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1 Introduction

So far all results obtained in numerical lattice QCD are consistent with the expectation

that chiral symmetry is spontaneously broken in the way presumed by chiral perturbation

theory. Little is known, however, about the dynamical processes that cause the symmetry

to break. An intriguing remark, made long ago by Banks and Casher [1], is that the effect

is tied to a condensation of the low modes of the Dirac operator. Studies of the low modes

may therefore provide important clues on the symmetry-breaking mechanism.

In the Wilson formulation of lattice QCD [2] and its improved versions [3, 4], chiral

symmetry is violated explicitly by terms proportional to the first or second power of the

lattice spacing. The Banks-Casher relation consequently cannot be expected to hold exactly

and the detailed properties of the low quark modes could be significantly different from

those in the continuum theory. On the other hand, as long as only renormalizable quantities

are considered, their values in the continuum limit must in principle be computable using

the Wilson theory.

The spectral density of the (hermitian) Dirac operator, and thus the average number

of quark modes in a given range of eigenvalues, are known to be renormalizable [5]. In

the present paper, we first give a second proof of this important fact (section 3). We then

discuss the chiral perturbation expansion of the mode numbers and show, in section 5,

that their calculation in lattice QCD requires only a modest computational effort. Taken

together, these results allow the chiral condensate to be computed in the Wilson theory

in a straightforward manner (section 6). Spectral projectors however have a wider range

of applicability and provide interesting opportunities to explore the chiral regime of QCD,

some of which are briefly mentioned in section 7.

2 Preliminaries

For simplicity we focus on QCD with a doublet of mass-degenerate quarks, but the theo-

retical discussion is more generally valid and extends to the case of real-world QCD. The

quarks will be referred to as the up and down quarks, the associated Goldstone bosons as

the pions and the SU(2) flavour symmetry as the isospin symmetry. We consider both the

– 1 –



J
H
E
P
0
3
(
2
0
0
9
)
0
1
3

continuum and the Wilson lattice theory in order to make it clear in which way the mode

number computed on the lattice is related to the one defined in the continuum theory.

2.1 Spectral density and mode number in the continuum theory

In a space-time box of volume V with periodic or antiperiodic boundary conditions, the

euclidean massless Dirac operator D in presence of a given gauge field has purely imaginary

eigenvalues iλ1, iλ2, . . ., which may be ordered so that those with the lower magnitude

come first. The associated average spectral density is given by

ρ(λ,m) =
1

V

∞
∑

k=1

〈δ(λ− λk)〉 (2.1)

where the bracket 〈. . .〉 denotes the QCD expectation value and m the current-quark mass.

Note that the isospin degeneracy is not included in the mode counting, i.e. the Dirac

operator is diagonalized in the subspace of, say, the up-quark fields.

The Banks-Casher relation [1]

lim
λ→0

lim
m→0

lim
V →∞

ρ(λ,m) =
Σ

π
(2.2)

provides a link between the chiral condensate

Σ = − lim
m→0

lim
V →∞

〈ūu〉 (2.3)

(where u is the up-quark field) and the spectral density. In particular, if chiral symmetry

is spontaneously broken by a non-zero value of the condensate, the density of the quark

modes in infinite volume does not vanish at the origin. A non-zero density conversely

implies that the symmetry is broken, i.e. the Banks-Casher relation can be read in either

direction.

Instead of the spectral density, the average number ν(M,m) of eigenmodes of the

massive hermitian operator D†D + m2 with eigenvalues α ≤ M2 turns out to be a more

convenient quantity to consider. Evidently, since

ν(M,m) = V

∫ Λ

−Λ
dλρ(λ,m), Λ =

√

M2 −m2, (2.4)

the mode number ultimately carries the same information as the spectral density.

2.2 O(a)-improved lattice QCD

The lattice theory is set up as usual on a hyper-cubic lattice with spacing a, time-like

extent T and spatial size L. Periodic boundary conditions are imposed on all fields and in

all directions, the only exception being the quark fields which are taken to be antiperiodic

in time.

As already mentioned, we focus on the Wilson theory in this paper. The details are

not very relevant, but for definiteness we choose the Wilson plaquette action for the gauge

field [2] and the standard expression

SF = a4
∑

x

{

ū(x)Dmu(x) + d̄(x)Dmd(x)
}

(2.5)
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for the quark action, in which Dm denotes the massive, O(a)-improved lattice Dirac oper-

ator [3, 4]. Apart from the bare coupling g0 and the bare mass m0, the only free parameter

in the lattice action is the improvement coefficient csw, which we choose so as to cancel the

O(a) lattice effects in on-shell quantities [6].

In this theory, the renormalized coupling and quark mass are related to the bare

parameters through [4]

g2
R

= Zg(1 + bgamq)g
2
0 , (2.6)

mR = Zm(1 + bmamq)mq, mq = m0 −mc, (2.7)

where mc(g0) denotes the critical bare mass and bg(g0) and bm(g0) are further O(a)-

improvement coefficients. The renormalization constants Zg and Zm depend on the nor-

malization conditions and are functions of the bare coupling and a normalization scale

given in units of the lattice spacing.

Composite fields like the isospin axial current and the isospin pseudo-scalar and scalar

densities are renormalized similarly by factors of the form ZX(1 + bXamq) where X =

A,P, S. The normalization conditions will be assumed to be such that the renormalized

correlation functions satisfy the non-singlet chiral Ward identities up to terms of order a2.

In particular,

mR =
ZA(1 + bAamq)

ZP (1 + bPamq)
m+ O(a2), (2.8)

where m is the bare current-quark mass that appears in the PCAC relation [4].

On the lattice, we shall be mostly interested in the average number ν(M,mq) of eigen-

modes of Dm
†Dm with eigenvalues α ≤ M2. This definition of the mode number formally

coincides with the one given in subsection 2.1, but it would evidently be premature to

conclude that the values calculated on the lattice are simply related to the mode number

defined in the continuum theory.

3 Renormalization of the mode number

The proof of the renormalizability of the mode number given in this section partly follows

the lines of ref. [5], but avoids some of the rather technical assumptions that had to be made

there. An important new element of the proof is the use of twisted-mass valence quarks

and the associated density-chain correlation functions, which have other applications as

well (see section 7).

3.1 Spectral sums and density chains

We consider the lattice theory and introduce the spectral sums

σk(µ,mq) =
〈

Tr
{(

Dm
†Dm + µ2

)−k}〉

, (3.1)

where k ≥ 3 will be assumed for reasons to become clear below. The spectral sums are

related to the mode number ν(M,mq) through the integral transform

σk(µ,mq) =

∫ ∞

0
dM ν(M,mq)

2kM

(M2 + µ2)k+1
, (3.2)

– 3 –



J
H
E
P
0
3
(
2
0
0
9
)
0
1
3

P−

P+
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Figure 1. The flavour labels of the pseudo-scalar densities in eq. (3.4) are such that the contraction

of the quark fields yields a closed quark loop with six edges. Each edge represents a propagator

(Dm ± iµγ5)
−1 and each vertex contributes a factor γ5. The ordered product of these factors,

summed over the positions x1, . . . , x6 of the fields, coincides with the trace (3.1).

which can be shown to be invertible for every fixed k. The renormalization properties of

ν(M,mq) can therefore be inferred from those of, say, σ3(µ,mq).

The inverse of the operator Dm
†Dm + µ2 coincides with the square of the quark prop-

agator in twisted-mass lattice QCD [7]. We are thus led to add a set of isospin doublets

ψl, l = 1, . . . , 2k, of valence-quark fields to the theory, with action

SF,val = a4
∑

x

2k
∑

l=1

ψl(x)
(

Dm + iµγ5τ
3
)

ψl(x) (3.3)

(the isospin indices are suppressed in this formula and τ3 is the third isospin Pauli matrix).

Evidently, in order to cancel the valence-quark determinant, a corresponding multiplet

of pseudo-fermion fields must be added as well. The spectral sums (3.1) can then be

represented by density-chain observables like

σ3(µ,m) = −a24
∑

x1,...,x6

〈

P+
12(x1)P

−
23(x2)P

+
34(x3)P

−
45(x4)P

+
56(x5)P

−
61(x6)

〉

, (3.4)

where P±
ij = ψiγ5τ

±ψj are the charged pseudo-scalar densities of the valence quarks (see

figure 1).

3.2 Renormalization of the spectral sums

With respect to the case of twisted-mass QCD discussed by Frezzotti et al. [7, 8], the O(a)-

improvement and renormalization of the partially quenched theory considered here tends

to be somewhat simpler. In particular, we may choose a scheme which is independent of

the twisted mass parameter and which coincides with the commonly used conventions in

the sea-quark sector of the theory.

At µ = 0, the Wilson theory preserves the lattice symmetries, charge conjugation, the

gauge symmetry and all (vector) flavour symmetries, including the ones that mix the sea

with the valence quarks. Ultraviolet-divergent terms other than those cancelled by the usual

parameter and field renormalizations are excluded by these symmetries. When the twisted

mass µ is switched on, some of the symmetries are broken and further ultraviolet-divergent

terms can arise. Power counting then shows that a multiplicative renormalization,

µR = Zµ(1 + bµamq)µ, (3.5)
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plus the renormalizations required at µ = 0 are sufficient to renormalize the partially

quenched theory. Moreover, the correction proportional to amq included in eq. (3.5) is all

what needs to be added for on-shell O(a)-improvement at µ 6= 0 [8].

Considering eq. (3.4), these remarks suggest that the renormalization of σ3(µ,mq)

is achieved by multiplication with the sixth power of the renormalization factor ZP of

the pseudo-scalar densities and by renormalizing the parameters of the theory. The only

worry one may have at this point is that the summations in eq. (3.4) over the coordinates

x1, . . . , x6 diverge in the continuum limit. However, as already pointed out in refs. [5, 9, 10],

the short-distance singularities of density-chain correlation functions are integrable, and

give rise to O(amq) corrections only, if there are six or more densities.

For any k ≥ 3, the renormalized O(a)-improved spectral sums are thus given by

σk,R(µR,mR) =

{

ZP
1 + bPamq

1 + bPPamq

}2k

σk(µ,mq), (3.6)

where it is understood that the bare masses are expressed through the renormalized ones.

The factors 1 + bPPamq in eq. (3.6) are required for the cancellation of the O(amq) terms

alluded to above which derive from the short-distance singularities of the density-chain

correlation functions [5].

3.3 Renormalized mode number

If the twisted-mass term is considered to be a perturbation of the theory at µ = 0, one

quickly notices that

Zµ = Z−1
P (3.7)

is a possible (and natural) choice of the renormalization factor Zµ.

Another simplification derives from the identity

∂

∂µ
σk(µ,mq) = −2kµσk+1(µ,mq). (3.8)

When the renormalized spectral sums are similarly differentiated with respect to the renor-

malized twisted mass µR, the expressions one obtains must be O(a)-improved. As it turns

out, this is the case if and only if

bµ + bP − bPP = 0. (3.9)

The renormalization factor in eq. (3.6) thus becomes

ZP
1 + bPamq

1 + bPPamq
=

1

Zµ(1 + bµamq)
(3.10)

up to terms of order a2m2
q.

Returning to the integral representation (3.2), we now note that the renormalization

factor {Zµ(1 + bµamq)}−2k needed to renormalize the spectral sum on the left of the

equation is cancelled on the right if we substitute

MR = Zµ(1 + bµamq)M (3.11)
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and renormalize µ. We are thus led to conclude that

νR(MR,mR) = ν(M,mq) (3.12)

is a renormalized and O(a)-improved quantity. In other words, the mode number is a

renormalization-group invariant.

3.4 Universality

The steps taken in this section can be repeated using other regularizations of QCD as long

as these preserve the same (or more) symmetries as the Wilson theory. Dimensional regu-

larization with the ’t Hooft-Veltman prescription for γ5, for example, has all the required

properties, although in this case one is limited to weak-coupling perturbation theory.

Independently of the regularization, the renormalized mode number will be the same

if the same normalization conditions are used. In particular, a definite convention such as

the MS scheme must be adopted for the normalization of the pseudo-scalar densities. The

normalization of the sea-quark mass mR is then determined by the PCAC relation, while

the one of µR is fixed by requiring the identity

∂

∂µR

σk,R(µR,mR) = −2kµRσk+1,R(µR,mR) (3.13)

to hold after removal of the regularization. At this point, the renormalized spectral sums are

uniquely determined and so is the renormalized mode number, since the integral transform

σk,R(µR,mR) =

∫ ∞

0
dMR νR(MR,mR)

2kMR

(M2
R

+ µ2
R
)k+1

(3.14)

is free of normalization ambiguities.

4 Chiral expansion of the mode number

In the continuum theory and for small masses, the mode number can be calculated an-

alytically in chiral perturbation theory. Although all results quoted below are for the

renormalized mode number, we omit the subscript “R” in this section in order to simplify

the notation.

4.1 Chiral perturbation theory

At present the chiral expansion of the spectral density ρ(λ,m) is known to next-to-leading

order of chiral perturbation theory. The first computation to this order was performed by

Smilga and Stern [11] in the massless theory in infinite volume. Later Osborn et al. [12]

and Damgaard et al. [13] performed a more complete and systematic computation based

on partially quenched chiral perturbation theory [14, 15].

The starting point in the paper of Osborn et al. is the formula

ρ(λ,m) =
1

2π
lim
ǫ→0

{Σval(ǫ+ iλ) + Σval(ǫ− iλ)} , (4.1)

– 6 –
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130 MeV

Figure 2. Quark-mass dependence of Σeff/Σ at fixed Λ according to next-to-leading order of chiral

perturbation theory. The low-energy constants have been set to Σ = (250 MeV)3, F = 90 MeV,

µ̄ = 140 MeV and l̄6 = 3 in this plot.

which relates the spectral density to the expectation value −Σval(mval) of the scalar density

of an added valence quark of mass mval. With a doublet of sea quarks, the relevant graded

flavour symmetry group is then SU(3|1) and the chiral expansion of Σval(mval) is derived

from the associated chiral effective theory (see appendix A).

4.2 Large-volume regime

In infinite volume, chiral perturbation theory yields an expansion of ρ(λ,m) essentially in

powers of λ and m. The leading-order term is given by the Banks-Casher formula and the

“effective chiral condensate”, defined through

Σeff =
π

2

ν(M,m)

ΛV
, (4.2)

therefore coincides with Σ in the chiral limit.

At next-to-leading order, the chiral expansion reads

Σeff

Σ

∣

∣

∣

∣

V =∞
= 1 − mΣ

16π2F 4

{

3 ln
ΛΣ

µ̄2F 2
− 3l̄6 − 1 + ln 2 + ln

(

1 +
m2

Λ2

)

+
m

Λ
arctan

Λ

m
+

Λ

m
arctan

m

Λ

}

+ . . . (4.3)

The constants F and l̄6 in this expression are, respectively, the pion decay constant in the

chiral limit and an SU(3|1) low-energy effective coupling renormalized at scale µ̄ (appendix

A). Following the tradition [16], µ̄ may be set to the physical charged-pion mass, but since

only the scale-invariant sum of the first two terms in the curly bracket matters, this choice

is not compulsory.

A remarkable feature of eq. (4.3) is that the one-loop correction vanishes, for any value

of Λ, when the quark mass goes to zero. Smilga and Stern [11] already noted the absence

of terms proportional to Λ and showed that this was a special property of the two-flavour

theory. The chiral corrections to Σeff/Σ consequently tend to be quite small (see figure 2

for illustration).
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4.3 Finite-volume effects

In the present context, the kinematical situation of interest is the so-called p-regime of

QCD, where T ≥ L, FL ≥ 1 and mΣV ≫ F 2L2. Chiral perturbation theory is easily

extended to this regime and can be used to estimate the effects of the finite volume [17].

In the case of Σeff , the calculation shows that the dependence on the volume sets

in at one-loop order and that the infinite-volume limit is reached at an exponential rate

according to

Σeff − Σeff |V =∞ ∝ e−
1
2
MΛL, M2

Λ =
2ΛΣ

F 2
. (4.4)

Note that MΛ coincides with the leading-order expression for the mass of a pseudo-scalar

meson made of two valence quarks of mass Λ. Since Λ is normally taken to be significantly

larger than the sea-quark mass, the finite-size effects (4.4) tend to be smaller than those

expected for the pion mass Mπ, for example, which decrease like e−MπL. In particular, if

the parameter values previously used in figure 2 are inserted, and if L ≥ 2 fm is assumed,

Σeff is estimated to deviate from its infinite-volume value by a fraction of percent at most.

5 Counting the low modes in lattice QCD

In presence of a given gauge field, the number of eigenmodes of Dm
†Dm with eigenval-

ues α ≤ M2 can be determined straightforwardly by calculating the eigenvalues and their

multiplicities numerically. The effort required for such computations however grows pro-

portionally to the second or perhaps even a higher power of the space-time volume V .

In this section, we show that the modes can be counted more efficiently using spectral

projectors.

5.1 Stochastic representation of the mode number

Let PM be the orthogonal projector to the subspace of quark fields spanned by the

eigenmodes of Dm
†Dm with eigenvalues α ≤ M2. An alternative representation of the

mode number

ν(M,mq) = 〈Tr{PM}〉 (5.1)

is then given by

ν(M,mq) = 〈ON 〉, ON =
1

N

N
∑

k=1

(ηk,PMηk) , (5.2)

where we have added a set of pseudo-fermion fields, η1, . . . , ηN , to the theory with action

Sη =

N
∑

k=1

(ηk, ηk) . (5.3)

In the course of a numerical simulation, these fields are generated randomly, for each gauge-

field configuration, and the mode number is estimated in the usual way by averaging the

observable ON over the generated ensemble of fields.

– 8 –
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The variance of ON ,

〈

(ON − 〈ON 〉)2
〉

=
〈

(Tr{PM} − 〈Tr{PM}〉)2
〉

+
1

N
ν(M,mq), (5.4)

is larger than the one of Tr{PM}, but the difference can be reduced by increasing the number

N of pseudo-fermion fields. More important may be the fact that the mode number is an

extensive quantity, while the variance of Tr{PM} does not appear to grow with the volume

V of the lattice at the values of M of interest [18]. At fixed N and for a given statistics, the

relative statistical error of the calculated mode number is therefore expected to decrease

like V −1/2.

5.2 Rational approximation

The projector PM can be approximated fairly easily by rational functions of Dm
†Dm. There

are different ways to proceed and the choices made in the following may not be the best

ones, but the proposed method is quite efficient and numerically safe.

Let P (y) be the minmax polynomial of degree n which minimizes the deviation

δ = max
ǫ≤y≤1

|1 −√
yP (y)| . (5.5)

The numerical computation of this polynomial for specified values of n and ǫ > 0 is a

standard task in approximation theory (see ref. [19], for example). In the range −1 ≤ x ≤ 1,

the function

h(x) =
1

2

{

1 − xP (x2)
}

(5.6)

then provides an approximation to the step function θ(−x). By construction, the approxi-

mation error is at most 1
2δ if |x| ≥ √

ǫ and numerical inspection moreover shows that h(x)

decreases monotonically in the transition region |x| ≤ √
ǫ.

An approximation to the projector PM is now given by

PM ≃ h(X)4, X = 1 − 2M2
∗

Dm
†Dm +M2

∗
, (5.7)

where M∗ ≃ M is an adjustable mass parameter. The quality of the approximation is

determined by the values of n, ǫ and the ratio M/M∗. In practice, the degree n of the

minmax polynomial should be reasonably small and the deviation

∆ = 〈Tr{PM − h(X)4}〉 (5.8)

must be much smaller than the statistical errors of the calculated mode numbers.

The estimation of ∆ and the choice of M/M∗ are discussed in appendix B. Here we

only note that the computation of

(η,PMη) ≃ (η, h(X)4η) = ‖h(X)2η‖2 (5.9)

requires the application of the square of h(X) to the pseudo-fermion field η and not of its

fourth power.

– 9 –
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5.3 Numerical implementation

The minmax polynomial P (y) and therefore the operator h(X) can be expanded in a series

of Chebyshev polynomials with rapidly decreasing coefficients [19]. Chebyshev series of

this kind can be safely evaluated using the Clenshaw recursion [20].

The computation of h(X)η for a given source field η then requires the operator X to

be applied 2n+ 1 times. Each application essentially amounts to solving the linear system

(Dm
†Dm +M2

∗ )ψ = η (5.10)

using one’s favourite iterative algorithm. This system is normally significantly better con-

ditioned than the lattice Dirac equation Dmψ = η. Moreover, it is our experience that a

fairly loose stopping criterion can be chosen without compromising the correctness of the

simulation results.

We finally remark that the computational effort required for the calculation of the

mode number along the lines explained here scales like V or at most V ln(V ) as the lattice

is increased.

6 Computation of the chiral condensate

The simulations discussed in this section have a limited scope, but the results clearly show

that the low modes of the Dirac operator condense and that the mode number can be

accurately computed using the stochastic method described in the previous section.

We have considered two lattices in these studies, with spacing a ≃ 0.08 fm, spatial sizes

L ≃ 1.9 fm and 2.5 fm, respectively, and time-like extents T = 2L. The exact parameter

values and further technical details are given in appendix C. All values quoted for the

renormalized mass parameters, the mass-dependent condensate ΣR defined in subsection 6.3

and the condensate Σ refer to the MS scheme at 2 GeV.

6.1 Qualitative behaviour of the mode number

The data plotted in figure 3 show that the mode number is, in the case considered, a nearly

linear function of MR from above the threshold region at MR ≃ mR up to at least 110 MeV.

This behaviour is qualitatively in line with chiral perturbation theory, but the fact that

the linear regime extends to such large values of MR is rather striking and could not be

foreseen.

At the very low end of the spectrum, the curve shown in figure 3 however clearly

deviates from its expected form in the continuum theory (shaded area in figure 3) [5].

A plausible explanation of the observed deviation is that chiral symmetry is not exactly

preserved in the Wilson theory and that the fine structure of the spectrum of the Dirac

operator near the threshold at MR = mR is consequently not protected from perturbing

lattice effects [21]. The deviation must in any case be a lattice artefact, since the renor-

malized mode number is bound to converge to its continuum value as the lattice spacing

is decreased (cf. section 3).

In the following, we focus on the linear regime in figure 3, where the mode number

is not expected to be particularly sensitive to discretisation errors. Moreover, since the
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Figure 3. Dependence of the renormalized mode number on MR at mR ≃ 26MeV and L ≃ 2.5 fm.

The curve shown is based on a representative ensemble of 71 gauge-field configurations and required

the lowest 80 eigenvalues of Dm
†Dm to be calculated for each of these fields. Statistical errors are

slightly larger than the jitter of the curve.

effort required for the numerical calculation of the low eigenvalues of Dm
†Dm is not small,

the mode number was normally computed using the method described in section 5 and we

shall, from now on, only discuss results obtained in this way.

6.2 Volume-dependence of the mode number

In the large-volume regime of the theory, ν(M,mq)/V is expected to be independent of

the lattice size up to exponentially small corrections (cf. section 4). The lattices we have

simulated are such that we can immediately check whether these corrections are significant

at the level of the statistical errors.

To this end, we form the ratios

r3,4 =
ν(M,mq)D3

ν(M,mq)E4

(

32

24

)4

, r5,5 =
ν(M,mq)D5

ν(M,mq)E5

(

32

24

)4

, (6.1)

where the subscripts D3 etc. refer to the run label quoted in table 2 (appendix C). Both

ratios turn out to be practically equal to 1. More precisely, r3,4 differs from 1 by −0.6 to

−2.0 standard deviations and r5,5 by +0.7 to +1.5 standard deviations as M varies over the

values listed in table 2. There are thus no indications for significant finite-volume effects

on these lattices.

6.3 Calculation of Σ

The values of the renormalized mode number which we calculated on the larger of the two

lattices considered are plotted in figure 4 (left graph). At fixed quark mass, the mode

number is, to a very good approximation, a linear function of MR in the range shown

– 11 –
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Figure 4. Simulation results for the renormalized mode number at fixed L ≃ 2.5 fm (plot on the

left). The linear extrapolation to the chiral limit (open square) of ΣR at MR = 95MeV is shown

on the right. All errors in these plots are statistical only.

in the figure. In particular, the slope of the data can easily be determined by quadratic

interpolation (lines in the left graph).

We are thus led to introduce the mass-dependent condensate

ΣR =
π

2V

√

1 −
(

mR

MR

)2 ∂

∂MR

νR(MR,mR), (6.2)

where the prefactor is chosen such that ΣR coincides with the chiral condensate Σ to

leading order of chiral perturbation theory. In table 1 we list the calculated values of ΣR

at MR = 95 MeV (a point in the middle of the available range of masses). The first errors

quoted in the table are the statistical ones, while the second errors are those inherited from

the product of the lattice spacing and the renormalization factors needed to convert from

lattice to physical normalizations (appendix C).

The next-to-leading order formula (4.3) suggests that ΣR = Σ up to higher-order

corrections and terms vanishing proportionally to mR in the chiral limit. Note that there

are no terms proportional to mR lnmR at this order of the chiral expansion. The data

for ΣR at MR = 95 MeV actually fall on a straight line (right graph in figure 4) and the

extrapolation to mR = 0 then yields the estimate

Σ1/3 = 276(3)(4)(5)MeV (6.3)

for the chiral condensate. Higher-order corrections were neglected here, but appear to be

small as the results vary only little (within roughly the third error given above) when the

chiral limit is taken at other values of MR.
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Run mR [MeV] Σ
1/3
R

[MeV]

E4 45.8(3)(11) 310(2)(4)

E5 26.5(2)(6) 295(2)(4)

E6 12.8(2)(3) 286(2)(4)

Table 1. Simulation results for ΣR at MR = 95MeV

It goes without saying, however, that this procedure and the quoted result for the

condensate will have to be confirmed by more extensive calculations. Meanwhile we note

that the estimate (6.3) is in the range of values obtained in two- and three-flavour QCD

from chiral fits of the quark-mass dependence of the pion mass [22]–[24] and from studies

of the so-called ǫ-regime of QCD [25]–[29].

7 Further uses of spectral observables

Spectral observables like the mode number provide interesting probes of low-energy QCD.

In this section we wish to show that the computation of the chiral condensate is only one

of the possible applications of these observables.

7.1 Scaling to the continuum limit

Extrapolations to the continuum limit require simulations of a series of lattices with de-

creasing lattice spacings. Since only the bare coupling and bare quark mass can be pre-

scribed, the ratios of the spacings of the simulated lattices are not known a priori and need

to be calculated. Evidently, it is very important to obtain the ratios with small statistical

and systematic errors.

A set of O(a)-improved renormalized quantities, which may conceivably be used to

match the lattices, is1
{

Mπ,MRGπ,R,
νR

V

}

, (7.1)

where Mπ and Gπ,R are, respectively, the pion mass and the renormalized vacuum-

to-pion matrix element of the isospin pseudo-scalar density. All these quantities are

renormalization-group invariants. In particular, the dimensionless combinations

C1 = M2
π

(

V

νR

)1/2

, (7.2)

C2 = (MRGπ,R)4
(

V

νR

)3

, (7.3)

are well-defined and directly accessible functions of g0, am0 and aM .

Since C1 and C2 are roughly linearly rising with am0 and aM , respectively, it is

possible to match the mass parameters on any given pair of lattices by requiring C1 and

1The list of observables given here only serves to illustrate the general ideas. In particular, the combi-

nation MRΣR may be used in place of νR/V .
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C2 to assume the same (sensibly chosen) values. After that the ratio of the lattice spacings

is obtained through

a1

a2
=

(

ν1n2

n1ν2

)1/4

, (7.4)

where n1, n2 denote the numbers of points of the two lattices and ν1, ν2 the mode numbers at

the matched values of the mass parameters (we implicitly assumed here that finite-volume

effects can be neglected or that the volumes are the same).

An important technical advantage of this procedure is that all quantities involved are

easily obtained with small errors. In particular, the statistical precision that can be attained

in practice is not expected to change dramatically as the lattice spacing is decreased or if

larger lattices are considered.

7.2 Computation of renormalization constants

Density-chain correlation functions like the ones discussed in section 3 satisfy various chiral

Ward identities in the continuum limit. We may, for example, start from the “twisted

spectral sums”

σk,l(µ,mq) =
〈

Tr
{

γ5

(

Dm
†Dm + µ2

)−k
γ5(Dm

†Dm + µ2
)−l}〉

, (7.5)

which can be represented through density-chain correlation functions of the form

σ1,2(µ,mq) = −a24
∑

x1,...,x6

〈

S+
12(x1)P

−
23(x2)S

+
34(x3)P

−
45(x4)P

+
56(x5)P

−
61(x6)

〉

. (7.6)

In the continuum limit and if k + l ≥ 3, chiral symmetry (or simply the fact that γ5 com-

mutes with Dm
†Dm in the continuum theory) then implies that the properly renormalized

twisted spectral sum σk,l,R coincides with σk+l,R.

On the lattice one should keep track of the O(a) corrections, but following the lines of

ref. [5], it is then straightforward to show that

Z2
P

Z2
S

= (1 + 2bRamq)
σk,l

σk+l
+ O(a2), (7.7)

bR = bS − bP + 2(bPP − bPS), (7.8)

where the improvement coefficient bR is known to one-loop order of perturbation theory

and appears to be small (appendix C).

Equation (7.7) is actually a special case of a more general Ward identity, where the

inverse powers of Dm
†Dm + µ2 in the definition of the spectral sums are replaced by any

sufficiently rapidly decaying functions of Dm
†Dm. In particular,

Z2
P

Z2
S

= (1 + 2bRamq)
〈Tr{γ5PMγ5PM}〉

〈Tr{PM}〉
+ O(a2) (7.9)

is an identity recommended for numerical evaluation.
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7.3 Topological susceptibility

Using parity-odd density chains, the topological susceptibility χt in QCD can be defined in

a manifestly ultraviolet-finite and therefore universally valid way [10]. On the lattice there

exist different definitions of this type, all of which are expected to coincide in the continuum

limit. In particular, one can make use of twisted-mass density chains and it is then possible,

as in the case of the chiral Ward identities discussed in the previous subsection, to pass

from density chains to spectral projectors.

Proceeding along these lines, the expression

χt = (1 + 2bRamq)
Z2

S

Z2
P

1

V
〈Tr{γ5PM}Tr{γ5PM}〉 + O(a2) (7.10)

is obtained, which, when combined with eq. (7.9), leads to the formula

χt =
ν

V

〈Tr{γ5PM}Tr{γ5PM}〉
〈Tr{γ5PMγ5PM}〉

+ O(a2). (7.11)

In principle the mass MR can be set to any value in eqs. (7.9)–(7.11), but since the size

of the lattice effects depends on MR, its value should in practice be chosen with some

care. One evidently requires that aMR ≪ 1 and it is certainly wise to avoid the threshold

region MR ≃ mR, where the lattice effects tend to be kinematically enhanced. Moreover,

a definite prescription that fixes MR in physical units should be adopted when scaling to

the continuum limit, as otherwise there is no guarantee that the calculated renormalized

quantities converge with a rate proportional to a2.

8 Concluding remarks

The condensation of the low modes of the Dirac operator seen in numerical lattice QCD

provides a most direct piece of theoretical evidence for the spontaneous breaking of chiral

symmetry in QCD. Explicit violations of chiral symmetry at momenta on the order of the

inverse lattice spacing have little influence on the mode condensation, because the mode

number is a renormalizable quantity and therefore coincides with its continuum limit up

to terms that vanish proportionally to a power of the lattice spacing.

The dynamical mechanisms that cause the modes to condense are presently not known.

It is quite clear, however, that the spontaneous breaking of chiral symmetry is not a many-

quark collective effect. The mode condensation actually appears to be largely insensitive

to the sea-quark mass and it seems to persist even when passing to the quenched theory.

There is thus no relevant back-reaction of the sea quarks and theoretical studies of the

behaviour of a single quark in presence of representative gauge fields may therefore allow

the breaking of chiral symmetry to be explained.

While the computation of the chiral condensate is an obvious application of the spectral

projector technique introduced in this paper, there are other applications as well and the

technique is also not limited to a particular lattice formulation of QCD. Moreover, it may

be useful for studies of the theory at non-zero temperature and of QCD-like theories, where

chiral symmetry may or may not be spontaneously broken.

– 15 –



J
H
E
P
0
3
(
2
0
0
9
)
0
1
3

We wish to thank Stefan Sint and Peter Weisz for correspondence on the O(a)-

improvement of twisted-mass QCD and Filippo Palombi for his help in producing the

eigenvalue data on which figure 3 is based. The gauge-field configurations used for the

numerical studies were provided by the CLS community [32]. All computations were per-

formed on PC clusters at CERN and CILEA. We are grateful to these institutions for

providing the required resources and their technical staff for assistance.

A SU(3|1) chiral perturbation theory

As explained in section 4, the chiral expansion of the spectral density (and thus of the

mode number) is obtained by calculating the valence-quark condensate Σval(mval) in par-

tially quenched chiral perturbation theory [14, 15]. We here provide some details of this

computation, assuming the reader is familiar with chiral perturbation theory and par-

tial quenching.

Following a suggestion of Sharpe and Shoresh [15], we do not include a flavour-singlet

field in the effective chiral theory. In the sea-quark sector, the chiral expansions generated

by the SU(3|1) chiral lagrangian then literally coincide with those obtained in the standard

SU(2) theory. In particular, the low-energy constants (such as F and Σ) which already

occur in the latter are the same.

A.1 Group generators

The complex Lie superalgebra of SU(3|1) consists of all 4 × 4 supermatrices Xαβ with

vanishing supertrace (see ref. [30], for example). We assume the indices α, β of these

matrices to be such that α = 1, 2 corresponds to the sea quarks, α = 3 to the valence quark

and α = 4 to the ghost (or pseudo-fermion) quark associated to the valence quark.

Our conventions for the generators T a, a = 1, . . . , 15, of the algebra are

T a = (T a)†, Str{T a} = 0, Str {T aT b} =
1

2
gab, (A.1)

where the non-zero elements of the matrix gab are given by

g =























1
. . .

1

−τ2

. . .

−τ2

−1





























1 − 8

}

9 − 14

} 15

(A.2)

More specifically, T 1, . . . , T 8 are assumed to be generators of the SU(3) subgroup acting

on the sea and valence quarks, while T 9, . . . , T 14 mix the ghost with the other quarks and

T 15 is a diagonal matrix with a non-zero ghost-quark component.

In the following the Einstein summation convention is adopted for SU(3|1) group in-

dices and for Lorentz indices. It is also helpful to introduce the tensors

hab = (ga8 − ga15)(gb8 − gb15), kab = (ga8 + ga15)(gb8 + gb15), (A.3)

which satisfy kachcb = 0.
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A.2 Chiral effective lagrangian

The SU(3|1) chiral effective theory is a non-linear σ-model in which the basic field U(x)

takes values in SU(3|1). As usual the lagrangian

L = L(2) + L(4) + . . . (A.4)

is given as a series of terms of increasing dimension. The leading-order term,

L(2) = −1

4
F 2Str{JµJµ} −

1

2
BF 2Str{MU † +M †U}, Jµ = U †∂µU, (A.5)

involves the quark mass matrix M , the pion decay constant in the chiral limit, F , and

the parameter B, which is related to the quark condensate through Σ = BF 2. The mass

matrix is taken to be diagonal,

M = diag{m,m,mval, m̃val}, (A.6)

where m, mval and m̃val are, respectively, the masses of the sea quarks, the valence quark

and the ghost quark. In order to properly quench the valence quark, m̃val will later be set

to mval.

At next-to-leading order, the effective lagrangian reads

L(4) = −L0Str{JµJνJµJν} −
(

L1 −
1

2
L0

)

Str{JµJµ}Str{JνJν} (A.7)

−(L2 − L0)Str{JµJν}Str{JµJν} − (L3 + 2L0)Str{JµJµJνJν}

−2BL4Str{JµJµ}Str{MU † +M †U} − 2BL5Str{JµJµ(U †M +M †U)}

−4B2L6Str{U †M +M †U}Str{U †M +M †U}

−4B2L7Str{M †U −MU †}Str{M †U −MU †}

−4B2L8Str{MU †MU † +M †UM †U} − 4B2H2Str{M †M}.

The additional low-energy constants at this order are thus L0, . . . , L8 and H2. Note that

in these expressions we have omitted all terms that do not contribute to the valence-quark

condensate (such as those related to current correlation functions, for example) [16].

A.3 Perturbation expansion

The chiral expansion of

Σval(mval) = −〈σval〉m̃val=mval
, (A.8)

σval =
∂L
∂mval

= −ΣReU33 + . . . , (A.9)

is obtained by substituting

U = exp {2iφ/F} , φ = φaT a, (A.10)
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in the functional integral and expanding all entries in powers of φ. Since the expectation

value in eq. (A.8) is to be computed at m̃val = mval, one needs to work out the Feynman

rules only for this case.

To second order in φ, the leading-order lagrangian reads

L(2) =
1

2
gab{∂µφ

a∂µφ
b +M2

aφ
aφb} +

1

6
(M2

ss −M2
vv)k

abφaφb, (A.11)

where M2
ss = 2Bm, M2

vv = 2Bmval and

M2
a =



















M2
ss if a=1,2,3,

1
2 (M2

ss +M2
vv) if a=4,. . . ,7,9,. . . ,12,

M2
vv if a=8,13,14,15.

(A.12)

The propagator of the meson field is thus given by

〈φa(x)φb(0)〉 = gabG1(x,M
2
a ) +

1

3
(M2

vv −M2
ss)h

abG2(x,M
2
a ), (A.13)

Gn(x,M2) =

∫

d4p

(2π)4
eipx

(p2 +M2)n
. (A.14)

All other Feynman rules can be derived straightforwardly from the lagrangian and the

field σval.

Following common practice, we use dimensional regularization for the loop integrals

and a modified minimal subtraction scheme for the bare couplings in the lagrangian L(4).

In particular, in 4 − 2ǫ dimensions we substitute

L6 =
3µ̄−2ǫ

(32π)2

{

−1

ǫ
+ γ − ln 4π − 1 + l̄6

}

(A.15)

for the coupling L6, where γ = 0.577 . . . denotes Euler’s constant, l̄6 the renormalized

coupling and µ̄ the renormalization scale.

A.4 Finite-volume correction

The chiral expansion

Σval(mval) − Σval(mval)|V =∞ =
Σ

2F 2

{

g1
(

M2
vv

)

− 4g1

(

1

2
M2

ss +
1

2
M2

vv

)

(A.16)

+
(

M2
ss −M2

vv

)

g2
(

M2
vv

)

}

+ . . .

starts at next-to-leading order and involves the momentum sums

gn(M2) =
1

V

∑

p

1

(p2 +M2)n
−Gn(0,M2). (A.17)

These are easily calculated numerically when written in the form of rapidly converging

series of Bessel functions [17].
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Figure 5. Approximate spectral step function h(xω)4 for n = 32, ǫ = 0.01 and M∗ = 94MeV.

The exact step function θ(M − ω) is also shown (grey line), where M and M∗ are related through

eq. (B.7).

B Estimation of the approximation error ∆

The computational strategy outlined in section 5 assumes that the parameters n, ǫ, M and

M∗ are such that the approximation error ∆ [eq. (5.8)] can be safely neglected. In this

appendix, we now show how this condition can be met in practice.

B.1 Spectral integral

Our starting point is the spectral integral representation

∆ =

∫ ∞

0
dω

{

θ(M − ω) − h(xω)4
}

ν ′(ω,mq) (B.1)

in which

ν ′(ω,mq) =
∂

∂ω
ν(ω,mq), xω = 1 − 2M2

∗
ω2 +M2

∗
. (B.2)

Note that ν ′(ω,mq) coincides with the average spectral density of the square root of Dm
†Dm

up to a factor V . For illustration, the two functions in the curly bracket are plotted in

figure 5 for a typical choice of the parameters.

In the following, we distinguish three ranges of ω, separated by the limits

ω± = M∗

(

1 ±√
ǫ

1 ∓√
ǫ

)1/2

(B.3)

of the transition region around ω = M∗ (see figure 5). The parts of the spectral integral

corresponding to the integration ranges [0, ω−], [ω−, ω+] and [ω+,∞] are denoted by ∆−,

∆0 and ∆+, respectively.
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B.2 Bounds on ∆+ and ∆−

Noting

xω = ±
√
ǫ at ω = ω± (B.4)

and recalling the approximation property (5.5) of the minmax polynomial P (y), the func-

tion in the curly bracket in eq. (B.1) is easily bounded in the case of the integrals ∆±. Since

the total number of eigenmodes of Dm
†Dm is 12V/a4 and since there are at most ν(M,mq)

eigenmodes with eigenvalues ω2 ≤ ω2
−, it is then straightforward to establish the bounds

|∆+| ≤
3

4

V δ4

a4
, (B.5)

|∆−| ≤ ν(M,mq)
{

2δ + O(δ2)
}

. (B.6)

These parts of the total error ∆ are thus controlled by the precision δ of the polynomial

approximation to the step function.

In ref. [19] it was shown that δ is an exponentially decreasing function of n
√
ǫ. The

precision can therefore be set to the desired level by adjusting the degree n of the minmax

polynomial. If ǫ = 0.01, for example, and if a lattice of size 128 × 643 is considered, a

sensible choice is n = 32 and eqs. (B.5), (B.6) then imply that |∆+| ≤ 10−6 and |∆−| ≤
10−3 × ν(M,mq).

B.3 Estimation of ∆0 and the relation of M to M∗

The remaining error component, ∆0, is more difficult to estimate than ∆+ and ∆−. An

important point to note is that the density ν ′(ω,mq) tends to be practically constant in the

transition region (cf. section 6). Most of the error can therefore be cancelled by choosing

the relation between M and M∗ to be such that ∆0 vanishes for a constant density. This

condition amounts to setting

M

M∗
=

(

1 −√
ǫ

1 +
√
ǫ

)1/2

+

∫

√
ǫ

−
√

ǫ
dx

1 + x

(1 − x2)3/2
h(x)4 (B.7)

and the residual value of the error,

∆0 =

∫ ω+

ω
−

dω
{

θ(M − ω) − h(xω)4
}{

ν ′(ω,mq) − ν ′(M,mq)
}

, (B.8)

is then of order ǫ.

An estimation of ∆0 however requires some information on the ω-dependence of the

density ν ′(ω,mq) in the transition region. For a determination of the expected order of

magnitude of ∆0, chiral perturbation theory may be used at this point and a rough bound

on the slope of ν ′(ω,mq) (and thus on ∆0) can also be obtained a posteriori through a fit

of simulation results for the mode number. Whether ∆0 is in fact negligible with respect

to the statistical errors can ultimatly always be checked by varying ǫ at fixed δ.
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Run Lattice κ Ncfg aM ν(M,mq)

D3 48 × 243 0.13610 160 0.02674 28.6(4)

0.02377 24.0(4)

0.02087 19.5(4)

0.01808 15.2(3)

D5 48 × 243 0.13625 160 0.02549 26.8(5)

0.02234 22.6(4)

0.01923 18.5(4)

0.01616 14.4(3)

E4 64 × 323 0.13610 80 0.02674 93.9(12)

0.02377 78.2(12)

0.02087 63.4(10)

0.01808 48.9(9)

E5 64 × 323 0.13625 80 0.02549 83.2(10)

0.02234 69.6(9)

0.01923 56.4(8)

0.01616 44.6(7)

E6 64 × 323 0.13635 80 0.02499 78.7(11)

0.02177 66.6(11)

0.01856 54.9(9)

0.01537 43.8(8)

Table 2. Simulation results for the mode number

C Lattice parameters and simulation results

C.1 Lattice parameters

The numerical studies reported in section 6 are based on representative ensembles of gauge-

field configurations for the two-flavour O(a)-improved Wilson theory (cf. subsection 2.2).

The ensembles were generated by the authors of ref. [31] and were made available to us

through the CLS community effort [32].

In these simulations, the coupling β = 6/g2
0 was set to 5.3 in all cases and the sea-quark

hopping parameter κ = (8 + 2m0)
−1 to the values quoted in table 2. The lattice sizes and

the numbers Ncfg of configurations are also given in the table. The spacing of the two

lattices considered was determined to be 0.0784(10) fm [31] and their spatial sizes are thus

L = 1.88(2) fm and L = 2.51(3) fm, respectively.

C.2 Computation of the mode number

The mode numbers listed in table 2 were computed stochastically following the lines of

section 5. We used the same minmax polynomial of degree n = 32 in all cases, with ǫ set

to 0.01, and the number N of pseudo-fermion fields was taken to be 1. With these choices,

δ = 4.4 × 10−4, the integral (B.7) evaluates to M/M∗ = 0.96334 and the approximation

error ∆ [eq. (5.8)] is estimated to be neglible in our computations.
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The statistical errors quoted in table 2 are in the range from 1 to 2 percent. They are

practically given by the last term in eq. (5.4), which explains why, with half the statistics

on the larger lattices, approximately the same relative accuracy is obtained on all lattices.

Moreover, the errors could be further reduced, by a factor 2 at least, by increasing the

number N of pseudo-fermion fields.

C.3 O(a)-improvement and renormalization at β = 5.3

The coefficients of the O(a) counterterms in the quark action [3] and the improved axial

current [4] were set to the non-perturbatively determined values csw = 1.90952 [6] and

cA = −0.0506 [33], respectively. We computed the renormalized quark mass via the PCAC

relation, using the improved axial current, but neglected the O(amq) corrections in eq. (2.8)

since bA − bP = −0.00104(6) × g2
0 + O(g4

0) is very small [35].

Although a different improvement scheme was adopted in ref. [8], it is possible to

deduce the one-loop formulae

bµ = −1

2
− 0.111(4) × g2

0 + O(g4
0), (C.1)

bR = −0.031(8) × g2
0 + O(g4

0), (C.2)

from the results published there and in refs. [34, 35]. So far bµ is only known in perturbation

theory and we thus used the one-loop estimate bµ = −0.626 in eq. (3.11). Noting amc =

−0.33560(5), the subtracted bare mass amq is smaller than 0.01 at all values of κ considered.

The calculated O(amq) corrections to MR are therefore at most 0.6% and the corrections

to the ratio (7.9) will normally be negligible.

The renormalization factors ZA = 0.778(10) [36] and ZP = 0.543(8) [37, 38] needed to

pass from the bare masses m and M to the renormalized masses mR and MR in the MS

scheme at 2 GeV have been computed non-perturbatively. As can be seen from table 1, the

renormalized sea-quark mass ranges from about 13 to 46 MeV on the lattices considered.

The values of aM in table 2 have, incidentally, been chosen such that ΛR = (M2
R
−m2

R
)1/2

approximately assumes the values 70, 85, 100 and 115 MeV at all sea-quark masses.

References

[1] T. Banks and A. Casher, Chiral symmetry breaking in confining theories,

Nucl. Phys. B 169 (1980) 103 [SPIRES].

[2] K.G. Wilson, Confinement of quarks, Phys. Rev. D10 (1974) 2445 [SPIRES].

[3] B. Sheikholeslami and R. Wohlert, Improved continuum limit lattice action for QCD with

Wilson fermions, Nucl. Phys. B 259 (1985) 572 [SPIRES].
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[31] L. Del Debbio, L. Giusti, M. Lüscher, R. Petronzio and N. Tantalo, QCD with light Wilson

quarks on fine lattices (I): first experiences and physics results, JHEP 02 (2007) 056

[hep-lat/0610059] [SPIRES].

[32] See https://twiki.cern.ch/twiki/bin/view/CLS/WebHome.

[33] M. Della Morte, R. Hoffmann and R. Sommer, Non-perturbative improvement of the axial

current for dynamical Wilson fermions, JHEP 03 (2005) 029 [hep-lat/0503003] [SPIRES].
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