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Chiral symmetry breakdown. I. Gauge dependence in constant vertex 
approximation 

D. Atkinson and P. W. Johnson8
) 

Institute for Theoretical Physics, P. O. Box 800. 9700 A V Groningen, The Netherlands 

(Received 7 March 1987; accepted for publication 13 May 1987) 

An approximate quark propagator equation in a Landau-like gauge is analyzed and it is shown 
th~t there is a critical value of the coupling constant, corresponding to the onset of dynamical 
chlral symmetry breakdown, provided that (a) there is an infrared cutoff which can be 
supplied by an effective gluon mass, and (b) there is an ultraviolet cutoff: which may be 
engendered by a running coupling constant. Dynamical chiral symmetry breakdown is shown 
not to occur in other gauges under the same circumstances, thus casting doubt upon the 
approximations commonly used. 

I. INTRODUCTION 

The idea that quarks obtain effective (constituent) 
masses as a result of a dynamical breakdown of chiral sym­
metry has received a great deal of attention in recent 
years. 1

-
IO We propose to examine this attractive hypothesis 

by a detailed analysis of truncated Dyson-Schwinger equa­
tions for the quark propagator. In this paper, we will restrict 
attention to the approximation in which the gluon-quark 
vertex is replaced by the bare value, whereas the gluon ac­
quires an effective mass, while its propagator retains the ten­
sor structure of the bare propagator. This resembles the first 
Johnson-Baker-Willey (JBW) approximation for the elec­
tron propagator of QED. ll-J3 

In pioneering work over a decade ago, Maskawa and 
Nakajima2 studied the truncated Dyson-Schwinger equa­
tion in a JBW -like approximation. Their analysis in a "Lan­
dau-like" gauge showed that spontaneous chiral symmetry 
breakdown occurs when a Pauli-Villars ultraviolet cutoff 
parameter A is introduced, and that spontaneous break­
down survives in the continuum limit A -+ ao. We obtain sim­
ilar conclusions in that gauge, but using a smooth ultraviolet 
cutoff function, the choice being motivated by QCD. Like 
Maskawa and Nakajima in Ref. 2, and unlike several recent 
authors,3-9 we have gone to some care in analyzing coupled 
Dyson-Schwinger equations for the two functions appear­
ing in the quark propagator. The formalism is described in 
Sec. II, and the Landau-like gauge is analyzed in Sec. III. 

The Landau-like gauge of Ref. 2 leads to Dyson­
Schwinger equations which are relatively well behaved in the 
ultraviolet, whereas in other covariant gauges they become 
more singular. The case of Feynman gauge with finite mo­
mentum cutoff parameter A has also been analyzed in Ref. 2. 
We show in Sec. IV that, because of ultraviolet singularities 
in the continuum limit, A -+ ao, in Feynman gauge the regu­
larized quark propagator corresponds to massless, free 
quarks. The Dyson-Schwinger equations exhibit spontane­
ous chiral symmetry breaking at finite cutoff A, because the 

aJ Permanent address: Physics Department, Illinois Institute of Technolo­
gy, Chicago, Illinois 60616. 

quark mass operator satisfies a homogeneous Fredholm in­
tegral equation in that case, but the solution becomes "trivi­
alized" upon renormalization in the continuum limit. Our 
logarithmic ultraviolet cutoff function reduces the degree of 
the divergence in the continuum limit, before renormaliza­
tion, from log A (Ref. 2) to log log A; but it does not elimi­
nate the need for regularization. 

We have established that, in the JBW-like approxima­
tion, the quark propagator exhibits a sensitivity to the choice 
of gauge. This apparent "gauge dependence" of spontaneous 
chiral symmetry breaking is a consequence of the fact that 
truncated Dyson-Schwinger equations in the JBW-like 
scheme have ultraviolet singularities in most gauges. It is our 
conclusion that such a truncation is inadequate for studying 
spontaneous chiral symmetry breaking, and we intend in the 
future to study the problem for truncation schemes in which 
our choice of vertex function is motivated by the Slavnov­
Taylor identities. In addition, asymptotic freedom imposes 
constraints upon the ultraviolet behavior of the propagator 
and vertex function. 

II. DYSON-SCHWINGER EQUATION 

The quark propagator satisfies the integral equation 

iA f S p -l(p) = P - (217')4 d 4p' yllS p(p')YvD ,/V(p' - p), 

(2.1 ) 

where we have approximated the full by the bare vertex. 
Here A is the square of the QCD coupling constant, times a 
color factor, and the bare quark mass is zero. We suppose 
that the gluon has an effective mass, generated by self-inter­
action. The correct form for a massive vector propagator in a 
gauge theory is 

1 [-gllv+(1_a) kllk
v 

] 
k 2 _ m 2 + iE k 2 - am2 + iE • 

(2.2) 

We multiply this by a factor w ( - k 2) that satisfies w (0) = 1 
and w( - k 2) _ [loge - k 2)] -\ as - k 2 -+ ao, in order to 
allow for the decrease of the running coupling constant in a 
non-Abelian gauge theory. Thus 
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x ( k 2 _ !2 + iE - k 2 _ a~2 + iE )] , 
(2.3) 

where we have rearranged the tensor for calculational con­
venience and where a is the gauge parameter. A suitable 
form for w is 

2 k 2 [( k 2 . )] -1 w( -k ) = . log 1---IE , 
k 2 _ m 2 +IE m 2 

(2.4) 

although the results do not depend on the detailed expres­
sion. 

The inverse quark propagator has the form 

S;.-I(p) =a( _p2) +J(3( _p2), (2.5) 

where a and (3 are scalar functions, so that 

S;'(p) = a( _p2) -J(3( _p2) 
a2( _ p2) _ p2(32( _ p2) 

(2.6) 

Upon insertion of these formulas into (2.1), two coupled 
equations for a and (3 can be obtained; and, after Wick rota­
tion, one gets (with x = p2,y = p'2), 

A. 100 

ya(y) a(x) = -2 dy K(x,y) 2 2' 
11 0 a (y) +y(3 (y) 

(2.7) 

(3(x) = 1 + ~ 100 

dy L(x,y) 2 y(3(y) 2 ' 
1T 0 a (y) + y(3 (y) 

(2.8) 

where 

K(x,y) = 1trdBsin2 B'w(k 2)[ 23 2+ 2
a 2] 

o k +m k +am 
(2.9) 

and 

L(x,y) 

with 

p = (p' _ p)2 =x + Y _ 2(xy) 1/2 cos B. (2.11) 

L(x,y) = ayk 2 (x,y,m2) - (1/16m2x) 

X[[ (y - X)2 + m2(y + x) ]k(x,y,m2) 

- [(y - X)2 + am2(y + x) ]k(x,y,am2)] 
(2.14 ) 

with 

k(x,y,m2) 
= [x + y + m2 + [(x + y + m2

)2 - 4xyj112rl. 
(2.15) 

This was essentially the case considered by Maskawa and 
Nakajima,2 together with the Pauli-Villars cutoff version. 

In the limit that the gluon mass m tends to zero, we find 

k(x,y,O) = B(x - y) + B(y - x) . (2.16) 
2x 2y 

For m #0, the approximation 

k( 2)_ B(x-y) + B(y-x) x,y,m _ 
2(x + m2) 2(y + m2) 

(2.17) 

is exact in the limits x --+ 0 and x --+ 00, y --+ 0 and y --+ 00, and it 
is a strict upper bound for all positive x and y. In this paper, 
we shall use the form (2.17) exclusively, although we pro­
pose to consider the exact expression in a future publication. 

The above approximation is imprOVed by reinstating the 
running coupling constant. Unfortunately, the dependence 
of k 2 on the angle B in (2.9) and (2.10) makes it impossible 
to evaluate the integrals in closed form when thew of (2.12) 
is present. However, if one sets 

w(k 2) zw(p2)8(P2 _ p,2) + w(P,2)8(p'2 _ p2), 
(2.18) 

one obtains, instead of the kernels K and L of Eqs. (2.13) 
and (2.14), respectively, 

[w(x)B(x - y) + w(y)(}(y - x) ]K(x,y), 

[w(x)B(x - y) + w(y)(}(y - x) ]L(x,y). 

(2.19) 

(2.20) 

The approximation (2.18) for the smooth, monotonic func­
tion a>(k 2) is good whenp2>p,2 orp2<p'2, but not whenp2 
and p'2 are comparable in magnitude. However, the approxi­
mation is not expected to affect either the infrared or the 
ultraviolet behaviors of the solution. 

With the approximations (2.17) and (2.18), the kernels 
read 

K(x,y) = -h[w(x),u(x)(}(x - y) + a>(y),u(y)(}(y - x)] , 
(2.21 ) 

We require that a>(x) be a monotonically decreasing L(x,y) = (y/32) [w(x)v(x,y)8(x - y) 

function of x for Euclidean momenta. With the Euclidean + w(y)v(y,x)(}(y - x)] , (2.22) 
version of (2.4), namely, 

w(x) = x: m2 [log(1 + ;2 )] -I, (2.12) 

it is not possible to evaluate the kernels K and L in terms of 
elementary functions. 

A simplification is to replace w(k 2) by unity, i.e., the 
coupling does not run. This has a profound (and nonphysi­
cal) effect on the behavior ofthe equation. The kernels can 
now be evaluated, 

(2.13 ) 
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where 

,u(x) = 3/(x + m2) + al(x + am2), 

_ (Y_x)2+ am2(y+x)]. 

x+am2 

(2.23) 

(2.24) 

The Feynman gauge (a = 1) is especially simple, 

D'j'V(k) = [_gl'v/(k2_m2+iE)]W( _k2), (2.25) 
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",,(x) = 4/(x + m2
), 

V(X,y) = 2/(x + m2)2. 

(2.26) 

(2.27) 

It turns out that in this gauge (and others), an ultraviolet 
cutoff is necessary (see Sec. IV). On the other hand, no such 
cutoff is required in the Landau gauge (a = 0), 

D;fV(k) = _g}w+kf.lk
v
/(k

2
+i€) cu( k 2 ), 

k 2 _ m2 + i€ 

",,(x) = 3/(x + m2), 

2 y-3x 
v(x,y) = 2 2 + 2 2 

(x + m ) x (x + m ) 

(2.28) 

(2.29) 

(2.30) 

As can be seen from the denominator in (2.30), an infrared 
singularity has been introduced, a gauge artifact, and this 
turns out to be a nuisance. To avoid this difficulty, Maskawa 
and Nakajima2 introduce what they called the Landau-like 
gauge, with the gluon propagator 

D ;fV(k) 

= + cu( - k ), [ 
_gf.lV kf.lkV] 2 

k 2 _m2+i€ (k 2 _m2 +i€)2 
(2.31) 

for which the kernels K and L, with the approximations 
(2.17) and (2.18), have the form (2.21) and (2.22), with 

",,(x) = 3/(x + m2) + m2/(x + m2)2, (2.32) 

(2.33) 

Here the good ultraviolet properties have been retained, 
while the artificial infrared divergence has been removed. 

In Sec. III, we consider this Landau-like gauge, without 
ultraviolet cutoff; while the Feynman gauge is treated in Sec. 
IV. In the latter case, a Pauli-Villars cutoff has to be intro­
duced. 

The major purpose is to find out conditions under which 
there is a criticalAc >0, such that, forO <A <..1c' Eqs. (2.7) 
and (2.8) only have the chiral solution a=O, while for 
A >..1c ' there is also a nontrivial solution, a:;;fO. To investi­
gate such a bifurcation point ..1c we differentiate the equa­
tions functionally w.r.t. a, and set a = 0, 

~a(x) = ~ ("" dy K(x,y) ~(y) , 
11 Jo 13 (y) 

(2.34 ) 

..11"" 1 f3(x) = 1 + --2 dy L(x,y) --. 
11 0 f3(y) 

(2.35) 

III. LANDAU-LIKE GAUGE 

In the case (2.31)-(2.33), we can write the bifurcation 
equations (2.34) and (2.35) in the form 

A {(X 1"" } ~a( ) ~a(x) = 16t? Jo dy p(x) + x dy p(y) 13 2~) , 

(3.1 ) 

f3(x) = 1 + ..1_
2

{ (X dyq(x) + 1"" dyq(y)} -y_, 
1611 Jo x f3(y) 

(3.2) 
where 
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p(x) = [3/(x + m2) + m2/(x + m2)2]cu(x), (3.3) 

q(x) = [m2/(x + m2)3J cu(x). (3.4) 

We study first Eq. (3.2). To this end, consider the map-
ping 

P(x) = P(P;x) , (3.5) 

where P(f3;x) is just the right-hand side of (3.2). Let B be 
the Banach space of real, continuous functions I(x) with 
supremum norm, for which the following inequalities hold: 

O<Pm<./(x)<,PM < 00. (3.6) 

We shall specify 13 m and 13 M in a moment. 
Next, define the function 

P(x) = 1:t? {f'y dy q(x) + l"" y dy q(y)}. (3.7) 

It is easy to see that P(x) is non-negative and monotonically 
decreasing in 0 <x < 00. Thus 

O<.P(x) <.P(O) < 00. (3.8) 

A computer estimate gives 

1 L"" cu
2 

P(O) = L --2 dcu 4 ;::::0.001 82. 
1011 0 (l + cu) log(l + cu) 

(3.9) 

Because of the positivity of q(x), we see from (3.2) and 
(3.5) that 

P(x»1 (3.10) 

and 

P(x)<.1 + ..1P(O), 

so that, if we define 

13m = 1 

and 

13M = 1 + ..1P(O) , 

(3.11 ) 

(3.12) 

(3.13 ) 

we see that the space B is mapped into itself by the nonlinear 
operator, P. Indeed, the image of B is actually compact in 
norm, since 

~P(x) = ..1--2 [~q(X)] (X ydy . 
dx 161T dx Jo f3(y) 

(3.14) 

Now dq/dx is negative, so dP /dx is also negative, and 

-~P(x)<. _~X2 [~q(x)]<.const, (3.15) 
dx 32t? dx 

i.e., IdP / dx I has a bound that is independent of p. 
Since P is a completely continuous operator that maps B 

into itself, we can use the Schauder theorem to assert that 
there is at least one fixed point, P = 13, in B, i.e., at least one 
solution of (3.2). To show that the solution is unique in B, 
we subtract 13(0), 

P(x) =P(O) +--:::::2 dy[q(x) -aCyl] -y-. A LX 
1611 0 f3(y) 

(3.16) 

Any solution of (3.2) is also a solution of (3.16), on the 
condition thatp(O) has the correct value. We first show that 
no two different solutions in B can have the same P( 0). For 
suppose that 131 and 132 both satisfy ( 3.16) , and that 
131 (0) = P2(0). Then 
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A LX /31 (x) - /32 (X) = lW 0 y dy[u(y) - U(X)] 

x /31(y) -/32(Y) . 

/31 (Y)/32(Y) 
(3.17) 

Hence 

where 

L (x) = LX ydy[u(y) -u(x)]. (3.19) 

Let us take x> 0 to be so small that, for any XE [O,x] , 

L (x)< 
161-:" K (3.20) 

with K < 1. Then 

(3.21) 

which is only possible if /31 (x) = /32(X) for O<X<X. Since 
/3(x) satisfies the differential equation 

[
/3'(X)]' A x 
o'(x) = lW /3(x) , 

(3.22) 

it is easy to extend this identity to all x values. 
Next consider the case that/31 (0) =1/32 (0). For definite­

ness, we set/3I(O) >/32(0). Instead of (3.17) we have 

/31(X) -/32(X) 

A LX = /31 (0) - /32(0) + --::2 y dy[u(y) - u(x)] 
1611 0 

X /31(Y) -/32(Y) . (3.23) 
/31 (Y)/32(Y) 

This has the structure of a linear Volterra equation for 
/31 - /32' given/3Jf32; and the Neumann series is guaranteed 
to have an infinite radius of convergence. Since u(y) ;>u(x) 
for y<x, each term in the series is non-negative, and so, for all 
x 

(3.24) 

Now it follows from (3.2) that /3( (0) = 1, so by taking 
x = 00 in (3.24) we find /32(0);>/31(0), which contradicts 
/31 (0) >/32(0). Hence/31 (0) = /32(0) and, as we have seen 
this implies/31 (x) =/32(X). 

Having shown that (3.2) has a unique solution in B, we 
turn to (3.1). Let us write it in the form 

A L'" e>a(x) = --::2 dy H(x,y)e>a(y), 
1611 0 

(3.25) 

where 

H(x,y) = [p(x)O(x - y) + p(y)O(y - x)]/3 -2(y). 
(3.26) 

Thanks to the fact that/3(y) is bounded from below, we can 
show that H is a positive L 2 kernel, 
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X(3 + _1_)2 < 00. 

1+Cl) 
(3.27) 

Hence (3.25) is a classic Fredholm equation, and thus, if we 
require e>a(x) to belong to L 2, the spectrum is discrete; in 
particular, there is a smallest value Ac > 0 such that (3.25) 
has only the trivial solution, e>a(x) =0, if 0 <A <Ac' while it 
has a nontrivial solution if A = Ac. 

The existence of a critical point Ac is crucially depen­
dent on limiting e>a to L 2. Equation (3.1) is equivalent to the 
differential equation 

d [(dldx)e>a(x)] A e>a(x) 
dx (d Idx)p(x) = 16"; /32(X) , (3.28) 

with the boundary condition 

~e>a(x) -+ O. 
dx x-a 

(3.29) 

The asymptotic behavior of (3.28) for large x is 

d[2 X d ] 3A - x log-2 -e>a(x) + £....2e>a(x)-O, 
dx m dx 1011 

(3.30) 

where we have used the fact that /3( (0) = 1. This admits 
two solutions, which have the asymptotic behaviors 

fR (x) - (llx)[log(xlm2)] -I +3,t1l61T', (3.31) 

,h (x) - [log (xlm2) ] - 3A1161T'. (3.32) 

The general solution of (3.28) is 

e>a(x) =AfR(x) +B,h(x), (3.33) 

but in order for this to solve the integral equation (3.1), the 
boundary condition (3.29) needs to be imposed. This fixes 
the ratio B I A, the remaining constant being a trivial norma­
lization.1t should be noted that a solution of the form (3.33) 
exists for any A, but that it is not in L 2 in general. The small­
est value of A for which B = 0 is precisely Ac ' and 6a is then 
the regular solution fR' which is in L 2. 

In conclusion, we have seen that the bifurcation equa­
tions, in the Landau-like gauge, yield a critical pointAc only 
if some information external to the Dyson-Schwinger sys­
tem is used, in order to exclude the irregular solution 
,h(X).3.8.9 

IV. FEYNMAN GAUGE 

In Feynman gauge the bifurcation equation (2.35) for /3 
has the specific form 

A L'" y /3 (x) = 1 + --::2 dy u(xmax ) --, 
167T 0 /3(y) 

(4.1 ) 

where X max = max (x,y) , and where by hypothesis the func­
tion 

(4.2) 
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is positive and monotonically decreasing. Notice that the 
function u has one inverse power of (x + m 2

) less than that 
of Sec. III. We shall in fact show that (4.1) has no solutions. 

Equation (4.1) is equivalent to the integrodifferential 
equation 

{3'(x) = ---:=2u'(x) dy-
y
-, A. L" 

161T 0 {3(y) 

along with the boundary condition 

{3( (0) = 1. 

(4.3) 

(4.4) 

Let us consider the case in which {3(O) > 0, and define the 
domain SO on which {3 remains positive, 

SO = {xl{3(y) > 0 for yE[O,x]}. (4.5) 

It follows from (4.3) that {3 is monotonically decreasing on 
SO. As a consequence 

{3'(x)<[A. 132rr{3(O) ]x2u'(x) (4.6) 

for xeSO. Integrating, we obtain 

A. LX {3(O)-{3(x» rr: dyyu(y). 
16 P(O) 0 

(4.7) 

It follows from (4.2) and the definition (2.4) of m that, at 
largey, 

u(y)_l/y2 10gy, (4.8) 

so that the integral in (4.7) approaches log log x asymptoti­
cally at large x. Because of this divergence, the function 
{3(x) must approach zero at a finite point Xo on the positive 
real x axis. In the vicinity of such a point, the solution to the 
differential equation (4.3) has the behavior 

{3(x) - (xo - x) [(A.xol8rr)u'(xo)log(xo - x)] 1/2. 
(4.9) 

The solution to Eq. (4.3) consequently has a branch point at 
x = xo, with the real-analytic continuation having a branch 
cut for x> Xo' Furthermore, this solution of (4.3) has the 
asymptotic form 

{3(x)- ± [( -A./8rr)loglogx]1/2 (4.10) 

as x becomes large within the cut plane. Such solutions are 
not consistent with the boundary condition (4.4), so that 
they do not satisfy the integral equation (4.1), even if x is 
allowed to be complex. 

We have shown that there are no solutions of (4.1) for 
{3(x) positive. Since - {3(x) satisfies Eq. (4.3) if {3(x) is a 
solution, there are also no solutions of (4.1) for {3(O) nega­
tive. For {3(O) = 0, the solution to (4.3) has the following 
asymptotic behavior at small x: 

{3(x)- ± [(A.II2rr)u'(O)x3 ]1/2, (4.11) 

where u' (0) < O. In this case the real-analytic solution has a 
branch cut for x > 0, and it also has asymptotic behavior 
(4.10) at large x. Therefore there are no solutions to the 
integral equation for this case either. 

The integral equation ( 4.1 ), considered for any positive, 
strictly decreasing weight functions m(x), has no solutions 
whenever 

lim (X dy yu(y) = 00. 

x- 00 Jo (4.12) 
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If the weight function m (x) were chosen to decrease slightly 
faster-say,O [ (log x) - I -~] fOfE> O-the integral (4.12) 
would converge and the integral equation would have a solu­
tion. This might well be affected by modifying the approxi­
mation for the quark-gluon vertex function-a matter we 
propose to take up in the future-but for the present we shall 
discuss the more standard Pauli-Villars cutoff procedure. 

In the Pauli-Villars approach, we replace the function 
u(xmax ) in the nonlinear integral equation (4.1) by the func­
tion 1'(xmax )' 

1'(x) =m(x) [l/(x+m2)2_l/(x+A2)2]; (4.13) 

with A>m. Equivalently, the function {3(x) will satisfy the 
nonlinear Volterra equation 

{3(x) ={3(O) +---:=2 dy-
y

- [1'(x) -1'(Y)], A. LX 
161T 0 {3(y) 

along with the boundary condition 

{3( 00 ) = 1. 

(4.14 ) 

(4.15) 

Let us consider the solution of Eq. (4.14), starting from a 
given initial value {3 (0) > O. We define SO as the domain over 
which {3 remains positive; vide Eq. (4.5). For x in SO, the 
Volterra equation has a unique monotonically decreasing 
solution {3(x). Furthermore, the value of {3 at fixed x is mo­
notonically increasing as a function of the initial value {3 (0) . 
On the domain SO, {3(x) satisfies the bound 

{3(x»{3(O) - I 1{3(x) , (4.16) 

where 

A. Loo 1=---:=2 dy Y1'(y)· 
161T 0 

( 4.17) 

If we choose 

{3(O) > [41] 1/
2

, (4.18 ) 

it follows from (4.16) that{3(x) is positive for all x>O. 
We have shown that, for {3(O) chosen sufficiently large, 

the nonlinear integral equation (4.14) has a unique positive 
solution for x> O. For a particular choice of {3( 0), one satis­
fies condition (4.15). One can show directly from the inte­
gral equation that, to meet (4.15), the initial value {3( 0) lies 
somewhere between the limits 

1+ [/ 2 + 4] 1/2/2<{3(O)<J + 1. ( 4.19) 

Consequently, there is a unique solution to the integral equa­
tion corresponding to (4.1), with a Pauli-Villars cutoff in­
serted. 

We have shown the existence of a unique positive solu­
tion of the cutoff integral equation, but the question remains 
as to the limit in which the cutoff parameter A becomes 
large. For our case the integral I(A), defined in (4.17), has 
the form 

A ("" [1 1] 
I(A) = 16rr Jo dy ym(y) (y + m2)2 - (y + A2)2 . 

(4.20) 

Because of (4.12), the integral I(A) must diverge in the 
limit A -+ 00. In fact, one can show that 

I(A) - (A. 116rr)log log A (4.21) 

D. Atkinson and P. W. Johnson 2492 



at large A. Because of this asymptotic behavior, along with 
the bounds (4.19), it follows that 

(3(O,A) - (A 116r)log log A (4.22) 

as A ...... 00 • In fact, one may show that, for fixed x, the renor­
malized function 

P(X)= lim [(3(x,A)I{3(O,A)] = 1. (4.23) 
A-oo 

The integral equation (2.34) for8a(x), with{3(x,A) insert­
ed, exhibits chiral symmetry breaking, in that for A less than 
some critical value Ac > 0, the only solution is 8a = 0. The 
analysis in Feynman gauge is similar to that of Sec. III in 
Landau gauge. The critical coupling Ac depends upon A, and 
in fact 

Ac-[{3(0,A)]2. (4.24) 

In other words, the only consistent solution of (2.34) for 
fixed coupling A in the limit as the cutoff A becomes large is 

8a(x,A) = 0. (4.25) 

The renormalized function 8ii(x) is also zero, 

1;:-( )=1' 8a(x,A)_0 uaX_lm -. 
A- 00 (3(O,A) 

We therefore find that in Feynman gauge, the normal­
ized inverse quark propagator S -1 (p) corresponds to a 
massless, free quark, 

S- -1 ( ) _ l' a(x,A) + ;{J(x,A) -.I P - 1m -I" 
A- 00 {J(O,A) 

(4.26) 

In summary, we have shown that there is no solution of 
the bifurcation equation ( 4.1) in Feynman gauge, because of 
problems in the ultraviolet. There is a solution to the Dyson­
Schwinger equations when a Pauli-Villars cutoff parameter 
A is introduced, but the renormalized propagator corre­
sponds to free, massless quarks in the limits as A ...... 00. One 
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would expect the phenomenon of chiral symmetry breaking 
to gauge invariant, but our algorithm for truncation of the 
Dyson-Schwinger equation is explicitly gauge dependent. 
The difficulty can be plausibly traced to the naive JBW treat­
ment of the full vertex function. 
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