ·,

aµ =
1

2fπ
�τ · ∂µ�π + · · ·. (2.4)
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The kinetic term is expanded as

ρ2

4
tr∂µU∂

µU † =
ρ2

2fπ
2∂µ�π∂

µ�π + O(�π4) + O(�π6) + · · ·, (2.5)

and the explicitly chiral symmetry breaking term is expanded as

ερ
1
2
(U + U †) = ερ

(
1 − 1

2fπ
2�π

2 +
1

24fπ
4�π

4 + · · ·
)
. (2.6)

We now take the lowest-order terms in the pion field and omit higher-order terms.
The resulting Lagrangian is written

L′
σω = ψ̄

(
iγµ∂

µ − gσρ− 1
2fπ

γ5γµ�τ · ∂µ�π − gωγµω
µ

)
ψ

+
1
2
∂µρ∂

µρ+
1
2
ρ2

fπ
2∂µ�π∂

µ�π − µ2

2
ρ2 − λ

4
ρ4

− 1
4
ωµνω

µν +
1
2
g̃ω

2ρ2ωµω
µ + ερ

(
1 − 1

2fπ
2�π

2

)
. (2.7)

We now take the vacuum expectation value of the ρ field to be fπ, which is
determined by the pion decay rate: 4)

〈ρ〉0 = fπ. (2.8)

A new fluctuation field ϕ is then defined by the equation

ρ = fπ + ϕ. (2.9)

We now rewrite the Lagrangian (2.7) in terms of the new field ϕ:

L′
σω = ψ̄

(
iγµ∂

µ − gσfπ − gσϕ− 1
2fπ

γ5γµ�τ · ∂µ�π − gωγµω
µ

)
ψ

+
1
2
∂µϕ∂

µϕ+
1
2

(
1 +

ϕ

fπ

)2

∂µ�π∂
µ�π − µ2

2
(fπ + ϕ)2 − λ

4
(fπ + ϕ)4

− 1
4
ωµνω

µν +
1
2
g̃ω

2(fπ + ϕ)2ωµω
µ

+ ε(fπ + ϕ)

(
1 − 1

2fπ
2�π

2

)
. (2.10)

Here, we have dropped a non-essential c-number constant. We find that the term
ϕ/fπ is small and drop it by employing the approximations

1
2

(
1 +

ϕ

fπ

)2

∂µ�π∂
µ�π ≈ 1

2
∂µ�π∂

µ�π,(
1 +

ϕ

fπ

)
1
2
ε

fπ
�π2 ≈ 1

2
ε

fπ
�π2. (2.11)
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Sigma Model Description of Nuclei 79

We have to set the dangerous term, that is, the term linear in ϕ, equal to zero. This
leads to the energy minimum condition,

(ε−mπ
2fπ)ϕ −→ 0,

mπ
2 =

ε

fπ
. (2.12)

Finally, the Lagrangian for the new field ϕ with the above approximations is given
as

L′
σω = ψ̄

(
iγµ∂

µ −M − gσϕ− 1
2fπ

γ5γµ�τ · ∂µ�π − gωγµω
µ

)
ψ

+
1
2
∂µϕ∂

µϕ− 1
2
mσ

2ϕ2 − λfπϕ
3 − λ

4
ϕ4

+
1
2
∂µ�π∂

µ�π − 1
2
mπ

2�π2

− 1
4
ωµνω

µν +
1
2
mω

2ωµω
µ + g̃ω

2fπϕωµω
µ +

1
2
g̃ω

2ϕ2ωµω
µ, (2.13)

where we have set M = gσfπ, mπ
2 = µ2 + λfπ

2, mσ
2 = µ2 + 3λfπ

2 and mω = g̃ωfπ.
The effective masses of the nucleon and omega meson are given by M∗ = M + gσϕ
and mω

∗ = mω + g̃ωϕ, respectively. We take the masses and the pion decay constant
as M = 939 MeV, mω = 783 MeV, mπ = 139 MeV, and fπ = 93 MeV. Then, the
other parameters can be fixed automatically using the relations gσ = M/fπ = 10.1
and g̃ω = mω/fπ = 8.42. The strengths of the cubic and quadratic sigma meson
self-interactions depend on the sigma meson mass through the relation λ = (mσ

2 −
mπ

2)/2fπ
2 in the chiral sigma model. The mass of the sigma meson, mσ, and the

coupling constant of the omega and nucleon, gω, are the free parameters. If we use
the KSFR relation for the omega meson, 14), 17) and the additional relation from the
Nambu-Jona-Lasinio model, the mass of the omega meson is related to the pion decay
constant as mω = (2

√
2/3)fπgω. Here, the factor (2

√
2/3) stems from the relation

gω = (3/2)g, where g is the universal coupling constant for the vector meson. 15), 16)

As we see below, this KSFR relation is satisfied in the present model to within 6%.

§3. Extended chiral sigma model for infinite matter

We first apply the extended chiral sigma model to infinite matter. It is important
to reproduce the saturation properties of infinite nuclear matter first. Otherwise, we
do not obtain convergence, due to the existence of multiple solutions in the Hartree
calculation for finite systems. We assume that the pion mean field vanishes in infinite
matter. Hereafter, we write the scalar meson field ϕ in the Lagrangian (2·13) as σ,
because σ is used usually as the scalar meson field in relativistic mean field theory.
The equations of motion for the nucleon field and the meson fields are written

(iγµ∂
µ −M − gσσ − gωγ

0ω)ψ = 0,
mσ

2σ + 3λfπσ
2 + λσ3 − g̃ω

2fπω
2 − g̃ω

2σω2 = −gσρs,

mω
2ω + 2g̃ω

2fπσω + g̃ω
2σ2ω = gωρv, (3.1)
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with

ρs =
4

(2π)3

∫ kF

d3k
M∗√

k2 +M∗2

=
M∗

π2

{
kF

√
kF

2 +M∗2 −M∗2 log
∣∣∣∣kF +

√
kF

2 +M∗2

M∗

∣∣∣∣}, (3.2)

ρv = 2kF
3/(3π2), and the effective mass of the nucleon M∗ = M + gσσ. We note

here that now the equations of motion of the sigma and omega mesons are coupled,
due to the dynamical mass generation term of the omega meson. This sigma-omega
coupling plays an important role in obtaining a reasonable equation of state for
nuclear matter.

We first discuss the original chiral sigma model for the nuclear matter calcula-
tion. 7) In this case, there is no coupling between the equations for the sigma and
omega fields. The equation for σ is a third-order algebraic equation in the sigma
together with the opposite of the scalar coupling times the scalar density, −gσρs,
which is a function of the sigma field for a fixed density:

m2
σσ + 3λfπσ

2 + λσ3 = −gσρs. (3.3)

The right-hand side increases as the sigma field decreases and changes sign near
σ = −fπ ∼ −0.5 fm−1. We focus on the solution above the crossing point, below
which the effective mass of the nucleon is positive. Below a certain density, there
appears only one solution, while above this density there appear three solutions.
We obtain multiple solutions, as discussed above. For each solution, there is a
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Fig. 1. The equation for σ with the σ-ω coupling term in the case ρ = 0.141 fm−3 for the extended

chiral sigma model. There is one solution for each density continuously from zero density.
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Sigma Model Description of Nuclei 81

corresponding energy, which is not a smooth function of the density. Hence, we are
not able to obtain good behavior for the equation of state with the original chiral
sigma model.

A method for obtaining good nuclear matter properties was suggested by Boguta,
who introduced the dynamical omega meson term. 7) The omega mass appears due
to the dynamical chiral symmetry breaking, and hence there is a coupling between
the sigma and the omega fields. We use this extended chiral sigma model for nuclear
matter. The additional term provides a pole at the point where the effective nucleon
mass is zero, σ = −fπ, as shown in Fig. 1. For this reason, we find a solution at a
small value of sigma for each density continuously from zero. We are therefore able
to obtain a reasonable energy per particle in the entire density region for infinite
matter.

In Fig. 2 we display the energy per particle of nuclear matter as a function of the
density for the extended chiral sigma model. We take the parameters of the chiral
sigma model from the properties of mesons as the pion mass, mπ, the omega meson
mass, mω, and the pion decay constant, fπ. The free parameters, mσ and gω, are
adjusted to realize the saturation property in the case of the extended chiral sigma
model. We fix the free parameters as mσ = 777 MeV and gω = 7.03. Then, the
strengths of the cubic and quadratic sigma meson self-interactions are fixed as λ =
33.8. The saturation properties are the density, ρ = 0.141 fm−3, and the energy per
particle, E/A = −16.1 MeV. We find the incompressibility in this case to be K =
650 MeV. The sigma meson mass chosen here is larger than that used in the one-
boson exchange potential, which is around 500 MeV. If we use 500 MeV as the sigma
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0.250.200.150.100.050.00

ρ ( fm-3)

Fig. 2. The energy per particle of infinite nuclear matter as a function of the density for the extended

chiral sigma model (solid curve). As a reference, the energy per particle obtained from the RMF

theory with the TM1 parameter set, RMF(TM1), is displayed by the dashed curve.
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meson mass, the attractive force becomes strong, and the saturation curve becomes
deep. Therefore, we adjust the omega-nucleon coupling constant gω to reproduce
the binding energy per particle. The energy minimum point appears at quite a small
density, ρ = 0.053 fm−3. The saturation condition is not satisfied simultaneously for
the density and binding energy per particle using this meson mass. It is interesting
that the value mσ = 777 MeV is very close to that in the case that the chiral mixing
angle is chosen at 45◦ in the generalized chiral model: mσ ≈ mρ. 2)

As a comparison, the energy per particle of the mean field result with the TM1
parameter set is plotted together with the present result. 12) The RMF(TM1) calcula-
tion reproduces the results of the relativistic Brueckner-Hartree-Fock calculation. 19)

We see that the present equation of state is much harder than taht of RMF(TM1).
The incompressibility is found to be 650 MeV, while it is 281 MeV for TM1. In Fig. 3,
we plot the vector and the scalar potentials and compare with those of RMF(TM1).
The values found are about half as large as those in the case of the TM1 parameter
set. This is because the extended chiral sigma model has solutions at smaller values
of sigma than does RMF(TM1).

We note the consequence of the smaller absolute values of the scalar and vector
potentials in finite nuclei as shown in Fig. 3. The summation of the absolute values
of the scalar and vector potentials is directly related to the spin-orbit potential of
finite nuclei. Hence, the fact that these absolute values are about half as large as the
values for RMF(TM1) indicates that the spin-orbit splitting for finite nuclei should
be about half as large as the necessary spin-orbit splittings.
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Fig. 3. The scalar and vector potentials as functions of the density for the extended chiral sigma

model represented by the solid curves and those for RMF(TM1) represented by the dashed

curves.
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§4. Extended chiral sigma model for finite nuclei

We are now in a position to apply the extended chiral sigma (ECS) model,
which is able to realize a saturation property with the above mentioned features in
the case of finite nuclei. For this purpose, we consider N = Z even-even mass nuclei
to avoid the complication arising from the isovector part of the nucleon-nucleon
interaction. We carry out calculations for these nuclei using the RMF framework
with the ECS Lagrangian and compare the results with those of the standard RMF
calculation employing the TM1 parameter set. Because the role of the pion mean
field in determining the binding energy and the spin-orbit interaction is demonstrated
in Ref. 11) for finite nuclei, we introduce the RMF formalism for the treatment of
the finite pion mean field and study the effect of the finite pion mean field on the
nuclear properties.

We here write the RMF equations for finite nuclei with a pion mean field. The
Euler-Lagrange equation yields the Dirac equation for the nucleon,(

− i�α · ∇ + γ0(M + gσσ) + gωω +
gA

2fπ
γ0γ5�γ · τ0∇π

)
ψ = εψ, (4.1)

and the Klein-Gordon equations for the mesons,

(−∇2 +mπ
2)π =

gA

2fπ
ρpv, (4.2)

(−∇2 +mσ
2)σ = −gσρs − 3λfπσ

2 − λσ3 + g̃ω
2fπω

2 + g̃ω
2σω2, (4.3)

(−∇2 +mω
2)ω = gωρv − 2g̃ω

2fπσω − g̃ω
2σ2ω, (4.4)

where we consider an isospin symmetric nucleus, i.e. N = Z. There is a symme-
try theorem for the Hartree-Fock (mean field) approximation with respect to the
symmetry of the original Lagrangian. 20), 21) In the isospin symmetric nuclear case,
we can verify that the mean field Lagrangian is symmetric under isospin rotation
mixing the proton and neutron states. Hence, we can consider a special case, that
in which only π0 is finite, due to the isospin symmetry of the mean field Lagrangian,
and write it as π. In fact, we have checked this symmetry by performing mean field
calculations with π0 in one case and with π± in another case and obtained the same
energy in both cases. 11) When we go beyond the mean field approximation, we have
to include all the charge states of pion in the charge and parity projected mean field
method, which is beyond the scope of this paper. We employ the static approxima-
tion and assume the time reversal symmetry of the system. Here we have introduced
gA in the pion nucleon coupling in order to satisfy the Goldberger-Treiman relation.
In the linear sigma model, we obtain gA = 1. In the mean field approximation, the
source terms of the Klein-Gordon equations are replaced by their expectation values
in the ground state:

gA

2fπ
∇ · ψ̄γ5�γτ

0ψ −→ gA

2fπ
〈∇ · ψ̄γ5�γτ

0ψ〉 =
gA

2fπ
ρpv, (4.5)

gσψ̄ψ −→ gσ〈ψ̄ψ〉 = gσρs, (4.6)
gωψ̄γ0ψ −→ gω〈ψ̄γ0ψ〉 = gωρv. (4.7)
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The total energy is given by

Etotal =
∫
d3rH

=
∑
njm

εnjm −
∫
d3r

{
1
2
gσρsσ +

1
2
gωρvω − 1

2
gA
2fπ

ρpvπ

+
1
6
(3λfπ)σ3 +

λ

4
σ4 − 1

2
g̃ω

2fπσω
2 − 1

2
g̃ω

2σ2ω2
}

−ZMp − ZMn − Ec.m.,

(4.8)

where we take the center-of-mass correction as Ec.m. = 3
4(41A

1
3 ) MeV. Here we use

the wave functions and densities for the case of a finite pion mean field. In this case,
the parity of the nucleon is broken, because the pion source term has negative parity.
The nucleon wave functions are then written

ψnjmmτ =

(
iGnκmτYκmζ(mτ ) + iGnκ̄mτYκ̄mζ(mτ )
FnκmτYκ̄mζ(mτ ) + Fnκ̄mτYκmζ(mτ )

)
, (4.9)

where the summation over κ represents the parity mixing, where κ is κ = −(l↑ + 1)
for l↑ = j − 1/2 and κ = l↓ for l↓ = j + 1/2. Using these wave functions, we can
calculate all the necessary densities as

ρs =
∑
nj

Wnj
2j + 1

4π

∑
mτ

(|Gnκmτ |2 − |Fnκmτ |2 + |Gnκ̄mτ |2 − |Fnκ̄mτ |2), (4.10)

ρv =
∑
nj

Wnj
2j + 1

4π

∑
mτ

(|Gnκmτ |2 + |Fnκmτ |2 + |Gnκ̄mτ |2 + |Fnκ̄mτ |2), (4.11)

ρpv = −2
∑
nj

Wnj
2j + 1

4π

×
∑
mτ

(−1)
1
2
−mτ

{
d

dr
(Gnκmτ

∗Gnκ̄mτ ) +
2
r
(Gnκmτ

∗Gnκ̄mτ )

+
d

dr
(Fnκmτ

∗Fnκ̄mτ ) +
2
r
(Fnκmτ

∗Fnκ̄mτ )
}
.

(4.12)

We are now able to solve the coupled differential equations by carrying out iterative
calculations.

In this section, we first discuss the properties of finite nuclei in terms of the
extended chiral sigma model without yet introducing the pion mean field. We present
the results for the binding energies per particle forN = Z even-even mass nuclei from
N = 16 up to N = 34 in Fig. 4. We take all the parameters of the extended chiral
sigma model to be those of nuclear matter (Figs. 2 and 3), except that we use gω

= 7.176 instead of 7.033 to obtain overall agreement with the RMF(TM1) results.
We include the Coulomb intereaction in the actual calculations. For comparison,
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Fig. 4. The binding energy per particle for N = Z even-even mass nuclei in the neutron number

range of N = 16 – 34. The binding energies per particle for the case of the extended chiral

sigma model without and with the pion mean field are represented by the dashed and the solid

curves. As a comparison, those for the RMF(TM1) are represented by the dotted line.

we carry out calculations for these nuclei employing the RMF approximation with
neither pairing nor deformation. The RMF(TM1) provides the magic numbers,
which are indicated as the binding energy per particle increases at N = Z = 20
and 28. The extended chiral sigma model without the pion mean field, however,
provides the magic number behavior only at N = Z = 18, instead of N = Z = 20.

In order to see how the difference between the two models for the Lagrangian
arises, we show in Fig. 5 the single particle levels for the two models. In the case
of the TM1 parameter set, displayed in Fig. 5, the shell gaps are clearly visible at
N = 20 and 28. The magic number at N = 20 is due to the central potential, while
the magic number at N = 28 comes from the spin-orbit splitting of the 0f -orbit.
This is definitely due to the fact that the vector potential and scalar potential in
nuclear matter are large, so as to provide a large spin-orbit splitting. The situation
for the single particle spectrum of the extended chiral sigma model is quite different
from this case, as seen in Fig. 6. The most distinctive feature is that the 1s1/2 orbit
is pushed up significantly. For this reason, the 0d3/2 orbit becomes the magic shell
at N = 18, and a magic number appears at N = 18 instead of N = 20. We also see
that there is no strong spin-orbit splitting, and hence there appears no shell gap at
N = 28. The first discrepancy could be due to the large incompressibility, as seen
in the nuclear matter energy per particle shown in Fig. 2. The other is due to the
relatively small vector and scalar potentials in nuclear matter, as seen in Fig. 3.

We now give more detailed discussion of the spin-orbit splitting in the situation
that the compressibility is very large, as in the ECS model, because the spin-orbit
splitting is related to the behavior of the scalar-vector potential difference in the
surface region. We show in Fig. 7 how the scalar-vector potential difference behaves
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RMF(TM1) theory. The magic numbers at N = 20 and 28 are visible.
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as a function of r, which is defined as Uls = UV – US . The magnitude of this potential
in the ECS model is about half of that in the TM1 case. The spin-orbit potential
is then defined by eliminating the small component in the relativistic wave function
and obtaining the spin-orbit operator explicitly as

Vls =
2
r

d
drUls

(M + ε− Uls)2
�l · �s. (4.13)
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Fig. 7. The scalar-vector potential difference, Uls, which is related to the spin-orbit potential, as a

function of the radial coordinate, r. The potential difference for the case of the TM1 parameter

set is represented by the dashed curve and that for the ECS model is represented by the solid

curve.

The spin-orbit potential is proportional to the derivative of the scalar-vector potential
difference, which emphasizes the contribution from the nuclear surface. Hence, to
compare the magnitudes of the spin-orbit effects in the two cases, we calculate the
volume integrals of Vls, ∫ 2

r

d
drUls

(M + ε− Uls)2
r2dr. (4.14)

We use for ε the value corresponding to a binding energy of 8 MeV and obtain the
ratio of these integrals in the two cases as 0.48, which is again about one half. Hence,
the spin-orbit effect for the ECS model is about a half of that in the TM1 case. This
was already evident from the single particle spectra shown in Fig. 6.

§5. Finite pion mean field for finite nuclei

We now include the pion mean field in the relativistic mean field calculation. 22), 23)

The method of the numerical calculation is presented in the papers of Toki et al. 11)

and Sugimoto et al. 18) The results for the binding energy per particle are shown
in Fig. 4. In this calculation, we take gA = 1.15 instead of the experimental axial
coupling constant, gA = 1.25, obtained using the Goldberger-Treimann relation. We
take this smaller value in order to reproduce the binding energy for 56Ni. It is very
interesting that the magic number effect at N = 28 appears as the binding energy
per particle increases at N = 28. This large effect of the finite pion mean field for
jj-closed shell nuclei has been demonstrated in a previous work. 11)

We give here an intuitive explanation to understand the energy curve of the
magic structure presented in Fig. 4 in terms of the finite pion mean field using the
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Fig. 9. A schematic picture of the single particle states and the occupied particles in the 56Ni

nucleus.

schematic picture in Fig. 9. To proceed, we have to first know the effect of the finite
pion mean field in terms of the shell model. Analysis of the parity projection, carried
out in a previous publication, 11) clearly shows that the pionic correlations due to
the finite pion mean field can be expressed in terms of the coherent 0− particle-
hole excitations which are made by the coupling of the different parity states l and
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l′ = l ± 1 with the same total spin j in the shell model language. In the analysis
of the contribution to the pionic correlations from various single particle states, the
highest spin state in each major shell has a special role. Only this highest spin state
does not find a partner to form the 0− state in the lower major shells. However,
if this state is filled by nucleons, those nucleons are able to find 0− partners in the
higher major shells by creating particle-hole excitations. Hence, the position of the
highest spin state in a major shell with respect to the Fermi surface is important in
determining the strength of pionic correlations in nuclei.

In the case under consideration, the highest spin state is the f7/2 state, as shown
in Fig. 9. In the 40Ca case, the occupied states cannot couple with the f7/2 state
to form 0−, and the f7/2 level plays no role in the pionic correlations. In the next
case, i.e., that of 44Ti, nucleons start to occupy the f7/2 level, and these nucleons
participate in the 0− particle-hole excitations into g7/2 levels. The number of par-
ticles involved in the pionic correlation increases as the nucleon number increases
until 56Ni, where the f7/2 level is completely occupied. For nuclei above 56Ni, the
upper shells (i.e., those as high as f5/2) become occupied, and those states do not
participate in the 0− particle-hole excitations from the d5/2 level below caused by
the pionic correlation due to Pauli blocking. For 56Ni, the pionic correlation becomes
maximal. This is the reason why 56Ni realizes the largest pionic correlation energy,
which leads to the appearance of the magic number at N = 28.

We now discuss the effect of the finite pion mean field on the single particle
energies. We show in Fig. 8 the single particle spectra for various nuclei. We clearly
see the large energy differences between the spin-orbit partners produced by the finite
pion mean field as the energy differences become maximal for nuclei at N = 28. The
pion mean field causes coupling of different parity states with the same total spin.
The 0s1/2 and 0p1/2 states repel each other, and therefore the 0s1/2 state is pushed
down and the 0p1/2 state is pushed up. The next set of partners consists of 0p3/2

and 0d3/2. The 0p3/2 state is pushed down, while the 0d3/2 state is pushed up. The
next set of partners consists of 0d5/2 and 0f5/2. The 0d5/2 state is pushed down,
while the 0f5/2 state is pushed up. This pion mean field effect continues to higher
spin partners. This coupling of different parity states with the same total spin due
to the finite pion mean field causes the splittings of the spin-orbit partners, as seen
clearly for the 0p spin-orbit partners, the 0d spin-orbit partners and the 0f spin-
orbit partners in 56Ni. It is extremely interesting that the appearance of the energy
splitting between the spin-orbit partners in the case of a finite pion mean field is
caused completely by a different mechanism from that in the case of the spin-orbit
interaction.

We now consider the contribution of each term in the Lagrangian for the cases
with and without the pion mean field listed in Table I. The binding energy increases
slightly when the pion mean field is made finite. The pion term contributes attrac-
tively, and the energy gain due to the pion term is obtained by making the kinetic
energy and the sum of the sigma and omega potential terms increase. The structure
of the wave functions changes significantly, while the total energy remains almost
unchanged. This change of the structure causes the observables associated with the
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Table I. The binding energy per particle (BE/A) and the contributions of the sum of the sigma and

omega (Uσ + Uω), the kinetic (KE), pion (Uπ), non-linear term (NL), sigma-omega coupling

term (CP ), and Coulomb (UC) energies per nucleon in MeV for 56Ni in the extended chiral

sigma model.

BE/A Uσ + Uω KE Uπ NL CP UC

with π field 8.6 −21.8 20.9 −2.9 8.1 −15.4 2.6

without π field 8.4 −22.6 18.8 0 8.0 −15.0 2.6

spin quantities to change greating. The effect of the structure change on various
observables will be studied in the near future.

§6. Conclusion

We have studied infinite nuclear matter and finite nuclei with nucleon number
N = Z even-even mass in the range N = 16 – 34 using the chiral sigma model, which
is good for hadron physics. The direct application of the chiral sigma model does not
provide good saturation properties of infinite matter. We have therefore used the
extended chiral sigma (ECS) model, in which the omega meson mass is dynamically
generated by the sigma condensation as the nucleon mass. This ECS model is able
to provide good saturation properties, although the predicted incompressibility is
too large. Another characteristic property of the ECS model is that the scalar and
vector potentials are about half as large as those in the case of the RMF(TM1) model
for nuclear matter.

We then applied this ECS model to finite nuclei. The ECS model without a
pion mean field gives the result that the magic number appears at N = 18, not at
N = 20. This result comes from the large incompressibility found in the equation of
state as K = 650 MeV. This property of the ECS model leads to a mean field central
potential that is repulsive in the interior region and a 1s-orbit that is significantly
pushed up. Due to this, the magic number appears at N = 18 instead of N = 20.
We note that this problem originates from the ECS model treated in the present
framework, and the finite pion mean field in the mean field approximation does not
remove this difficulty. There are several possibilities to solve this problem, such as
treatments involving the effect of the Dirac sea, the parity projection, and the Fock
term.

The ECS model without a pion mean field provides the result that the magic
number does not appear at N = 28. This result comes from another characteristic
property of the ECS model, which is the small scalar and vector potentials in nuclear
matter. These scalar and vector potentials lead directly to the strength of the spin-
orbit interaction in a finite system. Because the spin-orbit interaction given by
the ECS model is about half as large as those obtained from the standard RMF
calculation with the TM1 parameter set, the energy splittings between the spin-
orbit partners are small, and therefore, there appears no magic effect at N = 28.
Regarding this point, it is important to introduce the pion mean field by breaking
the parity of the single particle states in the ECS model Lagrangian. Because the
role of the pion mean field in the jj-closed shell nuclei is demonstrated in a previous
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publication, 11) we have introduced the parity mixed intrinsic single particle states
in order to treat the pion mean field in finite nuclei. We followed the formulation of
Sugimoto et al. 18) in the RMF framework. We have found that the magic number
effect appears at N = 28. We have studied the change of the single particle spectrum
due to the finite pion mean field. It is extremely interesting that the spin-orbit
partners are split significantly by the pion mean field effect. Specifically, the parity
partners s1/2 and p1/2, p3/2 and d3/2, and d5/2 and f5/2 are pushed away from each
other due to the pion mean field, and as a consequence, the spin-orbit partners are
split by a large amount, like those of the ordinary spin-orbit splittings. This is related
to the energy differences between the spin-orbit partners caused by the energy loss
of the tensor (pionic) correlations due to the Pauli blocking. 24)

It is gratifying to observe that the extended chiral sigma model, which pos-
sesses chiral symmetry and its dynamical symmetry breaking, is able to produce
the nuclear properties with only a small adjustment of the parameters in the La-
grangian. The energy splitting between the spin-orbit partners appears clearly in
the ECS model with the pion mean field. The most important consequence obtained
in this study is that this energy splitting is caused by the pion mean field, which is
a completely different mechanism from that of the spin-orbit interaction introduced
phenomenologically. This suggests the origin of the magic effect of jj-closed shell
nuclei.
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