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1. INTREODUCTION

There are now various reasons to believe that the 8SU(3) gauge theory
of quarks and gluons, guantum chromodynamics (QCD)1), iz the best candidate
theory of hadronic physics, though many essential properties that it is pre-
sumed to have, such as confinement, dynamical mass generation and chiral
symmetry breaking are poorly understood. Because of the complexity of the
strong interaction phenomena which this theory describes, including for
example nuclear physics, we cannot even dream of solving the SU(3) gauge
theory exactly, as the S-matrix of this theory is far more complicated than
anything which we can control. Therefore, a sort of approximation scheme is
needed. Due to the asymptotic freedom property of QCD at large momentum
transfer1), a parametrization of a hadronic Green's function by a series of
the renormalization group improved coupling constant, as = g2/4ﬂ , appears
to give a good approximation as we know from various hard processes and quark
and glucn Jet phenomena2 . We also know that the quark masses are important
parameters in describing heavy quark bound states, which we believe can be
described by non-relativistic approaches. In the light quark sector, i.e. the
up and down gquarks and presumably the strange quark as well, we have less
controlled quantitative features as we have to deal with the long-distance
dynamics of QCD. From the perspective of chiral symmetry, we know that for
massless quarks or in the limit of large number of colour N 3), the QCD
Lagrangian possesses a global chiral symmetry SU(n)L X SU(n)R X U(1)A X U(1)V.
The UT(1) symmetry is associated to the baryonic current.
The ¢ = SU(n)L X SU(n)R global symmetry is spanned by the generators which

are the charges associated to the Noether axial-vector and vector currents

B i -

A J.(X)— LYY (1.1a)
poi -

v j(x)— VY (1.10)

i,j € u,d,s...

acting on the quark flavour components and which setisfy the current algebra

of Gell-Mann4 . The symmetry framework inherited from the successes of current

algebra and the picn PCACB) is the one where the axial charge does not annihi-

6)

late the vacuum, i.e. the chiral symmetry is realized & la Nambu~Goldstone °.

In this scheme, the chiral flavour group SU(n). x SU(n)R is broken sponta-

L
neously by the quark vacuum condensate down to a subgroup H = SU(n)L+R with

respect to which the vacuum-condensates are symmetric :



<Y ¥ >=<V. t.>=<¥ ¥ >. (1.2)

These features are expected to follow from the long-distance dynamics of
the QCD Lagrangian, and indeed, there appears some evidence of such sponta-
neous breaking of chiral symmetry from lattice Monte-Carlo simulations7a)
and from some other dynamical calculations . This spontaneous brezking
mechanism is accompanwied by n2—1 massless Goldstcne bosons P  which are
associated to each unbroken generator of the coset space G/H. On the other
hand, the vector charges annihilate the vecuum and the corresponding symmetry
is realized & la Wigner4Wey18 » 8o that the corresponding particles are clas-
sified in irreducible representations of SU(n)L+R' The massless Goldstone
bosons can acquire a tiny electromagnetic maséﬁ and. mainly a mass induced
by an explicit breaking of the SU(n)L X SU(n)R global symmetry due to the
quark mass terms in the QCD Lagrangian. In this way, the divergence of the

axial~-vector current is non-zero :

j_ -

. = {m + m, ¥, (i . 1.
0y = lmrm) Gy (1.3)

to which are associated the "juasi-Goldstone" parameters :

< Olau 2¥(x) ? lp>=v2 Mi £ (1.4)

P

where, in the SU(3) limit, fP == fn = 03.28 MeV 1is the decay amplitude

L+R
of these bosons. We also know that the spectrum of the pseudoscalar boson

octet (ﬂ, K, 7} does not show a degeneracy in their masses and then a large
explicit breaking of the SU(B)L X SU(B)R scheme & la Gell-Mann, Oakes and

Renner10) is suggested :

éP,GOR(x) =- € U () - € (=) - € U (x) (1.5)

where the Hermitian scalar densities Ua(x) can be expressed in terms of
quark bilinears
Ua(x) = Tr E(X) A $(X) a=20,8,3

a
with A 1 1
2 0 1 0 0
A = —_ A. = - ?\ = —_
o 5 (01 ) Ay =7 (01 ) Ay (01 ) (1.6)
1 -2 0
and where the symmetry breaking parameters Ea are combinations of the gquark
masses 1
Eo = 7 (mu +omy o+ mS) (1.7a)
11
68 = ‘7? > (mu + Ty 2ms) (1 .Tb)
1
63 = 3 (mu - md) . {1.7¢)

Tb, ¢) .
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So, among other things, it is essential to have a good control of the guark
mass values and of the deviation of the 8U(3) expectation in Eg. (1.2) for
a quantitative understanding of the explicit and of the spontaneous breaking
of chiral symmetry. There are convincing estimates of the quark mass ratiocs
from the comparison of various current algebra Ward identities at zero momen-
tum transfer with physical parameters like the masses and coupling constant of
hadrons, which give the so-callied current algebrs result.

The success of the current algebra prediction is mainly due to the fact that
the ratio of the quark masses is defined unambiguously, as it is scale-
independent and (or) needs not be rencrmalized. On the contrary, it is more
difficult to make estimates of the absolute values of the light quark masses.
In this paper, it is proposed to look at the chiral symmetry breasking parame-
ters from the analysis of the short-distance behaviour of the correlation

functions :

i, 2y . 4. dgx woi Wi+
Vs (¢)=1i[axe <O0W3 A J.(x) (a“A J.) | 0> (1.8a)

241 P (& igx p i Wi+
¥a®): =i dx M <o v ) G v ) | o> (1.8b)
n“;\’(q‘2)§ =1 ) a*x % <o | W VY i(x) (v 3(0) lo> (1.98)
n“v(q2)§ =i [ a*x T <o | v a* f;(x) (1" (o) i)* | o> (1.9v)
A

built respectively from the divergence of the axial and vector currents
and from the vector and axial-vector currents given in Egs (1.1), (1.3)
and the divergence :
i - .
o VU U = (m,-m. v, (i . 1.10
AT CE R I AN CON'S (1.10)
a) which are

. i
It has been known for a long time that the Weinberg sum rules

*
superconvergent in the chiral limit (mj = O)):

J?edt [Im(rL‘S1 )+ n\(ro)) - Im(HE) + ngo))(t)]z o 15 sum ruze (1.11a)

oo
J dat o (e 1. 1o ng' ))(t) = 0 2™ sun rule (1.11b)
0 v

BI---d sum rule (1.11¢)

o]

f@ dt t(In néo)- Im nio))(t) =

¢

*) The indices (1) and (0) correspond to the spin 1 and O parts of the spectral
function, i.e. to the transverse part and to the longitudinal one.



can become a good place to measure the strength of the chiral symmetry
breaking parameters once one has a good control of the spectral functions
in the LHS of the sum rules, because it is known within QCD that the quark
mass terms and the guark vacuum condensates break such a convergence
property 11b’d). Here, I shall concentrate on the analysis of the two-point
functions Eq (1.9 a-c) as the latter in Eq (1.9 d) can be deduced from the
others via the Weinberg sum rules. The analysis consists mainly of the
improvement of previous estimates given in Refs. 12d) to 21). The short-
distance behaviour of the two-point function can be studied along the line
proposed by SVZzZ), using the Wilson operator product expansion (OFE)
which provides a systematic framework for parametrizing non-perturbative

effects. These appear as lé (Q2 = —q2 > 0) power corrections to the usual

Q

asymptotic freedom perturbative behaviour of the two-point function with
coefficients which are proportional to the vacuum expectation value of higher
dimensional operators like the quark condensates <P > < F1 v U F2 ¥ >

(F1 is any Dirac matrix), the gluon condensates Qs < Fﬁw F;M >,

g fabe <IF;N va b Fi¥f> gnd the mixed gquark-gluon condensate
H
- v .8 o ¥ , . .
<490 Ef’ i Fa >’ . These low-dimension vacuum condensates can be inter—

preted aétually as z manifestation of the large size instanton while a small
size instanton manifests itself as a power of 1/Q larger than 11**).

Small size instantons can, in principle, break the OPE but it is easy to notice
that their effects are very sensitive %o values of the QCD scale A and will
be highly suppressed in the analysis of this paper. In addition, they arse, for
example, also proportionnal to the light quark mass values in the vector mescn
channels and so they can be completely neglected compared to the contributions

*¥¥
of the large size instanton

*)  An example of two-point hadronic correlation functions exhibiting these !
different contributions is shown in Fig. 1.

**)} Original works on the subject are reviewed in Ref 22).

***) If we use, for instance, the result of the analysis by J. Ellis et gl
given by Ref 22), one can realize that for the pregent values of
AMS = 100 MeV and of the light quark masses {see the table given in the

next sectiod, the contribution of the small size instanton is completely
negligible for Q larger than 0.6 GeV.




Using the analyticity of the hadronic correlation function, one can relate

the short distance expansion.to the spectral functicn which is governed by

the low energy data in writing the Killen-Lehmann or the Hilbert represen-

tation of such hadronic correlation functions.The various forms of QCD sum

rules consist of the improvement of the naive Hilbert representation in order
to obtain much more information both from the available low energy

data and from the few terms retained in the OPE. Sum rules prior to the
1y . 25)

24)

SVZ work can be seen in Refs

of the SVZ QPE agre reviewed in Ref

while the ones within the spirit
. In this paper, I shall mainly be in-

22, 13 b, 25)

terested in the cases of the Laplace (Borel) transform sum

rule which, for instance, is :
°° t
. -tT 1 s .
g(r) =1 [ ate " Liny 3(t) (1.12)

0 7 (5)

and which can be obtained by applying to the two-point function or to its

first convergent derivative, the Laplace operator :

~ : >N N _
i =(—15\I(_N_1)! (Q°) —52"“*1;]* (1.13)
lim (3e”)
MR
2 o o2 :

Tt is clear that due to the exponential factor appearing in the RHS of Eq (1.12),
the sum Tule is very sensitive to the low energy behaviour of the spectral
function, for moderate values of the sum rule scale variable T which are of
the typical hadronic mass value, i.e., the sum rule is sensitive to the small-t
region which in most cases is the only one where some phenomenological informa-
tion is available. Also, the contribution of the nﬂ—l higher dimensions conden-
sates is suppressed by a %! factor compared to the original ¢(5)(q2) two-point
function. In section 2, I shall discuss the determinations of the quark masses
from a more careful analysis of the pseudoscalar two-point function following
the line in Refs12d - 16 . In section 3, I extract the decay amplitudes of the
scalsr mesons in the aim of studying in section 4, the deviation from the
SU(3)L+R
check the results obtained in Refs

expectations of the quark vacuum condensate values which serves to
18)to 21). I discuss in sections 5 and & the
vector two-point function in connecgion with the recent results of the strange
17

quark parameters obtained in Ref from this channel. I finally discuss in

section 7 an improved form of the Gell-Mann-Okubo mass formula for vector mesons.



2, LIGHT QUARK MASSES FROM THE PSEUDOSCALAR SUM RULES TO THREE-LGOPS

Since the first attempt of Leutwyler26) to estimate the absolute values
of the light quark masses using a U(6) symmetry in order to relate the n
and p Bethe-Salpeter wave functions, there have been important efforts

using the QCD sum rule approach for the estimate of the absolute values of

the quark masses12_17) and for the interpretation of the following Leutwyler
formuls :
1 2 my 2
TN — i e
> (mu + md) 3 fn —;Q vp 5.4 MeV (2.1)
within QCD13b) ,

where f = 95.28 MeV is the pion decay amplitude ; Y, is the p-coupling to
the electromagnetic current with :

r ~2 o %2 . (2.2)

p*e+e_ g EYD

The quark masses are the ones which appear in the QCD Lagrangian and which
provide an explicit realization of the Gell-Marn-Oskes—-Renner scheme of chiral
symme tTy breakingqo). Eowever, it is difficult to interpret the result in
Eq (2.1) within QCD, as one does not really know what is the exact meaning of
the current algebra mass value in terms of the so-called running mass of

QCDZSb’ 21) because one does not know at what scgle this running mass should

28)
for defining such a running mass. Within the QCD sum rule approach, the battle-
2

5) (Cl )

(see Eq 1.8} associated to the divergence of the axial and (or) vector currents

be evaluated, or even what type of renormalization scheme should be used

norses for hunting the quark masses are the two—point1§3nctions w(
14)

as they are sensitive to leading order to the absolute values of the quark

masses. We have at present a good control of the two-point function from QCD

and of its spectral function. V¥ (—q2<>> A2) is known to tw013) and three152100ps

5
from a QCD perturbative calculation. The non-perturbative contribution to
2 2
ws(q ) is known up to the dimension six vacuum condensate contributions 2).
The direct instanton contribution is known within the dilute gas approximation.

29)

It has been discussed that such a contribution is proportional to the ins-
1
tanton density d(T)“‘(ﬂéff /1) » Where T is the "imaginary time" sum rule

variable and Ae is an effective scale which takes into account the pre-

eXponential factii and other coefficients in the relation between d(T) and
the ﬁg;schemezs) scale A, It is difficult to state how accurate this way of
parametrizing the instanton effect is, but within such an approximation it is
easy to be convinced that the direct instanton effect can be safely neglected

for T smaller or equal %o 1 GeV_2 for a value of A of the order of



> 0.15GeV 29). The spectral function
ff 31)

Im ¢5 (t) is also under control as one has experimental data on the

100 MeVBO%hich corresponds to Ae

first excitations of the ™ and K mesons and also various consistent
theoretical results for the coupling of these excitations to the pseudo-
scalar currents., It is clear enowgh that due to the gquasi-Goldstone nature

of the m and X mesons, one cannot have a naive copy of the p-meson picture

in the pseudoscalar channel. We know from a Laplace {Borel) sum rule method

that the p-meson alone can (roughly speaking) saturate the sum rule at the

-2
value of 7T of the order of the hadronic scale M_~, and one can already

22)

channel, a more consistent anaiogue of the p-meson case needs a saturation

consider the p' {1.6) to belong to the continuum . In the pseudoscalar

of the spectral function by the two first ground states but not by the lowest

ground state alone. This particular situation can be understood by the foo-small

value of the quasi-Goldstone mass compared to the hadronic scale, say 1 GeV_Z*)
and secondly by the fact that the contributions of the ™ and of its first
excitation (the ') to the spectral function Im ¢5(t) have the same depen-

dence on mi (recall that fn' vanishes like mi

from the current algebra
analysis 5 ).

In my opinion, the most relevant effort in parametrizing the ﬁ‘(K') contri-
bution to the spectral function is the one in Ref 16), where the m'-finite
width effect to the sum rule is taken into account. The approach of Ref 16)

33) where the spectral

ig based on an inspired-Veneziano linear dual mcdel
function is approximated by (in principle} infinite series of resonances.
The parameters of the model have been tested and fixed from various low-

energy processes which show a departure from the PCAC gredictions. In this

1
way, the Laplace-transformed spectral function reads 6 in the pion channel :

,°° 7 1 4 2 —mi T
J dt e — Im ¢ v (t) ~2n_ T e {1 +r (T)}+"QCD continuum"” (2.3)
0 ™ Sd ™o’ i
with the phenomenclogical parametrizafion :
M m_ T o
L8 4 T 2 - -7 t
r (7) 5 (g;f;;) e (1+v7) Jo dt e > 4 (2.4)

2 2

*) If one insists on saturating the spectral function by the lowest ground
state, one should go to a large value of T where the instanton domina-
tes the sum rule and aconsistency of the theoretical and spectral parts
of the sum rule is lost. This situation has been observed in Ref 32).



*)

where vy = 0.1 and Mo, = 1.1 GeV  within the model. The QCD continuum is

the one obtained from the discontinuity of the two-point function in Fig. la-c
and it averages the contributions of the higher excitations. Its threshold
starts around the ™ -mass, which is about 1.55 GeV within the model and which
is of the order of 1.73 GeV if one uses the experimental mass of the ﬁ"31).
The Laplace transform of the two-point function is known to three loopsTS) and
up to the dimension six vacuum condensatesze). Combining the QCD information
with the one in Eg (2.3), one can derive the constraints in the ﬁg;scheme for
5U(3), x sU(3), -

2
2 -~ m_T
) N 1 2
(mu + md)2 ~ 16 ™ 11:1£Ir f1T e n (1+rn(T)) 72 (%)8/9 .

-t T
(0 -(Ostm)e D §4§i - 0.7 l9§L

L L2
5o+ -m ok
—2 (Tu TR T My a) T _
72[11«: < > 8—"3[(5 illﬁ)-:“ >+ (ued))
+ 3 Y -3 4773 uu > + (u
+C, <0 >0 )7 (2.5)
6 76 ’
_ 2 .~ - . _ 23b)
where : L = - log T A m, is the renormalization group invariant mass
which is related to the running mass ﬁi to three-lcops as :
N o 4/9 o o
1) om (28 _s 82
m(t) = n (7 {1+ 0.895 — + 2.707 (D)%) (2.6) |
with the corresponding QCD coupling to three-loops
Eg 4 Log L 1 2L logl
(=) = (9—L) {1 -~ 0.79 —E—L +0.62 =252 _ g 62 =525 (2.7)

L

o < P = (0.04 * 0.01 gev 4 54)35) is the gluon vacuum condensate ;

*) 1f, instead, one uses Mn' = 1.24 GeV from the data, cne can check that the

analysis is not significantly affected by this change. It is important to
notice that the large value of the sum rule scale variable in the pseudo~

-1
scalar channel (T =2 GeVZ) is dual to a T'-mass larger than 1.7 GeV 23).
4 value of M., = 1.24 GeV is then consistent with a smaller value of the

sum rule scale ! I thank also C.A. Dominguez for discussions on the parame-~
trization of the spectral function using the "linear dual model".
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< u u> is the guark vacuum condensate which is known through the PCAC

5) *)

relaticon :

(n, +my) <Tu+ 8 >> 20 £ . (2.8)

C6 <IO6 > is the dimension-six vacuum condensate coniributions which is :

Cp < 0 > 0.12 GeV6 (2.9)

if one uses the phenomenclogical estimate in Ref. 35, which shows that the
factorization hypothesis for the estimate of the 06 <f06 > which yields

to %gé " @, < uu 52 is an underestimate of a factor of the order four of the
actual value of the operator (see also Ref 36). However, one should mention
that the effects of the dimension-six cperator are not relevant in the range of T
where we areworking. I give in Fig. 2 the prediction of ﬁu + ﬁd for the
value of A which is 100 MeV. The previous bound of Ref 13b) using the pion
pole pius the positivity of the spectral function isg shown as well as the
bound including the T™'- contribution. One can notice that the optimal bound
of Ref 13b) is almost saturated when one adds the excitation and the QCD
continuum. One can see in the two continuous curves that the QCD continuum

igs necessary for the stabilization of the predictions. It starts to exceed

the m+m'_ contributions to the sum rule for T—% larger than t.5 GeV as the
curves start to increase., Comparing the two curves corresponding to the
threshold of the QCD continuum at tc ~ 2.4 GeVz, one can see that the finite
width parametrization gives a much more stable result than the one with a
§-function for the ™', In Fig 3, I analyge the effect of the value of A on
the predictionsi The final result takes into account the changes of A between
100 to 150 MeV, the variation of the continuum threshold between 2.4 to 3 GeVz.
It corresponds to the "window" where the non-perturbative effects are irrele-
vant and the GCD continuum is less or equal to the lowest two ground states

* ¥
effect . Then, one gets :
A o+ f, = (27 £5) MeV (2.8a)
u d

where the central value corresponds to the smallest value of tc where the

*) The mass m. can either correspond to m, or fi,. As m, enters into =
. . ; . . i i
renormalization group invariant quantity,one cafl refer to one or the other
quantity.
*%*) It ig interesting to notice from Eq(2.5) that the two loop effects are about
100% while the three-loop ones are only 10%, which can indicate that the conver-
gence of the series in Eq (2.5) is quite good.
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curve in Fig 2 starts to exhibit a "plateau of stability". The error bar

in Eq (2.8) for a given value of A comes from the distance of the central
curve and the ones corresponding to a narrow width for the ™ or to the one
wWhere tc moves around the experimental value of the T'-mass. The value of

the running mass to three loops evaluated at 1 GeV is ;

(&u + n'ud) (1 Gev) > (16 + 3) MeV | (2.8b)

It is interesting to compare the above results with the one obtained from
a QCD finite energy sum rule (FESR)37) analysis to three loops15). Let me
recall that the FESR method gives a set of constraints among the operators
of given dimension, the quark masses and the meson parameters., It has been
demonstrated in Ref 37b) that the FESR constraints to leading order in the
radiative QCD corrections can be derived from a Gaussian-like sum ruleBTb)
by using the orthogonality properties of the Hermite polynomials which are
broken when radiative QCD corrections are included. The nice feature of the
FESR constraints comes from the fact that the few first lowest dimension
constraints used for the derivation of the quark mass values are unaffected
by some eventual instanton contributions, as these latter would appear only
in high dimension constraints (eleven dimensions 29)). These high dimension
constraints should be affected by many other eventual uncontrolable contri-

*
butions. The FESR result to three loop is 15)%) :

A

(;u + md) =~ (25 £ 5) MeV for 100 < A <150 MeV (2.9)

I present in the Table the range of values corresponding to Egs(2.8) ana
(2.9). The intersection of the two ranges is taken as the final estimate

coring from the pseudo-scalar channel which is :
£ +
(m, + my) = (26 £ 4) Mev
(Eu + ﬁd) (1 GeV) = (45.4 * 2.4) MeV (2.10)

for 100 = A =150 MeV and where I have used the definition of the running
wass to three loops in Eq (2.6). The sbove results agree of course with the
12, 13, 16) and the FESRBB)

loops. One can extend the analysis to the strange quark channel. The parame—

one obtained from the Laplace sum rule to two

trization of the speetral function is very similar to the pion channel one
*) We learn from Prof E. de Rafael that he is deriving similar results with

the Gaussian-like sum rule and 3sing the "linear dual model" parametriza-
tion of the spectral functionl®’ .




-1 -

shown is HEq (2.3). The analogue of Eg (2.5) can be obtained by interchanging
the d quark with the s-quark. The estimate of the quark vacuum condensate
ms,u <s s> 4is done by taking the conservative attitude that the kaon

PCAC is uncertain within 50%. In this way, one solves iteratively the analo-
gue of Bq (2.5). The result is summarized in Fig. 4.

In the "windcw" where one has a negligible effect of the non-perturbative terms
and a contribution of the QCD continuum less than the two first resonances,

we obtain the value :

A A

m +m = (350 * 86) Mev , (2.11)

where I have used fK =1.2 fTT from recent estimates39). As in the pion case,
the central value corresponds to the smdlest value of tc where one has a
stability (Fig 4). The error bar takes into account the distance of this cen~
tral value to the extremal ones obtained by moving tC arcund the K"-mass
obtained from the model and from the data. The errcr induced by the change of
A between 100 and 150 MeV is also taken into account. The FESR results for
100 = A <150 MeV sand for fK >1.2 fn can be deduced from the ones of

Ref 15) which are

(X3

b

~

Lt (302 * 60) MeV (2.12)

Showing such results in the Table, and taking the common range of values

a8 a final estimate, one gets :

.3 A a +
m+m (313 £ 49) MeV

(is + Eiu) (1 Gev) = (185.5 * 30) MeV (2.1%a)
and then : a ~
(m + mu)
x, = S > (12,0 * 2.6) , (2.13b)
(mu + md)

which is well controlled from a current algebra pre-QCD analysis because the

ratio of the quark masses is known to be scale independent and needs not be

rencrmalized. The current algebra results are :
r. o={123£1.7) (2.14a)
m m
m—d = =2 - (1.8 £0.3) (2.14%)
1 m

u
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Using Eq (2.14b), one can deduce the final estimate from the pseudoscalar

channel (see also Table)

n >~ (9.3 £2.) Mev 5 (1 GeV) = (5.5 % 1.2) Wev
{ﬁd ~ (16.7 £3.6) MeV £ (1 GeV) ~ (9.9 * 2.1) Wev
fas > (303.7 * 49.2)MeV 58(1 GeV) > (180 = 29) MeV (2.15)

for 100 < A <150 MeV. The results in Eq (2.15) can be considered as an
improvement of various results from the pseudoscalar channeljzd)’13)’15)’16).
In particular, one can also notice that the value of the strange quark mass

agrees with the lower bound obtained from the anslysis of the scalar two-

point function ¢(q2) (Eq 1.9 b) to two loopsj4), where a parametrization of

its spectral function by the K7 phase shift data and where a positivity of the
higher states lying above 2 GeV have been used. The bound obtained in Ref 14)

is :

~ e

(n - m) 2 (210 ~ 240) MeV for 100 <A =150 MeV, (2.16)

One could alsc compare the results from the one issued from a2 QCD sum rule

2
analysis in the baryon sector 4)

. In my opinion, the most serious attempt for
the estimate of the chiragl symmetry breaking parameters in the baryon sector
is the one in Ref 36) where the effects of the radiative corrections, the
higher dimension condensates, the factorization hypothesis of the four-quark
operator and the choice of the nucleon interpolating fields have been taken
into account in the analysis. In this way, the predictions from the baryon are
in good agreement with the ones from the pseudoscalar sum rules. However, due
to the complexity of the QCD calculation in the baryon sector, an independent
check of the analysis should be useful and a much more sccurate result is

gtill needed.

3. THE SCALAR MESCN DECAY AMPLITUDES

In this section, I shall study the two-point function w(qz)built from

the divergence of the vector current (see Egs 1.1b,2b). One can analyze the

corresponding sum rule in order to extract the quark mass differences provi-
ded one introduces some phenomenological input for the spectral function14).
In my opinion, the analysis of the strange quark channel done in Ref 14),where

the XT phase shift data 40) have been used for the estimate of the spectral
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function gives a rigorous bound for the m - mu quark mags difference,
However, the analysis performed for the extraction of the md - mu quark
mass difference uses a theoretical input for the 6-mescon decay amplitude
because of the lack of experimental dsta, and so the bound on my - m,
becomes less rigorous. In the following, I extract the value of the decay
amplitude of the & and x mesons using as input in the sum rule analysis

the quark mass values obtained in section 2. So, I use the "duality ansatz" :

u
d

L

= In ¥ (¢) =2 f

2 s(tay) + a(t) O(s-t ) (5.1)
for the parametrization of the spectral function. A(t) is the coefficient
coming from the discontinuity of the diagram in Fig 1a-c ; f6 is the
é-meson decay amplitude normalized as £ = 93 MeV and tc is the continuum
threshold. One expects that the above parametrization gives a good descrip-
tion of the spectral function as the lowest ground state mass is of the =
order of the typical hadronic mass of 1 GeV and so , due to the exponen-
tial factor of the Laplace sum rule, the contribution of the lowest mass
resonance is optimized at the typical optimization scale of the sum rule

which is of the order of the hadronic mass. One can fix the value of the

continuum threshold using the linear dual Venezianc-iype modelEB).In this
way

2 = D 2 1

Wy, = t, =M, + 1/ (3.2)

where 1/0' =2 Mi is the (almost) Regge universal slope. One can also fix
the value of the continuum threshold by assuming an asymptotic SU(2)L X SU(2)R
symmetry for the scalar and pseudoscalar channel, i.e. one expects to have

the same scaling behaviour in the two channels. So¢, I take the range of tc :

2

t = (2.4 ~3) Gev (3.3)

¥*
One can use the analogue of Eq (2.3) in the scalar channel ) in order to

give a prediction for the 6-decay amplitude. The results versus the sum rule

*) The modifications of Eq(2.3) correspond to the change (mu + md)2 into
(mu - md)2 and to the change of the m<¥ %> and 06<10é> contributions
(see e.g Ref 12)).
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scale T are given in Fig, 5. Then, I deduce :

£, = (1.28 £ 0.17) MeV (3.4)

One can compare this sumlrple—prediction of f6 with the one obtained using
a b6-dominance of the &KK form factor which is normslized at t = O %o the

kaon- tadpole mass difference of the hadronic origin

~ 2 2

ffs’Ole /6 n1'1_ (m -u)) (3.5)
5§ K X Tad

where the kaon tadpole mass-difference was estimated several years ago )

41

using a pole dominance estimate of the (K+—KO) electromagnetic mass difference

2
and more recently in Ref4 . Using the average of various estimates :

2 -
(MZO -M,) > 610 5 gev? (3.6a)
X K Tad
one deduces :
flé"Jle >~1.8 MeV ., (3.6b)

The apparent discrepancy between Eqs (3.4} and (3.6) can be interpreted as
being due to the non-negligible role of the continuum contribution in the
analysis, making the pcle dominence assumption a crude approximation. Actually,
the result in Eq (3.6) should be interpreted as an upper bound rather than an
estimate of the &-decay amplitude because if one neglects the continuum contri-
bution in the sum rule analysis, one can realize that the estimate of fa
from the sum rule tends to the one in Bq (3.6b). One can extend the above
analysis to the g€range quark sector. I take an effective w-resonance having
a mass of the order of 1.35 GeV, as is suggested by the Rosenfeld tzble and
a QCD continuum starting from the threshold tc =3 ~3.4 GeVz. One expects
that such a model reproduces grossly the features of the Xm phase shift data4o)

plus a QCD continuum., The analysis is summarized in Fig. 6. Omne can deduce :
£ = (37.8 £ 3.4) MeV (3.8)

It is clear that a good determination of f‘5 and fu implies & better control

of the breaking of the chirsl symmetry as we shall see in the next szection.

4. RATIO OF TEE QUARK VACUUM CONDENSATE

8)

two-point function (w(S)(qz) - ¢(5)(O))/q2 allows a prediction of the non-

It has been noticed earlier1 that a sum rule analysis of the subtracted

perturbative gquantity ¢(5)(O) which is known from the current algebra Ward

identitys) :
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i — —
¢5(o)j = - (mi + mj) < V¥4 wj¢j> , (4.1)

i ' < -
$o): = -(m, -m,)<v¥ -V .y> 4.2
(0)] (n; - o) <¥¥, - V4>, (4.2)
where wi is the gquark field. The interesting information for the sum rule

analysis is the fact that it permits us to test the vaglidity of, for instance,

the pion and kaon PCAC relations which have been obtained from the Dashen's

5),10) ,

formula of current algebras

2

ws(o)z ~ 2 fi (4.3)
o, 2 .2

‘1'5(0)3 2w £ - (4.4)

The success of Bg (4.3) can be attributed to the small corrections due to the

chiral symmetry bresking parameters mi and m? as in the sum rule analysis

18) 2 2 4,4’
they contribute as ® m T or m 4T, where T is the sum rule varisble,
’

In contradiction, the corrections to Eq(4.4) have been shown to be important18’19)
due presumably to the fact that the quark mass value is larger than the MS-~scheme
scale A and making relevant the corrections of the crder ﬁs T and Mi T
in the sum rule anzslysis. Within the chiral perturbation theory framework 43),
these large corrections due to the ﬁs term indicate that the chiral pertur-
bation expansion of the strange quark sector is not a naive extension of the

one made for the u,d quar%s. In this paper, I shall be concerned by the im-

19

provement of the results from the scalar two-point channel using the new
information obtained in sections 2 and 3. As I have mentioned earlier, the
relevant quantity for the analysis is the Laplace transform of

(¢§ (qg) - ¢i(0))/q2. Following Reﬁs 18, 19), it is easy to express ¢§(O)

in terms of the spectral integral :

- -
i oy —tw %
¥i0) = ‘Jo =Tl -t 42 e

2 -2 1
2 my 1 (log T m, + gl 7 Im w(t) (4.5)

where the information coming from the Laplace transform of ¢§(q2) has
also been used. The Euler constant Yg has been induced by the Laplace trans-
form of ﬁ?/qz log - qz/ﬁi . One can notice that the leading contributions of
the perturbative and of the non-perturbative terms are absent in Eq (4.5)
which indicates that Eq(4.5) is less sensitive to the non-perturbative effects
and more convergent than w?(qz). I use the "duality"anzatz in Eq(3.1) for the

description of the spectral function. The QCD continuum contribution can be

2
*) The mass correction in Eq (4.5) corresponds to the case mi >>—mi
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described by :

-t T o
- - \2 =1
S B - E) e T+ 2 (b e 1) (4.6)

which comes from the usual Feynman diagram discontinuity.

The analysis in the ud channel is summarized in Fig,7 for two sets of the
extremal values of the parameters coming from Fig. 5. The stability of the
curves is c¢btained for 1%/? of the order of 0.8 GeV. The arrow at ¢.9 GeV
indicates that the continuum contribution is still less than the resonance

one up to this value of 7. If the unknown higher dimension condensates do

not spoil the OPE at the above range of T, like, for instance, in the p-meson

channel, then one candeduce the estimate :

¥(0)0 > - (0.48 * 0.15) 1070 gev? | (4.7)
Let me introduce the parameter X, which controls the bresking of the
*
su(2) condensate
<3
“—gd>51"xz - (4.8)
<uu>

Then, using Eq(4.7) together with the pion PCAC relation in Eq(4.3) and the

quark mass values obtained in Eq(2.15), one can deduce :

2

x, = (1 +0.,3) 1077, (4.9)

The value in Bq (4.9) is slightly lower than the one in Ref 19%), as in the

latter we have used a larger value of the é-decay amplitude and a slightly
*%

higher value of the quark msss . One can notice that the result in Bg (4.9)
agrees with the one from the w-p mixing analysis 22) :
-2
x, ~1.510 ", (4.10)
which can indicate that the CPE still works at the value of T where

xé in Eq (4.9) has been determined. Howevezi the result is stili larger than
the "crude estimate" from the baryon sector which needs still to be improved
following the lines in Ref, 36).

One can apply the same method in the us channel. The analysis correspon~

ding to the two sets of parameters from Fig. 6 is summarized in Fig. 8. For

*) Here and in the following : <iﬁiwi:> =<ii>.

*%) The change in X does not affect the other resuits in Ref. 1@.

2
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A= 0.15 GeV, we show the curves without the continuum and with the continuum
contributicns. The "window" where the continuwum contribution is less than the
resonance one and where the non-perturbative effects are expected to be small
corresponds to (f)~1§ of the order of 0.9 GeV. The stability for A == 0.1 GeV

2

correspond to T of the order of 1.05 GeV. For smaller values of T, the
continuum contribution is larger than the resonance one. The prediction for
¢(0)g corresponds tc the range of values between the minimum of the one-
resconance contributicon and the one corresponding to the largest value of f,
whare the QCD continuum contribution has been taken into account but does not

exceed the resonance by 50%. Then :
w(0) = - (82 2) 1077 aev” . (4.11)
s

If one uses the values of Rgy M, Mg given in the table and of

<uu>/<dd>in Bg (4.9), it is easy to deduce with the help of pion PCAC :

S2E22>a (0.55  0.16) (4.12)

<uu>
which confirms the previous results of Refs 18,19). It is also interesting
to notice that Ref 20) have obtained a very similar conclusion from the analysis
of the I = 0, JPC = O++ channel using a FESR method. Fecllowing their analysis,
one can see that the authors interpret the €(1300) as a I =0 B8 state
which is actually supported by the Gell-Mann-Okubo mass formula for scalar
mesens Which implies a crude estimate of the order of 1.45 GeV for the mass
of the lowest 88 isoscalar meson45). Then, the authors express the quantity
in Eq (4.12) in terms of the first derivative of the quark condensate with
respect to fthe strange quark mass which have been estimated to be 0.044 GeV2
within a typical accuracy of 20 % which we expect from the sum rule analysis.
In this way :
< g g> m

>~ (44 + 9) 107 gev® —— , (4.13)

-<uu> tcm2.5 GeV

Y E -3

which for the values of the quark masses in the table and with the help of
pion FCAC gives :

wl

<

52~ (0.40 £ 0.16) . (4.13)
2

< u

ol |

One can stiil have another source of information on v from the anglysis of
¢5(0)i (Bq 4.1)18), which has been improved19’21). A Laplace transform sum
rule of this quantity gives :

-3 4

GeV

w5(o)‘;=* (3.2 £ 0.1) 10 (4.14)
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which is an average of the results from Refs 19) and 21).

From Bq (4.1), the table and pion PCAC, we deduce :
S22 . (0,76 % 0.61) . (4.15)
< u u>

Considering the above estimates as independent, we can deduce the weighted

average with a minimum variance :

<8 8 > _
<uu>

(0.47 £ 0.11) . (4.16)

The final estimate in Eg (4.16) shows a large violation of the SU(B)
symnetry for the quark vacuum condensate and suggests a much more careful
reanalysis of the strange quark phenomenology One should also mention that
the leading order baryon analysis 24b,d) gives a larger value of the ratio in
Eq (4.16) but as I have noticed already earlier, a better and reliable result
from the baryon systems needs a careful control of the factorization hypo-
thesis of the four quark condensate, of the choice of the miclecn interpclating
fields and of the radiative corrections. The improvement of the baryon result
is beyond the spirit of this paper.

Now, defining the renormalization group invariant spontaneous mass Wy
as
)= -2, (log %)4/9 {

1

o (loglog /A yy (o
log Q/A

for SU(B)C X SU(B)F, we can deduce from Egs (4.8, 4.15), the pion PCAC and

the value of the wu,d quark masses in the table :

o~ ow > (192.4 £ 9.9) MeV 3 - <1 u >1/3 (1 GeV) = (229.1 + 13,6)MeV
u, = (149.6 £ 12.9) MeV ; - < 5 s >1/3(1 GeV) >~ (178.1 £ 15.4)MeV - (4.18)

Using the value in Eq (4. 16) and the welghted value of Es in the table, we
can give an improved estimate of ¢ (O) nermalized to the kaon PCAC estimate
in Eq (4.4) :

v (0) >~ (0.4t 0.1) 2 MI2< £ (4.19)

5" 's K
for . =1.21f 39). It seems surprising to get the large viclation of SU(B)
(Bq 4. 16) and of the kaon PCAC (Eq 4.19) and still %o have an agreement of the
guark mass ratio (see the table) with the crude estimate of "strong PCAC" where

the SU(3)V symmetry for the vacuum condensate (and consistently £ = fK) and




- 19 -

*)

the kaon PCAC have been used :

2
& .

2
fn

<w + 88 > (m, + m) (4.20)

=Y

- _
uu + dd > (md + mu) PEAC

Actually, one can understand the result because the two sides of Eq (4.20)
decrease at the same time when the SU(3) corrections are taken into account

s0 that these effects almost compensate for the quark mass ratio.

5. DOES THE ®-MESON GIVE A GOOD SIGNATURE OF THE CHIRAL SYMMETRY BREAKING ©

It has been known for a long time within the quark model of Gell—Mann46)

that what is responsible for the mass splitting of different vector mesons
belonging to the same octet is the U(3) breaking effect on the Gell-Ckubo

46). It i=s not, a priori, c¢lear to me that such a breaking

meson mass formuila
is due mainly to the linear gquark mass fterm as would have suggested a naive
extension to the strange quark sector of fthe,ordinary chiral perturbation thecry,
which works nicely for the wu and d quarki? Actually, the situation is much
more complicated here, as if one uses a spectral function sum rule zpproach for
the analysis of the GMC mass formula, one can realize that the effict of the
45

’

ms - tera can be as large as that of the linear term ms< s s> i.e. due

to the fact that m is larger than the MS-scale A, one should be more

careful in using the chiral perturbation scheme. Because of the zlmost equal
contributions of the linear and gquadratic mass terms in the GMO mass formula for
vector mesons, one cannot naively extract from the vector meson splitting a

firm estimate of one of the above chirsl parameters. However, it has been sugges-
ted recently by the authors in Ref 17) (hereafter denoted by R2) that the
analysis of the spectral function sum rules sssociated respectively to the ®,

K* and the tensor mesons f' and E can provide an estimate of the chiral

symmetry breasking parameters within an "unexpected" high degree of accuracy for

the strange guark mass value :
z, (1 GeV) > (110 % 10) Mev (5.1 a)

<Ees>/<Tu>>=0.8%0.1 - (5.1 v)

%) I thank G. Veneziano for this important remark.
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The fact which is more intringuing to me is that the above "precise" estimate
of the stirange quark mass disagrees with most of the available estimgtes 12—16).
Then, it beconmes urgent to re-examine carefully the analysis of R2 by
emphasizing the effects of the continuum threshold, of the factorization hypo-
thesis of the four-quark operator, of the next to leading radiative and mass
corrections not taken into accountin their analysis and by taking care of

the value of XZ/NDF
parameters which are m and <& 8 > ., One can inspect from the analysis of

R2 that the most stringent information on the chiral symmetry bresking para-

which serves for the selection of the set of the output

neters comes from the ¢ channel, as expected, because their relative contri-
butions compared to be leading QCD term in the OPE are more important than
in the other channels. So, I shall mainly focus the analysis on the & channel
and later on for the K¥* one, but 1 shall disregard completely the less control-
led states like the E and f' mesons, which in any case do not give many

more constraintf7§hi? the ¢ and K* mesons on the size of the chiral symmetry

breaking terms In order to see more clearly the effects of the input

parsmeters, I shall work for the analysis with the sum rules used by R2 and,
in addition, I improve their QCD expression by using the two loop mass
corrections obtained within the MS-scheme 41 . Then, the expression of the two-

point function :

il

B PRI I, (¢°)
ST T o [ M ) o> (5.2)

associated to the current :

1 —
J:: 3 ¥ s (5.3)

— *x
of the ¢-meson is in the MS-scheme )

2
1 (o) = —'5 (=) Log & (1 + D+
3 36T Q
5 @ & o
21 +8 5 s Ty
Qd 3 0m 7 Q4 .
@ 2 1 6
2 S = r
- (8 m (1+§§) m < £ + 3 % <F >) o+ 06<OG>IQ } (5.4)

Q

*) It seems more appropriate to use the values of the strange guark parameters
in order to predict the masses and couplings of the FE and f-mesons as the
E meson is not well established.

**) We use the radiative corrections to the quark vacuum condensate evaluated
in Ref. 48).
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2 2
with - g~ =Q > 0. The non-perfurbative terms have been evaluated originally
in Ref. 22).The contribution of the dimension six operators is 22) (see

also Ref 35)

A
b a
= < —
Ce <0 > 4 for e <5 v Y5 3 2 88 Y WYs 25 7
ATT oé - Ka - la
+—5 S '2—55'—(1\(—2 a} (5.5)
which would become :
L 836 3 ot P
“6 Ve lract 81 & <5 s> (5.6)

if the factorization hypothesis has been used for the estimate of the operator.
However, it is known that such an assumption can give an underestimate of the
exact value of the operators by a factor of the order of four35) (see also

Ref. 36), so one should be careful in using Egq (5.6). In the first part of the
analysis, I follow closely the strategy of RZ. Then, I intreduce the two
paraneters

<o, > and E.ES , (5.7)

where <0, > = - B <8 8 > is renormalization group invariant. Eq. (5.7)

4

allows us to eliminate the < s 8 > vacuum condensate, so that the sum rule
reads, to two loops and including the mi -corrections,

.:so T 'I'_“1
3(T)EJ at e FImTT(t): {1+4——035-——8—L

¢ 0 d 367 9L I
s 238/9 8
e (B T[1+9L(3+ 2vy)]
S
6 "4 (2,16/9 2 _ 2 ) -
ty ‘-’ﬂs (L) ™ (11 - ’NE 9L) + T°(0.042 - 79 <o4>
3
(1 + 2—7]:)) Cp <0, > =} (5.8a)
and o >
d o -1t 1 T 4 log. L
-_3(T)=J dt e t = Im m(t) = — {1 + — - 0.35
dr @ 0 1l $ 56172 9L, T,
- 8/9 . 16/9
16 2 (2 T_674 2 2 4. _
vz (L) LT R (L) < (4 Tvg 9L)

2 4 3
™ (0,042 - 19 <0, >(1 + 27L) )+ Cp <0 >T }, (5.8b)
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<Q> 2 -1/9

. 4
g <0, > 258.6(;1 ) (1)

3

2
where L=-1logth , C

if one uses the factorization hypothesis in Eq (5.6) and the parametrization
in Bg (5.7). I have introduced the expression of the rumning QCD coupling
and quark masses to two loops which can be deduced from Egs (2.6) and (2.7).
I have used the value of a < F> > 0.04 GeV'  from Refs 34) and 35). The
spectral function appearing in Bq (5.8) can be parametriged by the duality
ansatsz : 5
In I (t) = —MEQ 5(t - Mg) + a () 8(t - ¢ ) (5.9)
4y®

i

T
where the coupling of the %-meson to the photon is normalized as in Bq (2.2) ;
AQ(t) takes into account the usual discontinuity of the perturbative graphs in
Fig. 1. The main unknown input in the analysis is the value of the continuum
threshold. The common way for estimating its value is its identification with
the value of mass of the first radial excitation on the ®-trajectory. Then,

from the analogue of Eq (3.2), one can deduce :

2 2 2 2
t, > N% =Wy 2 M) > 2.24 GeV (5.10)

which is slightly lower than the experimental value M%, >~ 2.82 GeVZ. One
can also estimate the value of tc using the duality-like FESR analysis 37).
*

In this way, one gets the constraint :
2
Mg log L » 8/9
— =~ (1 s o035 208Dy o 2277 (L LTy (5.0
2 2 C gL L gL L
Yy 97

Using the experimental value Y™ (6.60 £ 0.14), Mg = 1.02 GeV and using the
*

positivity of the m?—contribution, one deduces
8

62 (2.1 £0.1) Gev® . (5.12)

*) This constraint is also the OQET?btained from the asymptotic consistency
condition of the moment ratio .

~

**¥) It is difficult to estimate the ms—contribution in Bq (5.11) because one

does not exactly know at what scale the log-term should be evaluated.
In any case, one expects that Eq (5.11) should be wvalid for

. >t ,
c
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I have given in Egs (5.10) and (5.12) therange of values of tC, but one

will see later on that the sum rule itself will select the most relevant
2

value of tc. In order to be as close as the R analysis, I shall also

22) '

work with the moment ratio

d3§
( - -E;) ~ {qco cont1nuum)1

0 (5.13)
§ 3§(T) - (Qco continuum)o

where the (QCD cm'ltj.nuum)o,I in Eq (5.1 %) corresponds rspectively to the contri-
’ —
bution to the zeroth order moment jg}dt e tT'% Im II§ (t) and to its first
0

oL

derivative [ dt t e U 1

p Im Hé (t). It is known from R2 that the optimal
information from Eq (5.13) corresponds to the values of T between 0.5 and
0.95 GeV_z, where the RHS of BEq (5.13) can present a stability. Then, I do

a two-parameter fit of Eg (5.13) with the parameters in Eq (5.7) for the values
of tC in the range of Egs (5.10) and (5.12) and by assuming for the moment
the validity of Eq (5.6) like R2. In order to have a strong constraint on the
parameters, I have assumed an uncertainty of 1 % in the LES of Egq (5.13)*).
The analysis is summarized in Fig. 9. First of all, one can notice that the
choice of the set of parameters used by R2 in Bq (5.1) is not the one which
comes consistently from az two arbitrary parameter fit analysis. The R2 pro-
cedure for extracting the parameters is not clearly explained but, as one can
see in their figure captions, it seems that at least one of the parameters in
Eq (5.7) is introduced by hand. Actually, if one tries to perform a two—
parameter fit analysis with the leading QCD expression, one can realize that
the x? is very bad and the output parameters are quite unrealistic (too
large value of %s > 450 MeV and too small value of - m. <s g >). It is
difficult to choose the value of tc from Fig. 9. However, from the smallest
xg/NDF criterion and from the consiraint in gqs (5.11) and (5.12), it is
likely that the wvalue of tc is arcound 2 GeV™. It is amusing to notice that
the wlue of < O4 > at such a valu? of tc is the one obtained from the

results of Eq (4~16).This consistbney of the vector and (pseudo)scalar results

allows us to take definitely the value 2 GeVz for tC

Q
*)  Actually, Mi is known within an accuracy of 1 /,, from the data.
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*)

The set of parameters giving the hest fit is
m > (205 * 20 MeV)
n_ls (1 Gev) = (138 * 28) MeV

-ms<§'s>=- (1. £ 0.1) 10'3 Gev?

xZ/NDF =~ 0,045 , (5.14)

where one has included,into the error bars the effects induced by the change
of A. The best fit is given in Fig. 10 (continuous line) together with the
best fit of R2 from Fig. 2 of their paper. One can alsc nctice from Fig. 9

that the value of <IO4 > satisfies

<o4>z -m.s<§s> < 1.510"3 gev? {5.15)

if the factorization hypothesis of the four-quark condensate holds.

<ZO4>>is of the crder of a factor two smaller than the one from z kacn PCAC
anzalysis.

Now, let us analyze the effect of the factorization hypothesis on the output

parameters, by letting 06-< 06 > be a free parameter moving in the range :

5.107 < Cp <0, > < 30 107 gev® | (5.16)

where the lower bound corresponds to the factorization hypothesis within the
values of parameters in Eq (5.15), and the upper value corresponds to the

claim that the factorization hypothesis of the fhur-quark cperator can give an

underestimate of a factor of the order four -2 56)

~

of the exact value of the
operator. The two-parameter fit for . and the spontaneous mass ué versus
C6 <.'O6 > and for a given value of tc and A is in Fig. 11. One can see
that m  increases by about 20 % while @ decreases by about 47 %. In
the absgnce of any factorization hypothesis znd with the range of values of

C6 <ZO6 > given by Eq (5.16), Fig. 11 tells us that :

170 = ™ = 260 MeV

85 < b = 188 MeV (5.17)

~

*) One can notice that the QCD corrections decresse the value of m .
The same situation has been noticed in Ref 48 where the authors °
include QCD corrections to the GMO mass f ormulal’/. We shall come back
to the discussion of GMC mass formula in section 7.
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i.e., one has a wide range of values. If, in addition, one uses the values of
By from the scalar sum rule (Eq 4.16), one can deduce from Fig. 11, the set of

parameters :

C. <0 >5201o'3 ger®

< 250 NeV . (5.18)

The above value of C, <0, > must be compared to the one from Eq (5.6),
within the value of p in BEq (4.16), which is 3.2 10~3 GeV6. Then, one can
conclude from the @~me:on analysis that the value of the strange quark mass
cannot be known with a high degree of accuracy. Secondly, a deviation of the
strange quark vacuum condensate from the SU(3)L+R expectation implies a
viclation of the factorization hypothesis of the four quark operator by a
factor more than 2, which is a conclusion very similar to the one obtained in
the ud channel of mesonsBB) and baryons36 . The value of ;s in Eq (5.18) is

given in the Table. One can notice that it agrees with various previcus estimates

49, 50)

than the leading order analysis of Rz 17).

coming from the vector meson channels but it is slightly higher

6. WHAT CAN WE ILEARN FROM THE K* CHANNEL ?

The extension of the analysis to the K¥*-meson channel can be done provided
2
one works with the two-point function H(1+O) (g") used in Ref 46) for the

analyeis of the GMO mass formula and defined as :

T (62)

- (" o - oY) HV(HO)(qz) + g w(d®)

i

iffx&“<o|T<awgu>uaw@mnﬁo><an

*
as it is the one which is free of mass singularities47) ). The two point
function involves the contribution of spin 1 (the XK*) ans spin © (The m-meson
(140) u for m > n
2) g L
5

discussed in section 3) cases. The QCD expressicn of 1

(q
can be obtained from Ref 47). It reads :

—_— i
*) The strength of the mass corrections is not the same for H( )and H(1+O).
v v



(1+O)u -1 Q2 E’S Q2
I = (——5) { log'——§ + 0 (1) + 7 log — o+
v s 4t Q
> o 4 o
3ms 7 ¥ s 12 m |
+ ““E'(1 4+ 5‘ ;FJ - _Z (1 - 7— = )
Q Q s
o o
—’[41Tm<ss>(1—;r§*) %Z(i)m <uu>
Te <F>) ¢ <o>l*} (6.2)
T3 G TeT 8T 6

for SU(B)C X SU(B)F . The radiative corrections to the quark vacuum conden-

sate come from Ref 48). ¢, <0, > would be equal to Bg (5.6) if the factori-

zation of the Hhur—quark condensate is used. The Laplace transform sum rule

reads :
(140) > £ 1 (1+0) 7]
30 = [ oate™ Lm0 (s) - I t1+g—L 0.35151}5:é
v 0 v 41'r
o 8/9
2 /2 4 9
-3 o (D) T[1+9L(3+2'\’E)]
16/9 2 12 . m
3 f
[0.042 - 39.5 <0, > (1 - =)
A~ .I 1
- 0.153 GeV~ m, 7] -5 Cc <0 > ) (6.3)
and = oo . ( ) o
aF _ -tr 1 140 T a4 log L
“T_J‘dte t - In I (t) = {1+9L—035 =
0 4ﬁ
82@)8/91 (1 -7 J—2ﬂ>4236/92
+ % 05\ LTV TE T 7 s Ty L
2 - o :
-7 [o.o42-39.5<o4>(1-—i)-o.153 s 3 ;
L
+ ¢ <0, >1 }. (6.4)

6 &

One saturates the spectral function by the K*, the wn mesons and a QCD

continuum, Then :

e S (t):——z— é(t—M_K*)+2f a(t-M +A.V(t)®(tt)

K (6.5)
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Y 4. 18 the coupling of the K* to the gauge field which is the W-boscn

agd controls, for instance, the decay rate 7 — Vo K* of the T (1.8)

lepton . Av(t) takes into account the discontinuity coming from the pertur-
bative QCD diagram. y 4, can be related to tC from the analogue of

Eq (5.11). For a betterKcomparison with the R2 result, we work with the

*
moment ratio analogous to the one in Eq (5.13) ), i.e. @

2
"

2
W, =f£(r, t, f

K

, Mi) . (6.6)

We use the value of fn and M, obtained in section 2. The value of tc
will be taken in the range of the one of the ¢-meson channel (asymptotic
SU(B)F symmeiry for the QCD continuum). If one starts the analysis of
Eg (6.6) by a two-parameter fit :

w o, m (6.7)

5 s

and for different values of C6 <K% > , one can realize that the fit is very
bad and the output values in Eq (6.7) are very inaccurate. We fix, instead,
B fo be the one in Eq (4.14) and do a one-parameter fit. The resulging value
of m_ is given in Figs 12 and 13. One cgn see that the smallest X /NDF
favours a value of tc less than 1.7 GeV while Pig 15 does not give any
useful constraint. If one uses literally the above value of tC as an upper
bound within a 20 % accuracy, then we deduce from the analogue of Eq (5.11):
Y, = TN, \/Zg(4.3io.4) (6.8)

K K tc

which is a factor almost two stronger than the one from the observed rate :

* 2
T(r=v X) M 2 3
B , = T = 128 i e dt(1-%+2t—6)-
TE T(T = v_ev ) M ¢ o M M
T e
.Im 1 L(t) < (0.1 £0.04) (6.9)
K

(1)u

*} Notice that B2 and SVZ work with the I S(qz) two-point function
v
28, 47)

which has mass singularities for m, 0 . So, they have no spin

zero contribution in their sum rule and the contribution of the mirterm
in their analysis is about half of the one in Eg (6.3).



- 28 -

where :
* 2
M*
2
lw oo, £ s(t-w) . (6.10)
) 2
K 2y K
K
The result in Eqg (6.8) is however consistent with the cne from Weinberg-like
22,4
sum rules H or from other sum rule-results ’49). Comparing the result in
Eq (6.8) with the one from SU(B)V, which is :
/2
v, ~ Y2 a3 (6.11)
< IsU(3)y 3078

one then expects a large SU(3) violation of the value of the K¥-coupling

to the current. Eq (6.8) leads to the prediction :

B , <({3.3%0.7) 1072 (6.12)
TK

which is three times smaller than the present experimental upper limit and
which stimulates a further experimental improvment of the upper bound on this

branching ratio.

7. IMPROVED GELL-MANN-OKUBQO (GMO) MASS FORMULA FOR VECTOR MESONS.

The Gell-Mann-Okubo (GMO) mass formula has been reconsidered in Ref 45)
using the moment sum rules ratio 25) and taking into account the contributions
of the leading quark masses and vacuum condensstes. Recently, the suthors in
Ref 47 have improved the leading QCD expression for vector mesons in Ref 45)
by including radiative mrrections to the ﬁi and ﬁi—terms and to the quark

vacuum condensate ms<1§ 8 > where the latter radiative correction has been

obtained earlier in Ref 48). Once these new QCD effects have been under control,

it seems necessary to reexamine more carefully the analysis in Refs45) and 47).

The GMO-like relation for the p and ¢ mesons is .

Q
R(r) - RP(7) ~ 6 ;12 {1+ (v + Hy (-3

3 n
8n 19y =2
( T8 * 2vg + ) w7
2 2a -
_1&1(1—7%)%-<ss>7

+

3 _ 2
2 (C6<06 > = Cc <O >p) T (7.1)
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25
with c6 < 06 >V normalized as in Eq (5.6)and where ) :
v d o 7T 1
R ('r) = _ d_'r log ‘fo dt e p Im l'[v(t) ; (7-2)

is a slightly modified form of the moment used in sections 5 and 6.
I, (q?) is the twa—goint correlation function asscciated to the vector
mesons V= % p. R (T) repreduces the meson mass squared in the limit
T = e but due to our iimitation of the control of fthe non-perturbative QCD
terms, we have 1o take a finite value of T where in principie the continuum
also plays a non negligible role in the sum rule given by Eg (7.2). So, one
parametrizes the spectral function sum rule by the "duality ansatz”
(see e.g BEqs (3.1) and (5.9) ) which leads to the Eq (2.7) of Ref 45) and
which ‘becomes after the use of the FESR~1like constraint (Eq (5.11)) or of
the asymptotic consistency of the QCD and of the phenomenological parts of
the sum rule for T =0 : 5

% 1, —(tc - MV)T
& () =~ Mi {1 + (B 1) (T) e (1 +t.7)

. (tc - M%) T
c

} (7.3)

1

where the valw of tc is of the order of 2 GeV2 as we learn from Eg (5.11)
and from the analysis in section 5 and from Ref. 45). Using Bg (7.1) for the
estimate of the running strange gquark mass at 1 GeV, we evaluate the moment

at T =1 GeV_2. Then, one gets :

] -2 2
Rexp (1 GeV™) = 1.3 1y (7.4a)
p =2y 2
Revs (1 Gev™") ~1.44 . (7.4D)

In order to control the accuracy of the result in Eq {(7.4), one can use,

for instance, the value of Rgxp obtained using the e - I = 1. Hadrons
data from Ref 35). One can see that the data imply a value of RZXp of the
order of 1.7 Mi, which led us to conclude that Eg (7.4) should be considered
within a 20 % accuracy. Then :

)

(r

p =2y o 2
oxp " Rexp)(1 GeV ) = (0.49 * 0.32) GeV (7.5)
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One also knows the value of 06 < 062%‘= 0.12 GeV6 from Ref 35). From the
analysis in section 5, we have obtained the range of values in Egq (5.18).

The value of <8 s8> (1 GeV) = - 5.8 10_3 GeV3 can be derived from Eq (4.14).
-2

Collecting the above informations, Eg (7.1) becomes at T =1 GeV after

transferring the contribution of the dimension-six operator intc the LHS

of Bg (7.1) :

o
2 w? Ll =2 -2
v = (0.64 £ 0.32) gev° ~6 mo 11 +4.8 () + (& -4 3.87) oo/ Gev )}
5 i T @ S
& 3
2 8y =
+ 0.92 GeV (1 - 3 ﬂ) - g (7.6)
which one selves in Fig 14 for 100 = A <150 MeV,
The resulting value of the running strange quark mass at T =1 GeV is
120 =m_ (1 GeV) =230 MeV (7.7)

which is shown in the table*). One may also extend the analysis to the GMO

mass formula involving the K¥-meson. However, due to the uncertainty on the
value of the K¥-coupling to the gauged current, one cannot hope to have

much more useful information than the one obtained previously from the #-meson.
One can 1imit oneself at this stage to a very qualitative analysis like done

in Ref.45) for the mass formula involving the &, X¥ and p mesons.

8. CONCLUSIONS

I have discussed in detail various determinations of the chiral symmetry
breaking parametérs from the light meson-systems via the SVZ-Laplace transform
QCD sum rules znd I have done a weighted average of various estimates coming
from other methods.

1) Concerning the light guark wu,d masses, the only available sources
of information from Laplace suz rules of the meson-systems are the two-point

1 1
correlation functions associated to the axial3 nd vectorqéhrrent divergences

%) This result is congsistent either with the leading QCD analysis in Ref 45)
or with the one including next—to-leading QCD term in Ref 47). Contrary
to the naive result of Ref 47) one cannot claim a net effect on the value
of the strange quark mass from the improved form of the GMC mass formula.
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which are known to three-loopgfgkd up to the contribution of dimension-$ix
vacuum condensates. Due to the Goldstone nature of the pion and the kaon and

due to the fact that the strength of the m'(K') contribution to the spectral
function has the mme dependence on mﬁ(K) than the contribution of the ﬂ(K),

it is essential to consider these first excitations at the same level as

the ™(X) but not as the continuum smeared by the QCD-theta function. Once

this has been done, one can make a more consistent comparison with the

" p-meson channel and the apparent inconsistency noticed for ingtance in Ref.32)
is sbsent as we do not need to go at a toc small value of 'l'_‘l in order to

see the consistency of the two sides of the sum rule. In the same way, the large
scale of the pseudoscalar channel (T_1 > 2 GeV2) advocated by the authors of
Ref 29) is dual to a 7' mass of the order of 1.7 GeV and the observed value
Mo, = 1.24 GeV31) should actually correspond to a smaller value of the sum rule
scale which should be inside the "sum rule window" shown in Figs 2 to 4 where
the small-size instanton effect can be neglected if one follows the dilute gas

instanton estimate of Ref 29) for the value of A__ which is by now known to be
MS
of the order of 100 MeV. According to the above remarks, we expect that the

results in Eq (2.15) are a "good estimate” of the u,d light quark masses. These
resulte agree perfectly with the ones of Gasser and Leutwyler ted obtained
using a SU(4) symmetry for the 16-plet mescn wave functions with

ﬁc (1 Gev) >~ (1.35 * 0.05) GeV as input coming from various analyses of the
charmonium systems. Using a weighted average of the pseudoscalar sum rule and

of the 8U(4) results, we get thefinal estimate for 100 = A =150 MeV :

A

m > (8.6 £ 1.5) MeV

my = (15.2 + 2.7) MeV Eld(1 GeV) = (9.0 £ 1.6) MeV (8.1)

e

n_:Lu(1 GeV) = (5.1 £ 0.9) MeV

>

~

where, I recgll that m. and m, refer respectively to the invariant and
running quark masses. One can notice that these values in Eq (8.1) are slightly
lower than the ones obtained using an analytical continuation of the pseudoscalar

1
0 2 ). However, one should keep in mind that the

two-point function at Q2 =
result in Ref 51) is very sensitive to the value of the dimension six operators

which can be actually higher than the SVZ-value used by the authors as has been

noticed in Ref 35) from the analysis of the ete” = I = 1 Hudrons data. Actually
a higher value of the value of the dimension-six condensates can favour a

slightly - smaller value of the u,d quark masses from the analysis of Ref 51).
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Using the Laplace transform or FESR methods, it is easy to realize that the
resultis in Eg (8.1) is not sensitive to the value of the vacuum condensstes

which are already small in the "sum rule-window".

2} The strange quark mass result comes from variocus sources as one can
*
see in the table. The weighted average ) of these various estimates leads to
a very accurate value of the strange quark msss

A

m > (250.6 * 25.8) MeV ; Els_(*t GeV) = (148.4 £ 15.3) MeV. {(8.2)

%) We have scanned various light meson-sources of estimate of the ratios

<ss>_- _.
uw = and 58 /< uu >

We have shown that the vector mesons ¢ and X* are not very sensitive to the

of the quark vacuum condensates < d 4 >/<?a

above ratios. That is mainly due to the fact that the role of the ﬁi—corrections
is much more important in these channels than the one of the < & s > condensate.
The "good" places for the extraction of the quark condensate are the scalar and
pseudoscalar channels via the estimate of the subtraction constant w(s)(0)3
introduced in Ref 18} and followed later on by various suthors 19)21)

and used again in this paper**)where a better value of the strength of the scalar
meson-decay amplitudes [Eqs (3.4) and (3.8)) has been used. Then, we have
obtained [Eqs (4.8), (4.9)7 :

< 34>

<uu>

-2

=1 - (1 %0.3) 10 (8.3)

and the result for the strange gquark condensate is in Eq (4.2). Combining this
result with the one from various sources [Egs (4.13)-(4.15)7, we deduce the

weighted average [Eq (4.16)]

<gs s>
— >~ (0.47 £ 0.11) (8.4)
<uu>

*) I thank N. Paver for a stimulating remark on this point,

*%) One could also work with a chirality-odd two-point correlation ks done by the
authors in Ref 52)]which is sensitive to leading order to the wvacuum con-—
densate < ¥ ¢ >. However, the result of the analysis is rather inaccurate
due to the less controlled value of the meson coupling to the tensor
current as well as to the less controlled contribution of the higher
excitations in the sum rule.
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which clearly indicates a large deviation from the SU(B)V symmetry and
consistently implies a large violation of the kacn PCAC. The result in

Eq (8.4) needs a more careful reanalysis of the kaon phenomenclogy where
the rcle of the ii—term should be important in contrast to the pion case
where cone can safely neglect the mi’d term compared to the linear mu’d<iﬁ u >
one. We have encountered such a situaticn in various examples discussed in
this paper as well as in the case of the U(1)A—ohanne1 where the mi—term

affects the estimate of the topological susceptibility of the U(‘l)A currentBB)

and the 1'-mass value 53’54).

4) We have observed from the analysis of the ®-meson channel, that the
factorization of the four-guark condensate is viclated by a factor more than
two (see Eq (5.18)) which is & very similar conclusion than the one obtained
from the p-meson channelaS) and from the u,d baryon system836). We hope that
other method like, e.g, the lattice Monte-Carlo simulations, checks our results.
One can also notice from Eq (5.18) and from the wu,d channel result in Eq (2.9)
from Ref 35) that the dimension-six vacuum condensates also exhibit a large
violation of the SU(3) expectation, i.e. the value of the condensate for the

strange quark is much smaller than the one for the w,d quarks.

5) Finally, we conclude that the K*-meson channel does net provide any
useful informaticn cn the chiral symmetry breaking parameters mainly due to the
fact that the K¥*- coupling to the gauged current is not known experimentally.
For this reason, it is more useful to deduce this less contrelled coupling of
the X* to the current. We find the result in Bq (6.8) which implies the
branching ratio

r{r - Vo K*)

- (8.5)

— < (3.320.7) 10
(T = v, e ve)

which is three times smaller than the present experimental upper limit and which

motivates a further improvement of the data.
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Table: Light quark invariant masses

100 < A s 150 Mev
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FIGURE CAPIIONS

Fig 1

Fig 2 :

Fig 3 :

Fig 4

Fig 5

Fig 6 :

Fig T ':

/
WCD contributions to the hadronic fwo-point function where ® denotes
the hadronic current insertion, —  the internal quark line,

anne internal gluon line :

a - c) : perturbative GCD

T Hv a

d : < r o <<

) m<Vyy>, e) L <F) T > X X
£) :n<¥oW Ry r s g <P M2y ok a v 2>

2 a 2 2
g=u,d..
- - . V) o

h T @ < : <

) G VL ¥ WD, b >ihg £ <FUF RS

Estimate of (mu + md) from the pseudoscalar two-pcint function versus
the sum rule scale 1A/T for different values of t, end for
A>=100 MeV :

mmm represent the lower bound using the positivity of the spectral
function.

~—— TFinite width parametrization of the

4 52 /m4 f2 =6

—o——o Narrow width parametrization of the ™' with M‘ﬂ'fn' n L
[Refs 12d, 15, 19a)]
The arrow A indicates the region where the OPE is expected to be a
good approximation, while the arrow B corresponds tc the one, where

the QCD continuum does not exceed the resonances contributions, i.e.

the so-called "sum rule window"is inside A and B.

Behaviour of (mu + md) for two different values of A and for a given

value of t .
C

Strange quark analogue of Fig, 2.

Estimate of f6 for & given wvalue of my ~ oW, and taking the set of
(A,tc) which gives the lowest and the highest estimates of fé. The
arrows A and B delimit the "sum rule window".

Strange quark analogue of f6'
Estimate of the non-perturbative two-point function subtrzction constant
w(o)g corresponding to the set of parameters in Fig 5. The arrow indica-
tes the point where the continuum contribution does not exceed the

resonance one.
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Fig 10 :

Fig 11

Fig 12

Fig 13

Fig 14
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Strange quark analogue of Fig 7 using the set of parameters in Fig 6.

Correlated set of m and ms< s s > from a two-parameter fit of

the %-meson mass squared as function of tC.

2
"Microscopic figure" showing the prediction of Mg for different sets

of the QCD parameters.

Correlated set of o and pé versus different values of the dimension-—

six operators for a given value of tc from the ®-meson channel.

A

: Value of m, Versus tc for given values of A, B and 06< 06 >

from the - K*-channel.

~

Values of m versus C6< 06 > for given vaglues of tc’ A and b -

Determination of ﬁs (1 Gev) from the G.M.0 mass formula.
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