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Quantization method is presented for the fundamental Dirac field when the Lagrangian 

densities are invariant under non-linear chiral U (1) XU (1) transformations. The Lagrangian 

densities are derived from a geometrical viewpoint that the space-time possesses the torsion 

caused by the field itself. The equal-time anti-commutators for the field are not c-numbers 

but functions of the field. The chiral symmetry may break down by the quantum effects. 

This quantization method is applicable to more general cases. 

§ I. Introduction 

In the unified fermion theory in which all elementary particles and resonances 

have to be composed of the fundamental Dirac field ¢, the interaction parts of 

the Lagrangian densities invariant under chiral SU(n) X SU(n) or U(n) X U(n) 

transformations are, as was shown in previous papers/) at least of quartic 

form with respect to the field ¢ and include in general the space-time deriva

tives of the field. The purpose of this paper is to show a method how to 

quantize the field described by the Lagrangian densities having the nature men

tioned above. 

In this paper we shall deal with the simplest cases that Lagrangian densities 

are invariant under U(l) X U(1) transformations. The method of quantization 

for these cases is also applicable to the cases of chiral SU(n) X SU(n) and U(n) X 

U(n) transformations. 

We start with the Lagrangian density in the unquantized theory: 

(1·1) 

where tl is a constant with the dimension of (mass)- 3
• Hereafter we shall call 

this Lagrangian density as that of model I. The interaction Lagrangian density 

is of a quartic form in ¢ and includes the derivative a"'((/)¢). Though the current 

(i/)r "'¢) is conserved, the interaction Lagrangian density has physical effects in the 

quantum theory. This point will be discussed later. 
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1282 K. Hiida, T. Kimura, T. Ohta and J. Arafune 

Let T and X be the generators of chiral U (1) X U (1) transformations. It 

IS easy to show that L 1 is invariant under the linear transformation law 

[T,¢] = -¢ (1·2) 

and the non-linear one 

(1·3) 

We note that though L 1 is not invariant under the usual charge conjugation, it 

is invariant under the other kind of charge conjugation ( cf. § 4). The other 

Lagrangian density which we shall refer to that of model II is 

(1·4) 

Again this is invariant under the transformation laws (1· 2) and 

[X, ¢ J = - 1 + 2~ C ¢¢) ¢ . (1·5) 

We can show that the Lagrangian densities L 1 and L 2 are interpreted as those 

for Dirac field in the space-time with the torsion caused by the field itself. It 

is a natural consequence of the unified fermion theory that the torsion originates · 

in the existence of the fundamental Dirac field. This geometrical viewpoint will 

be discussed in the Appendix. 

Now we want to quantize the field ¢ for the Lagrangian densities L 1 and L 2• 

Readers might consider, along the following line of thought, that the quantization 

is trivial. Redefining the fields as 

(1· 6) 

instead of the field ¢ for L 1 and L 2 respectively, we find that the Lagrangian 

densities reduce to 

(i= 1, 2) 

The equal-time anti-commutation relations for qi are given by 

{qia(x, t), q[p(y, t)} =oa;:iJ(x-y), 

{qia (x, t), qi/3 (y, t)} = 0 . 
(1· 7) 

The transformations (1· 6), however, are not unitary. We can show that 

the equal-time anti-commutation relations (1· 7) are different from those for ¢ 

given by the Lagrangian density L 1 or L 2• 

The interaction parts of the Lagrangian densities L 1 and L 2 are of quartic 

form in¢,¢* and their derivatives even after any partial integration. One may define 

the momenta 77: and nt conjugate to the field ¢ and ¢*, respectively, by the usual 

method for L 1 and L 2• Since the Lagrangian densities are linear with respect to 

the time derivatives of the fields, there must be constraints among the fields and 

the momenta. The constraints are non-linear in ¢ and ¢*. The quantization 
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Chiral Symmetry in the Unified Fermion Theory. III ' 1283 

must be carried out under the condition that the non-linear constraints are always 

satisfied without any contradictions. For this purpose we shall try to use the 

method of the modified Poisson bracket given by Dirac,2
) who developed this 

method to quantize boson fields only. After suitable modifications we find that 

it is applicable to quantize the fundamental Dirac field cjJ in the case of the unified 

fermion theory. 

When the field is properly quantized, the Euler equation must be identical 

to the Heisenberg equation of motion 

(1·8) 

where His the Hamiltonian density. The Lagrangian densities L1 and L2 suggest , 
that equal-time anti-commutators for cjJ and cjJ* are not c-numbers but involve at 

least bilinear terms of cjJ and cjJ*. In fact it will be shown that the anti-commutators 

in the case of model II depend on all even powers of cjJ and cjJ*. This causes 

the difficulty that the ordering of cjJ's involved in the anti-commutation relations 

is ambiguous especially in the case of model II. The ordering of cjJ's is ambiguous 

also in the Euler equations. These ambiguities are due to the quartic form of 

the interaction Lagrangian densities. As a result, we are obliged to require of 

the quantization of cjJ that the Heisenberg equation should coincide with the Euler 

equation only when the ordering of cjJ's is ignored. 

We need other conditions to determine uniquely the ordering of cjJ's involved 

in the equal-time anti-commutation relations for cjJ's. Since the transformation 

law (1· 2) is linear in cjJ, it is allowed to require that the law should hold exactly 

also in the quantized theory. This requirement is very severe and is useful to 

determine the unique ordering of cjJ and cp* in the anti-commutation relations. 

However, the transformation law (1· 3) or (1· 5) is non-linear with respect to cjJ 

and cp*. It is natural to require in the quantized theory that the law is reproduced 

at least when the ordering of cjJ and cp* is ignored. 

Under these requirements we can determine the equal-time anti-commutation 

relations for cjJ and cjJ* uniquely. When Noether's theorem is assumed to hold 

in the quantized theory, we get expressions for the vector and axial-vector cur

rents, from which consistency conditions for the generators T and X are obtained. 

It is shown in model I that the anti-commutation relations lead to the conserva

tion of the vector current and further that there exists a solution of the con

sistency equation for T. On the other hand, we have no satisfactory solution 

of the consistency equation for X. We may conclude that Noether's theorem 

does not hold in the quantized theory for the case of non-linear transformation 

(1· 3) and/or that the chiral symmetry is violated by quantum effects. 

In § 2 we present the method for extending Dirac's modified Poisson brackets 

so that we can apply it to fermion fields. The quantization of field cjJ for model 

I is performed in § 3. We discuss in § 4 the characteristic features due to the 
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1284 K. Hiida, T. Kimura, T. Ohta and J. Arafune 

non-linearity of model I. The discussions are also given on the existence of an 

unusual charge conjugation. Section 5 is devoted to the presentation of the method 

of quantization for model II. The concluding remarks are given in § 6. 

§ 2. Generalized Poisson brackets for the fermion field 

As was mentioned in § 1, our system involves constraints which leads to 

inconsistencies, provided the ordinary Poisson brackets (P.b.'s) are postulated 

among canonical variables. We shall therefore rely upon Dirac's generalized 

canonical formalism based on his modified P.b.'s. He developed his theory for 

boson fields. The characteristic feature of our system is that the fundamental 

field cjJ is a fermion field and that the interaction parts of the Lagrangian densities 

are of quartic forms of cjJ, cjJ* and their derivatives. Accordingly, modified 

P.b.'s will in general contain powers of cjJ and cjJ*, and it is necessary to take 

account of anti-commutability of cjJ and cjJ* even in the unquantized theory. We shall 

extend Dirac's method so as to be applicable for our non-linear unified fermion 

theory. 

We shall start with the Lagrangian formalism where the following anti

commutability of cjJ and cjJ* is taken into account in the unquantized theory: 

(2·1) 

The Lagrangian densities of our models are written in a symmetrized form 

where 

A=1 and A=i 

A=A=r5 

for model I, 

for model II. 

Following Schwinger,3
) we introduce the right and left derivatives by 

(2·2) 

(2. 2') 

(2·3) 

where q is a representative of canonical coordinates cjJ and cjJ* and P(q) denotes 

a polynomial in q's. For instance, if P(q) = q1q2 , we have 

In general, for P1 which is a product of n1 variables q and P 2 a product of n2 

variables q the following formulas are derived: 
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Chiral Symmetry zn the Unified Fermion Theory. III 

8t{P1P2}- f)tpl P2+ ( -1t~Plf)tp2 . 

aqi aqi aqi 

The. canonical momentum Pi conjugate to qi is defined by 

fYL 
Pi 

8 (8oqi) 

whose explicit form is written as 

. . 
; cfJa* + ~ J.{[cjJ*A, ¢], (~A)a}, 

t- fYL _ i ,, _ i ).{["·*A "·] ((.)k'·)} 
'!ra 8 (8o</Ja *) Z'f'a 4 'f' ''f' ' tJ 'f' a 

1285 

(2·4) 

(2 ·5) 

(2. 5') 

for our system described by the Lagrangian density (2 · 2) with (2 · 2'). Since 

the time derivative of field variables is not contained in (2 · 5'), it is considered 

that Eqs. (2 · 5') constitute a set of constraints among coordinates and momenta. 

We shall write them as 

. . 
Oa=na-!_cf;a* _!_).{[cjJ*A, ¢], (~A)a} =0, 

2 4 

. . (2. 6) 

O)=nat- !_¢a+!___;. {[¢*A,¢], ({3A¢ )a} = 0. 
2 4 

In the first place, we shall explicitly show that the above constraints are 

not consistent with each other if we postulate the P.b.'s 

(qi(x),pi(y)) = (Pi(x), qi(y)) =oiio(x-y), 

(qi(x), qi(y)) = (Pi(x),pi(y)) =0 
(2. 7) 

at x 0 = y 0• In the following we shall deal with the P.b.'s for dynamical variables 

at equal-time. The above P.b.'s are the special cases of the following P.b. in 

which the anti-commutability (2 ·1) is taken into account. Let us define the P.b. 

for any dynamical variables E(x) and F(y) which are functions of q and p by 

(2·8) 

Here nE (nF) takes the value 0 or 1 according as E(F) is an even or odd func

tion of q and p; for instance, if E= qiqjph we have nE = 1. The P.b. (2 · 8) has 

the symmetry property 

(E(x), F(y)) =- ( -l)nEnF(F(y), E(x)). (2 ·9) 

This property corresponds correctly to that of the commutation or anti-commuta

tion relations in quantum theory. As an example, from (2 · 8) we get 
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1286 K. Hiida~ T. Kimura, T. Ohta and J. Ara/une 

If we use (2 · 7), i.e. 

etc., we have 

(Ba (x)' e ;} (y)) = - ioa~O (x- y) - !__;.. { (¢* A)a C!3X¢ )~- ((/Jif\ (A¢)~ 
2 

- (/3A¢)~(¢*A)a+ (A¢)~((/JA)a}o(x-y), 

(Ba(x), e~(y)) =-; J..{(¢*A)~(¢X)a- C¢A)a(¢*A)~ 

- ((/JA)~(¢*A)a+ (¢*A)a(¢A)~}o(x-y). 

The right-hand sides of (2 ·10) do not vanish. Thus we cannot put e = et = 0 

freely in dynamical equations. 

In order that the constraints (2 · 6) are always satisfied, we shall modify the 

P.b. (2·8) following Dirac. 2
l We now write Ba and 8} in a single ®n(n=l, 2, ···, 8) 

according to 

{ 
Bn e-

n- et ' 
n-4 

for n = 1, · · ·, 4, 

for n = 5, · · ·, 8. 

The modified P. b. is defined by 

(E(x), F(y) )*= (E(x), F(y))- S S d 3z1d 3z 2 (E(x), ®m(zl)) 

XCmn(zh z2) (®n(z2), F(y)), 

where Cmn(z, y) is an 8 X 8 matrix obtained from 

If we take 

m (2 ·12), we have 

(E(x), ®~(y))*=O 

(2 ·11) 

(2 ·12) 

(2 ·13) 

by virtue of (2 ·13). Since E(x) is an arbitrary dynamical variable, the con

straints (2 · 6) always hold. Thus the degree of freedom can be reduced without 

getting contradictions. 

The equation @ = 0 enables us to write the Hamiltonian density derived from 

the Lagrangian density (2 · 2) as 

*> Equations (2·10) indicate that 0=0 and Ot=O are the second class constraints named by 

Dirac.2) 
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Chiral Symmetry in the Unified Permian Theory. 111 1281 

(2 ·14) 

Using this Hamiltonian density and the P.b. defined by (2 ·12), we can set up 

Hamilton's equation of motion 

(2 ·15) 

We can show that the above Hamilton's equation coincides with the Euler equa

tion obtained from the Lagrangian density (2 · 2), when we know the explicit 

forms of (</Ja(x),¢ 13*(y))*, etc. In the following sections we shall give them 

for the individual models. 

The quantization is carried out straightforwardly by means of 

(2 ·16) 

Of course, it should be remarked that there arises a cumbersome problem of the 

ordering of cjJ and cjJ*, since the right-hand sides of (2 ·16) are not constants but 

functions of cjJ and cjJ* in our models. 

§ 3. Quantization of model I 

We shall start with the symmetrized form of the Lagrangian density (1·1), 

I.e. 

The P.b.'s for {) and {)t are expressed as 

where 

({)a(x), {)13t(y)) = -itJaf3tJ(x-y) -ATaf3[c/Ja*(x), cjJ 13 (x)]tJ(x-y), 

({)a (x), {)/3 (y)) =ATa/3[</Ja * (x), cjJ/3* (x) ]tJ(x- y), 

Taj3 = t (f3aa- (31313)' 

whose matrix form is 

0 0 1 1 

0 0 1 1 
T= 

-1 -1 0 0 

-1 ,-1 0 0 

(3·1) 

(3·2) 

(3·3) 

It should be noted that summations with respect to a and (3 are not carried out 

in the right-hand sides of (3 · 2) and (3 · 3). In order to find the modified P. b.'s 

we must know Cmn defined by (2 ·13). In model I, it is rather simple to find 

Cmn· The result is as follows: 
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1288 K. Hi ida, T. Kimura~ T. 0 hta and J. Arafune 

C ( )
- -ioa.e(x-y)-J,.Ta.e[¢a*(x), ¢.e(x)]o(x-y) for m=a, n=4+{3, 

j

ATa.e[¢a*(x),¢.e*(x)]o(x-y) for m=a, n={3, 

mn X, Y - . 
-tOa.ea(x-y)-ATa13 [¢a(x), ¢.e* (x)]o(x-y) for m=4+a, n={3, 

JlTa.e[¢a(x), ¢JS(x)]o(x-y) for m=4+a, n=4+{3. 

Using the above Cmn• we get the modified P.b.'s for ¢ and ¢*: 

(¢a (X) , ¢13 * ( Y) )* = - io a!3() (X - y) + AT afJ [¢a (X) , ¢/3 * (X) ] 0 (X - y) , 

(l/Ja (x), ¢!3 (y) )* =- ATa!3[¢a (x), ¢fl (x) ]o (x- y). 

(3·4) 

(3·5) 

Though our P. b.'s (3 · 5) are quadratic polynomials in ¢ and ¢*, the transition 

to the quantum theory is performed straightforwardly with the aid of (2 ·16). 

We get the equal-time anti-commutation relations 

{¢a (x) , ¢ !3 * ( Y) } = 0 a!30 (X-Y) + it\T afl [¢a (x) , ¢ .e * (X) ] 0 (X - y) , (3 · 6) 

{¢a(x), ¢JS(y)} = -i).Ta!3[¢a(x), ¢ 13 (x)]o(x-y). (3·7) 

From (3 · 6) and (3 · 7) , we have 

[¢a(x), [¢/3*(y),¢r(z)]J 

=2oa13¢r(z)o(x-y) +i).Ta 13 {¢r(z), [l/Ja(x), ¢JS*(y)]}o(x-y) 

+ittTar{¢13*(y), [¢a(x), ¢r(z)]}o(x-y) 

=2oae¢r(z)o(x-y) +ittTafJ{¢a(x), [¢!3*(y), ¢r(z)]}o(x-y) 

-i).Tar{¢!3*(y), [¢a(x), ¢r(z)]}o(y-'-z) 

(3·8) 

-t\2Ta 13Tar[¢a(x), [¢13* (y), ¢r(z)]]o(x-y)o(x-z). (3·8') 

In the derivation of the latter equation (3 · 8') we have used the identity (A· 4) 

in Appendix A. Equations (3 · 8) and (3 · 8') will be used extensively in the 

following discussions. 

In order to confirm the consistency of the anti-commutation relations (3 · 6) 

and (3. 7), we shall first inquire whether (3 · 6) and (3 · 7) satisfy the following 

identity at equal time: 

[¢a(x), {¢r/(y),¢r(z)}] 

+ [¢ 13*(y), {¢r(z), ¢a(x)}] + [¢r(z), {¢a(x), ¢.e* (y)}] =0. (3·9) 

It can be shown that (3 · 9) holds by using the relation 

[¢a(x), {¢!3*(y),¢r(z)}] 

+ [¢13* (y), {¢r (z), ¢a (x)}] + [¢r(z), {¢a (x), ¢13* (y)}] 

= i).8Ta/3T.erTra {[¢a (x), [¢!3* (y), ¢r (z)]] + [¢13 * (y), [l/Jr (z) ,¢a (x) ]] 

+ [¢r(z), [¢a(x),¢.e*(y)]]}o(x-y)o(y-z)o(z-x) (3·10) 
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Chiral Symmetry in the Unified Fermion Theory. III 1289 

and the Jacobi identity 

[¢a(x), [¢p*(y),qJr(z)]] 

+ [¢p*(y), [¢r(z), ¢a(x)]] + [¢r(z), [¢a(x), ¢p*(y)JJ =0. 

Secondly, we shall see whether our anti-commutation relations (3 · 6) and 

(3 · 7) satisfy the conditions mentioned in § 1, that is, the transformation law 

(1· 2) holds exactly, while the Heisenberg equation (1· 8) coincides with the 

Euler equation derived from the Lagrangian density (1·1) and the transformation 

law (1· 3) is reproduced when the ordering of ¢ and ¢* is ignored. In Ap

pendix A, we shall give formulas to be used in the following. 

The Heisenberg equation is 

where H (y) is given by (2 ·14) in this case. After straightforward calculations, 

it is written as 

. . 
- ~ A 2 {¢a, { [ ¢ * ')', ¢] , , [ ¢, ¢] } } - ~ A 2 

[ [ ¢ * ')', ¢] , [¢a, , [ ql, ¢] ] ]. 

(3 ·11) 

Using (3 ·11) and the corresponding equation for 80¢a *, we get 

8o[¢, ¢] =- i[¢*?', r¢] + i[r¢*?', ¢] + l_{r[¢, ¢], [¢*?', ¢]}. (3 ·12) 
2 

From (3 ·11) and (3 ·12) we have the equation of motion 

8o¢a = - i((3')'r¢ )a+ ~ { (/3?'¢)a, , [¢, ¢]} - ! A {¢a, 8o [¢: ¢]} 

- ~ A2 [[¢*?', ¢],[¢a, r[¢, ¢]]], (3 ·13) 

which is nothing but the Euler equation derived from the Lagrangian density L 1 

except for the last term. The last term vanishes in the unquantized theory in 

which (2 ·1) is taken into account. 

We want to find expressions for the generators T and X which satisfy the 

transformation laws (1· 2) and (1· 3), respectively. From (3 · 8) and the identity 

(A.·4), we get 

[¢a(x), [¢*(y), ¢(y)]J =2¢a(x)o(x-y) 

(3 ·14) 
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1290 K. Hiida, T. Kimura, T. Ohta and J. Arafune 

The second term on the right-hand side of (3 ·14) vanishes when (3 · 6) is used 

again. If we take the generator , T as 

we have (1· 2), I.e. 

[T, c/Ja (x)] =-cpa (x). 

On the other hand, from (3 · 8) we have 

Cro),er[cfJa(x), [1;,e*(y), 1;
7
(y)]] =2(roc/J)ao(x-y) 

-iJ.(f3ro),er{c/Ja, [1;,e*,¢r]}o(x-y), 

(3 ·15) 

(3 ·16) 

in the derivation of which we have taken account of the following relations 

(ro),erTa,eTar = 0 and Ta,e- Tar= t (f3rr- (3 ,e,e). 

If we take 

(3 ·17) 

we have (3 ·1), I.e. 

(3 ·18) 

Thus the equal-time anti-commutation relations (3 · 6) and (3 · 7) satisfy all the 

requirements for the quantization. 

§ 4. Characteristic features due to the non-linearity of the theory 

It is suggested in the quantized theory that there appear peculiar features 

due to the non-linear character of our Lagrangian density. In fact the Heisenberg 

equation of motion (3 ·13) is different from the equation in the unquantized theory 

by the term of the order of }.2, as was shown in the preceding section. In the 

following it will be shown that there appears another peculiar feature related to 

the generator X. 

To study the properties of the generators T and X, let us assume that No

ether's theorem holds in the quantized non-linear fermiom theory. Since the 

Lagrangian density (3 ·1) is invariant under the transformation law (1· 2), No

ether's theorem leads to the following expressions for the vector current density 

JP and the generator T: 

JP = ! [ [T, WaJ, Cr Pep )a] - ! [ (¢r p)a, [T,c/Ja]] 

+l_{[[T, WaJ,c/Ja] +[¢a, [T,cpa]], [¢rP,cjJ]}, 
8 

(4·1) 
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(4·2) 

From ( 4 ·1) and ( 4 · 2), we obtain the consistency condition 

T=: s d
3
x([[T, ¥'1a*], Wa]- [¢a*, [T, Wa]]) 

-~AS d
3x{[[T, ¢a], Wa] +[¢a, [T, Wa]], [¢*, ¥';]}. (4·3) 

If we substitute the transformation law (1· 2) into the right-hand sides of ( 4 ·1) 

and (4·3), we get 

J,.(x) =~[¢(x)r,., ¢(x)], 
2 

T= ~ sd 3
x[¢*(x),¢(x)], 

(4·4) 

where the latter equation is nothing but (3 ·15). We have assumed that Noether's 

theorem holds for the vector current. Then it should be conserved: 

(4·5) 

However, this conservation equation can be proved, without assuming Noether's 

theorem, by the direct use of the Heisenberg equation of motion (3 ·11) and the 

anti-commutation relations (3 · 6) and (3 · 7). In the result we may say that No

ether's theorem is proved to be applicable even in the quantized theory as far as 

the transformation generated by T is concerned. 

On quantizing the field ¢, we have required that the transformation law (1· 2) 

holds exactly but the law (1· 3) does only when the ordering of ¢ and ¢* is 

ignored. Thus we do not know the exact form of the law (1· 3) in the quantized 

theory. Nevertheless we shall assume, to see what happens, that even in the 

quantized theory the Lagrangian density (3 ·1) is invariant under the transforma

tion generated by X, for the Lagrangian density is invariant under (1· 3) in the 

unquantized theory. Under this assumption we get the consistency condition for 

X: 

X=: fd 3
x([[X,¢a*],¥'Ja]-[¢a*, [X,¢a]J) 

-~A f d 3
x{[[X, ¢a], Wa] +[¢a, [X, Wa]], [¢*, ¥';]}. (4·6) 

Since T is the number operator, the commutation relation 

[X,[¢*,¢]] =0 (4·7) 

should hold. Using (4·7) and (A·7) we can rewrite (4·6) as 
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1292 K. Hiida, T. Kimura, T. Ohta and J. Arafune 

X=-l_Sd 3x([¢a*, [X,¢a]]+i_l[X, [¢,¢]]·[¢*,¢]). (4·8) 
2 2 

Substituting ""yeo) defined by (3 ·17) in place of X on the right-hand side of ( 4 · 7) 

and using (3 · 6) , (3 · 7) and (3 · 18) , we find 

X=l__fd 3x([¢*r5,¢]-A2o(OY[¢*r5, ¢]+ A
2

o(O){¢a*, {¢a, [¢*ru,¢]}}), (4·9)*) 
2 2 . 

which differs from xco) and coincides with it only in the limit Ao (O) ~o. 

We shall further examine the divergence of the axial-vector current density 

(4·10) 

corresponding to the operator xco). Taking account of the Heisenberg equation of 

motion (3 ·11) and the formulas (A· 8) and (A· 9), we get 

(4·11) 

from which ~e have 

(4·12) 

The axial-vector current density J/Co) does not satisfy the continuity equation in 

the quantized theory, though it does in the unquantized theory. 

We shall attempt to solve the consistency equation ( 4 · 8). As was shown 

in (3 ·18), ( 4 · 9), ( 4 ·11) and ( 4 ·12), in the limit lo (0) ~o the operator x<o) is 

a solution of ( 4 · 8) and has all the properties as the generator of chiral trans

formation. The exact solution of ( 4 · 8), if it exists, should reduce to xco) when 

the terms with Ao (O), which come from quantum effects, are ignored. We shall 

adopt an iteration method to solve ( 4 · 8) . 

As the first step, we shall substitute a 0Xco) in place of X on the right-hand 

side of ( 4 · 8) where a 0 is a e-n umber and reduces to unity in the limit Ao (0) ~o. 

Using (4·9) and (A·10), we obtain 

_ __!_ sd 3x([¢a*, [X-aoX<o>, ¢a]] +i_l[X-aoX<0>, [¢, ¢]] · [¢*, ¢]), 
2 2 

(4·13) 

*) For the time being, we shall deal with o (0) as it is a finite quantity. 
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where 

s = tlo co), 

x(l> =- ~tlid 3 x[~r5, ¢] · [¢*, ¢]. 
2 

( 4 ·14) 

( 4 ·15) 

Since X<1
> appears on the right-hand side of ( 4 ·13), the generator X has a term 

a1X<1
> in addition to a 0X< 0>, a 1 being such a e-n umber that vanishes in the limit 

s~o. When the term a 1X<1> is substituted into (X- a 0X<0>) on the right-hand 

Side of ( 4 ·13), there appear the termS X(O), X(l) and the new term: 

(4 ·16) 

When the same procedures are repeated twice, there appear two more new terms 

x<a> =- ~ tla J dax[~r5~ ¢] [¢*, ¢]3, 

x<
4
> = ~

4 s d
3
x[¢*r5, ¢] [¢*' ¢l 

(4 ·17) 

( 4 ·18) 

It is not necessary to repeat the same procedures further, for the last term can 

be expressed as 

x<4
> = 4s2X<2> c 4 ·19) 

by using the anti-commutation relations (3 · 6) and (3 · 7). Thus we have shown 

that the generator X has the form 

3 

X=~ anX<n>. (4·20) 
n=O 

Here an is a function of s with the following property: 

lim an= 1
1 

B-->0 0 

for n=O, 

for n = 1, 2, 3 . 
( 4. 21) 

Substituting ( 4 · 20) into both sides of ( 4 · 8), we finally have the consistency 

equation 

2c2 (ao- 2a1- 2 (1- c2
) a2- 8c2as) x<O) 

+ (c2ao + (1 + c2
) al + 482a2- 882 (1- 82

) aa) x<l) 

+ (- 8
2a1 + 2a2- 484aa) X<2> + (8

2a2 + (3- 82
) as) x<S) = 0 . (4·22) 

This equation has non-trivial solutions only when 

8=0 

or (4·23) 

s= ± .J3. 
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1294 K. Hiida, T. Kimura, T. 0 hta and J. Arafune 

The :first case is nonsense because it leads to vanishing of the interaction (A= 0). 

The second case gives 

(4. 24) 

The generator 

{ 
x<s)} 

X=a1 x<l)_u (4· 25) 

does not satisfy the transformation law (1· 3), so that the second case is inadequate. 

we conclude that the consistency equation ( 4. 8) has no satisfactory solution. 

The above conclusion was obtained under the assumption that Noether's 

theorem holds in the quantized theory. Therefore we can say that in the quantized 

theory Noether's theorem is not valid for such a non-linear transformation as 

(1· 3) and/or the chiral symmetry breaks down by quantum effects. 

Now we shall study the transformation property of the Lagrangian density 

L 1 under the charge conjugation. If a Lagrangian density has no mechanical mass 

term, then two kinds of charge conjugation are allowed in principle. One of 

them is the usual one and the other is given by 

OJ;c-l = B"?JT, 
(4· 26) 

where B 1s expressed as 

(4. 27) 

m the usual Pauli-Dirac representation for the Dirac r-matrices. The vector 

i [ ?Jr fb' <J;]; the scalar [ V}, <J; J and the pseudoscalar i [Vir 5, <J; J change their signs but 

the axial-vector i[¢rfbr5,</J] does not under the unusual charge conjugation (4·26). 

The Lagrangian density L1 is invariant under this unusual charge conjugation, 

but it is not under the usual one. Under the charge conjugation ( 4 · 26) with 

( 4 · 27), we get 

(4· 28) 

We do not bother about this transformation property ( 4 · 28), because L 1 involves 

only bilinear and quartic forms in <J; and <J;*. 

In the unquantized theory, the Lagrangian density L 1 is invariant under the 

operation*l 

This operation is obtained by expressing the charge conjugation for the field q1 

(defined by (1· 6)) in terms of <J; and <J;*. When this operation is applied twice, 

*) See (A·3) and (A·9) in the second paper of Ref. 1). 
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the field ¢ returns back to itself. In the quantized theory we might have the 

corresponding operator 

As was discussed above, however, we do not know the generator X that com

mutes with the Hamiltonian (2 ·14). Therefore we use only the unusual charge 

conjugation. 

§ 5. Quantization of model II 

In this section we shall try to quantize the Lagrangian density of model II. 

The transformation law (1 · 5) includes the factor (1 +). [ W, ¢]) in its denominator. 

This fact may suggest that the equal-time anti-commutation relations for ¢ and 

¢* have the same denominator. If this is the case, it may be a difficult problem 

to find the correct ordering of ¢ and ¢* involved in the relations. 

The symmetrized form of the Lagrangian density of model II is given by 

(5 ·1) 

which yields the equation of motion 

(5 ·2) 

The constraints equations (2 · 6) read 

. . 
fJa=na-; </Ja*- ~ tl{[¢*r5, ¢], (¢[5)a} =0, 

. . (5 ·3) 

fJat=nat-~¢a+~tl{[¢*r5,¢], (f3r5¢)a} =0 · 
2 4 

In the present model it is more troublesome to find the modified P.b. than in 

the case of model I. Postponing the presentation of the detailed calculations to 

Appendix B, we here give the result only: 

(</Ja(x), ¢13*(y))*= -ioa 13o(x-y)- Ditx) Pa 13 [¢a(x), ¢13*(y)]o(x-y), 

. ~·~ 

(¢a (x), ¢13 (y) )* = Dz~x) Ta 13 [¢a (x), ¢13 (y) ]o (x- y), 

where 

D(x) =1+tl[W(x), ¢(x)], 

Pa/3 = t(f3aa + {3 /3/3)' 

¢a (x) = (ro¢ (x) )a. 

(5 ·5) 

(5 ·6) 

(5 ·7) 
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1296 K. Hiida, T. Kimura, T. Ohta and J. Arafune 

We can show that the modified P.b.'s (5 · 4) satisfy the Jacobi identities 

(</la*(x), (¢/3(y),¢r(z))*)* 

+ (¢ 13 (y), (¢r(z),¢a*(x))*)*+ (</Jr(z), (¢a*(x),¢ 13 (y))*)*=O, etc. 

(5·8) 

Let us examine whether or not the Euler equation (5 · 2) and the transfor

mation laws (1· 2) and (1· 5) are obtained from the modified P.b.'s (5 · 4). For 

this purpose, we shall use the following relation: 

A 
=oa 13</Jr(z)o(x-y) + D(x) ((¢*(y)r5)13c/Jr(z) ((3r5¢(x))ao(x-y) 

- ¢13* (y) Cro¢ (z) )r (f3ro¢ (x) )ao (x- z) 

- ((jj(y)r5)13c/Jr(z) (ro</J(x))ao(x-y) 

(5 ·9) 

From (2 ·14), (2 ·15) and (5 · 9), we get Hamilton's equation of motion 

ifJ o</J a = ((3ryP ¢)a + A ((3ryr oc/J )a P (fr oc/J) 

(5 ·10) 

Equation (5 ·10) and the corresponding one for 80¢* yield 

(5 ·11) 

Substituting this equation into (5 ·10), we see that Hamilton's equation coincides 

with the Euler equation (5 · 2). With the aid of (5 · 9) we find 

where 

i(T, </Ja)* = -</Ja, 

i(X, </Ja)* =- ~ (r5¢), 

T= ~ Jd 3
x[cjJ*(x),cjJ(x)], 

X= ~ f d 3
x[cjJ* (x)ro, cjJ (x)]. 

(5 ·12) 

(5 ·13) 

(5 ·14) 

(5 ·15) 

Thus our P.b.'s (5 · 4) give the Euler equation (5 · 2) and reproduce the trans

formation laws (1· 2) and (1· 5). 

The quantization may be performed by replacing the modified P.b.'s (5 · 4) 

with equal-time anti-commutation relations according to (2 ·16): 
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Chiral Symmetry in the Unified Fermion Theory. III 1297 

{¢a(x),¢13*(y)} =oatll(x-y) + ~ Pa13 {[¢a(x),¢p*(x)], D~x)}o(x-y), 
(5 ·16) 

A f 1 l 
{¢a(x), ¢ 13 (y)}= -

2
ra13 l [¢a(x), ¢13 (y)J, D(x)fo(x-y). 

Here the right-hand sides are so symmetrized as to be invariant under the usual 

charge conjugation. 

Since T is the number operator, the transformation law 

should hold exactly in quantum theory. However, the anti-commutation relations 

lead to 

(5 ·17) 

Therefore our anti-commutation relations (5 ·16) are not rigorous. This insuf

ficiency would be due to the fact that we have not yet known the correct posi

tion of the factor 1/ D on the right-hand sides of (5 ·16). In the following, we 

shall show a method how to find the right position of the factor 1/D. 

We shall modify (5 ·16) as 

{¢a (x), ¢/" (y)} 

=oa!3c;(x-y)+APaf3(; {[¢a, ¢p*], ~} +b(¢a~ ¢p*-¢p*~ ¢a))o(x-y), 

{¢a (x), ¢!3 (y)} 
(5 ·18) 

= e- ATaf3 (; {[¢a, ¢13], ~} + b (¢a~ ¢p- ¢13 ~¢a) )a (x- y), 

where a and b are real numbers satisfying the condition 

a+b=1. (5 ·19) 

The relations (5 ·18) are invariant under the charge conjugation. The condition 

(5 ·19) is obtained from the requirement that the relations (5 ·16) and (5 ·18) 

coincide with each other except for the position of the factor 1/D. 

We shall now determine the values of the coefficients a and b so as to satisfy 

[T, ¢ J + ¢ = 0 (A3
). For this purpose, it is expedient to rewrite (5 ·18) by using 

the condition (5 ·19) as 

(5. 20) 
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1298 K. Hiida, T. Kimura, T. 0 hta and J. Ara/une 

The last terms on the right-hand sides are already of the order of ).2
• Noting 

this fact, we have 

(5 ·21) 

Then 

a=b=t, (5. 22) 

and the relations (5 · 18) reduce to 

{</Ja (x), </Jp* (y)} = OapO (x- y) 

+ ~ Pa/3([ {¢a,~}, ¢p*] +[¢a, {¢p*, ~} J)o(x-y), 

{</Ja(x), </Jp(y)}=- ~Tap([ {¢a,~}, ¢13] +[¢a, {¢p, ~} ])o(x-y). 
(5 ·23) 

Since these relations satisfy the transformation law (1· 2) up to the order of A.\ it is 

expected that the identity (3 · 9) holds at least to the same order. Actually we get 

[</Ja (x), {</Jp* (y), </Jr (z)}] + [</Jp* (y), {</Jr (z) ,</Ja (x)}] + [</Jr (z), {</Ja (x), </Jp* (y)}] 

= - ~ ( [ { ((3¢)a, (¢* {3)p}, </Jr] + [ { (¢* (3)13, ((3¢)r}, ¢a] 

+ [ { ((3¢)r, ([3¢)a}, </Jp*] + [ {¢r, ¢a}, </Jp*] 

- [ {¢13*, ¢r}, </Ja] -{{¢a, ¢p*}, </Jr]) +0(A
3

) 

= 0 (l3
). (5. 24) 

Let us evaluate, by using (5 · 23), the left-hand side of (5 · 21) to the higher 

order in A.. After straightforward but tedius calculations (cf. Appendix C), we 

find 

[T, </Ja] +</Ja 

= ~\)(0) 2 
( { [¥Jr5, </Jl [¢*, ¢], (f3r5</J)a} - { [</J*r5, ¢] · [¢*, ¢], (r5¢)a}) + O(A.5). 

(5 ·25) 

Accordingly, we must further generalize the anti-commutation relations (5 · 23) so 

that the term of the order A.4 in (5 · 25) disappears. We shall follow the same 

procedure as was done to remove the term of the order of A.2 in (5 ·17). We 

set 
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{</Ja (x), ¢13* (y)} 

=oap(l(x-y) +APa/3(~ [{¢a,~}, ¢p*]+ ~[¢a, {¢p*, ~}] 

+~[{¢a, ~ 2 }, {¢p*,D}]+~[{¢a,D}, {¢a*, ~ 2 }])o(x-y), 

{</Ja(x), ¢p(y)} 

=-ATaj3(~ [{¢a,~}, ¢/3]+ ~[¢a, {¢/3, ~}] 

+ ~ [{¢a, ~ 2 }, {¢p, D} J + ~ [{¢a, D}, {¢p, ~ 2 } J)o(x-y) 

c+d=l. 

Taking account of (5 · 27), we can rewrite (5 · 26) as 

{cfJa (x), ¢13* (y)} 

= OapO (x- y) + ~ ([{¢a,~}, ¢13*] +[¢a, {¢p*, ~} J 

+ ~ [[¢a, D], [¢p*, ~ 2 ]] +~·[[¢a, ~ 2 ], [¢p*, D]] 

- d [ ~ 2 , [ D, [¢a,¢ 13 *] ] J) 0 (X - y) , 

{cfJa (x), ¢13 (y)} 

=- ~ Taj3([{¢a, ~}, ¢/3] +[¢a, {¢/3, ~}] + ~ [[¢a, D], [¢/3, ~ 2 ]] 

+~[[¢a, ~ 2 ], [¢p,D]J-a[~ 2 , [D, [¢a,¢p]J])o(x-y). 

(5 ·26) 

(5. 27) 

(5 ·28) 

It should be noted that the terms with the coefficient d are of the order of ;\3
• 

When d vanishes, these relations coincide with (5 · 23). From (5 · 28), we get 

( cf. Appendix C) 

[T, </Ja]+cfJa= 
1 ~ 4 d A4o(OYC {[¢r5, ¢] · [¢*, ¢], (/3r5¢)a} 

(5 ·29) 

Taking 

(5 ·30) 
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1300 K. Hiida, T. Kimura, T. Ohta and J. Arafune 

we see 

(5. 31) 

We are thus able to eliminate the term of the order of J-4 m [T, ¢]. 

Similarly, if terms such as 

(5. 32) 

are added to the right-hand sides of (5 · 26), the term 0 (A5
) will be removed 

from (5 · 31). Then the resultant anti-commutation relations will be different 

from (5 · 28) with (5 · 30) by the terms of the order of J-4
• Continuing the same 

procedures, we may finally obtain correct anti-commutation relations which satisfy 

[T, ¢] =- ¢ exactly. 

§ 6. Concluding remarks 

We have shown the method how to quantize the fundamental Dirac field ¢ 

for the special cases of model I and II. The method is applicable to more general 

cases as far as interaction Lagrangian densities contain the first order space-time 

derivatives of ¢ and cjJ*. Therefore the method can be applied, as it stands, to the 

quantization of the field cjJ, when the Lagrangian density is invariant under non

linear chiral SU(n) X SU(n) or U(n) X U(n) transformations discussed in Ref. 1). 

The discussions given in § 4 suggest that chiral symmetry breaks down by 

quantum effects. The same kind of breaking may happen also in model II. If 

it is the case, the higher order corrections will give rise to the non-vanishing 

mass of the fundamental particle in model II. In model I, however, the mass 

will not be generated by the corrections because the mass term [~, ¢] is not 

invariant under the unusual charge conjugation mentioned in § 4. 

There are many problems left to be studied: the definition of the vacuum, 

the method to calculate the S matrix, C.P.T theorem and so on. 
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Appendix A 

--Mathematical formulas for model I--

The following identities are used in the text: 

[A, [B, C]] + [B, [C, A]]+ [C, [A, B]] =0, 

[A, {B, C}] + [B, {C, A}]+ [C, {A, B}] =0, 

(A·l) 

(A·2) 
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Chiral Symmetry in the Unified Fermion Theory. Ill 

{A, {B, C}}- {B, {C, A}}+ [C, [A, B]] =0, 

{A, [B, C]}- [B, {C, A}]- {C, [A, B]} =0. 

1301 

(A·3) 

(A·4) 

From the commutation relations (3 · 6), (3 · 7) and (3 ·14), we get 

{~*(x)r5, ~(y)} =i).[fl-5, ~]o(x-y), 

[~a (x) , [ ~ * ( y) , ~ ( y) ] ] = 2~a (x) 0 (X- y) , 

(A·5) 

(A·6) 

[[~*(x)B,~(x)], [~*(y),~(y)]]=O, (A·7) 

where B is an arbitrary 4 X 4 matrix. For any matrix A satisfying {/3, A} = 0, 

we have (cf. (3·16)) 

[~a(x), [~*(y)A,~(y)J] =2(A~)ao(x-y) -i).{~a' [¢A,~]}o(x-y), (A·8) 

[[~*(x)B,~(x)], [~*(y)A,~(y)]] 

=2[~*[B, A], ¢]o(x-y) 

+ ).
2

0'(0) {[~*[/3,B],~], [¢A,~]}o(x-y). (A·9) 
2 

Using the above formulas, we get the relations 

{~a(x), {~a(y), [~*(y)r5,~(y)]}} 

= {~a (x)' {~a* (y)' [~* (y) r5, ~ (y) ]} } 

- 2 (3 + A2
0 COY) * 2i). - * 

-
1

+).2o(0)2 [~ r5, ~Jo(x-y) + 
1

+).2o(OY[¢r5, ~J · [~ , ~]o(x-y) 

(A·10) 

etc. 
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Chiral Symmetry in the Unified Fermion Theory. III 1303 

To evaluate the matrix C'l1m defined by (2 ·13), which is the inverse to (em, en), 

it is necessary to calculate the determinant L1 of (em, en). 

In the calculations the anti-commutability of cjJ and cjJ*, i.e. 

plays an important role. For example, 

The determinant L1 is calculated as 

L1 = {1 + 2;. Cl ¢11 2 + 1¢21 2 -I ¢31 2
- I ¢41 2) 

+ 8J. 
2 
C I ¢11 2 1 ¢21

2
- I ¢11 21 ¢31 2- I ¢11

2
1¢41

2
- I ¢21

2
1 ¢sl

2
- I ¢21

2
1 ¢41

2 
+ I ¢31

2
1 ¢41

2
) 

+48).
3
( -1¢11 21¢21 2¢31

2
-l¢11

2
1¢21 2 1¢41

2
+ 1¢11

2
1¢31

2
1¢41

2
+ l¢21

2
1¢sl

2
1¢41

2
) 

+ 384).
4
1 ¢11

2
1¢21

2
1¢31

2
1 ¢41 2}2 

= {1+2J.(I¢11 2+ l¢21
2
-l¢sl 2-l¢41 2) +4).

2
(1¢11 2+ l¢21 2-l¢sl

2
-l¢41

2
)
2 

+ 8J.s Cl¢1l 2 + l¢2l 2- l¢sl 2- I ¢41 2)3 + 16J.4 Cl ¢1l 2 +I ¢21 2 -I ¢31 2 -I ¢41 2Y}2 

= {1- 2;. C~c/J) + 4l2 
C~cfJY- 8l3 

C~c/JY+ 16J.
4 
C~cfJY}

2 

= {1+2).(~)}- 2 , (B·2) 

where l¢il 2 denotes ¢i*¢i· In a similar way the component C15, for instance, is 

calculated as 

iC15 = - {1 + 2J. Cl ¢2l 2 -I ¢31 2 -I ¢41 2) 

where 

+8).2
( -1¢21 21¢31 2-l¢21 21¢41

2
+ 1¢31

2
1¢41

2
) 

+ 48J.3I ¢21 21¢31 21 ¢41 2
} (1 + 2J.~cjJ) 

= - {1- 2;. Ci/i¢) + 4J.2 
C~c/J )2- 8l

8 
c~ y + 16J.4 

C~c/J )4
} (1 + 2J.~cfJ) 

+ 2J.I ¢1l 2 {1- 4J. C~c/J) + 12;.2 C ~c/J y- 32l
8 
C~c/J /} (1 + 2J.~cfJ) 

= -1- J.[¢h ¢1*] 
D ' 

D=1+J.[~, ¢]. 

(B·3) 
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Chiral Symmetry in the Unified Fermion Theory. III 1305 

Appendix C 

From (5 · 23) we get 

{¢a(x),¢p*(y)}= (oap+ ~ [(Sr5¢)a, fp]- ~ [(r5¢)a, Cfr5)p])oCx-y) +0(1-
2
), 

(C ·1) 

{¢a (x), ¢p (y)} =- ~ ([ CSr5¢)a, Cr5¢)p] + [ Cr5¢)a, CSr6¢)~J) o(x-y) + o (1-
2
), 

[¢a (x) ,D (x)] 

= 21- (/1¢)ao (0) + 21-20 (O) (- CSro¢)a [fr5,¢] + Cro¢)a [¢*r5, ¢]- 2¢ao (0)) + 0 (1-
3
) 

= 21- (f1¢)ao (O) + 21-20 (0) (-[fro,¢] CSro¢)a + [¢*ro, ¢](ro¢)a + 2¢ao (O)) + 0 (A
3
), 

(C·2) 

[¢a*(x),D(x)] 

= -21-fao(0)+2A2o(O)((¢ro)a[¢ro, ¢] -(¢*ro)a[¢*ro, ¢] -2¢a*o(O))+O(A
3
), 

[¢a(x), D~x)J 

= -2l-(/1¢)ao(O) +21-2o(O) ([fro,¢] CSro¢)a- [¢*r5, ¢] Cr5¢)a 

+ 2 [¢,¢] CS¢)a) + o (1-3
) 

= -21-(/1¢)ao(O) +21- 2o(O) ((Sro¢)a[¢ro, ¢]- Cr5¢)a[¢*ro, ¢] 

+2(/1¢)a[¢, ¢]) +0(A3
), 

[¢a*(x), D~x)J 
(C·3) 

=21-l/;-ao(O) -2A20(0) ([fro,¢] C¢ro)a- [¢*ro,¢] (¢*ro)a+2[¢,¢]¢a) +0(1-3
), 

[¢a (x)' D2~x)J 

= -41-(S¢)ao(O) +41-2o(O) ((Sr5¢)a[¢ro, ¢]- Cr5¢)a[¢*ro, ¢] 

+ 3 (S¢)a[¢, ¢]- ¢ao (O)) + 0 (tt3
) 

= -41-(S¢)ao(O) +41-2o(O) ([¢r5, ¢] CSro¢)a- [¢*r5, ¢] Cro¢)a 

+3[¢, ¢] (f1¢)a +¢ao(O)) +0(A3
), 

[¢a* (x)' D2~x)] 
=41-fao(O) -41-2o(O) ((¢ro)a[¢ro, ¢]- (¢*ro)a[¢*r5,¢] +3¢a[¢, ¢] 

+ ¢a* 0 ( O) ) + 0 (A 3) • 

(C·4) 
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1306 K. Hiida, T. Kimura, T. Ohta and J. Arafune 

It is easily shown that the following relation holds exactly: 

Using (C · 5) and the anti-commutation relations (5 · 23) we have 

Aa== [T, ¢a]+ </Ja 

=- ~ (oa~{¢~, [¢a, {¢p*, ~}]} +Tap{¢p*, [¢a, {¢p, ~}]})· (C·6) 

The expression (C · 6) can further be reduced to 

by making use of the identity (A· 2) and (C · 5) again. 

From the anti-commutation relations (5 · 23), we obtain 

where 

{¢a(x), ¢13*(x)} =oapo(O)- ~ Pa~[¢a, ¢~*Jo(O), 

J.. 
{¢a(x), ¢,e(y)}=4Tap[¢a,¢JS]o(O), 

[¢a, ¢.e*J= [{¢a,~}, ¢.e*] + [wa, {w.e*, ~}} 

[¢a,¢JSJ=[{¢a, ~},¢.e]+[¢a, {¢,e, ~}]. 

Substituting (C · 8) into (C · 7), we get 

(C·8) 

Aa=;~o(o)(Pa,ePap{¢p, [[~a' <P.e*], ~]} -Ta 13Ta.e{¢.e*, [[¢a, ¢,e], ~]}) +0(}..
5
). 

(C·9) 

Using (C · 4) and the relations 

[[¢a, ~,e*]' ~ J = z[ [¢a, ¢t/]' ~2 J + 0 (A
3

)' 

[[¢ad~p], ~] =2[ [¢a, ¢,e], ~ 2 J +0(A
3
), 

(C·IO) 

we find 

Aa= ~\;coY({[¢r5,¢][¢*,¢], ({3r5¢)a}- {[¢*r5,¢][y'J*,¢], (rri/J)a}) +0(.1
5
), 

(C·ll) 

which is nothing but (5 · 25). 
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Chiral Symmetry in the Unified Fermion Theory. III 1307 

Finally, we shall evaluate the contributions of the terms with the coefficient 

d in (5 · 28) to [T, <Pa]. The contributions consist of two parts Ba and Ca: 

Ba=-: 6 d(Pa~{</J~, ([[¢a,D], [¢~*, ~ 2 ]]+[[¢a, ~ 2 ], [¢~*,DJ])} 

+ Ta~ {¢~*, ([[¢a, D], [¢13, ~ 2 ]] +[[¢a, ~ 2 ], [¢~, D] ]) } ), (C ·12) 

Ca= ~ d (Pa~{</J~, [~ 2 , [D, [¢a,¢~*]]]} +Ta~{</J~*, [~ 2 , [D, [¢a, ¢~JJ]} ). 

(C ·13) 

By the aid of (C·2) and (C·4), we obtain 

Ba = dl4o COY C { [</J*rs, ¢ J · [¢*, ¢ J, Cr5¢ )a} - { [~s, ¢] · [¢* ,¢ J, C/3r5</J )a}) + 0 (l
5). 

(C ·14) 

Similarly, we have 

Ca=0(A5
). (C ·15) 

Combining (C · 9) and (C ·14), we get (5 · 29). 

Appendix D 

---Geometrical derivation of Lagrangians--

We shall show that our Lagrangian densities (1·1) and (1· 4) can be derived 

from a geometrical viewpoint when our space-time possesses a torsion. In this 

appendix we shall distinguish a covariant vector from a contravariant one. The 

lowering and raising of indices are performed by the metric tensors g a~ and ga~ 

respectively. 

In the first we briefly sketch such a space-time that is called the neutral space 

by Finkelstein.4
) The space-time is characterized by an asymmetric connection 

(D·1) 

We can associate a given vector v"' at x 13 with another vector v"' + ov"' at a neigh

bouring point x 13 +ox~, according to either of the two equations 

ov"' = - L"' a~VaOX~' 

ov"' = - L"' a/3V~OXa. 

The symmetrical part of L"' a~' I.e. 

T"' af3=i (L"' a~+ L"' ~a) 

defines (0) connection. The anti-symmetrical part of L"' a~' I.e. 

n"" =.1.(£~' -L"' ) ~~ a~- 2 a/3 ~a 

(D ·2+) 

(D·2-) 

(D·3) 

(D·4) 
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1308 K. Hiida, T. Kimura, T. Ohta and J. Arafune 

is called the torsion tensor. 

Our space-time has the following structures. 

(i) Equations (D · 2 ±) are not integrable and the curvature tensors do not 

vanish: 

L"' a{Jr ( ±) =8rL"' afJ ( ±) -8 13L"' ar ( ±) + L 11 afJ ( ±) L"' 1rr ( ±) - L 11 ar ( ±) L"' rifJ ( ±) 

=f=O, (D·5) 

where 

L"' a{J ( +) = L"' a{J , L"' afJ (-) = L"' fJa ( +) . 

(ii) When some equation holds for ( +) connection, it holds also for (-) con

nection in our geometry. 

(iii) We postulate that 

From (D · 5) we get 

L"' !"fJr ( + ) = L"' !"fir (- ) ' 

L"' afJ!" ( +) = L"' a/31" (-), 

L"' a{Jr ( +) - L"' a{Jr(-) = 2 (!J"' a{Jlr- !J"' ar!fJ), 

where 

Using (D · 6) and (D · 8), we have 

where 

Owing to the relation (D · 9a) the "torsion vector" S2a is expressed as 

(D ·6a) 

(D·6b) 

(D·7) 

(D·8) 

(D·9a) 

(D · 9b) 

(D ·10) 

(D ·11) 

Because of the constraints (D · 7), eight components are independent among the 

twenty-four components of Qa fir· Therefore, we can choose the "torsion pseudo

vector density" g;"', 

( 
0123 1) 6 = -so123= (D ·12) 

as irreducible components in. addition to S2a. 

We can consider the following two cases: 
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Chiral Symmetry zn the Unified Fermion Theory. III 1309 

(I) !2a =f= 0 ; 

(II) !2a =0, 

In the latter case, from (D · 9b) we have 

{jJalfl = {jJflla • 

(D ·13) 

(D ·14) 

Here we have postulated that g , .. 
1
a = 0, that is, ra "" is equal to the Christoffel 

symbol. If we now put the coordinate condition 

or restrict the metric tensor gafl to the flat one, we can express {jJa as 

(D ·15) 

We shall consider the field equation for a spin 1/2 particle in our space 

time. Even in our space time where L" aflr (±) =f=O, we can introduce the tetrad 

field 'A" (i) by 

(D ·16) 

where 0 13 (i, j) = - 0 13 ( j, i). In terms of the constant Dirac matrix r (i), the 

generalized matrix r" is expressed as 

r" = ·:E 'A" (i) r (i), 
i 

which satisfies {r", r"} = 2g"". From (D ·16) and (D ·17) we have 

or"= - (T "a 13 + 0 "a 13) raoxfl, 

where 

(D ·17) 

(D ·18) 

0"afi=:E'Aa(s)Ofl(s,t)J.."(t). (D·19) 
8, t 

Let ¢+ and </J- be the fields characterized by ( +) and (-) connections 

respectively. We want to determine the transformation law for </J± so that the 

following equation holds: 

As a solution of (D · 20) we obtain 

o<P± = - s±¢±,' 

where 

S± = t C Oaflp -::r:- !2aflp) rarflox". 

Thus we get the covariant spinor equation 

r" {8" + t (Oaflp -::r:- !2aflp) rarfl} <P± = o . 

(D ·20) 

(D ·21) 

(D ·22) 

(D ·23) 
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1310 K. Hiida, T. Kimura, T. Ohta and J. Arafune 

In case (I) , we get 

while 111 case (II) 

r"' !JafJ "'rar/3 = SafJ p.>.. r"'rar/3 gl 

= -6r>..r5gl 

= - 6r>.,r5a>..YJ, 

where we used r>..r5 
= (1/3!) s>..afJp.rar 13r 1

•• Therefore, if we set 

!J = 4iJ.. (V}cj;) for (I) , 

for (II), 

(D·24) 

(D·25) 

(D ·26) 

we are able to get our Lagrangian densities (1·1) and (1· 4) respectively. 
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