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Abstract

We study chiral symmetry breaking, making use of a generalized Nambu —Jona-Lasinio

(NJL) model that includes a description of confinement. The Schwinger-Dyson and Bethe-

Salpeter equations are solved for our model of the self-energy of a quark. We show that our

analysis is consistent with the Goldstone theorem. That is, the pion has zero mass, if the current

quark masses are zero. We use a confining intéraction with a (Dirac) matrix structure that leads
to simple equations for the self-energy and for a vertex function that serves to sum a ladder of

confining interactions. We consider spacelike values of g2, and carry out our analysis in a
Euclidean momentum space. For timelike qz,-we use calculational procedures that we have
»developed in our earlier work in order to exhibit properties of the confining vertex. We find
that the strength of the zero-range quark-quark interaction of the NJL model needs to be
increased to compensate for the presence of the confining interaction, if we wish to obtain the
same value of the momentum-dependent constituent quark mass (at k2 = 0) as the constant value,

m,, obtained in the absence of the confining interaction. For the spacelike values of

q? considered here, we see that the effects due to the introduction of our model of confinement

are small. (However, such effects are very important for timelike qz. Their consideration is

essential, if we wish to study mesons, such as the rho and omega, in our model.)




I Introduction

In recent years, we have seen numerous applications of the Nambu —Jona-Lasinio (NJL)
model in the study of chiral symmetry breaking and in the description of hadron properties [1].
Usually, confinement is neglected, so that the theory may be applied to study'the pion and the
"sigma meson". (The sigma meson appears at the threshold of the quark-antiquark continuum,
while the rho and omega are in the continuum of the model.) In previous work, we have shown
how a confining interaction (a linear potential) introduced in our momentum-space calculations
removes the unitarity cut associated with the quark and antiquark goi/ng on mass shell. The
resulting formalism then only has cuts when hadrons go on mass shell [2]. In our previous work
- we assumed that the constituent quark mass had a constant value that was obtained from the gap
equation, without confinement. In the present work, we have included the confining interaction
in the Schwinger-Dyson equation and we, therefore, find a self-energy for the quark that varies
with &2 , the square of the quark momentum.

It is usually thought that confinement is not particularly important for the study
of the low-energy hadron spectrum. In this work we wish to put such suggestions on a more
quantitative basis and to obtain guidance as to the implementation of a more comprehensive
treatment of low-lying mesonic states, including the pseudoscalar octet and the n’. The
organization of our work is as follows. In Section Il we describe the confining interaction that
we use in this work. In Section III, we present equations for the quark self-energy,
Z(k) =B(k2)1{ +A(k2). In Section IV, we introduce a vertex function that serves to sum a
"ladder" of confining interactions and present results of our calculations of that quantity. In

Section V, we discuss the vertex function associated with the entire interaction of the generalized

-3-




NJL model. We show that the Goldstone theorem is satisfied, with the zero-mass pion as the
Goldstone boson. The calculation of quark-antiquark loop integrals (polarization diagrams) is

described in Section VI. Finally, Section VII contains a summary and some conclusions.




11. The NJI. Model with a Confining Interaction

For our study we will use the SU(2)-flavor version of our model, where the Lagrangian

is
— G — — ——
£ = 30(id -mg)a) + 2 [@@a@F + (T TIWP]+ L . @D

We will use
£ con = [C_I(X)'yﬂq(x) VE(x - NI 7,90) - 70 Y ¥s9® VE® - )7 0) 75 q(y)] 22

(The advantages of using this form will be made clear as we proceed.) Thus, the confining

interaction is
V@ -y = Vea-D [0y, - O rs1)r,@Qrs0)] @3

We used Vc(r) = krexp(-ur) in our earlier work, with p =0.050 GeV. (The parameter p is
introduced to make the Fourier transform of Vc(r) less singular and, thus, facilitate our

numerical calculations.) The Fourier transform of Vc(r) is

2 82 (2.4)

VAE-F) = -4mc] —— S - -
[(F-T7 2P [(F-7)+ 4]

However, for calculations in a Euclidean momentum space, that we report upon in this work,
it is necessary to treat all the components of the momentum transfer on the same footing.

Therefore, we will use




2 2

Ve(k-k) = —amc) 2 __ B @2.5)
(ke +) (kz+4?)
where kg is the momentum transfer in the Euclidean momentum space.
It is useful to write
_ 2
Vx-y =vea-»Y 0,()0;©2) (2.6)

i=1

with O; =4" and O, =iy*ys. [See Eq. (2.3).] (We will use a bar over a letter to denote a
quantity that has Dirac matrix indices.)

For the interaction of Eq. (2.3), the Lagrangian has chiral symmetry, if mg =0. Indeed,
» each of the terms in Eq. (2.3) respects chiral symmetry. Our motivation in combining the
terms, as in Eq. (2.3), is to achieve a particularly simple form for the self-energy and vertex
functions. For example, if we write the self-energy as L(k?) = B(k®)k + A(k?), we find that
B(kz) =0. Also, if we consider a scalar or pseudoscalar vertex for the confining interaction,
;‘S(qz, g-k, k% or E'P(qz,_ g-k,k?», we find that, when Eq. (2.3) is used,
l:v‘P(qz, q-k, k%= FP(qz, q-k, kz)'ysri and F‘s(qz, gk, k%= Fs(qz, q-k,k? - I. Herel
denotes the unit matrix in the space of Dirac matrices. That is, the simple structure of the
vertex operators of the NJL model is maintained in the presence of confinement, if f’(x -y) of
Eq. (2.3) is used. In the case we need to refer to that interaction, we may callita V- A form.
That designation is in keeping with the current practice, where one speaks of "scalar
confinement" or "vector confinement".

We now write the quark propagator as




St = — | 2.
S = e @D

with Z(k) =B(k®)k + A (%?). This propagator is represented by a double line in Fig. 1. In Fig.
la we see the equation for the quark self-energy, L (k). There, the wavy line is the confining
interaction. The filled circle in Fig. 1a denotes the element i Gg, where Gy is defined in Eq.
(2.1). In the absence of the first term of Fig. 1a, we would reproduce the gap equation of the
standard NJL model. In that case, one has a constant value for the constituent mass,
L(k) =m,, with m, ~ 250-350 MeV.

In Fig. 1b, we show the integral equation for the quark propagator, iS(k), given in terms

of a massless propagator (single line) and the self-energy, I (k).




I11. The Quark Self-Energy

We write the quark self-energy as I (k) = B(k*) & +A(k2) . From the equation depicted

in Fig. 1b, we find that B(kz) =0 and that A(k?) satisfies the equation

d4kr [SVC(]C - k’) + 4ncnst] A(k'z) ' (31)
(2,‘,)4 kt2 _AZ(kIZ)

A =i J’

Note that, if V¢ = 0, A(kz) is a constant. In that case, we have

d% omy,
m, = 4n_n,Ggi (3.2)
q cf¥s
J @D k2 -m]
Thus, since mg =0 at this point, m, may be factored out to yield the equation
47,
1 = 4nonyGi d’k 1 (3.3)

@ k?-m?

Solutions of Eq. (3.1) have been obtained by using a Euclidean momentum space. One
may use either a covariant cufoff, where ké < A,z_p, or the Pauli-Villars regularization procedure,
among other possibilities. We have done both kinds of calculations; however, the Pauli-Villars
method is to be preferred, since it preserves the symmetries of the theory.

First, we note that, if Gs=17.91 GeV™2 and k=0 , and if we use a Euclidean
momentum-space cutoff of Az =1.0 GeV, we find m g =241 MeV. Once we include a finite
value for x, we no longer obtain a constant mass. That is, A(k?) depends upon k2 as shown
in Fig. 2. For the result shown in Fig. 2, we put x = 0.140/8 GeV? =0.0175 GeV2. The factor
of (1/8) in our choice for x serves to convert a value of x appropriate to scalar confinement to

a value appropriate to the interaction given in Egs. (2.3) and (2.4). A factor of 2 is obtained




since we have two terms in Eq. (2.3) and a factor of 4 arises from the Lorentz character of the
interaction.

We now choose G such that A(0) = m,, where m, was the value obtained for x =0.
We find that Gg = 8.95 GeV ™ yields A(0) =239 MeV. Values for A(k2) forx = 0.0175 GeV2
and Gg=8.95 GeV 2 are given in Fig. 2. (We use the notation Gs when x#0.) The
k? dependence of A(k?) is not strong. Going from k2 =0 to k2 =-1.0 GeV? only increases

A(kz) by 22 percent. (We have A(kz) =293 MeV when k2= -1 GeVz.)




Iv. The Vertex Function of the Confining Interaction

We now consider a vertex function that sums a "ladder” of confining interactions. The

equation for the pseudoscalar vertex is then [2]

. 2 47, _.
Fp(g, k) = ys7;+ ¥ i J (‘;_’;4 VEk -k O(1)S(k' + q/2)Fp(g, k')S(k' - g/2)0,2) . “.1)
J=1 T

We define 4,(q, k') =A((k' + q/2)2) and 4 _(q,k') =A((k’ - q/2)2) and make use of the relation

P[#r 42+ Aa, K5~ 42 + 4@, D)y,

! '] ! ’ 4.2
“ 1P 2+ g, Ky (B~ 12 + 4 (g, K, s -2
= 8k +g/2) - k' - q/2) ~A.(q, k)4.(q, k)]s
We also define
Np(@, k') = k2 -q%4 -A,(q, K)A(q, k) , .3)
so that, if we put
Fp@,®) = vs7Fpla, k) 4.4)
we see that the function Fp(g, k) satisfies the integral equation
d% SVC(k -k)Np(q, k')Fp(q, k') (4.5)

Fp(g, k) = 1+i
d J @m*  D{k' + 9/2)?) D{k' - g/2)?)

In Eq. (4.5), we have used the definition D(p2) = p2 - 42(p?).
An entirely similar equation may be written for the scalar confining vertex, where we put

I—?S(q, k) =F¢q, k)I. Thus,
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d* 8V(k-k)Ng(g, k') Fg(q, k')
@n* Dl +¢/2)?) D - ¢/2)?)

(4.6)

Fs(g, k) =I+ij

with
Ns(q,k") = k' -q%4 +A,(q,k)A(q, k') . 4.7)

Note the difference sign for the last term of Egs. (4.3) and 4.7).

In the past, for q2 >0, we have sollved the equation for Fg(g, k) by completing the
ko integral in the complex kj plane [2]. There are two poles in the lower-half plane arising
from the quark propagators. For one pole, the quark is on its positive mass shell. For the other
pole, the antiquark is on its negative mass shell. [We have also neglected any poles that would
- arise if we admit energy transfer in V €(k - &’) and we continue to make that approximation for
our calculations for timelike qz(q2 >0).]

For the function Fp (q2 ,qk, k2) , let us consider the case where the quark is on its mass
positive shell, so that k9 + qO/ 2= Eq(7c-+ _(f) The resulting function is a function of only two

variables. In the frame where A_q.= 0, we define

T: (g% | %|) = Fp(q?,q -k, k> 4.8
P @° %) = Fpg?,q )|ko+q0/2=m.). (4.8)

Similarly, we consider the case where the antiquark is on its negative mass shell. In that case,

we define
Tp'a% | %1) = Fpg®,q -k, kY | , 4.9)

k0 -4%2 = E %)

These functions satisfy coupled equations of the form
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[ ) T
1
F;'Eq;’,l_ [1- Jdk’ vk q°—211¥q(7€') q°+2fq(?') s @ | %)
T '(g°, @n)’ — - — | T @% 1%
¢°-2E,(F)  q°+2E,(F)

4.10)
We see, however, from the last equation that

T @ 1% =Tp @0 | %)) . @.11)

Discarding the superscripts, we have a single integral equation

Tp@® | %) = 1 VEk-k)Tp@®, |7 |) . (4.12)

‘f d3k'3 L)
@7 (% - 2E (%)
In Fig. 4 we present values of T'»(¢°, | %|) for several values of q°=0. It may be
seen from the figure that T'5(¢°, | %|) for large [%| is about 0.6 to 0.7. Those values are |
related to a cutoff placed on the three momenta in the integral equation,
A3=0.702 GeV(| %' | < Aj3). However, the integral equation does not need to be regulated,
since the integrals converge as | %' | >oo. If one puts A equél to several GeV, the various
Tp(g°, | %) go rapidly to 1 with increasing | %| for all q° values considered here. We recall
that it is the zeroes of the confining vertex functions for kozn =(q%2)?-m ; that remove the
gq cut in various vacuum polarization diagrams. Such cuts would appear for g2 > 4m§ in
the absence of a model for confinement [2]. The zeroes of T'p q°, I-EI) are indicated in Fig.
4 by small dots. For those curves without such dots, ¢° is too small q°<2m o) to lead to on-

mass-shell quarks in the absence of confinement.
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V. The Vertex Function for the Total Interaction and the Goldstone Boson of the

Generalized NJL Model
In this Section we discuss a vertex function, F 1(q, k), that includes the effects of both
the confining interaction and the (zero-range) NJL interaction. The integral equation for that

quantity is depicted in Fig. 5. That integral equation reads, in the pion channel,

- 2 41, -
Fr@ k) =75+ Y i ‘; KV C-k)0,(1)S(@/2 + ¥ 15 S(-a/2 + K )0,(DF 1 (g, K)
j=1 7 @ 5.1)
d*r

+ncnfi GSI (21)4Tr[S(q/2 +k')ysS(~q/2 +k')'ys];'7(q, k')

In the last equation, we have already factored out the isospin matrix that appears in the driving
term, ’ysfi. We then define lTv‘T(q, k) =ysFr(q, k) where Fr(q,k) is a scalar function. We
have

d% [8Npa, K)VEU-K) - n n,GsM(g, k) |Fr(g, k) 5.2)
(21)4 D+(qsk’)D-(Q: k,) ’

Fr(g, k) = 1+ij

where we have put D, (q,k') = D((q/2 +k' )2) and D_(q,k') = D((q/2 -k’ )2). Note that

Np(q, k) was given previously in Eq. (4.3) Here, we have also defined

2
M(g, k) = 4 24- -k2+4,(q,0A(q, k)

(5.3)

We now consider the limit ¢—0. We have D,(0,k)=D_(0,k) =Dk?),

Np(0,k) =D(k?), and M(0, k) = -4D(k?). Therefore,

d% [BVEE-K) +4n n,Gy|

Fr(0,k) . 5.4)
@2n)* D(k'?

Fr(0,k) =1+i[
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If there is a boundstate at zero energy, the homogeneous version of Eq. (5.4) will have

a solution. Thus, we consider

% [BVE®k-K) + dn,n Gy

Fr(0,k) = 1+i Fr(0,k') . 5.5)
! I @’ D(K'%) T
However, the gap equation, was
, Co _ 1t
A(kz) _ II d4k [SV (k k)+4ncnfGS]A(k,2) . (56)
@n* D(k?)

Thus, we see that F1(0, k) is proportional to A (k2) and we have a zero-mass state. The pion
is the Goldstone boson, as expected.

It is sometimes useful to define the wave function

1 2
Yrk? = n——— 4D ¢.7)

T K -AZky

where 7 is a normalization factor.
We have
2 _ 42032 2 _ i d% [gyC , 2 5.8
[2 - 420) |y, k) = 1] > )4[8v (k - k') +4n,n,Gg g7 (%) (5.8)
T
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VI Calculation of Polarization Diagrams
In the original NJL model, the quark loop integrals for the scalar-isoscalar and

pseudoscalar-isovector channels are [1]

~i5(@Y) = (-Di*nn, | ;4’)‘4 T[Stk + g/2) Stk - g/2)] 6.1)
T .
and
4
~ip@") = (-Di*ngn, | j ’)‘4 Tr(vsS(k+ @/2)vsSk - a/2)] . 6.2)
s

Here S(k) = [¥ - mg + ios]'1 , etc. For the generalized model, we have

d*k
211')4

Fs(@, 0 Tr[S(k +q/2)S(k - g/2)] 6.3)

d*

T Fp(q, ) Tr[vsSk +q/2)ysSk - q/2)] . (6.4)
k3

These simple forms arise in the V-4 model of confinement considered here.

We have carried out two kinds of calculations of these vacuum polarization diagrams.
For g2 <0, the evaluation may be made by going over to a Euclidean momentum space. The
results of such an analysis are given in Figs. 6 and 7. In Fig. 6 we show 1 - GgJ P(qz) with
G =791 GeV ~2 [dashed line]. Note that 1 - GsJp(0) =0. (That relation reflects the zero
mass of the pion, since if one wishes to find the pion mass, one considers the solution of

1 - GgIp(m2) =0 [1].)
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We also show our result for the case x =0.0175 GeV 2 and G5 =8.95 GeV -2 [solid line]
in Fig. 6. The figure exhibits the values of 1 - G4J p(q%). We again see that 1 - GsJp(0) =0,
which reflects the fact that the confining potential maintains the chiral symmetry of the
Lagrangian.

We now consider the scalar-isoscalar channel. In Fig. 7 we show 1 - GgJs(q?), with
Gg=791 Gev 2 and x =0, as a dashed line. The solid line represents 1 - G5J¢(g?) with
Gg=8.95 GeV 2 and x = 0.0175 GeV2. One sees only a small modification in these curves,
since we have arranged to have A(0) équal to the value of mg, found when « =0. Note that,
for k> 0, the reduction of the values of J s(qz) is largely compensated by an increased value

-of Gg.

We note that the dashed curve will intersect the q2 axis at q2 =(2m q)z, since the mass
of the sigma meson is given by m,=2m p in this model when « =0 [1]. There is no such low-
mass scalar meson in the data tables. However, we have shown that the scalar-isoscalar quark-
antiquark states are very strongly coupled to the two-pion continuum [3]. We have also found
that confinement eliminates a low-mass sigma from the spectrum. On the other hand, for
q2 <0, the theory behaves as if there was a sigma meson with m,~ 540 MeV [3]. Since
nuclear structure studies involve the exchange of spacelike mesons, the presence of an effective
low-mass spacelike scalar is a desirable feature of the theory, since such a meson plays an

important role in understanding the nucleon-nucleon force and the properties of nuclear matter.
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VII. Discussion

Work that has some relation to ours was carried out by Gross and Milana [4]. These
authors obtained coupled equations for meson wave functions, in the presence of a confining
interaction, by performing integrals in the complex ko plane and picking up the poles of the
quark propagators, as was done in our work when q2 was timelike. However, the formalism
used in Ref. [4] does not yield a zero-mass pion unless the confining potential satisfies a
constraint. (The constraint used is a relativistic generalization of the relation VC(r) =0, for
r=0.)

The appropriate Lorentz transformation properties of the confinement interaction is a
- matter of some uncertainty. Scalar confinement has been popular, since it provides a good
representation of spin-orbit effects in heavy quark systems. However, a number of authors have
suggested that better results may be obtained with vector confinement. In particular, Miinz [5]
has noted that the Salpeter equation used for the study of meson structure is unstable for scalar
confinement [6], while vector confinement works well. Studies of Swanson and Isgur [7] and
of Adam Szczepaniak [8] also suggest the importance of vector confinement. Further, Resag
and Miinz have used vector confinement and have only kept the term involving v, [9]. In
addition, Miinz has used equal amounts of scalar and vector confinement, again keeping only
the yy term of the vector-confinement interaction [5].

In the work reported here, we have shown that the V-A form of the confining interaction
yields simple equations for the quark self-energy and for the .pseudoscalar vertex function.
Thus, we could carry out our analysis without solving coupled, nonlinear equations forA(kz)

and B(kz). We could also deal with a single scalar function Fp(q, k), rather than with four
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functions that characterize the pseudoscalar vertex in the general case. On the other hand, we
do not recommend the V-4 form for the study of meson spectra. We believe that vector
confinement provides a more satisfactory model and also allows us to write a Lagrangian with
chiral symmetry. We hope to complete a study of vector confinement in the future. The
equations that will be studied are more complicated than those considered in the present study.
We anticipate that, for vector confinement, we will again need to increase the value of Gg to
compensate for the confining interaction and that modifications of the size found in this Work
will be found for the quark self-energy and polarization diagrams. Results of some preliminary

calculations for the case of vector confinement are reported in the Appendix.
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Appendix
In this Appendix, we wish to study the self-energy, L(k) = B(kz)lt + A(kz) , and the vertex

function, F 1(q, k), for pure vector confinement. In this case we find the coupled nonlinear
equations

d4kl [4Vc(k - k') + 4nc nst] A k'z) (Al)
Qo)* ¥?[1-BEHJ - 4%k?)

AK? =i I

and

d% 2k - k) [1-BEHIVE(k-k) _ (A2)
o  k?[1-BE)HP - 422

k2B(k%) = -i I

- The pseudoscalar vertex function is more complicated than in the V-4 model, since there are

now four scalar functions of three variables to be calculated. We may write, in the general case,

Fr@, % = vs[ak, @) + kayk, @ + day(k, q) + dhayk, 9)] (A3)

with a,(k, q) = al(kz, k-q, qz), etc. However, I—«’T (g, k) is simpler, if we consider the case

q=0:

Fr(0,8) = vs[a,&? + kayk?)| (Ad)

e

where al(kz) =a,(0,k), etc.

The vertex function for the total interaction satisfies the equation

- 41+ -
Fr(0,k) = vs +in_’;4 Ve~ k)P Sk ) Fr(0,k)S(k ),
x
(A5)
. d4kl -
+n NG Tr|iSK'YFr (0, k" )S(K)y
'f SI (21'-)4 [ T 5]

We now make use of Eq. (A4) and find that
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% [4VE®k-E) +ann,Ggla (k)
(2.‘.)4 k:2[1 —B(k'z)}z _AZ(kIZ)

(A6)

a; (k%) = 1+ij

and

d% 2K (k-k)a,(k'?)

(A7)
@0 ¥21-Bx?)P - 4x?)

k%a, (k%) = -i J
Now, let us ask if Eq. (AS) has a homogeneous solution. We write Eq. (A6), with the "driving
term" removed, as

d% [4VE(k-K) +4n,n,Ggla, (k?)
et K 1-BrHP - 422

(A8)

a, (k?) = iJ

- Now consider Eq. (A7) and (A8). We see that comparison to Eq. (Al) shows that
al(kz) -~ A(kz). Further, we may put az(kz) =0, since Eq. (A7) is homogeneous. Thus, in
the chiral limit, the vertex for ¢ =0 is I—"} 0, k) =4 7'F T (k?), where FT(kz) is proportional
to A(kz). Since there is no driving term, Fr (kz) is related to the pion wave function

1

A(K?) (A9)
k2[1-BkHF - 4x?)

Yr(k?) =g

where 7 is a normalization constant. [Recall Eq. (4.7).] We remark that

{k2[1 “BUY P -A2(k2) gy (k2) = ij ‘;4’; [4vC(x-k) +dn neGglyr (k%) (A10)
2

in the case of vector confinement.
In Fig. 9 we show values for A4 (k2) and B(k?) obtained when solving Eqgs. (Al) and
(A2). We have used « =0.20/4 GeV? , Gg = 8.516 GeV ~2 and have included a finite value

of the current quark mass, mg =5.5 MeV, in one case. (Note that B(k?) is dimensionless.)
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Fig. 1

-Fig. 2

Fig. 3

Fig. 4

@

(b)

Figure Captions

The figure shows the contributions to the quark self-energy, I(k). Here the
double line represents the quark propagator, iS(k’) = i[lf -X(k') +i e]‘l and the
wavy line is the confining interaction. (Asa diagrammatic element, the wavy line
introduces —iVC(k - k') when evaluating the diagram. The filled circle denotes
a factor of iGg.)

The equation for the quark propagator is given in terms of the self-energy, 2(k) ,
seen in Fig. la. The single line is the propagator of a massless quark in this
figure.

Values of 4 (k2) are shown for k2 <0. The calculations are made in Euclidean
momentum space with a cutoff such that kzi < Alzg, with Ap =1 GeV. Similaf
results may be obtained with the regularization procedure of Pauli and Villars.
The integral equation for a vertex function of the confining interaction. The filled
triangular area denotes the vertex functions. [We may write integral equations
for either Fg(g, k) or Fp(q, k).] Here the wavy line is the confining interaction
VE®k-k'). The resulting equation is solved with either the quark on its positive
mass shell or the antiquark on its negative mass shell. [See the text.] The
double line denotes the propagator iS(k +g/2) = i[lt +d/2-A,(@, k)]'.1 or
iSk-qi2)=i[k-q4/2-4_(q,0)]".

The function I‘S(qo, | %|) is shown for « = 0.0175 GeV 2 and various values of

2

g°. Note that I‘s(qo, |7c-0n |) =0, when 753" =(q°n2)? -m,. Starting at the

lowest curve and moving higher, we have ¢°=0.7 GeV, ¢°=0.6 Gev,
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Fig. 5

Fig. 6

Fig. 7

Fig. 8 (a)

()

g°=0.5 GeV, ¢°=0.4 Gev, ¢°=03 Gev, ¢°=02Gev, and
g°=0.0 Gev. (The values for g% =0.1 GeV are quite close to those for
q°=0.0 GeV.) The results are for a constant mass, mg =260 MeV. If m, is
replaced by A(k?) only some small changes are observed near |%| =0. A
cutoff on the three-momenta has been used (| %' | <Aj), with Ay =0.702 GeV.
[See the text.]

The equation satisfied by the pseudoscalar-isovector vertex of the total interaction,
Fr(g,k), is shown as a crosshatched triang.ular area. The wavy line is the
confining interaction, Vc(k - k'), and the filled circle represents a factor of iGg.
The driving term for this equation -ysri. [See Eqgs. (5.1) and (5.2).]

Values of 1 - stp(qz) [dashed curve] and 1 - G§Jp(g?) [solid line] are shown
for spacelike g%. Here Gg=7.91 GeV 2 when x =0. For « =0.0175 GeV?Z,
we use G5 =8.95 GeV 2. We see that 1 - GgJp(0) =0 and 1 - G4Jp(0) =0,
indicating that massless pions are found in both calculations.

The functions 1 —GSJS(qz) [dashed line] and 1 -Gg-f S(qz) [solid line] are
shown. (See caption of Fig. 6.)

The loop integral of the NJL model without confinement, —iJ(qz), is shown.
Here the quark propagator is iS(k) = i[¥ - mg, + ie]L.

The loop integral, -iJ(g 2y, of the generalized model. The shaded triangular area
is the confining vertex and the double line denotes the quark propagator,

iSk) =ik —A(kz) +ie] L.
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Fig. 9

(©)

Various diagrams that would appear in a perturbative expansion of the confining
interaction.

Solutions of the cqupled equations for A(kz) and B(k2) are shown. [See Egs.
(Al) and (A2).] The dotted line represents B(kz) , which is dimensionless. The
solid line represents A (k%) for m 3 =0, while the dashed line shows the result for
A(kz) when mg =5.5 MeV. Here we use vector confinement with
x=0.20/4 GeV? and Gg = 8.516 GeV 2. (For this calculation we have used

a Pauli-Villars regularization procedure.)
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