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We study the manifestation of chiral symmetry and q- q pair creation in the presence of the 
external color-electromagnetic field, using the Nambu-Jona-Lasinio model. We derive the compact 
formulae of the effective potential, the Dyson equation for the dynamical quark mass and the q- q pair 
creation rate in the covariantly constant color-electromagnetic field. Our results are compared with 
those in other approaches. The chiral-symmetry restoration takes place by a strong color-electric 
field, and the rapid reduction of the dynamical quark mass is found around the critical field strength, 
e cr""4 GeV Ifm. Natural extension to the three-flavor case including s-quarks is also done. Around 
quarks or anti quarks, chiral symmetry would be restored by the sufficiently strong color-electric field, 
which may lead to the chiral bag picture of hadrons. For the early stage for ultrarelativistic 
heavy-ion collisions, the possibility of the chiral-symmetry restoration is indicated in the central 
region just after the collisions. 

§ 1. Introduction 

In recent years, many studies have been devoted to clarifying the structure of 

hadrons and the properties of the nonperturbative vacuum in the low-energyrealm of 

QCD. As is well-known, there are two outstanding features; the spontaneous break

ing of chiral symmetry (xSB) and the color confinement. In particular, much interest 

has been paid to the manifestation of chiral symmetry to analyze the nonperturbative 

QCD vacuum and related hadron features by way of the effective models of QCD1
)-3) 

or lattice QCD simulations:4
) theoretically the chiral-symmetry restoration in various 

circumstances has been studied, e.g., at high temperature or in high density matter;5) 

phenomenologically this phase transition has been expected in quark-gluon-plasma 

(QGP) formations6
) or in hadronic matter7) inside dense stars. Although many impor

tant aspects have been revealed by these studies, most analyses, except for lattice 

QCD simulations, have been done mainly based on the quark degrees of freedom, and 

the gluon contribution is included at most up to the lowest order of the perturbation 

as one-gluon exchange effect. 

The symmetry restoration at high temperature or in high-density matter is a 

phase transition fwm the Nambu-Goldstone (NG) phase to the Wigner-Weyl (WW) 

one and we can expect similar situation in .the (color-)electromagnetic (EM) field. 8
)-12) 

In distinction from the former case, the latter one needs no 'coarse graining' and is 

important not only for the phase transition but also for hadron structure; hadrons 

consist of valence quarks and/or anti quarks, which exert a strong color-EM field as 

color sources and in turn may alter the property of the QCD vacuum around them. 

*) Present address: Institut fUr Theoretische Physik, Universitat Heidelberg, Philosophenweg 19, D-6900, 
Heidelberg, Germany. 
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380 H. Suganuma and T Tatsumi 

Actually, some lattice QCD simulations indicate that chiral symmetry is restored in 

the vicinity of quarks. I3) 

In the preceding studies,8),1l) restoration of chiral symmetry in a strong electric 

field has been discussed and we have seen that the quark condensate or the (f field, 

which should be an order parameter of chiral symmetry, is washed away by a strong 

electric field at the critical strength eEc~(480 MeV)2. One hardly obtains such a 

strong field as it is in the nature. Moreover, strictly speaking chiral symmetry is 

always broken explicitly there by the electric field since it couples with the electric 

charges of quarks, which breaks the isospin symmetry. 

In this paper, we treat the manifestation of chiral symmetry in the presence of the 

strong external color-EM field. In difference from the QED case just mentioned 

above, one can expect a very strong color-EM field around quarks.*) Moreover it 

never breaks chiral symmetry explicitly since its coupling with quarks does not 

depend on the flavor degree of freedom. Thus the strong color field is compatible 

with chiral symmetry. 

In the low-energy region, QCD is very difficult to investigate analytically, so that 

one is obliged to use some elaborate numerical methods or effective models. Direct 

calculations like lattice QCD simulations4) have been proved to be powerful, but there 

are some technical limits at present and it seems hard to extract physics included in 

their results. We believe that some effective-model approachesI)-3),I4) should be 

indispensable to deeply understand the low-energy realm of QCD in parallel with such 

numerical methods. Here we use the Nambu-Jona-Lasinio (NJL) model, to study our 

subject, which has been frequently used to study the manifestation of chiral symme

try.2) We would like to give some remarks on our approach. The NJL model may 

be considered as an effective field theory, which describes the intermediate region 

between confinement scale AQCD and the XSB scale A XSB • The idea of intermediate 

region has been given by Manohar and Georgi,I) and this provides an understanding 

of the successes of the non-relativistic quark model and the physical meaning of 

massive constituent quarks. In this region the quark-gluon interaction will still be 

described by an SU(3)c gauge theory, while there scarcely exist nonperturbative 

~ffects relevant to the confinement like the gluon condensate/S),I6) for which the 

self-interaction of gluons is essential. On the other hand, nonperturbative effects 

relevant to the XSB may survive even in the intermediate region. The NJL model is 

different from the chiral quark model by Manohar and Georgi in the treatment of the 

constituent-quark mass and the Goldstone bosons. Constituent quark mass, which is 

introduced by hand in their chiral quark model, is dynamically generated by the 

attractive four-fermion interaction in the NJL model. The NJL model naturally 

includes pseudoscalar Goldstone bosons as collective states of (jq pair in place of 

fundamental fields. We shall adopt this picture and concentrate on the manifestation 

of chiral symmetry in this intermediate region in what follows. 

Since the quark condensate, < (jq), which is the order parameter of spontaneous 

chiral-symmetry breaking and is given by the trace of the quark propagator, is 

colorless, it cannot couple to the external color-EM field directly, but does only 

*) In § 6, we shall see that sufficiently strong color·EM field would appear inside hadrons or in relativistic 

heavy-ion collisions. 
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Chiral Symmetry and Quark-Antiquark Pair Creation 381 

through the quantum fluctuations given by loops of colored particles. Then analysis 

at the quantum level is indispensable in our subject. It is useful to apply the effective 

potential approach8),9),!7) in analyzing the manifestation of symmetry in external fields, 

because the quantum fluctuations· can be incorporated and the intuitive physical 

insight can be obtained by way of it. In the presence of the external color-EM field, 

not only the chiral-symmetry phase transition but also quark and antiquark (q- (j) pair 

creation can take place by the Schwinger mechanism18),19) similar to e+ -e- pair 

creation in QED. In recent years, q- (j creation has been also studied with vigor in the 

context of QGP formation in ultrarelativistic heavy-ion collisions/9) where a strong 

color field is expected in their early stage. Then it is desirable to incorporate q- (j 

pair creation in the study of chiral symmetry in the color-EM field. In the theoretical 

point of view, these two phenomena are much related in terms of the effective 

potential; its real part determines the manifestation of chiral symmetry or the dynami

cal quark mass, on the other hand its imaginary part implies q- (j pair creation.9),20) 

Hence we study these phenomena simultaneously and their relation in terms of the 

effective potential. Since quark condensate < (jq> is given by the trace of the quark 

propagator G q , < (jq>=(l/i)TrG q , and the (j -q pair creation rate is given by w 

cx:Im((l/i)TrlnGq ) (see (2·26)), quark loop is the primary ingredient in our context.*) 

We shall take the NJL model with the coupling to the external color-EM field as one 

of the suitable models in studying these subjects. 

The effective potential will be evaluated by way of the proper-time method to 

compare our approach with another one based on the constrained Hartree approxima

tion adopted by Klevansky et al. in a similar context.ll),12) Of course we can use the 

s-function regularization method as an alternative, which has been a useful method to 

study quantum effects in QED.17),21) Hence we shall briefly discuss the relationship 

and differences between them in the Appendix. 

In § 2, we present our approach and derive the effective potential in the presence 

of the external color-EM field. The Dyson equation of quarks can be derived by 

taking the extremum of the real part of the effective potential. The q- (j pair creation 

rate is derived from its imaginary part. In § 3, we illustrate our theory by giving 

some numerical examples for the system around quarks. In § 4, we extend the theory 

to the three-flavor case including s-quark, and calculate the physical quantities related 

to the strangeness. In § 5, the effective potential approach is compared with another 

approach based on the constrained Hartree approximation. In § 6, we discuss the 

hadron structure in terms of the color-electric flux tube picture. We also study the 

pre-equilibrium stage of the ultrarelativistic heavy-ion collisions there. Section 7 is 

devoted to a summary and concluding remarks. 

§ 2. Formalism 

In this section, we study the manifestation of chiral symmetry in the intermediate 

region between the confinement and the xSB scales using the N JL model, when the 

*) The gluon loops, on the other hand, should play an essential role for the confinement. 
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382 H. Suganuma and T. Tatsumi 

system is immersed in the external color-EM field. The effective Lagrangian is 

expressed by quarks (qa) and gluons (GP=GpaT a),*) 

(2 ·1) 

where '3 pu =opGu-ouGp-ig[Gp, Gu] is the field strength of gluons and trc means the 

trace over the color space; jpa= qipTaq is the color current of the quark which 

couples to gluons; .L NJL is the ordinary N JL Lagrangian, 

(2·2) 

where m=(mu+md)/2 is the averaged current mass of u, d-quarks. Since nonper

turbative effects relevant to the xSB should be considered to be already included in 

the four-fermion interaction among quarks, we do not explicitly take into account 

gluon dynamics neglecting their internal lines in Feynman diagrams. Then only the 

diagrams including the external-gluon lines remain relevant, so that we hereafter will 

drop the kinetic term of gluons. The following is to be noted. Nonperturbative 

effects relevant to the confinement like the gluon condensate scarcely exist in the 

intermediate region, so that it is no more necessary to consider the coupling of the 

external gluon field with them. 

Current quarks are considered to get 'large mass (constituent quark mass) by the 

dynamical effects and turn into the constituent quarks in the intermediate region. 

This dynamical effect leads to the XSB, which is one of the most outstanding features 

in the low-energy realm of QCD; such a mechanism is incorporated in the NJL model. 

Lagrangian (2·1) has chiral symmetry, SU(2)L X SU(2)R, except for the small current

quark mass term.**) In the physical state with no external fields, however, this 

symmetry is spontaneously broken into SU(2)v, because quarks get a large dynamical 

mass due to the attractive four-fermion interaction between them. Therefore the 

dynamical quark mass should vary according to the circumstance, such as at high 

temperature, in high density or in the strong (color-)EM field. 

By using auxiliary fields (J and TC, Lagrangian (2·2) can be equivalently expressed 

as 

Hence the partition functional Z[lo-, J rr] is given by 

= !fDqfDqfD(JfDTCexp{i!d4x(.Laux[q, q, (J,TC]+gjpaG:~+JO"(J+Jrr.TC)}, 

(2·4) 

*) The symbol T a (a=l, 2, "', 8) denotes the generators of gauge symmetry 5U(3)c, while we will use the 

symbol ).a/2 for those of flavor symmetry 5U(3k 

**) An extension to the three-flavor case will be done in § 4. 
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Chiral Symmetry and Quark-Antiquark Pair Creation 383 

where G~f is an external gluon field; J<5(5 and J". 7r are the source terms.*) Then the 

quark condensate < qq)J and the vacuum expectation value <(5)J are related with each 

other: 

(2·5) 

in the presence of the source term, so that <qq)J is not simply proportional to <(5)J 

except for J<5=O. 

After the functional integ~ation over the quark field in Eq. (2 ·4), one obtains the 

effective Lagrangian of (5 and 7r, 

(2·6) 

in the mean-field approximation for (5 and 7r; 1:1ooP denotes the loop effect of quarks, 

1:100P[(5, 7r] = - iTr In{(i¢, + g{j;ex)- (m+ (5+ iY5Z'· 7r) + ic} . (2·7) 

In Eq. (2·7), Tr means the functional trace over the quark degrees of freedom, i.e., the 

coordinate space, spin, flavor and color indices. We are interested in the system with 

translational invariance, so that (5 and 7r are constant and the effective Lagrangian 

1: eff is reduced to 

1: eff[ (5, 7r] 

= - 4:NJL (If + 7r
2

) - ~ Tr In{ - (ioP + gG~x)2 - ~ (5pv :t ~~ + M2 + 7r2 
- iE} ,(2·8) 

where M=m+(5 is the dynamical quark mass and (5pv=-(i/2) [Yp, Yv]. 

N ow we consider the case where the external field is covariantly constant, (5),22) 

that is to say, the covariant derivative (fIJ 1'= 01'- igGp ) and the field strength com

mutes,**) 

(2·9) 

This is a natural extension of the constant field condition in QED to the non-abelian 

gauge theory, and guarantees translational invariance of the system23
) (see Eq. (2·14)). 

Due to the Jacobi identity, 

(2·10) 

and the general relation [fIJI', .fDv]=-ig:tpv, one finds that the':tpv's commute with 

each other, 

(2·11) 

Hence, all of the :t pv's ({J., ).1=0, 1, 2, 3) can be diagonalized simultaneously in a 

suitable representation, e.g., in a fundamental representation of SU(3)c, 

*) The introduction of the source terms is not unique for the composite order parameter. Another type 

of the source terms will be discussed in § 5. 

**) We hereafter drop the subscript "ex" in the symbols, G/:x and ~g~. 
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384 H. Suganuma and T. Tatsumi 

CT -d· (CT(l) CT(Z) CT(3») - CTA T3+ CTB T8 
d: p.v- lag .,2." p.v, .,2." p.v, .,2." p.v c-.,2." p.v .,2." p.v • (2 ·12) 

By the condition (2·9), the group structure for the external field is altered from SU(3)c 

to its maximal torus subgroup U(l)A X U(l)s; there appears two kinds of charge 

expressed by QA and QB according to U(l)A and U(l)B, respectively.z4),*) Moreover, 

by choosing a suitable gauge, gluons Gp. can be simply expressed in the diagonal form, 

(2·13) 

so that one also finds 

(2·14) 

Then :£ p.v (fl., j) = 0, 1, 2, 3) are independent of the space-time coordinate Xp. in this 

gauge. Due to Eqs. (2·9) and (2 ·n), similar formulae and parallel arguments to QED 

or the abelian case can be applied in this case.8
) Taking a suitable Lorentz frame, 

:£<J2 (i = 1, 2, 3), diagonal element of :£ p.v, can be chosen as follows without loss of 

generality, **) 

(2·15) 

By way of the proper-time method,Z6) the logarithm of an operator 6 can be 

expressed by 

1 0_- l=dr -ira n -- -e 
o r 

apart from irrelevant constant. 

compact expression for .LlooP, 

(2·16) 

Hence after some calculation, one can obtain the 

= - 8Nfz trcpvl= d~ e- S
(M

2
+.,r2)(gEs)cot(gEs).(gHs)coth(gHs) 

7f 0 S 

where "pv" means the principal value. Here we have modified the integral path and 

changed the variable r into s == ir in Eq. (2 ·17). The imaginary part in .L err originates 

from the poles at r= - in7f/(gE) in the complex r-plane. 

The integral in the second line in Eq. (2·17) diverges at s=o that corresponds to 

the high-energy limit. This divergence originates from the loop integral over the 

quark field, and should be removed by the renormalization procedure. Unfortunate-

*) This subgroup is suggested to be relevant in the abelian projection scheme of QeD, in which the 

diagonal parts of the nonabelian gauge field may be largely responsible to the quark confinement!5) 

**) In a general Lorentz frame, Hand E are described in terms of two Lorentz invariants '3 and Q: H, 

E=[('32+ Q2)1i2± '3]112, where '3 =(1/4)'3 pv'3 Pv, Q =(1/4)'3 pv:JPv. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/9

0
/2

/3
7
9
/1

8
3
5
7
6
5
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2



Chiral Symmetry and Quark-Antiquark Pair Creation 385 

ly, the NJL model is, however, non-renormalizable, so that ad hoc regularization is 

needed to extract meaningful finite results.*) Since the NJL model is an effective 

model, it is reasonable to introduce a ultra-violet cutoff A and avoid the ultra-violet 

divergence at s=O: the lower bound in the s-integral should be replaced by I/A2.**) 

Then the effective potential for eJ and 7C is given by 

(M-m)2+7C 2 

4~JL 
V eff= - 1: eff 

N 1= ds -2 ,,2 ) + 8 f2trcpv -3 e-S(M+ )(gEskot(gEs)·(gHs)coth(gHs 
7r 1/,12 s . 

(2 ·18) 

because of the absence of the kinetic terms of eJ and 7C. It is notable that the full 

order of gE or gH is incorporated in Eq. (2 ·17). In particular, the imaginary part of 

V eff is purely nonperturbative effects of gE: it cannot be obtained by the perturbation 

of any finite order of gE. The physical meaning of the effective potential is as 

follows; its real part corresponds to the energy of the vacuum, and its imaginary part 

expresses the instability of the vacuum against q-q pair creation. Then the physical 

vacuum is determined by the real part of the effective potential Veff, while its imagi

nary part gives the q-q pair creation rate per unit time-space volume (the Schwinger 

mechanism).20) 

Then the physical values of eJ and 7C in the presence of the external color-EM field 

are determined by minimizing the real part of the effective potential Veff, 

o 0 ao:-Re VefrCeJ, 7C)=0, 07C Re Veff(eJ, 7C)=0. (2·19) 

Due to the explicit breaking of chiral symmetry, one obtains 7C=0.***) Therefore 

one obtains the self-consistent Dyson equation for the dynamical quark mass MD in 

the external field, 

- Nf~JL - 1= ds - 2 MD=m+-
2

- 2-MDtrcpv -2 e-
SMD (gEs)cot(gEs)·(gHskoth(gHs) 

7r 1/,12 s 

(2·20) 

where 

*) Hence the results generally depend on the way of regularization. See the discussion given in § 5 and 

the Appendix. 

**) We use this prescription in the lower formula in Eq. (2 '17). If one uses this in the upp~r formula, there 

appear some difficulties in eliciting the imaginary part. 

***) In chiral limit, however, 'It"=Q cannot be derived by such an energetical argument, because all points 

in the chiral circle "0"2+ 'It"2=const'' degenerate. Hence one has to impose 'It"=Q as the physical requirement. 
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386 H. Suganuma and T. Tatsumi 

F/ermiOn(x, 8)-=- -pvl°O d; e-SX2 [(s cos8)coth(s cos8)·(s sin8)cot(s sin8)-1] 
~ s 

(2·21) 

is a characteristic function, 

H =diag(H(l), H(2), H(3))c, E=diag(E(l), E(2), E(3))c, 

x(i) = MD/ {(gE(i))2 + (gH(i))2p/4, 8(i) = arctan(E(i) /H(i)) , 

7j(i)=g(H(i)2+E(i)2)1/2/A2. (2.22) 

Since the value of A is large, F~fermiOn(x, 8) behaves quite similarly to 

(2·23) 

in the interesting region of H or E, where the chiral-symmetry restoration occurs. 

The behavior of chiral symmetry is indicated by the sign of the characteristic function 

(2·21): if Ffermion>o, chiral symmetry tends to be restored, while its breaking tends to 

be enhanced if Ffermion< 0. The properties of FfermiOn(x, 8) are fully discussed in 

Ref. 8), and its behavior is shown in Fig. 1. We briefly summarize here the contribu· 

tion of each component (i) of the color·EM field to the manifestation of chiral 

symmetry: typically, in the purely color·magnetic case (8=0) one gets Ffermion< 0, the 

XSB is enhanced and MD increases; on the contrary, in the purely color·electric case 

(8=7[/2) one gets Ffermion>o, chiral symmetry tends to be restored and MD decreases. 

Quantitatively, the latter tendency is more remarkable than the former one. It comes 

from the fact that x decreases rapidly for the color·electric field, while x varies 

moderately for the color-magnetic field (see Eq. (2·22) and Fig. 1). 

From Eq. (2·20), one can derive the simple relation for the critical color-electric 

X 

o 
Ffermion(z ,8) 

Ffermi",,(x ,8) 
2.0 

1.0 

0.0 1.5 

·1.0 

·2.0 
1.0 

·3.0 

0.5 

o [rad] 
1r/2 

(a) (b) 

Fig. 1. (a) Global shape of the characteristic function, F'ermIOn(x, e) and (b) its contour map. 

Positive·valued region of Ffermlon (x, e) increases for small x, corresponding to the strong color· EM. 

field. 
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Chiral Symmetry and Quark-Antiquark Pair Creation 387 

field E2P of the chiral~symmetry restoration (x(i)=O), 

-~ EU).2 [-.1_ ~ 1 ] - ~ g cr 7[ 4 L..J 2mrtano(f)_1 
,=1 n=1 e 

(2·24) 

in the chirallimit (112=0). Thus the critical color-electric field is characterized by the 

combination f(aU»)=sina(i)/FfermiOn(O, aU»). For a large color-EM field (x(i):::::eO), each 

(i)-component contributes to the symmetry restoration as long as FfermIOn(o, aU») is 

positive, which corresponds to a(i) > 0.27 or HU) < 3.6EU) (see Fig. 1). Here the 

color-magnetic field hardly disturbs the symmetry restoration at least for HU)~Eu>, 

i.e., aU) <: 7[/4, for instance, one finds 

(2·25) 

On the other hand, the imaginary part of the effective potential means q- q pair 

creation; its rate per unit time-space volume w is related to the vacuum persistency 

amplitude, 

(2·26) 

so that one obtains 

(2·27) 

which is reduced to 

(2·28) 

in a particular case H =0. 

§ 3. Numerical examples 

We consider some physical situations and examine the manifestation of chital 

symmetry and the q- q pair creation rate around the quark, where the external gluon 

field would be locally uniform and is covariantly constant within the static approxi

mation. 

In a suitable representation of SU(3)c, the color charges of the red, blue and green 

quarks are given by 

(3·1) 

respectively.24) Since the diagonal components of E, EA and EB, are given by the 

color charges QA and QB, respectively, (EA, EB) is expected to be proportional to (QA, 

QB). Hence one obtains the color-electric field around the quark, e.g. red quark, gE 
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388 H. Suganuma and T. Tatsumi 

=j(gEA T3+ gEB T 8)2=diag( e /3, e /6, e /6)c, where e = j3g(EA2 + Ei)1!2. 

Hence the effective potential Verr around a given color quark leads to 

Re Veff 

independent of the color. Note that two terms appear in the brackets in Eq. (3·2) due 

to two kinds of charge (if one uses U(l) approximation to the external 'color' field, 

only one term appears8),12»). 

Here we choose the following parameter sets, 

(i) the empirical case (m=(mu+md)/2~5.5 MeV): ~JL=O.211 fm2, A=950 MeV. 

(ii) the chirallimit (m=O); gNJL=O.214 fm2, A=950 MeV. 

These values have been selected so that they give the empirical values of the quark 

condensate and the constituent quark mass, 

<uu)=<dd)=-(250 MeV)3, Mn=335 MeV (3·3) 

in the absence of the external field. In both cases (i) and (ii), the pion decay constant 

j" is expressed by 

(3·4) 

for H=E=O. The variations of the real and imaginary parts of Veff as e increases 

21.0 

16.0 

£=6 [GeV Ifm] 

-300 0 300 
M[MeV] 

(a) 

6.0 

5.0 

4.0 

3.e 

2.0 

1.0 

-1m V eff[fm-4
] 

£=6 [GeV Ifm] 

-300 _0 300 
M[MeV] 

(b) 

Fig. 2. (a) Real part and (b) imaginary part of the effective potential Veff in the presence of the 

external color·EM field as functions of the quark mass M. The solid lines correspond to the 

empirical case (m=5.5 MeV) for e =0, 2, 4, 6 GeV Ifm. The absolute minimum of Re Veff 

(physical vacuum) is indicated by cross x. The broken line corresponds to the chiral limit (m=O) 

in the.absence of the external field. Cross x in (b) corresponds to the physical vacuum for the' 

empirical case. 
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Ju [fhl-3
] 

1. 00 

0.50 

0.00 

-0.50 

0.0 150.0 300.0 

M[MeV] 

Fig. 3. Variation of the source J (J' in the absence of 

. the color-EM field (the chirallimit). The hori

zontal axis denotes M. The source J(J' takes a 

non-vanishing value except for the extrema of 

ReVeff. 

MD[MeV] 

I 500.0 
Ms 

400.0 

I 
300.0 

M 
200.0 

, 
\ 
\ 

\ 

100.0 \ , 
I 
I 

0 2.5 5.0 7.5 
£ [GeVjfm] 

Fig. 4. Dynamical quark masses as functions of e. 
The lower two lines express the variable for u, 

d-quarks: the solid and dashed lines correspond 

to (i) the empirical case (m=5.5 MeV) and Oi) 

the chiral limit (m=O), respectively. The 

upper solid line expresses the variable for s

quarks. The shaded region corresponds to the 

"empirical" value of e inside hadrons (e =5.3 

~6 [GeV Ifm]). 

are shown in Figs. 2(a) and (b), respectively. As for Re Veff, the double-well structure 

is modified into the single-well one when e increases, so that one can see the phase 

transition from the NG phase to the WW phase. One also finds that Re Veff has two 

minima in the chiral limit, while only one absolute minimum exists in the empirical 

case due to the explicit chiral-symmetry breaking. The value ofIm Veff grows up 

monotonically as e goes high, and it becomes large for the small IMI at the fixed 

value of e. 
As is noted in § 2, (5] is not simply proportional to < q q) ] in the presence of the 

source J(J except for the extrema of Re Veff, where J(J vanishes, 

(3'5) 

Figure 3 shows the variation of the source !cJ in the absence of the color-EM field. 

Such a behavior is qualitatively unchanged even in the presence of the color-EM field. 

In this case, the Dyson equation reads 

M - - + M Nf!}NJL N. (= ds -SMD
2 

D-m D 2n2 C )IIA2 S2 e 

M- NfgNJL e [Ffermlon( i3M- n)+Ffermion( /6M- n)] 
- D~3 el(3A2) ve D, 2 el(6A2) ve D, 2 . (3'6) 

Then the numerical result for the dynamical quark mass MD is shown in Fig. 4. In the 

u, d-quark sector, the quark condensate < qq), the order parameter of chiral symme

try, is almost proportional to the dynamical mass MD , because the current mass iii is 

small. One finds that the dynamical quark mass decreases as e increases, and its 
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390 H. Suganuma and T. Tatsumi 

rapid reduction occurs around e =4 

GeV jfm. In the chiral limit, the exact 

chiral-symmetry restoration "takes place 

at the critical color-electric field, which 

can be obtained by way of Eq. (2·24), 

e cr"",2 (NcrA2-~) 
Jr NfgN]L 

""'4.1 GeV jfm. (3'7) 

In the chirallimit, the order parame

ter < (j q) is continuous and a singular 

point appears, so that the phase transi

tion is second order. On the contrary, 

there is no clear singular point in the 

empirical case, so that mathematically 

there seems to be no phase transition. *) 

However, from the physical point of 

view, one can say that there substantial

ly occurs the chiral-symmetry phase 

transition even in the empirical case 

because the order parameter decreases 

very rapidly about e ~4 GeV jfm, which 

in turn indicates the critical strength e cr 

of the chiral-symmetry restoration. We 

XNf 

2.5 

2.0 

1.5 

1.0 

0.5 

I 
/1 . .{ I ...-... /,' 1 .. ···...

.."" I ~I"" •• ' l ~ 
.' .~ .................... ~ 

............ ~ 

o 2.0 4.0 6.0 

£ [GeV Ifm] 

Fig. 5. The q- q pair creation rate per unit space· 

time volume, W, as a function of e taking 

account of the variation· of the dynamical 

quark mass. (i) The empirical case (m=5.5 

MeV) and (ii) the chiral limit (m=O) are ex

pressed by the solid and dashed solid line, 

respectively. The upper and lower dotted· 

lines denote the constant cases of "M =0" and 

"M=335 MeV" for any value of e, respective· 

ly. The meaning of the shaded region is the 

same as in Fig. 4. 

can physically interpret this chiral-

symmetry restoration in the strong color-electric field as follows: since quarks and 

anti quarks in < (jq) have opposite color-charges, q- (j pairs are pulled apart and 

consequently the quark condensate < (jq) is broken by the external color-electric field. 

One also obtains the q- (j pair creation rate by way of Eq. (3·2), 

w(M)= :;3 ~l ~2 [( ~Yexp( - ~ M
2 nJr )+2( ~ Yexp( - ~ NPnJr)] , (3·8) 

which is simply reduced to w=Nf e 2 j(144Jr) for the massless limit M-tO. Figure 5 

shows W(MD) as a function of e using the dynamical quark mass, which is determined 

by Eq. (3'6). The empirical case (m=5.5 MeV) and the chiral limit (m=O) are 

expressed by the solid and dashed lines, respectively. For comparison, we have 

added w for the constant mass, M = 0 and M = 335 Me V, denoted by the broken and the 

dotted lines, respectively. The rate w is largely enhanced in accordance with the 

reduction of the quark mass around e cr. 

§ 4. Extension to the three-flavor case 

In this section, we extend our theory to the three-flavor case, including the 

*) In general, there is no definite phase transition or well-defined order parameter in the presence of the 

explicit symmetry breaking. 
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Chiral Symmetry and Quark-Antiquark Pair Creation 391 

s-quark. A natural extension of the formulation in § 3 is possible. The three-flavor 

NJL Lagrangian can be written in a simplified form, 

(4 ·1) 

where m=diag(m, m, mS)f is the current-mass matrix, ;10=/273 diag (1, 1, l)f obeying 

the convention such that tr(;1a;1b)=26'ab. 

Using the auxiliary fields (ja, Jra(a=O, 1, ···,8), and integrating out the quark 

degrees of freedom, one obtains the effective Lagrangian in the mean-field approxima

tion, 

where M is the dynamical mass matrix in the three-flavor case, 

(4·3) 

Since the mass matrix is diagonalized in the physical vacuum that is parity 

eigenstate, only 15° , 15
3 and 15

8 have non-vanishing expectation values; in our treatment, 

the small difference between the u, d -quark mass is neglected, so that 15
3 should also 

vanish. Then the dynamical mass matrix M in the three-flavor case is reduced to the 

diagonal form, diag(Ji1, Ji1, MS)f, where Ji1 and Ms are given by 

(4 ·4) 

Then the effective Lagrangian is obtained 

.£ -_ (Ji1-m)2 2iTr*ln[iJl>-Ji1+iE] 
eff- 4~JL 

iTr*ln[iJl>-Ms+iE] , (4 ·5) 

where Tr* denotes the functional trace without the flavor degrees of freedom. In this 

equation, the s-quark sector is completely decoupled from the u, d-quark sector, and 

its form is the same as that of u- or d-quarks except its mass, which is the same form 

as in the SU(2)f case, Eq. (2·6). Hence the results in the previous chapters can be 

applied: its real part reads 

1 100 

ds -2 +-4 2trcpv ~3 e- SM (gHs)coth(gHs)·(gEs)cot(gEs) 
Jr l/A2 s 

1 100 

ds - 2 +-8 2trcpv ~3 e- SMs (gHs)coth(gHs)·(gEs)cot(gEs); 
Jr l/A2 s 

(4 ·6) 

its imaginary part is given by 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/9

0
/2

/3
7
9
/1

8
3
5
7
6
5
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2



392 H. Suganuma and T. Tatsumi 

Im.1' eff = - 1m Veff 

1 = gH·gE -
+ 8Jr2trc~1 n coth(HE-

1
nJr)exp{-nJrM/j(gE)}. (4·7) 

By putting the extremum conditions on Re Veff with respect to M and Ms, the 

Dyson equations for u(d) and s-quark can be obtained, respectively. For the u, 

d-quark sector, the Dyson equation in § 2 holds, while that for the s-quark is given by 

Ms=ms+ ~~L Mstrcpv (= d~ e-SMs2(gEskot(gEs)·(gHs)coth(gHs) , (4.8) 
Jr )1/.1 2 s 

which is reduced to the expression for the u, d-quark by replacing ms, Ms by iii, M. 
The q- q pair creation rate W is derived from the imaginary part of .1' eff, W 

= 2Im.1' eff, as in Eq. (2·27). In terms of the individual flavors, W consists of three 

terms, 

(4·9) 

where Wu denotes u- u pair creation etc. Of course wu+ Wd coincides with W in 

Eq. (2·27) by way of Wu=Wd. The s-s pair creation rate is given by 

(4·10) 

The parameters, gNJL and A, can be chosen to be the same as in § 3 because the 

Dyson equation is unchanged for u, d-quark (see condition (3·3)). We take the 

current mass of s-quark as the empirical value, ms=150 MeV. Then its dynamical 

mass becomes 505 Me V in the absence of the external field; such a value is quite 

reasonable as the constituent quark mass of s-quark. 

The dynamical mass of s-quark is also shown in Fig. 4. They vary moderately 

with respect to e for s-quark compared with that of u, d-quark: the large explicit 

breaking of chiral symmetry tends to smear out the decrease of the order parameter. *) 

Thus, as a remarkable feature, the strange condensate < ss> remains tq take a 

rather large value even above the critical field strength e cr~4 GeV jfm, where the 

chiral-symmetry restoration may take place in the SU(2)f case. Hence large s-quark 

mass may be expected even in the WW phase brought by the strong color-electric 

field. **) The s- s pair creation rate in the external color-electric field is shown in Fig. 

6. We find that the value ofws is much smaller than Wu due to large value of the 

s-quark mass. We also see the small variation of Ws with respect to e. 

*) Such a tendency was also shown for the u, d-quark sector in § 5 by comparing the "empirical case" 

(m=5.5 MeV) and the chiral limit (m=O). 

**) Such a tendency at high temperature has been also indicated: a large value of < 5S> remains above the 

critical temperature!?) 
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Chiral Symmetry and Quark-Antiquark Pair Creation 393 

§ 5. Comparison with 

another approach 

In recent papers, Klevansky and 

Lemmer have taken somehow different 

approach in a similar context/I) which 

corresponds to the constrained Hartree 

approximation (CHA).28) The effective 

potential approach and their CHA 

approach should be the same within the 

mean-field approximation, that we have 

used in the previous sections. However, 

in spite of their apparent similarities, 

·two basic differences exist between 

them: one is in the introduction of the 

source term, and the other is in the use of 

the field equation. In this section, we 

figure out these two differences and clar

2.5 

2.0 

1.5 

1.0 

0.5 

o 

~/ I, 
1/./ w[fm-4

] 1,./ 
I' ./ 
I.~/ 
/1' / ... Il! 

I"~"'I ....... / I ........ . 
......... ::".,; .. ~ ...... 

2.0 4.0 6.0 

f[GeVjfm] 

Fig. 6. The s- s pair creation rate per unit space

time volume, Ws, as a function of e taking into 

account the variation of the dynamical quark 

mass. The upper and lower dotted lines 

denote the constant cases of "Ms=150 MeV" 

and "Ms=505 MeV" for any value of e, respec· 

ify the mutual relationship for two- tively. The dashed line denotes the pair crea. 

flavor case, which may be easily tion rate for u, d·quark, Wu. The meaning of 

extended to the three-flavor case. the shaded region is the same as in Fig. 4. 

We have used the path-integral formalism with respect to auxiliary fields, where 

the source terms are simply introduced as 10-15, J".7r. However, one can introduce 

another type of the source term composed of q and q,29) which is used in the CHA 

approach, 

'zps, Ap]= jDqDqexp [ i jd4
x{J:NJL + gjpac

pa
+ Asqq+ Ap· qY5Tq} ] . (5·1) 

We note that the quark condensate <qq>A is derived directly from Eq. (5·1), 

< 
_ > 1 o,z 
qq A= i'z OAs (5·2) 

in this case in contrast with Eq. (2·5). By way of the proper-time method, Eq.(5·2) 

leads to the "gap relation"/I) which is nothing but the usual gap equation in the 

presence of the source term, 

Nf - 100 
ds -2 <qq>A=--4 2Mtrcpv -2 e- SM (gHs)coth(gHs)·(gEs)cot(gEs) , 

7r ItA2 s 
(5·3) 

where M = fit - 2.0lJL < q q > A - As is the dynamical mass in the presence of the source 

term. The effective potential C() eff can be also derived in the same way as Veff in the 

previous sections, 

(5·4) 

Since two kinds of the effective potential take the same values at their extrema, which 
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":.<:~ .................................. // 
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(a) 
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<qq>~1 <qq>o 

(b) 

Fig. 7. (a) Effective potentials obtained by three different approaches in the absence of the color.EM 

field: the solid and dashed lines show Veff and c:v eff obtained by way of the effective potential 

approach, respectively. The dotted line is calculated by using the constrained Rartree approxima. 

tion (CRA). The horizontal axis is < q q > ,I < q q >0. In the effective potential approach, no solution 

can be obtained for 1< qq>,1 > 1.1·1< qq>ol. The origin in the vertical axis has been taken suitably. 

(b) The variation of the source As as a function of <qq>,/<qq>o: the dashed and dotted lines are 

obtained by the effective potential approach and CRA, respectively. 

correspond to the physical vacuum with As=Ap=O, the Dyson equation (2·20) and the 

q-q pair creation rate (2·27) remain unchanged. 

Numerical results for the real part of the effective potential are shown in 

Fig. 7(a), where the horizontal axis denotes the variation of the quark condensate 

< q q > AI < q q >0 « q q >0= - 2· (250 Me V)3); the values of As and lcr are shown in Fig. 7(b). 

One can see the solid and dashed lines, the results of the effective potential approach, 

are terminated at 1< qq>J::o<1.H< qq>ol. This is because the gap relation (5·3) does 

not have any solution for 1< q q > AI >1.1·1< q q >01, although M takes arbitrary value as As 

varies. 

Next we consider the use of the field equation for the quark field, which is derived 

from the Lagrangian J: in Eq. (2·1), 

(5·5) 

or 

(5·6) 

One may replace the four-fermion interaction term by the bilinear term in the energy

momentum tensor by way of this equation, as Klevansky and Lemmer have done.ll) 

However Eq. (5·6) is not trivial in non-renormalizable theories. Suppose that we 

take the expectation value of Eq. (5·6) and simply regularize it by way of the 

proper-time method with cutoff Tj, then the result may read 

NfNcl=ds -SM
2+NfNc -M-l=.!l!i.. -SM

2+2 [«- )2>+«-· )2>]-0 
8 

2 3 e 4 2 m 2 e [}NJL q q q 1/5 Tq -
1C 7J S 1C 7J s 

(5·7) 
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Chiral Symmetry and Quark-Antiquark Pair Creation 395 

in the absence of the external gauge field. Since all terms on the left-hand side of Eq. 

(5·7) are positive, one should not use this equation as it is.*) Klevansky and Lemmer 

seem to use a similar equation in Ref. 11). To make this equation well-defined, one 

should properly use the regularization scheme. On the other hand, we have never 

used the field equation in the effective potential approach. 

The comparison between the two approaches is also shown in Fig. 7; the dashed 

lines in Figs. 7(a) and (b) show the total energy and the source As obtained by the CHA 

approach in the absence of external fields, respectively. The parameters are fi~ed 

such that < (j q > = - (250 Me vy, M =335 MeV at the minimum. Two results are quite 

similar qualitatively for both the total energy and the source parameter. Even in the. 

presence of the external color-EM field, the large difference would not be seen between 

them. Little discrepancy appeared here originates from the fact that the NJL model 

is not renormalizable, while both should give completely the same results in the 

renormalizable theories. 

However, Klevansky et al. did not deal with q- (j pair creation in their framework 

cif CHA. On the contrary, both chiral symmetry and q- (j pair creation can be studied 

simultaneously in the effective potential approach. 

§ 6. Further discussion 

-- Application to the flux-tube picture--

In QCD, the color-electric field is expected to be squeezed into the string-like tube 

due to the self-interaction of the gluon field: some lattice simulations have shown the 

flux-tube formation. 30
) Then we try to extract physical consequences from our 

results with the help of the flux-tube picture. We model this picture as follows: the 

flux tube has the sharp boundary that encloses the deconfinement region**) in the QCD 

vacuum, and has a constant cross section, S. The color-EM field between valence 

quarks can only exist inside the flux tubes and is covariantly constant within the static 

approximation, where valence quarks or anti quarks do not change their color, so that 

only diagonal parts, Cpa and C,}, can contribute. Hence previous formulation can be 

applied to the system inside the flux tubes. The Gauss laws are valid for the two 

kinds of "charge" independently, QA=EAS and QB=EBS, within the same approxima

tion. Hence, the color-electric field in the tubes formed by quarks is given by E 

=diag(g/3S, g/6S, g/6S)c etc. so that one finds e =g2/S. 

6.1. Hadron structure 

The color flux-tube model is one of the most popular models in studying the 

hadron reaction and its structure.19
) In this picture, hadrons consist of color charges 

(sources) and the color flux-tubes between them: valence quarks and/or anti quarks 

provide the color sources, and the color flux-tubes are formed by them. Such a 

picture is typically applicable for mesons, which are considered to be bound states of 

the valence quark and antiquark. As for baryon, it has been often regarded as the 

bound state of the valence quark and the di-quark; the diquark corresponds to a 

*) Equation (5'7) leads to the gap relation, if one carries out the partial integration for the first term of 

Eq. (5'7) and neglect the surface term, which should diverge originally when 1]=0. 

**) This can be considered as the intermediate region. 
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396 H. Suganuma and T. Tatsumi 

cluster of two valence quarks, and ordinary obeys the 3* representation like the 

anti quark in the SU(3)c. Such a picture for baryons has been taken not only for 

highly-excited baryons in the high-energy experiment, but also for the structure of 

low-lyng baryons.31) Therefore similar formulae can be applicable for both mesons 

and baryons in the flux-tube picture by regarding baryon as the binding system of 

quark and the di-quark. 

The string tension k, the energy per unit length, is written as 

(6 ·1) 

by way of the Gauss law. Then the color-electric field inside the hadron flux-tube can 

be estimated as e =5.3~6.0[GeV Ifm] > e cr using the "empirical" value of the string 

tension k = 0.89 ~ 1.0[ Ge V I fm]' which is derived from the Regge slope.19) Therefore 

chiral symmetry would be restored inside hadrons, which may suggest the chiral bag 

picture3) for hadrons: chiral symmetry is restored in their interior by a strong color

electric field, while it is spontaneously broken in their exterior region, where no 

color-electric field exists. 

Finally, it may be worth mentioning the color confinement in our framework. As 

is well-known, string tension k is one of the most important quantities for the color 

confinement; string tension k corresponds to the gradient of the linear static potential 

between quark and anti quark, so that k or e =6k measures the "strength" of the 

color-confinement. Then variation of e is interpreteted as that of the confining 

force, which would be brought by some nonperturbative effects of gluons like 

<:£ Pl/:£Pl/) or the "monopole condensation" a la 't Hooft.25) Our results indicate the 

following. As the confining force grows strong, the color flux is strongly squeezed 

and vice versa. For the former case, chiral symmetry is restored due to the strong 

color-electric field, while it is still broken inside the flux tube for the latter case. 

From the analysis of the Regge trajectory, the value of e seems larger than e cr inside 

hadrons, so that the former case would be realized in the nature. Of course, the 

physical value of k should be derived from the theoretical framework endowed with 

the confinement mechanism. To this end, further efforts are needed for understand

ing color confinement. 

6.2. Ultrarelativistic heavy-ion collisions 

The flux-tube picture has been also popular in the studies of QGP formation in 

ultrarelativistic heavy-ion collisions.19),32) After the collision, QGP formation would 

be supposed to .occur through the following two stages. 

(1) Pre-equilibrium stage; immediately after the collision, many color flux-tubes 

are formed between heavy ions, which may give a strong color field. Then, by the 

Schwinger mechanism, q- q pair creation violently occurs inside tubes. During this 

process, the color field is weakened, on the contrary, the thermal energy grows up, so 

that the energy of the color-EM field turns into the thermal one: the energy is thus 

deposited. 

(2) QGP formation; a hot QGP, which is regarded to be a equilibrium system, may 

be formed in the central region for sufficiently high-energy collisions. In this stage 
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Chiral Symmetry and Quark-Antiquark Pair Creation 397 

there is no more external color field. 

So far, many studies have been devoted mainly to the equilibrium stage (2), while, 

the pre-equilibrium stage (1) has been also studied in recent years with much interest.6
) 

Our study can be closely related to the stage (1), because only the color external field 

may exist in this situation, which is rather similar to the hadron in the flux-tube 

picture. These flux tubes may be formed by piling up such ones as in the hadron, and 

one can expect a stronger color-electric field (e ~ several Ge V Ifm) in the flux tubes, 

so that chiral symmetry would be restored there. This conjecture would affect the 

q- q pair creation rate. The energy of the color field turns into the thermal one 

through q- q pair creations, which strongly depend on the quark mass (see Fig. 5). If 

the system remains in the NG phase, the constituent quark mass is relevant, then this 

creation rate becomes rather small. On the contrary, if the phase transition of chiral 

symmetry takes place due to the strong color-electric field, the current quark mass 

should be applied, so that one can expect a larger q- q pair creation rate. Our study 

suggests that manifestation of chiral symmetry is changed from the NG phase to the 

WW phase during the pre-equilibrium stage (1), so that the current quark mass seems 

to be suitable on calculating the q- q pair creation rate. Experimentally, such a 

phase transition may affect the cross section of dilepton production or direct gamma 

emission that stems from q- q pair annihilation in the pre-equilibrium stage. 

However these consequences for ultrarelativistic heavy-ion collisions may be too 

simple because some diabatic effects and the finite size effect of the flux tubes33
) have 

been disregarded. In particular, diabatic effects related to the expansion of the 

system seem to enhance the q- q pair creation rate: the energy of the flux tube is 

almost proportional to its -length, so that the stretched flux tube tends to be unstable 

against q- q pair creation. It deserves more elaborate studies for quantitative argu

ments. 

§ 7. Summary and concluding remarks 

We have studied the manifestation of chiral symmetry and q- q pair creation in 

the presence of the external color-EM field, using the NJL model. These two subjects 

have been simultaneously understood in terms of the effective potential formalism. 

We have derived the effective potential, the Dyson equation for the dynamical quark 

mass and the q- q pair creation rate in the presence of the external color-EM field that 

is covariantly constant. As a remarkable fact, since these expressions have been 

obtained by the full-order treatment of the color-EM field, they include the nonpertur

bative effects of the color-EM field. 

We have applied our formulae to the physical ,situations of the system around 

quarks or antiquarks, and have found that the chiral-symmetry restoration would 

take place by the sufficiently strong color-electric field, and rapid reduction of the 

quark mass has been found around the critical field strength, e cr:::oe4 GeV Ifm. We 

have also calculated the q- q pair creation rate, and its rapid increasing has been 

found around the critical field strength due to the rapid reduction of the dynamical 

quark mass. 

Our study suggests that the chiral-symmetry restoration would take place in the 
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398 H. Suganuma and T. Tatsumi 

sufficiently strong color-electric field. It is rather similar to the phase transition at 

high temperature. As for the similarity of the effects on chiral symmetry between the 

color-electric field and temperature, one may be able to understand it by considering 

how the quark condensate < qq) disappears; in the external color-electric field, q- q 

pairs are pulled apart and consequently <qq) is broken; at finite temperature, <qq) is 

also broken by the thermal fluctuation. Similar analogy appears in the supercon

ductivity in the presence of the external magnetic field or at high temperature. Since 

the Cooper pair, which consists of two electrons with the opposite spin, is broken by 

the spin-magnetic interaction or thermal fluctuation, superconductors become normal 

state in the strong magnetic field or at high temperature. In spite of the difference in 

the formalism, interesting physicaJ correspondence may be found between the quark 

condensate in the QCD vacuum and the Cooper pair in the superconductivity, however, 

there exists large difference on the reaction for the external fields; the latter is broken 

by the magnetic field, in contrast, the former is not broken by the color-magnetic field 

but by the color-electric field. 

The extension to the three-flavor case has been also done, and the variations of 

the dynamical mass and the pair creation rate of s-quarks have been rather moderate

ly small in comparison with those of u, d-quarks. 

We have compared the effective potential approach with the constrained Hartree 

one which Klevansky et al. have used. There are two differences between them in 

terms of the introduction of the source terms or the use of the field equation. 

However these two approaches give similar results to those for the manifestation of 

chiral symmetry. 

Actual calculation based on the color flux-tube picture has shown that there 

would be the chirally-symmetric phase in the flux tube inside hadrons. It is interest

ing that this result may lead to the chiral bag picture for hadrons: the chirally

symmetric phase exists inside the flux tube due to the strong color-electric field, on the 

contrary chiral symmetry remains broken outside the flux tube, where color fields are 

absent. 

We have also applied our theory to the early stage of ultrarelativistic heavy-ion 

collisions, and have obtained the conjecture that chiral-symmetry restoration would 

occur due to the strong electric color-field just after the collisions. For the study of 

the thermalization, it is quite desirable to formulate the q- q pair creation at finite 

temperature and/or in finite density.34) Such a subject is, however, very difficult 

because the (color-)electric field is time component of :I fl.}.) and it is not clear whether 

we can properly treat it at finite temperature and/or in finite density. 

Our theory is based on the "infrared" effective theory of QCD, so that there exists 

inevitable constraint in applying it to such systems in the strong external field. For 

instance, the coupling constant of the four-fermion interaction (gNJL) would have the 

dependence on the external field because it effectively includes the effects of under

lying virtual gluon fields and quarks, of which dynamics would be altered according 

to the external fields or temperature of the system. However one can guess that the 

results here are not changed at least qualitatively, because one can expect that the 

four-fermion coupling gNJL, which induces the xSB, would be reduced in the strong 

color-electric field or at high temperature due to the asymptotic behavior of QCD.15
),16) 
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Chiral Symmetry and Quark-Antiquark Pair Creation 399 

Then the actual variation of the dynamical quark mass may be more rapid than the 

results of the model calculation by way of the NJL model. Hence the value of e cr 

would be able to be regarded as upper limit of the critical field strength of the 

chiral-symmetry restoration. 

From our study based on the effective model of QCD, we can at least insist on the 

features on the restoration of chiral symmetry in the strong color-electric field. In 

order to get deeper insight, it is indispensable to study different approach such as 

lattice QCD simulations. In Ref. 13), Austrian group has found the reduction of the 

quark condensate < qq> around quarks or the color sources by using lattice QCD 

simulations. 

In this paper, we have concentrated on the intermediate region indicated by 

Manohar and Georgi; there scarcely exist the nonperturbative effects relevant to the 

color confinement, like the gluon condensation, while those relevant to the XSB may 

survive there. However the color-confinement mechanism would be also important 

in some cases, e.g., flux-tube formation. Therefore, further studies are needed to get 

a consistent description of the confinement and xSB in the low-energy region of QCD. 

As the first step to this end, we should take into account the moaification of such a 

complicated gluon configuration as being suggested by Savvidy et al. 15) or Copenhagen 

group16) in the external color-EM field at the same time. On the other hand, the study 

of gluon configurations35) and the quark condensate13) around color sources should be 

done at the same time by lattice QCD simulations. Such studies are important and 

strongly desired in understanding chiral symmetry and/or g- q -pair creation in the 

color-EM field. 
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Appendix 

-- I;-function Regularization Method--

A.I. Formalism 

In § 2, we have used the proper-time method with a cutoff A to regularize the 

quark determinant. Here we show that we can formulate our subject by way of the 

I;-function regularization, which we have used to analyze the symmetry behavior in 

QED,8),17) and discuss similarities and differences between them. In the I;-function 

regularization, the functional determinant of (j is regularized as 

- -.[ d -].[ d ] In DetO=Tr InO=hm -~d TrO- v =hm -~d 1;6(V) , 
v-a v v-a V 

(A-I) 

where 
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400 H. Suganuma and T. Tatsumi 

(A·2) 

Hence, -LlooP in Eq. (2' 7) can be expressed as 

(A·3) 

where g is derived from the quark propagator in the physical vacuum 7t'=0, 

(A·4) 

with IIf.1.=i[)P+gC:x. Here we have introduced an arbitrary parameter JL with the 

dimension of a mass, which can be regarded as a renormalization point. Here the 

choice of JL is completely arbitrary: if one takes the different value for JL, the coupling 

constants in the theory will be merely reparametrized.36
) Then the evaluation of the 

effective Lagrangian is reduced to the eigenvalue problem for the operators Kx and 
K y •8 ) 

When the color-EM field is covariantly constant, the integrand in Eq. (A ·3) is 

reduced to the form 

x <xy1exp( -2is g:; Kx )Ixy><tzlexp( -2is ~~ Ky)ltz>; 

(A'5) 

in a suitable Lorentz frame (2·15), where the operator variables Kx and K y are 

defined by 

Kx= ~ (gH)-1(n2+ II22) , K y= ~ (gE)-1(II32- IIo2) . (A·6) 

Since Kx is a familiar harmonic-oscillator operator and its eigenvalues are known to 

be discrete Landau levels, one easily obtains 

<xy1exp( -2i
g
:; sKx)lxy>= ~~ ~oexp[ -is2~If (n+ ~)J 

_gH 1 
- 4Jri . sin(gHs/JL2) . (A'7) 

On the contrary, operator K y is an inverted harmonic-oscillator operator; its 

eigenvalues are continuous and take values from -(X) to 00, so that the sum over them 

is rather difficult. However, its eigenfunctions are known to be described by linear 

combinations of the parabolic cylindrical functions and the state density can be 

obtained.37
) Hence one can get the similar relation to Eq. (A' 7) as 

1 ( 
. gE )1 - gE 1 

<tz exp -2zy sKy tz>- 4Jr . sinh(gEs/JL2) (A·S) 
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besides the irrelevant constant. 

By way of Eqs. (A-5), (A-7) and (A-8), one obtains the compact form .LlOoP in 

Eq. (A-3), 

p Nf l' {d [ i
V 

..LloOP= 87[2 trc!~ dv r(v) 

Nf l' d [ 1 
= - 87[2 trc !~ dv r(v) 

Xpv [= ds sV-3(gHs)coth( g:; s )-(gEs)cot( ~If s )e-SM2/P2 

_ ._1_ ~ ( n7[li)V gH -gE th( HE-I) -mcM
2/(gE)J 

Z r( ),L.., E co n7[ e , 
V n=1 g n 

(A-g) 

where we have modified the path in the s-plane and changed the integral variable, s 

---> - is. The second term of the RHS in Eq. (A -g) is derived from residues around the 

poles s=-n7[il_i/(gEU») (i=l, 2, 3; n=l, 2, "', =) in the original s-plane. 

Here we separate the "divergent" part at v=O in Eq. (A-g) and use the analytical 

continuation in the complex v-plane. Then it can be expressed in terms of the 

generalized Riemann zeta-function and the gamma function.S
) Hence one gets the 

finite expression for the one-loop effective potential, 

_ . _ Nf (= -3 _sM2 
V;oop--.LlooP-87[2trcPV)o dss e 

x [(gEs)cot(gEs)-(gHs)coth(gHs)-l- ~2 (H2- E2)S2J 

- NfNc [M-41 f':P --.lM-4J _ Nfg
2
l lIP t (H2 - E2) 

167[2 n /12 2 247[2 n /12 r c 

(A·10) 

Thus we can obtain the finite loop contribution without introducing ad hoc cutoff J1 

in the proper-time method (see § 2). Although the divergence of the loop integral has 

been eliminated by way of the s-function regularization method, we further need the 

renormalization procedure, reparametrization of the mass and the coupling constant. 

In order to obtain the meaningful expression for the effective potential, one must add 

some finite correction subject to the renormalization conditions. We have demon

strated this point by way of the linear (J model in the previous paper.S
) Here we 

attempt 'renormalization' even for the NJL model within the Hartree approximation, 

introducing the counter term 

(A-ll) 

Then the effective potential leads to 
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Veff (M - mY +·T I [l/J M- .] l' (M - m)2 
4 

z r n z - + u=: - U!JNJL 4 2 
gNJL gNJL 

(A ·12) 

We assume that the counter term (oJ:) is determined by the 'renormalization' condi

tions, 

(A ·13) 

in the absence of the external field to find 

l' _ NfNc 2 2 1'-_ OgNJL -
u!JNJL - 2 2 [JNJLfl, um - m . 

7[ gNJL 
(A'14) 

Then one obtains a final expression for Re Veff, 

Re Veff 

x [(gEs)cot(gEs).(gHs)coth(gHS)-I- ~2 (H2- E2)S2J 

- NfNc [M41n M2 _~ M4 + 2fl2 M 2J - Nfg
2 

In M2 tr (H2 - E2). (A'15) 
167[2 fl2 2 247[2 fl2 c 

It is to be noted that there remains only one adjustable parameter gNJL in the final 

expression apart from the arbitrary scale parameter fl. While in the proper-time 

method, there are two parameters,gNJL and A in Eq. (2 '18). 

Taking the extrema of Re Veff, one obtains the self-consistent Dyson equation, 

where Mn is the dynamical quark mass in the physical vacuum with the external 

color-EM field. The q- q pair creation rate is derived from 1m Veff, and has the same 

form as Eq. (2·27) in § 2. 

A.2. Numerical example 

The effective potential Veff for a given color quark reads 

Re Veff 
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300.0 

MD[MeV] 

200.0 

100.0 

o 2.5 5.0 7.5 

E[GeV/fm] 

Fig. 8. The dynamical quark mass MD calculated by using the !;"-function regularization method: the 

solid and dashed lines correspond to the empirical case and the chiral limit, respectively. The 

dotted lines denote the previous results obtained by way of the proper-time method (Fig. 4). The 

meaning of the shaded region is the same as in Fig. 4. 

similar to Eq. (3·2). In this case, the Dyson equation leads to 

- M NfgN]L..!l..- [Ffermion( (3 M ..!!...) + Ffermion( !6 M ..!!...)] 
D 27[2 3 ve D, 2 v' e D, 2· , (A ·18) 

where FfermiOn(x, e) is a characteristic function (2·23) (as for the' q- q pair creation 

rate W, Eq. (3·8) remains valid). 

The scale parameter fL is set as 1 Ge V, which corresponds to the typical energy 

scale of hadron physics, and the remaining parameter ~JL is chosen to give MD 
=335 MeV (the constituent quark mass) in the absence of the external field: 

(i) the empirical case (m=5.5 MeV): gN]L=0.2015 fm2. 

(ii) the chirallimit (m=O): ~JL=0.205 fm2. 

In both cases, one can obtain the reasonable value for the quark condensate with only 

one adjustable parameter gN]L: one finds < uu> ~ - (254 Me V)3 in the absence of the 

external field (d. Eq. (3·3)). 

Then the numerical results of the variations of the dynamical quark mass MD is 

shown in Fig. 8. In this case, both MD and < q q > decrease around e cr ~ 5 Ge V / fm, so 

that one can regard this value as the critical field. The empirical case (m=5.5 MeV) 

and the chiral limit (m=O) are expressed by the solid and dashed lines, respectively. 

One also finds that the rate w is enhanced around ecr due to the decrease bf the quark 

mass. Thus one does not find the large differeince from the results in § 3. 
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