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A chiral SU (2) X SU (2) transformation is introduced in a unified fermion theory in which 

fundamental particles have spin -?z- and all other particles are composed of them. The prop

erties of transformation and of an invariant Lagrangian density under transformation are 

investigated in detail. 

§I. Introduction and summary 

A number of elementary particles were found up to the present day, and it 

Is usually believed that a greater number of particles vvill be found in the future. 

In view of these circumstances, it would be of interest to consider a unified fermion 

theory in vvhich fundamental particles have the spin t and all other particles 

are composed of them. In this paper we shall introduce to the unified theory 

a chiral SU(2) X 5'U(2) transformation of the form as simple and analogous as 

possible to that in the usual theory in vvhich the pion field and nucleon field are 

independent ones. 

The pion field (pa has a special role in the chiral SU(2) X SU(2) transfor

mation1> in the usual theory. Let xa and Ta. be the operators by vvhich the 

chiral transformation is induced. They satisfy the relations 

[Xa, Xb] = iealJtTt, 

(a= 1, 2, 3) (1·1) 

where c.abl, is a totally anti-symmetric tensor (e123 = 1). The transformation laws 

of the nucleon field N are given by 

[Xa, N] = v (q/) sa.h:/,th:q}JV, (1· 2) 

[Ta, 1V] = -- ta1V, (1· 3) 

where v ( cp2
) is a real scalar function of cp2 and ta = ra /2. The transformation 

laws (1· 2) and (1· 3) are linear with respect to 1V but non-linear to (pa. 
Now we want to find a chiral SU(2) X SU(2) transformation in the unified 

theory. Let <jJ be the fundamental Dirac field. Of the pseudoscalar composed 

of ¢, the simplest one is pn = iJJ/)rut 11
<jJ, where ;, is a constant with the dimension 
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Chiral Symnzetry zn the Unified Fermion Theory. I 215 

of (mass)S. One of the chiral transformation law for ¢ which Is analogous to 

Eq. (1· 2) is given by 

where A and B are as yet arbitrary real scalar functions of ¢. The other trans

formation law is given by 

(1·5) 

In the next section it vvill be shown that the conditions imposed on A and 

B by the relations (1·1) are 

[X,\ A] =0, 

B= so A± {1 + [ p2 + (So)2JA2}1!2, 

(1· 6) 

(1· 7) 

where S 0 is defined by S 0 = f(/J¢. That is, A is an arbitrary chiral-invariant 

(real scalar) function, and B has two solutions, say B+ and B-, which are known 

(real scalar) functions when A is given. The chiral-invariant function A may 

vanish, but B cannot. Thus the mass term S 0 violates the chiral mvanance: 

(1· 8) 

The transformation law 

(1·9) 

will be also investigated, ·where C is a real scalar function of q;. Then it -vvill 

be shown that when C is given both A and B are known functions but they 

cannot be chiral invariant. In view of the simplicity of the theory, we prefer 

the transformation law (1· 4) to (1· 9). 

In the usual theory, the nucleon field Nand the pion field ¢a. are independent 

fields and the chiral-invariant Lagrangian density consists of many chiral-invariant 

terms. For example, the parts which describe n-N scattering in S-wave and P

wave states belong to different terms in the Lagrangian density.. Contrary to 

the usual theory, we assumd that our Lagrangian density consists of only one 

term 

(1·10) 

which is the chiral-invariant extension of the kinetic energy part of the free 

Lagrangian density for ¢. We may add the mass term (- 21\I0S
0

/ J..) to the 

Lagrangian density (1·10), where M 0 is the mechanical mass of the fundamental 

particles. As was shown by Eq. (1· 8), the mass term violates the invariance 

under the chiral transformations (1· 4). If we consider the spontaneous break

down of chiral invariance, it is not necessary to introduce the mass term. We 

shall not introduce the mass term in this paper. 

Section 3 is devoted to finding an explicit form of (Da1J). \f\.r e consider the 

case where (Da¢) contains thirteen scalar function$, Equations for these func-
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216 K. Hiida 

tions are derived in the Appendix. It will be shown that six of thirteen scalar 
functions are arbitrary chiral-invariant functions and the remaining seven scalar 
functions must satisfy seventeen equations. When A is given, these seventeen 
equations have four sets of solutions, two of which are functions of B+ and the 
remaining two are functions of B-. When A vanishes, the transformation (1· 4) 
reduces to the usual y5-transformation, and the seven scalar functions mentioned 
above also vanish. Then one of the simplest form of (- Cfir aDa¢) reduces to 
one of the equations of motion for ¢ which was discussed by Heisenberg.2

) 

A simple example for A is 

which is evidently chiral-invariant. Section 4 is devoted to discussing phenom
enologically rc-N scattering at low energies by using this example. For this 
purpose we assume that the Lagrangian density (1·10) is a phenomenological 
one as is usually assumed, ¢ denotes the nucleon iield Nand pa is proportional 
to ¢a in an asymptotic region: 

where A is a constant. Then it will be shown that one of the two sets of so
lutions with B- for the seven scalar functions gives 

where only the parts which relate 'with rc-N scattering at low energies \vere 
retained on the right-hand side. The first and second terms on the right-hand 
side are related with the S-wave and P-wave amplitudes for rc-N scattering, 
respectively. Let (g A/ gv)o denote the unrenormalized value of the ratio of 
the axial-vector coupling constant to the vector one in weak interactions. If 
(gAfgv)o = 1 is assumed, Weinberg's Lagrangian density3

) coincides exactly with 
our phenomenological one written above, as far as rc-N scattering is concerned. 

At first sight the transformation law (1 · 4) seems to be non-linear with 
respect ¢ except for the case A= 0. An interesting problem is to study whether 
or not the transformation law can be reduced to that of the usual linear y5-trans
formation by a suitable redefinition of ¢. It will be shown in § 5 that the trans
formation law reduces to the usual one by a unitary transformation in the form 
q= U¢, and as a result it will also be shown that the desirable terms related 
with rc-N scattering mentioned above are absorbed into the term (- q_r af)aq). 

This absorption is due to the fact that the law (1· 4) reduces to the usual form. 
In the next paper the transformation law will be extended to that of a chiral 

U(2) X U(2) transformation. Then it will be shown that the latter law cannot 
be reduced to the usual form by any redefinition of ¢. We may obtain an in
variant Lagrangian density under the chiral U(2) X U(2) transformation by using 
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Chiral Symmetry in the Unified Fermion Theory. I 217 

the same method adopted in § 4. Then the terms corresponding to the second 

and last ones in Eq. ( 4 · 9) have physical meanings. It would be important to 

study the properties of the laws for chiral SU(3) X SU(3) and U(3) X U(3) 

transformations which reduce to Eqs. (1· 4) and (1· 5) in the SU(2) X SU(2) 

limit and to study the problems related with the quantization of the Lagrangian 

density m which the interaction Lagrangian density includes derivative terms with 

respect to </J. 

§ 2. Chiral SU(2) X SU(2) transformations 

First we shall consider the transformation laws (1· 4) and (1· 5) and obtain 

the restrictions imposed by the commutation relations (1·1) on the real scalar 

functions A and B. Since we are considering the unified theory, the chiral 

transformation laws of all quantities which appear in our theory are determined 

uniquely from the laws (1· 4) and (1· 5). For example, the laws for the pseudo

scalar pa 

(2 ·1) 

(2 ·2) 

are obtained from Eqs. (1· 4) and (1· 5), respectively. The transformation laws 

for the scalar S 0 are 

[X a, S 0
] = - iBPa, 

[Ta, S 0
] =0. 

(2 ·3) 

(2·4) 

To get restrictions imposed on A and B, we shall use the Jacobi identities 

[Xa, [Xb, OJ]- [Xb, [Xa, OJ]= [[Xa, Xb], OJ, 

[Xa, [Tb, OJ]- [Tb, [Xa, OJ]= [[Xa, Tb], OJ, 

(2 ·5) 

(2·6) 

where 0 is any operator. Putting <jJ for 0 and using Eqs. (1·1), (1· 4), (1· 5), 

(2 ·1) and (2 · 3), the identity (2 · 5) reduces to 

{[Xa, A]elJcl_ [X\ A]eaa}Pl+i[(1+P 2A 2
) +2S 0AB-B 2]eabc 

which g1ves 

[Xa, A] =0, 

(1+P 2A 2
) +2S 0AB-B 2 =0, 

The second equation (2 · 7) has two solutions for B; 

(1·6) 

(2. 7) 

(2 ·8) 
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218 K. Hiida 

(1· 7) 

where the superscripts ( +) and (-) of B correspond respectively to the ( +) 
and (-) signs in front of the second term of the right-hand side. Since [Xa, 
.P2 + (S 0YJ = 0 is obtained from Eqs. (2 ·1) and (2 · 3), it is evident that Eq. (2 · 8) 
is consistent with Eqs. (1· 6) and (1· 7). We can prove that no other restric
tions than Eqs. (1· 6) and (1· 7) are obtained from the identity (2 · 5) for any 
operator 0 and the identity (2 · 6) always holds. Thus the restrictions imposed 
on A and B are given by Eqs. (1· 6) and (1· 7). 

We can show that Eq. (1· 7) and 

(2 ·9) 

are the restrictions imposed by the commutation relations (1·1) on the real scalar 
functions A, B and C in Eq. (1· 9). If the ( +) or (-) sign is adopted in 
Eq. (1· 7), the same sign should also be adopted in Eq. (2 · 9). When one of 
A and C is given, Eq. (2 · 9) can be solved in principle. The function C may 
be chiral invariant but A cannot except for the case C = 0. 

It is possible to define many other transformation laws than Eqs. (1· 4) and 
(1· 9). Such an example is 

[Xa, 0] = {Csak~tks~ + B'r5ta} 0, 

where B' and C are as yet arbitrary real scalar and real pseudoscalar functions 
of ¢ respectively and sa is defined by sa= A.(j}ta¢/2. we want to adopt a trans
formation law which is analogous (and also simple) as possible to Eq. (1· 2). 
Thus we prefer the law (1· 4) to the others. 

§ 3. l,agrangian density 

The purpose of this section is to obtain an invariant Lagrangian density 
under the transformation law (1· 4). In the usual theory in which the nucleon 
field N and the pion field (pa are independent fields, the Lagrangian density 
(- Nr aD aN) which is the chiral-invariant extension of the free Lagrangian den
sity ( -NraoaN) for the nucleon includes the part which describes the n-N 
scattering amplitude in the S-wave state but it does not include the one which 
describes the P-wave amplitude, so that the relative magnitude and the sign of 
both parts are arbitrary. We want to know what happens in our unified theory. 

The real scalar function A is an arbitrary chiral-invariant function. For 
simplicity we shall assume that A is an arbitrary function of chiral-invariant 
scalar four-fermis, an example of which is [ P 2 + (S 0

)
2
]. Let us introduce the 

notations: 

pa = iA(/Jrr,ta¢ ' 

yfia = iA(/Jr fita¢' 

T;r = A.CfrJ mta11 , 

sa= },(j)ta¢' 

Afia = iA.(/)r firr.ta¢, 

(a= 0, 1, 2, 3) 

(3 ·1) 
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Chiral Sym~metry in the Unified Fermion Theory. I 219 

where u m = i[r .e' r r]/2 and t
0
= 1/2. Then it is easy to show that chiral-invariant 

scalar four-fermis are 

(3 ·2) 

However, all of them are not necessarily independent, because there remains 

the freedom of the Fierz transformation among them. In fact we can show that 

the three relations 

(Va
2 +Aa

2
) = (Va

0?+ (Aa
0)2, 

[P2 + (So)2] + [S 2 + (Po)2] = ( Va o)2 _ (Aa o)2, (3 ·3) 

[P2+ (So)2]- [S2+ (Po)2] =t[(T~p)2-T,;"] 

hold among them. 4
) Thus three of the six invariants are independent of each 

other. In this paper the three terms 

(3 ·4) 

will be chosen as independent invariants. There exist also chiral-invariant pseu

closcalar four-fermis. An example is 

(3. 5) 

We shall neglect in this paper the dependence of this kind of pseudoscalar in

variants for A. 

If (Da</J) satisfies the transformation law 

(3 ·6) 

the Lagrangian density (- (/Jr aDa¢) is invariant under the transformation law 

(1· 4). Though the transformation law (1· 4) includes y5, there exist two r 

matrices /3 and r a between </J* and (Da</J) in the Lagrangian. Therefore the 

Lagrangian density is chiral-invariant when Eq. (3 · 6) holds. 

As was assumed A depends on three scalar invariants written in Eq. (3 · 4). 

This means that the transformation law (1· 4) depends on P, S 0
, ( Va0Y and 

(Va2 + Aa
2
). Then the general form of (Da</J) will be given by 

Da</J=8a</J+i[Me(8aPe) +N(8aS 0
) +0.e(8a V/) 

+R/(8a V/) + U/(8aA/) + 'vVVa0 + yeyae+zeA/}~. (3· 7) 

Here Me and N are pseudoscalar and scalar functions respectively, because of 

the parity conservation. We shall assume that they are proportional to ta and 

depend explicitly on the variable pa alone. Then they have the form 

Me= DsekltkPz+ Ey5te + Frfi(P· t) pe, 
(3 ·8) 

N=Gru(P·t), 
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220 K. Hiida 

where D, E, F and G are real scalar functions and depend on P 2
, S 0

, (Va 0
)

2 

and (Va 2 + Aa2
). The functions Q13 , R/ and U/ would be proportional to (V/), 

V/ and A/ respectively. We shall assume the following form for them: 

0!3 = [01 + Q2r5 (P· t)] V/, 

R,r/= [R1+R2r5(P·t)]V/, 

U/= [U1+ U2r5(P·t)]A,r/, 

(3·9) 

where Oi, Ri and Ui (i = 1, 2) are real scalar functions and they depend on P 2
, 

S 0
, (Va0

)
2 and (Va2 + Aa2

). The functions 1V, yc and zc are scalar, scalar and 
pseudoscalar respectively. We shall assume the form 

W=1V, 

(3 ·10) 

where the real scalar functions 11V, Y and Z are again assumed to depend on 
P 2

, S 0
, (Va 0

)
2 and (Va 2 +Aa2

). 

Now our problem is, as far as it is possible, to obtain expressions for the 
thirteen scalar functions D, E, F, · · ·, Z in terms of A and B involved in the 
transformation laws (1· 4) and (3 · 6). The equations for these scalar functions 
will be obtained in the Appendix. We shall use them here. The Lagrangian 
density (- (/Jr aDa¢) is chiral-invariant. This fact leads directly to 

Y=Z, (3 ·11) 

as will be shown by Eqs. (A ·10) and (A ·18). The six functions Ob Rb Ub 
W, Y and Z of the thirteen scalar functions are shown to be invariant under 
the transformation law (1· 4), that is, they are arbitrary functions of [ P 2 + (S 0

)
2
], 

(Va0
)

2 and (Va 2 +Aa2
): 

[Xrt, 0 1] = 0 , etc., (3 ·12) 

as will be shown by Eqs. (A· 6), (A ·12), (A ·14), (A ·16) and (A ·18). 
There remain for discussion the six scalar functions D, E, F, G, 0 2 and 

R 2 ( = U2). They must satisfy the following sixteen equations, as will be shown 
by Eqs. (A·9), (A·11), (A-13) and (A·15): 

A--BE+S 0BD=O, 

D+G-S°F=O, 

AD+BF+2D(P 2 -~~+S 0 ~-) -2j-~=O 
aP2 aP2 aP2 ' 
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Chiral Symmetry in the Unified Fermion Theory. 1 221 

B(E+ S 0G) + E(P 2 --~-4-+ so_f}_I} __ ) --~-I}-= 0 
aso aso aso ' 

B02+2D (P2ri(a~o)2+soa{~o)2) -2a(~o/=O, 

S 0B02 + 2E ( P 2 
_ _1!2_+ S 0 -~aB --) -2----JB --= 0 

- \ 8 (Va0
)

2 8 (Va0
)

2 a (Va0
)

2 
' 

BR2 + 2D (P2 oA_ + S 0 _!!!!__) - 2_Q~-- = 0 
aVa2 aVa2 8Va2 ' 

AE-BD+B(_Ql}_ __ 2S 0 aD) =0 
aso 8P2 

' 

2(E aA +G aB_) -2SoF 8B +B(-f!!'--2So oF) =0 ., 
8P 2 8P 2 aP 2 8S 0 8P 2

• • 

BF- (E-~g 0 - + G --~~o) + so{-ff0-- B (-~~-- 2S %~ 2 -) = 0, 

(3 ·13) 

2(E~-+G-_2!i__-) -2S°F aB +B( oQ2 -2S 0 ao2
) =0 

a(Va0Y 8(Va0
)

2 a(Va0Y 8S 0 8P 2 
' 

2(E aA +G_?_B_)-zsoF 8B_+B(JR2 -2So8R_'!_)=o. 
aVa2 8Va2 aVa2 aso aP 2 

As was discussed in § 2, A is an arbitrary chiral-invariant function and B 

has two solutions (1· 7) in terms of A. For these two solutions:, we get 

}_!!__= 1 [CP2A+ soB)~~-+ A2 J 
aP 2 (B- S 0A) aP 2 2 ' 

~:o = -(B=~oA)[ (P
2

A + S
0

B) ~; + AB] , (3 ·14) 

aB _ 1 (P2A+ soB) aA . 
ax CB-S 0A) ax 

Using Eq. (3·14), 

(:3 · lS) 
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222 K. 1-liida 

is obtained, where d± IS given by 

(3 ·16) 

Now we can show for A=\-=0 by using Eqs. (1· 6), (1· 7), (3 ·14) and (3 ·15) 
that for each solution n+ or n- there are two sets of solutions for the sixteen 
equations written in Eq. (3 ·13), and they are given by 

D± = -l::_Az, 

E± =-~--A (B ::!::: 1), 
d± 

F + = _!_[ (B ± 1) }i! __ - A-~!}-] 
- d± (Jp2 (Jp2 ' 

G ± = -j~-[ ( B ± 1) --%ff0- - A -~go-], 

(Qz)± = d4± [ (B ± 1) -a-t~ oyi-- A -a-fJ:a)2-]' 

(Rz)± = ( U2)± = -1~-[ (B ± 1) -§~ 2 - A 
0
°:.2-J, 

(3 ·17) 

where the solutions with the subscripts ( +) and (-) belong to different sets 
of solutions. For a special case where A= 0 and B= ± 1, the solutions for the 
sixteen equations are 

D=H, G=-H, 
(3 ·18) 

where His an arbitrary chiral-invariant function. Thus we obtained an expres
sion for (Da¢). 

Substituting Eq. (3·7) with Eqs. (3·8), (3·9) and (3·10) into (Da¢), we 
get the chiral-invariant Lagrangian density 

-Vir aDa¢= - (/Jr a8a¢- iD?Jr at¢· ( Px 8aP) - iE?Jr ar5t¢ · (fJaP) 

- iF(/ir ar5 (P· t) ¢ (P· DaP) - iG(/)r ar5 (P· t) ¢ (8aS 0
) 

-i[Ol?ira¢+02¢rar5(P·t)¢] (V/8a V/) 

-i[R1Cfra¢+Rz¢rar5(P·t)¢] [(V,e·8aVf3) + (Af3·8aA 13)] 

- iYV¢r a¢ Va
0

- iY[¢r ar5t¢ · Aa], (3 ·19) 

where Qb Rh YV and Y are arbitrary chiral-invariant functions as shown by 
Eq. (3 ·12), and D, E, F, G, Q 2 and R 2 are given functions of A, as shown by 
Eq. (3·17). 

As will be discussed in the next section, the second and third terms in 
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Chiral Symmetry in the Unified Fermion Theory. 1 223 

Eq. (3 ·19) are related formally with the S-wave and P-wave amplitudes m n-N 

scattering, respectively. Since these two terms are involved in the same chiral

invariant expression (- (/Jr aDa</J), there is a relation between the functions D 

and E. This is an advantage of our unified theory. One of the simplest chiral

invariant Lagrangian density is obtained when A=O, B= ±1, l-i=01=R1= vV=O 

and Y is a constant. In this case the transformation law (1· 4) reduces to the 

usual linear transformation, and the Lagrangian density is given by 

(3. 20) 

where c is constant and Y ==c. This is one of the Lagrangian density discussed 

by Heisenberg2
) in his unified theory. 

§ 4. Choice of solutions 

Our theory includes an arbitrary chiral-invariant function A. When A is 

given, B has two solutions. Even if A and B are determined, Eqs. (3 ·13) for 

the six functions D, E, F, G, 0 2 and R 2 have two sets of solutions D±, etc., 

just as given by Eq. (3 · 17). Thus we have as a whole four sets of solutions. 

In this section we want to find some reasons to prefer a set of solutions 

to the others. For this purpose we shall consider an example for A: 

which g1ves 

+ - ( 1 + s 0)2 + p 2 
B ---------------------

[1- p2- (80)2] ' 

(l-So)2+ p2 

[ 1 - p2 _ (So)2] 

(4·1) 

(4·2) 

(4·3) 

for B. First we shall use B+. Then Eq. (3 ·17) gives the set of the solutions 

2 
D+ + = - G + + = --------------- --

[ (1 + so)2 + P2] ' 
~ + ·- 2 (1 + S 0

) E+ - ----~~~------
[(1+S0)2+P2] ' 

F+ += (02)+ += (R2)++=o 
(4·4) 

and the set 

-1 +- 2[.P2+ (So)2+So] 
E - ------~---------~-

- { [P2 + (So)2 + So]2 -'- p2} ' 

F'_ + = - ------ ---------------- __ f:l _________ --------:·---- ' 
{[P2+ (So)2+So]2+P2} 

+-- 2 (1 + 2S 0
) G - - ~--------------------------------

- {[P2+ (So)2+So]2+P2} ' 

C02)- += (R2)_+=o. (4·5) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/4

3
/1

/2
1
4
/1

8
5
1
9
2
0
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



224 K. Hiida 

When B- 1s used, on the other hand, we get the set 

D - G- 2 === - == -·----- -------·-·---------·-· 
- - [ (1-So)z+ pz] 

F_ -= C02)--= (R2)--=o (4·6) 

and the set 

D+- = -- - --------- _2 ______ ---------
{[P2+ (Soy_so]z+P2} 

F+-- - 4 
{[Pz+ (So)z_So]2+P2} 

C02)+ -= (R2)+ -=o. 

In Eqs. (4·4), (4·5), (4·6) and ("1·7), the superscript of the scalar functions 
D, etc., denotes that of B±. 

Now we apply our Lagrangian density (3 ·19) to the phenomenological 
analysis on n-N scattering at low energies on the assumption that cjJ denotes the 
nucleon field. Since we have the Lagrangian density, we may in principle solve 
bound-state problems, that is, whether or not nucleon and anti-nucleon may be 
in o-, o+, 1-, 1 + · · · bound states and what mass values they have. These are 
beyond the purpose of this paper. At this stage we assume that pa is propor
tional to the pion field (pa at asymptotic region: 

P=Acp, (4·8) 

where A is a constant. Further we assume that there is no o+ bound state at 
low mass region. 

When the solutions ( 4 · 6) are used, the effective Lagrangian for n-N scat
tering at low energies is given by 

(4·9) 

where the second and last terms are related with S-wave and P-wave scattering8 
respectively. The last term gives 

A= Go 
2M' 

(4 ·10) 

where G 0 and 1\d are the unrenormalized n-N coupling constant and the observed 
nucleon mass respectively. When N and ifJa are treated as independent fields, 
as was discussed by Weinberg, l) the Lagrangian density ( 4 · 9) gives 

(gA) = 1' 
gv o 

( 4 ·11) 
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where the left-hand side denotes the unrenormalized value of the ratio of the 

axial vector coupling constant to the vector coupling constant for weak interac

tions. When Eq. ( 4 ·11) is satisfied, Weinberg's Lagrangian density3
) perfectly 

coincides with Eq. ( 4 · 9). 

Under the same assumption used to get Eq. ( 4 · 9), the solutions ( 4 · 4) give 

the Lagrangian density 

- - 2iA 2 
- 2iA -

-NraDaN:::::::: -Nraf}aN- --~NratN· (A-x Oa"') -----Nrar5tN· (8a¢), 
1 + A2cj/ '~-' '~-' 1 + A2¢ 2 

( 4 ·12) 

which leads to 

(gA) = -1 
Yv 0 

( 4 ·13) 

by the same arguments used to obtain Eq. ( 4 ·11). The solutions D+ +, etc., and 

D_-, etc., include a constant term in their denominators but the remaining ones 

D_ +, etc., and D+ -, etc., do not. The former sets of the solutions have a better 

property than that of the latter ones. Thus we prefer the set of the solutions 

( 4 · 6) to the others. 

It should be noted that Eqs. ( 4 ·11) and ( 4 ·13) were obtained under the 

assumption that J.V and rpa are independent fields. In our theory, however, they 

are not independent fields. Thus it is necessary to show that Eqs. ( 4 ·11) and 

( 4 ·13) also hold even if only <jJ is treated as an independent field.. The vector 

and axial-vector currents defined by Noether's theorem are 

Ia=2i{[T, ¢J-ric~~t5-+8ra~¢) [T, <PJ}, 

J5a=2i{[x, ¢]-ric~:¢)+ a(~~¢) [X,¢]}. 
( 4 ·14) 

We shall as usual identify the vector and axial-vector currents of weak interac

tions with Ja a and J 5 ~ respectively. Using the general expression (3 ·19), Eq. 

( 4 ·14) leads to the currents 

Ia = i (l- P 2D) (JJr aT</J + ]:_D(Va · P) P+ ]:_E(Aa x P), 
A ;, 

J5a= -i[B-S 0BE-P 2AE]Cfrar5r</J 

_]:_[AE+BG-S 0BF] (Aa·P)P 
A 

-:?:__[A- S 0BD- P 2AD] (Va x P). 
A 

( 4 ·15) 

( 4 ·16) 

Using the expressions for D±, E±, F± and G± given m Eq. (3·17), the axial 

vector current ( 4 ·16) can be rewritten in the form 
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226 K. 1-liida 

( 4 ·17) 

or 

J5a = i (1- P 2D_) ?Jr ar5r¢ + ]:__D_ (Aa · P) P+ ]:__E_ (Va x 1-11
), 

A A 
( 4 ·18) 

showing that Eqs. ( 4 ·11) and ( 4 ·13) also hold even if only ¢ is the independent 

field. 

§ 5. Linearlization of the transformation law (1·4) 

In the usual theory chiral transformations are in general non-linear ones with 

respect to boson :fields but linear ones to fermion :fields. Since only ¢ is included 
as an independent field in our unified fermion theory, it would be expected that 

chiral transformations in our theory in general become non-linear ones with re

spect to ¢. This expectation is not necessarily true. 

It will be shown in this section that the transformation law (1· 4) can be 

reduced to the form of the usual r5-transformation, that is, a linear transforma

tion law by the redefinition of ¢. However, chiral SU(2) X SU(2) transforma

tions are special ones. In the next paper the transformation laws (1· 4) and 

(1· 5) will be extended to the form of a chiral U(2) X U(2) transformation and 

it will be shown that one of the transformation laws cannot be reduced to the 

form of the usual r5-transformation by any redefinition of ¢. 
Let us assume that the transformation law (1· 4) can be reduced to the form 

(5 ·1) 

where g is a real constant and q is a Dirac spinor under the proper Lorentz 

transformation and carries the same iso-spin index as ¢ has. The general form 

for q is given by 

(5·2) 

where {3 and o are real scalar functions. We shall take as the normalization 

condition 

qraq= Cfraq · 

Using the expression (5 · 2), the normalization condition leads to 

(32 + ~l- p2iJ2 = 1 . 

(5. 3) 

(5 ·4) 

The normalization condition (5 · 4) guarantees that the transformation from ¢ to 

q is unitary. 

Substituting the expression (5 · 2) into Eq. (5 ·1) and using the known com
mutation relations (1· 4) and (2 ·1), the relation (5 ·1) reduces to 
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+ {i[Xa, o] + ~ Aora}r5(P·t) + {CB-g)/3- ~ [AP
2
+2S

0
B]o}r5ta=O. 

(5· 5) 

The four terms involved m Eq. (5 · 5) are independent of each other. Thus we 

get 

0 = -- 2ft~-- ' 
(B+g) 

(B- g) {3 -i-[AP 2 + 2S 0B]o= 0, 

i[Xa, {3] = i- (B- g) oPa, 

i[Xa, o] = - tAoPa. 

(5 ·6) 

(5· 7) 

(5 ·8) 

(5 ·9) 

A set of the solutions for {3 and o obtained from Eqs. (5 · 4) and (5 · 6) is 

- (B+g) 
{3- { (B + g)2 + A2P2}1;2 ' 

2A 0 = ----------------------------- . 
{ (B+ g)2+ A2P2}1;2 

Using Eqs. (2 · 7) and (5 · 6), the second equation (5 · 7) leads to 

g= ±1. 

(5 ·10) 

(5 ·11) 

It is easy to show that the remaining two equations (5 · 8) and (5 · 9) are satisfied 

by the solutions (5 ·10). Thus it was shown that the transformation law (1· 4) 

can be reduced to the form of the usual r 5-transformation by the unitary trans

formation (5 · 2). 

Substituting q for <jJ in Eq. (3 ·1), we get a new set of variables pqa, etc. 

Then new variables can be expressed in terms of old variables by usmg Eq. 

(5 · 2). Such examples are 

pqa= (1-So{3o-tP2o2)Pa, 
(5 ·12) 

Sq0
= (1-tP2o2)S 0 +P2/3o. 

From Eq. (5 ·12) we get 

(5 ·13) 

Likewise we get 

(5 ·14) 

Vi,a+A~,a= Va
2
+Aa

2
• 

Using these new variables, the Lagrangian density (3 ·19) is rewritten as 
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-~W-cvo )2- Y[V.2 +Az ]. A q,a A q,a q,a (5 ·15) 

In the previous section we assumed that the Lagrangian density (3 · 19) is 

an effective one and showed in a phenomenological way that it can explain n-N 
scattering phenomena at low energies. As was shown by Eq. (5 ·15), however, 

the parts related with n-N scattering in it are absorbed into the free Lagrangian 
density ( -q_raf1aq) by the unitary transformation (5·2). If the transformation 
law (1· 4) could not be reduced to the linear one (5 ·1), such desirable parts 

had physical meanings. In a subsequent paper the transformation law (1· 4) 

will be extended to that for a chiral U(2) X U(2) transformation, and it will be 

shown that the latter law cannot be reduced to the usual linear one (5 ·1). 
From the discussions given in the previous section, we may infer to some extent 

the properties of the invariant Lagrangian density under the chiral U(2) X U(2) 
transformation. This is the reason why we treat in the previous section the 

second and last terms in Eq. ( 4 · 9) as if they cannot be absorbed into the free 
Lagrangian density. It would be important to study the properties of chiral 

SU(3) X SU(3) and U(3) X U(3) transformation laws which reduce to Eqs. (1· 4) 

and (1· 5) in the SU(2) X SU(2) limit. 
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Appendix 

Equations for the thirteen scalar functions D, E, etc. 

An equation for the thirteen scalar functions D, E, etc., defined m Eqs. 

(3·8), (3·9) and (3·10) is obtained by substituting Eq. (3·7) with Eqs. (3·8), 
(3 · 9) and (3 ·10) into Eq. (3 · 6) and by using Eq. (1· 4). The equation consists 
of eight parts which are proportional to (8aPc), (8 aS 0

), (8 a V/), (8 a V/), (8 aA/), 
Va 0

, Vac and Aac· Since these eight terms are independent, we get eight equa

tions. They are 

AD (P· t) eacLpt 

-[A-BE+ (AP 2 +S 0B)D]eacttt+ [zAD+B (l 8Q __ zso_f}IJ_ __ )]Paeckttkpt 
8So 8P2 
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+ {E[D+G-S°F] (P·t)oac 

+ [2 ( E}_!i_ + G --~!}_-) + B (__Ef_ - 2S 0 __§__Ji'__) - 2S ° F -~I}_] ( p. t) pap c 
\ ap2 ap2 ' aso ap2 ap2 

+ [AE-BD+ B(~-2So_§_!i__)]Patc 
\ aso ap2 

- [s 0BF+E(A+ 2P 2 aA +2S 0 ~Ji_) -2_@_--] tapc}r5 
\ ap2 ap2 ap2 

+ 2-Q_~[ (Rl- U1) + (R2- U2) r5 (P· t) ]PceakLV/ AaL= 0, (A ·1) 
ap2 

+ {- [B(y_Q--2S 01Q-) + (E}fi_+G__§__l}_ ___ ) -F(B+So}_!L)J (P·t)Pa 
aso aP2 aso aso aso 

+ [soBG- aB + E(B+ p2~~-+ so a!}_)]ta}r5 
aso aso aso 

- ~:o [(Rl-Ul) + (R2-U2)r5(P·t)]eakLVakAaL=O, (A·2) 

- [BQ2 - 2---}-~ + 2D (p2 ---a A - + s 0 ---~!}~)\ J eakLtk pL 
a (Va0

)
2 a (Va 0

)
2 a ( Va 0? 

+ {- [s 0 B0 2 -2fJ(~ 0 ~-+2E(P 2

8 (~oy +S
0

71-{!faoy)]ta 

+ [2( E a(~of+Gfi(~ay) 

-2S°F _2!}__+ B( ao2 -2S 0 aQ_~-)] (P·t)Pa}r 
a (Vaoy aso ap2 5 

+ 2~B 0 ) 2 [ CR1- U1) + (R2- U2)r5(P· t) ]eakLV/ A/=0, (A· 3) 
u(Va 

/\B [_!!__R1__ _ 2S o_~B__1_] pa 
aso ap2 
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230 K. 1-Iiida 

+ [2(E oA + G _}]}_) -2S°F _}]}_+ B(- 0 ~2__ -2So2__f3_2
)] (P· t) pa} y5 

oV/ oV/ oV/ oS0 oP
2 

+2_i§ __ [ (R1- U1) + (R2- U2)r5(P·t) ]sak~V/A/)vac 
oV/ 

+B[(Rl- U1) + (R2- U2)r5(P·t)]sac~Aa~=O, (A·4-) 

\ B[-~§~--28°~~~-]pa 

- [BU2- 2_!!_A_ + 2D (P 2 ~_;i ___ + S 0
-- oli_ __ )] sak~tk P~ 

oV/ oV/ oV/ 

+ {- [s 0BU2 -2 oB + 2E(P2 ~Q_:i_+ so_f!_§_)Jta 
oV/ oV/ oV/ 

+ [2(E- oA + G-
04-) -2S°F _!}_B -+ B (_CY_tj2- 2S 0 -~-p(j2 2 -)J (P· t) pa} y5 

oV/ oV/ oV/ oS 0 
u 

+2 oB -[(R1- U1) + (R2- U2)r5(P·t) ]sak~V/A/)Aac 
oV/ 

+ B[ (Rl- U1) + (R2- U2) r5 (P· t)] saava~= 0, 

[Xa, vVJ =0, 

( _~_y __ - 2S 0 -~X-)Patc + (Y- Z) r"sac~t~= o 
aso (Jp2 u ' 

( -~~~~- 28°--~~--) y5Patc + (Z- Y) saat~ = 0 . 
aso (Jp2 

(A·5) 

(A·6) 

(A·7) 

(A·8) 

At first we shall consider Eq. (A ·1). This equation consists of ten terms. 

It is easy to show that nine of them are independent. Thus we obtain 

A-BE+S 0BD=O, 

D+G-S°F=O, 

AD+BF+2D (P 2 oA~+S 0 -J-~~) -2--~:i--=0 
(Jp2 (Jp2 (Jp2 ' 

AD+B (~fo--28°-t~-) =0, 

AE-BD+B(-~ff 0 --2S 0 -z: 2 -) =0, 

2(E~~!i_+G_JB )' -2S°F-J_§_+B(!!_!_ __ 2S 0 -~-f--) =0 
qp2 oP2 qp2 \qso 0p2 

(A·9) 
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and 

Equation (A· 2) consists of five terms. They are independent. Thus we get 

I 2 a A a aB · aA 
BCD+ G)+ D ( P 7iso-+ s --iJso)- )j§o-= o, 

B(E+ S 0
G) + E ( P 2 3to+ S 0-;ffo) -~~:o ·= 0, 

BF'- (E}-~ +G-§_1!_) +S 0 aB -B(_DG ___ -2S 0 aG\ =0 
aS 0 aS 0 aS 0 88° aP 2

) 

and Eq. (A ·10). 

Likewise Eqs. (A· 3), (A· 4) and (A· 5) give 

-~Ql__- 2So§_Ql = 0 
aS 0 aP 2 

' 

B02 + 2D ( P
2 ·at~ 6 ) 2 + S 

0 a-(¥!:0)2-) - 2-8 tt-)2- = 0 , 

S 0BO. + 2E (P 2 -~!?:_~ + S 0 ----~!?-) - 2--f} B - = 0 
-~" , a ( Va 0)

2 a ( Va oy a ( Va oy ' 

2( E a(~~o)2-+ G -a(-~~-0)2-) -2S°F a(~ 0 ) 2 + B(%~~ -2S 0 -b-~i) = 0 

and Eq. (A ·10), 

--~Bl__ - 28 of}_}}:_~_ = 0 

aS 0 aP 2 
' 

BR2 + 2D(P 2 _j_~+ 8°--~B_)- 2~~= 0 
' aVa2 aVa2· aVa2 ' 

2( E;~ 2 + G t:}) -2S°F fia~2+B( ~i6--2S 0 -~~~-) ==0 

and Eq. (A ·10), and 

(A ·11) 

(A·12) 

(A·13) 

(A·14) 

(A·15) 

(A·16) 

(A·17) 
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2(E aA +G_JJ}__) -2S°F_jJ}__+B(-8U2 -2So]_U2
-) =0 

8Va 2 8Va 2 
8Va2 8S 0 8P 2 

and Eq. (A ·10) respectively. Finally, Eqs. (A· 7) and (A· 8) give 

Y=Z, (A·18) 
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