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The suppression of the decay amplitude for Ks0 ----72n in the (3, "3")EB0l", 3) model of 
chiral symmetry breaking is examined. Pvle model calculations show that' the suppression 
factor is not e• as Dashen stated. It is pointed out that the number of emerging pseudoscalar 
Goldstone bosons is less than eight, and that degenerate perturbation calculations become 
meaningless in this c11se. 

§ I. 

In the chiral invariant scheme of strong interaction, the important problem 
is, to determine the symmetry breaking term, which is not yet fixed in a satisfactory 

way. 

Among the various models of chiral symmetry breaking, the (3, 3) Efl(3, 3) 
modeln is the simplest and promising one~ The smallness of the pion mass com­

pared to the K and r; masses can be naturally explained in this model. In a 
wide class of gauge theories of the weak, electromagnetic and strong interactions, 
the (3, 3) EB (3, 3) breaking seems to be a natural scheme which can readily be 
incorporated.2> , For these reasons and others, it is interesting to know whether 
the chiral symmetry breaking part of .strong interaction Hamiltonian transforms 

like pure (3, 3) EB (3, 3) or not. 
As for the phenomenological analyses on symmetry breaking, it can he said 

that almost no explicit disagreement against the (3, 3) EB (3, 3) model is found, 
though present experimental and theoretical situations are still rather ambiguous. 
For some time the K 13 decal> and ()-term4> in n-N scattering seemed to show dif­

ficulties for (3, 3) EB (3, 3) model. However, the exp,erimental data are still flutter­

ing in the case of K 13 decay5> and there are some ambiguities especially in phase 
shift analyses in the case of n-N scattering.6> Thus we may expect that these will 
become consistent with (3, 3) EB (3, 3) model in future. 

On the other hand Dashen claimed that the decay amplitude for K 8°-----721r 
should be suppressed by a factor of c:2 in the (3, 3) EB (3, 3) model, where c: is a measure 
of chiral SU(3) Q!:)SU(3) symmetry breaking in the strong interaction.7l This pre­
dicts the value of about 10-7 sec, which is several orders larger than the experi­

mental value, for the K 8° lifetime. This might be thought as the only example 
that contradicts (3, 3) EB (3, 3) model explicitly at the present stage. 

*> On leave from Department of Physics, Kyushu University, Fukuoka. 
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In this paper we reinvestigate this problem and show that this difficulty is 

not that of specific model, but is caused by an inadequate treatment. 

§ 2. 

Ithas been known that, neglecting the CP violation, the decay amplitude for K 8° 
----'>2n is of order GJ... where J... is a parameter which measures SU(3) breaking in the 

strong interaction.8' But Dashen show:ed that it is of order Ge2 in the (3, 3) EB 
(3, 3) model of chiral symmetry breaking. These results seem to contradict each 

other, since e and J... are essentially' the same. So we first calculate the decay 

amplitude for K 8°----'>2n in the pole model assuming a simple model Lagrangian, 

and see whether the amplitude is of order Ge or not in the (3, 3) EB (3, 3) model. 

We .introduce basic fields rJ1, .¢1 (i = 0, 1, · · ,, 8) which transform according to the 

representation (3, 3) EB (3, 3) of chiral SU(3) Q9SU(3) group. The following nota­

tion is used hereafter: 

(1) 

The strong interaction Lagrangian is assumed to have the form 

This form of the Lagrangian is not to be thought as a realistic one, but might 

be sufficie:nt for our purpose. The strong interaction Lagrangian (2) can be treated 

· in a conventional way if we reexpress the Lagrangian in terms of new variables 

(3) 

where 

(
a 0 0) 

Z= 0 a 0 
0 0 b . 

(4) 

1s determine'd frorp. the condition that terms linear in (J' disappear from the Lagran­

gian (2). We choose .I: such that a= b = ../-til g in the chiral invarant limit 

(e0 =e8 =0), then the fields ¢1 (i=1, 2, ···, 8) appear as octet of Goldstone particles. 

In this case, a and b are of zeroth order in e, and 

1 j3 a-b=-2 -Ss, 
ma, 2 . 

(5) 

where ma, is' the mass of the scalar K meson. 

The weak interaction Lagrangian which satisfies CP conservation and Lll = 1/2 
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rule is chosen to be 

..Lw= -GTr J..sMM. (6) 
Using the Lagrangians (2) and (6), we calculate the amplitude for K8°~2rr 

in the pole model approximation. The result is 

A(K8°~7r0 +7r~ =i-l2G a-b {1-~g_!_(2a-b) (a-b)}. (7) b(a+ b) 3 mq,! 
Equation (7) indicates that the amplitude is of order Ge. This gives the counter­
example against Dashen's proof that the decay amplitude for K8°~2rr is of order 
Ge2 in the (3, 3) E9 (3, 3) model. 

We shall show a more direct counterexample which leads to contradiction 
with the Callan-Treiman relation between the amplitude for K8°~rr+ +rr- and that 
for KL0~rr++rr-+rr0•9> The relation 

(8) 

indicates that A(K8~2rr) and A(KL~3rr; q(rr0) =0) should be of the same order 
in e, since the pion decay constll!lt 1/2/" remains finite when· e = 0. This relation 
holds in the (3, 3)(B(3, 3) model. To keep consistency with Eq. (8), A(KL0~ 
3rr; q(rr0) =0) must be of order Ge2 in Dashen's scheme, but this is not the case. 
To show this we define the following quantity 

X J d'xd'yd4z exp{i(q,.x+ qby+ q.z)} 

. X (OIT (8 pia" (x) o.jb" (y) (j).j/" (z) (j(fj;/ (0)) !O) . (9) 
Under the conditions qa+qb+q.=O, qa=O, it becomes 

F(m,.2, mb2, m.2; qa=O) =igabca(qa=O), (10) 
where gabca ( qa = 0) is the off-shell quardrilinear coupling of Goldstone bo-sons. 
With the perturbation e!JC' belonging to (3, 3) E9 (3, 3), one can show that 

where Cabcde and dabcd are defined by the following relation: 

L AaAbAcAa = 8icabcaeAe + 16dabca , permutation 

(11) 

and !/{9 is obtained from !/{' by replacing ~0 and ~8 by ¢o and ¢s. ,respectively. 
In contrast to the case of K8~2rr, gabca(qa·=O) remains to be nonvanishing and, 
therefore, a first-order quantity in e. since the dependence of the c's and the d's 
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on suffices 1s different. 

§ 3. 

From the two examples in § 2, it is obvious that Dashen's proof is inconsistent 

with the correct treatment of the degenerate perturbation theory. In the following 

we consider the reason why the misleading result was derived in his scheme. 

If the nonleptonic part of the weak interaction Hainil tonian G H w is built of 

the V-A currents, the following relation holds: 

[Q,. +, Ho+GHw] =0, 

where Q,.+=(Q .. +Q,.5)/2 (a=1,2, ... ,8). 

(12) 

The crucial point of Dashen's proofl is that Ho+GHw has right-handed 

SU(3) symmetry due to Eq. (12), and that this SUR(3) symmetry breaks down 

spontaneously. He claimed that adding GHw to H 0 leaves. 1r, K, r; as exactly 

massless Goldstone particles. If this is the case, the conclusion that the ~tmplitude 

for K8~2n is suppressed by a factor of e2 necessarily follows taking eH' as a 

perturbation term. 

However, adding GHw to H 0 does not leave all of 7r, K, r; exactly massless 

Goldstone particles. We show this by using a classical model satisfying Eq. (12). 

The potential V 0 of chiral invariant strong interaction is taken as some func­

tion of four invariants Ii,10l which are formed of M, Mt, 

(13) 

The potential Vw of weak interaction is assumed to have the specific form 

where G is assumed to be a positive constant for simplicity. Then the potential 

V, sum of V 0 and Vw, satisfies the condition (12). 

We diagonalize the matrix A6 by performing a suitable transformation: 

-where 

UA6U- 1 = [0"1_1], UMU- 1 =Jf$, UiiU- 1 =li. (16) 

We introduce vectors (j}i in the following way: 

When V has equilibrium solutions at nonvanishing (J/s and ¢/s, the symmetry of 

Ho+GHw breaks down spontaneously. 

When V0 has a form 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/54/2/504/1831248 by guest on 20 August 2022



508 T. Suzuki, S. Tameike and E. Yamada 

the equilibrium solution is given by 

<PSiJ,=a,, 

(19) 

From Eq. (19), we can define the vacuum state of Ho+GHw which satisfies the 
condition 

(20) 

Here we note that all of the square roots should have the same sign to ensure 
the nonnegative property of the second order variation of ·the potential. 

The number of Goldstone bosons is obtained in a following way.w We con­
sider the 18 dimentional representation space 6f the a/s and ¢/s. In this space 
we obtain an orbit tJ -by the transitive action of the symmetry group, which the 
Lagrangian initially has, to the equilibrium solution (19). Then the dimension 
of the orbit tJ in this space equals the·number of emerging Goldstone bosons. In this 
case the symmetry group is [U(1)L]2Q9SU(3), and the dimension of orbit, just the 
number of emerging Goldstone bosons, is eight. Except for two pseudoscalar bo­
sons Pa. P3 +P8jy'3, they have no definite parity. 

Although the above argument depends on the special solution of specific model, 
some of the results remain valid in the general case. The potential (15} has 
the symmetry U(l)LX U(1)L xSU(3)il, where the symmetry groups U(1)L's are 
generated by Q3- + Q8 -;,;3 and Q6-, respectively. This symmetry property is due 
to the specific form of GH10• If the weak interaction has a general form except 
that it is SUB (3) invariant and conserves electromagnetic charge, the symmetry of 
the total Hamiltonian is U(l)L X SU(3)B. Here. the generators of the group are 
Q3-+Q8-/y'3 and Q,,+, (a=1_, ... , 8). The electromagnetic charge should be con­
served even after the spontaneous breaking down of the symmetry. · Then ·the 
maximal set of the possible Goldstone bosons will be P3 +Ps/v3 and the seven spin 9 bosons with indefinite parity. We can even construct a model which gives 
Goldstone bosons less than eight. In any case, -they cannot be identified with 
pseudoscalar octet. 

It should be noted that the addition of GHw breaks the SU(3) symmetry of 
H 0 which remains after the spontaneous breaking down of chiral symmetry. Then 
it is obvious that the pseudoscalar octet cannot be left as exact Goldstone bosons 
by the inclusion of GH10• 

We are now in a position to clarify the reason why in Dashen's scheme the 
decay amplitude for K 8 __,.27r appeared of order Ge2 in contrast with the correct 
perturbation calculations. We have shown that some of 7r> K, r;· cannot remain 
massless exact Goldstone bosons after the addition of GH;, to Ho: It makes the 
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degenerate vacuum. ·state .of H 0 split, and the level difference is the order of 
typical matrix element ,of the weak interaction Hamiltonian. Since the chiral sym­
metry breaking part eH' of strong interaction, which is treated as the perturbation 
term in 'Dashen's calculation, is fairly large compared with the level difference 
of unperturbed Hamiltonian H 0 + GHw, it is clear that Dashen has made a mean­
ingless calculation in this problem. It has already been pointed out by Hori and 
Chiba12' in the case of hyperon decay that no physically reasonable answer is 
obtained by a calculation taking H 0 + GHw as an unperturbed Hamiltonian. 

The authors would like to express their. gratitude to the members of the 
Elementary Particle Group of Kanazawa University for discussions and encourage­
ment. One of the authors (T. S.) wishes to thank the Sakkokai Foundation for 
financial support. 

References 

1) M. Gell-Mann, R. Oakes and B. Renner, Phys. Rev. 175 (1969), 2195. 
2) S. Weinberg, Phys. Rev. DS (1973), 605 . 
. 3) L. M. Chounet, CERN ·Pre print, 70-14 (1970). 

R. Dashen, L. F. Li, H. Pagels and M. Weinstein, Phys. Rev. D6 (1972), 834. 
4) T. P. Cheng and R. Dashen, Phys. Rev. Letters 26 (1971), 594. 
5) G. Donaldson et al.; Phys. Rev. Letters 31 (1973), 337. 

H. Braun et al., Pbys. Letters 47B (1973), 182. 
6) L. M. Nath and A. Q, Sarker, Phys. Letters 52B (1974), 213. 

See also the references cited therein. 
7) R. Dashen, Phys. Rev. D3 (Um), 1879. 
8) N. Cabibbo, Phys. Rev. Letters 12 (1964), 64. 

K. Matumoto, M. Nakagawa and Y. Ohnuki, Prog. Theor. Phys. 32 (1964), 668. 
9) C. G. Callan and S. B. Treiman, Phys. Rev. Letters 16 (1966), 153. 

10) G. Cicogna, F. Strocchi and R. Caffarelli, Phys. Rev. D1 (1970), 1197. 
G. Cicogna, Phys. Rev. D1 (1970), 1786. 

11) P. Mottoni and E. Fabri, Nuovo Cim. 54 (1968), 42. 
12) S. Hori and S. Chiba, Soryusiron Kenkyu (mimeographed circular in Japanese) 29 (1964), 

130. 

I 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/54/2/504/1831248 by guest on 20 August 2022


