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Chiral symmetry breakdown. II. Ansatz for vertex in ultraviolet 
D. Atkinson 
Institute/or Theoretical Physics, P. O. Box 800, 9700 AV Groningen, The Netherlands 

(Received 17 March 1987; accepted for publication 13 May 1987) 

An earlier analysis of the Dyson-Schwinger equation for the quark propagator is improved by 
taking the Slavnov-Taylor identity into account in the ultraviolet. It is found that chiral 
symmetry breaking occurs above a critical coupling in the Landau gauge; but that this result 
does not hold in other gauges. 

I. INTRODUCTION 

Much study has been devoted to the tantalizing possibil
ity that the (constituent) masses of quarks arise from the 
nonperturbative breakdown of chiral symmetry.I-5 More 
specifically, it is supposed that the bare quark mass vanishes; 
and the Dyson-Schwinger equation for the quark propaga
tor is then analyzed for signs of chiral symmetry breaking. 
The most popular scenario is that in which this breakdown 
occurs only if the QCD coupling A is greater than a certain 
critical value Ac: this point constitutes then a bifurcation of 
the mass function from the trivial to a nontrivial solution of 
the equation. 

Some authors confine themseleves to the Landau gauge 
and assume that the trace of 1 times the inverse quark propa
gator is p2. This is only correct if the gluon remains massless. 
If the gluon acquires an effective mass, as a result of self
interaction, this trace is p2f3(p2), where f3 is a function that 
has to be obtained from the Dyson-Schwinger equation. In 
Refs. 6 and 7, we showed that, in the approximation 
f3(p2) == 1, a positive bifurcation point Ac exists only ifboth 
infrared and ultraviolet cutoffs are introduced. In Ref. 8 we 
elaborated the analysis by treating f3 properly: in the pres
ence of an infrared cutoff, in the form of an effective gluon 
mass, and an ultraviolet cutoff, provided naturally by the 
logarithmic decrease of the running coupling constant, we 
found again that Ac > 0 in the Landau gauge. However, in 
the Feynman gauge (and in other gauges), it turned out that 
there is no solution of the equation for f3(p2), unless a Pauli
Villars cutoff A is introduced. As A - 00, so Ac -0, thus 
indicating an extreme gauge dependence that casts doubt on 
the credibility of the approach. 

The most questionable approximation made in Ref. 8 is 
the replacement of the full quark-gluon vertex r v (p' ,p) by 
its bare value r v' Since the difficulties in the Feynman gauge 
are associated with ultraviolet divergences, and since the in
verse quark propagator behaves like IfJ(p2) as p2 _ 00, a bet
ter approximation for r v should be r", multiplied by f3, 
since this is consistent with the Ward-Takahashi identity in 
the ultraviolet regime. It is true that the correct Slavnov
Taylor identity of a non-Abelian theory contains matrix ele
ments of ghost fields, as Miransky has pointed out9

; but it 
might reasonably be hoped that these do not alter the ultra
violet behavior of the quark propagator. 

In this paper we undertake a treatment of the quark 
propagator, with the above-mentioned improvement in the 
approximation for r 1" We find that the analysis is much 
easier than that of Ref. 8; but the fundamental conclusions 

remain unchanged: Ac is positive in the Landau gauge, and 
Ac -0 as A- 00 in the Feynman gauge. 

Ten years ago, Weinberg10 suggested that a positive bi
furcation point Ac is not to be expected, since, if it were to 
exist, it would surely be gauge dependent; and the onset of a 
phenomenon such as chiral symmetry breaking presumably 
ought not to depend on the gauge that one chooses. Our 
conclusions support this conjecture; and, in this connection, 
a parallel analysis that employs Delbourgo's gauge tech
nique, II in which the Ward-Takahashi identity is respected 
at all momenta, similarly yields a gauge dependence of Ac. 

In Sec. II, we briefly recall the formalism, while the 
analysis is carried out in Sec. III. An Appendix is devoted to 
the bifurcation theory that is required in the body of the 
paper. 

In conclusion, although the general result of this work 
suggests that the existence of a gauge-independent bifurca
tion point Ac > 0 is untenable, the hope might reasonably be 
entertained that our general methods will yield more posi
tive results in other situations. In particular, in finite-tem
perature field theory, one expects a phase transition to the 
plasma state above a critical temperature Tc and bifurcation 
theory should prove a useful tool. 

II. DYSON-SCHWINGER EQUATION AND SLAVNOV
TAYLOR IDENTITY 

The Dyson-Schwinger equation for the quark propaga
tor may be written in Euclidean space in the form 

S;, -I(p) =1 + (2~)4 J d 4
p' rI-'S;'(p')r1'(p',p) 

X D ;'1-'1' (p' - p ) , (2.1 ) 

where A is the square of the QCD coupling constant, times a 
color factor. Here D;' is the gluon propagator, and we shall 
equip it with a mass and a running coupling, 

D;'I-'1'(k) = w(k2)DFI-'1'(k). (2.2) 

Here DF is the bare propagator for a massive vector field, 
and w(x) is a given function with the following properties: 

w(O) = 1, w(x)-(logX)-1 asx-oo, dw(x) ,.;;0. 
dx 

(2.3 ) 

The Slavnov-Taylor identity, with ghosts neglected, is 

(p' -p)1'r1'(p' -p) =S;,-'(p) -S;,-'(p'), (2.4) 

and this relates the longitudinal part of the quark-gluon ver
tex to the inverse of the quark propagator. If we set 
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(2.5) 

then we expect that, as p - 00 at fixed p', (2.4) will read 
asymptotically 

Pvr v (P',p) _p{3(p2) (2.6) 

and similarly for p' - 00 at fixed p. This motivates the ansatz 

r v (p',p)-:::;rv{3(p;), (2.7) 

wherep; = max(p2,p,2), which should respect the ultravio
let behavior of the theory better than does the constant ver
tex approximation of Ref. 8. 

As in Ref. 8, we approximate the running coupling func
tion (j) by 

(j)(k 2) = (j)( (p' _ P )2)-:::;(j)(p; ), (2.8) 

and we evaluate the angular integrals in (2.1). This results in 
the coupled integral equations 

a(x)=~i'" dyK(x,y) ya(Y){l(x» , 
"r 0 a2(y) + y{l2(y) 

(2.9) 

{3(x) = 1 +~i'" dyL(x,y) y{3(Y){3(x» . 
"r 0 a 2(y) + y{32(y) 

(2.10) 

The kernels K and L were given explicitly in Ref. 8, and we 
do not reproduce them here, nor shall we repeat the discus
sion of their further approximation. 

III. BIFURCATION EQUATIONS 

As in I, we shall consider the Feynman gauge, and a 
modification of the Landau gauge, the so-called Landau-like 
gauge of Maskawa and Nakajima,1 for technical conven
ience. Upon differentiating (2.9) functionally with respect 
to a, and setting a = 0, we obtain the following equations: 

c5a(x) = 16,1,-2i"" dyp(x> ){3(x> )c5~(y), (3.1) 
n- 0 {l (y) 

and 

A. i'" flex) = 1+ 16-2 dyu(x> ){l(x> )-y_, 
~. 0 {ley) 

(3.2) 

where x> = max (x,y), and where 

p(x) = [4/(x + m2) ](j)(x), 

u(x) = [1I(x + m2)2](j)(x), 

in the Feynman gauge, and 

(3.3) 

(3.4) 

p(x) = [3/(x + m2) + m2/(x + m2)2](j)(x), (3.5) 

u(x) = [m2/(x + m2)3](j)(x), (3.6) 

in the Landau-like gauge. Here m is the effective gluon mass, 
which is assumed to arise from gluon-gluon interaction. 

Consider first Eq. (3.2), which can be written 

flex) = 1 + ,1,-2iXydyu(x){3(X) +~i"'YdYU(Y) 
16~ 0 {3(y) 16"r x • 

(3.7) 

The last integral here is convergent in the Landau-like 
gauge; but it is log log divergent in the Feynman gauge. Con
vergence can be achieved in this case by the imposition of a 
Pauli-Villars cutoff, which has the effect of replacing (3.4) 
by 

u(x) = [1I(x + m2)2 - 1I(x + A2)2](j)(X). (3.8) 
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Divide (3.7) throughout by flex) and define 
= [{3(x)] -I, thus obtaining 

rex) 

rex) A. r 
lex) = 1 - 161r u(x) Jo y dy r(Y), (3.9) 

where 

[/(x)] -I = 1 + 1~ L"" y dy u(y). (3.10) 

Note that (3.9) is a linear Volterra equation that can be 
converted into a linear differential equation for r(x). The 
unique solution of the Volterra equation is 

(3.11 ) 

From (3.10) we see that/ex) -1 asx- 00, whether we 
take u to be given by (3.6), the Landau-like gauge, or by 
(3.8), the Feynman gauge with Pauli-Villars cutoff. Hence, 
from (3.11), rex) -1 asx- 00. 

Further, 

[ A. 1'" ]-1 reO) =/(0) = 1 + 16"r 0 ydyu(y) >0; 

(3.12) 

and moreover, it is easy to check from (3.11) that 

A. r 
y'(x) = - 16"r u'(x) Jo dyI2(y), (3.13 ) 

which is positive, since u'(x) is negative. Hence, as x in
creases from zero to infinity, rex) increases monotonically 
from/CO) to unity, and{l(x) decreases monotonically from 
[/(0)] -I to unity. 

We tum now to (3.1), which we rewrite 

A. 1'" c5a(x) = 16"r 0 dy F(x,y)c5a(y) , (3.14) 

where 

F(x,y) = p(x){l(x) O(x-y) + p(y) O(y-x). (3.15) 
{32(y) {ley) 

The kernel F is square integrable, 

IIFII2 = i'" dx i
X 

dy p2(X){l2(X) 
o 0 {l4(y) 

+ i'" dxi'" dy p2(y) 
o x {l2(y) 

<[[/(~)]2+1]i'" dXxp2(X). (3.16) 

In the Landau-like gauge, 

p(x) = [3/(x + m2) + m2/(x + m2)2](j)(x) 

<[4/(x+m2)](j)(x), (3.17) 

and the last expression is just p in the Feynman gauge. So in 
both gauges 

IIFII2<16[[/(~)]2 + 1] 1'" dx (x +Xm2)2 (j)2(X), 

(3.18 ) 

which is convergent, since (j)2(X) - (log x) -2 asx- 00. No
tice that the running coupling function (j) is essential for this 
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convergence. Since (3.14) is a homogeneous Fredholm 
equation, it only has a nontrivial L 2 solution oa for A on a 
point set. The smallest positive point in this set, say Ac ' 

which necessarily satisfies 

(3.19) 

corresponds to the bifurcation of a nontrivial L 2 solution 
a(x) ofEqs. (2.9) and (2.10) away from the trivial solution 
(see the Appendix). 

Equation (3.14) is equivalent to the differential equa
tion, 

d [ (d Idx)oa(x) ] A oa(x) 
dx (d Idx) [p(x).B(x)] = l6r .B 2(x) 

with the boundary condition, 

d 
- oa(x) -+ O. 
dx x_o 

(3.20) 

(3.21) 

According to the general theory oflinear, second-order, or
dinary differential equations, Eq. (3.20) has two indepen
dent solutions, say fR and h, and the general solution of 
(3.14) is 

oa(x) =AfR(X) +Bh(x); (3.22) 

and the ratio of A to B is determined by the boundary condi
tion (3.21). The solution is thus unique, up to a normaliza
tion. 

The ultraviolet behaviors of the regular and irregular 
solutions follow from the fact that .B(x) tends to unity as 
x .... 00, thatp(x) is given by (3.3) or (3.S), and that w(x) 
satisfies (2.3). We find 

fR (x) -x-I(log x) -I + b, 

h(x)-(logX)-b, 

(3.23 ) 

(3.24) 

as x .... 00, where b = A 14r in the Feynman gauge and 
b = 3A 116r in the Landau-like gauge. The solution (3.22) 
is square integrable only if B = 0, and the smallest value of A 
for which this happens is precisely Ac ' the bifurcation point. 

The whole analysis is applicable to the Landau-like 
gauge without cutoff, or the Feynman gauge with cutoff. As 
A .... 00 in the latter case, however, {J(O) -log log A. Sub
tract{J(O) from (3.7), 

.B(x) =.B(O) + A-2 (X ydy [U(X) .B(x) -U(y)] , 
1611 Jo .B(y) 

(3.2S) 

and define a renormalized /:lex) = Z2.B(X), where Z2 
= [.B(O) ]-1. The renormalized version of (3.2S) is 

/:lex) = 1 + AZ~ (X ydy [U(X) ~(x) _ U(y)] . 
l67T Jo .B(y) 

(3.26) 

As A .... 00, Z2 .... 0 and /:l(x) .... 1. The renormalization con
stant Z2 may not be absorbed into a redefinition of the cou
pling 1 = AZ2 for the coupling should be renormalized by 
the gluon renormalization constant Z3 which we have effec
tively approximated by unity. In the usual perturbative re
normalization, one would expand the integral in (3.26) to 
order An, and Z2 to order A ,. - I, allowing the infinities to 
cancel in the usual way. However, the present nonperturba
tive approach, if it is to be viable, must deal with all diver-
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gences in one fell swoop. The renormalized 
= Z2oa(X) satisfies 

oa(x) = _~ dyp(x> ).B(x> ) +, AZ ioo 
- oa( ) 

1611 0 .B (y) 

oa(x) 

(3.27) 

from which we see that oa(x) .... O as A .... 00. Hence, as the 
cutoff is removed, the quark propagator tends to the bare 
form, (1) -I. Thus we have demonstrated a gauge depen
dence of a most extreme kind: chiral symmetry breakdown 
in the Landau-like gauge and none in the Feynman gauge-a 
most absurd result. 

APPENDIX: BIFURCATION THEORY 

We present a theorem in bifurcation theory and apply it 
to the coupled equations (2.9) and (2.10), in a neighbor
hood of the trivial solution, a(x) = O. 

Theorem: Suppose that 

a(x) = AT(a;x), (AI) 

where a belongs to some real Hilbert space H, Tis a nonlin
ear operator on H, and A is a real number. Suppose further 
that T is thrice Frechet differentiable, and that 

T( - a;x) = - T(a,x), (A2) 

so that T(O;x) = 0, which implies that (AI) possesses the 
trivial solution. Let the first Frechet derivative at the trivial 
solution T'(O;x) be compact on H, and suppose that Ac is 
such that the linear equation 

oa(x) =Ac[T'(O;' )oa](x) (A3) 

has precisely one nontrivial, linearly independent solution 
[i.e., A c- 1 belongs to the (point) spectrum of T' (0; . ), the 
corresponding null space of 1 - Ac T' (0; . ) being one di
mensional] . 

Then there exist precisely two nontrivial solutions of 
(A 1), differing only in sign, for A in a half-neighborhood of 
Ac (i.e., A >Ac or A <Ac)' A proof can be found in Pimbley's 
book. 12 

In Eqs. (2.9) and (2.10), there is the complication that 
a and.B satisfy coupled equations, the trivial solution corre
sponding to a(x) =0 and 

A ioo 
.B(x> ) .B(x) = 1 + -2 dy L(x,y) --. 

11 0 .B(y) 
(A4) 

However, we can treat .B as an implicit function of a. On 
differentiating (2.9) and (2.10) functionally with respect to 
a, we find 

A (00 
oa(x) = r Jo y dy K(x,y) 

X [oa(y).B(x> ) + a (y)o.B(x > ) 

a 2(y) + y.B2(y) 

_ 2a(y).B(x> ) [a(y)oa(y) + Y.B(y)o.B(Y)]] 

[a2(y) + y.B2(y)]2 ' 
(AS) 
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A ("" 
8{3(x) = -rr Jo y dy L(x,y) 

x [ 8{3(y ){3(x > ) + {3(y )8{3(x > ) 

a 2(y) + y{32(y) 

_ 2{3(y){3(x> ) [a(y)8a(y) + y{3(y)8{3(y)]] . 

[a2(y) + y{32(y)]2 
(A6) 

These equations reduce, at a(x) = 0, to 

A Sa"" {3(x> ) 8a(x) = ~ dy K(x,y) -2- 8a(y), 
~ 0 {3 (y) 

(A7) 

8{3(x) =.! ("" d L(x ) [8{3(X> ) _{3(x> )8{3(y)]. -rr Jo y ,y {3(y) {32(y) 
(A8) 

The bifurcation equations (A7) and (A4) are, respectively, 
equivalent to Eqs. (3.1) and (3.2). The possible existence of 
a nontrivial solution of (AS) is irrelevent to the applicability 
of the theorem, since Eqs. (A7) and (AS) are decoupled 
from one another. 

We must now check the conditions of the theorem. The 
space is L 2, and the nonlinear operator T is given in implicit 
form by Eqs. (2.9) and (2.10). The oddness condition (A2) 
is clearly satisfied, and it is easy to check that T is thrice 
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Frechet differentiable. In Sec. III it is shown that (A7) is a 
classic Fredholm equation, which means that T'(O; . ) is 
compact on L 2. The fact that the null space of 
I -AcT'(O;' ) is one dimensional is implied by the analysis 
ofEq. (3.14) in Sec. III, in which it is shown that the solu
tion is unique, up to a normalization. 
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