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Abstract

The current theoretical status in the analysis and interpretation of low-mass dilepton measurements
in (ultra-) relativistic heavy-ion experiments is reviewed. Special emphasis is put on potential sig-
nals of (partial) restoration of dynamically broken chiral symmetry in a hot and dense hadronic
medium. It follows from chiral symmetry alone that parity partners of hadronic correlation func-
tions must become identical when the symmetry is restored. The assessment of medium effects in
the vector channel, which governs the dilepton production, thus necessitates a simultaneous treat-
ment of the vector and axialvector degrees of freedom. While significant progress in this respect
has been made some open questions remain in establishing a rigorous link in the mass region below
1 GeV. From the present calculations a suggestive ’quark-hadron duality’ emerges near the phase
boundary. It implies substantial medium effects in the dilepton signal from the hadronic phase
which smoothly matches a perturbative description within the plasma phase.
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Chapter 1

Introduction

In recent years substantial experimental and theoretical efforts have been undertaken to investigate
the versatile physics issues involved in (ultra-) relativistic heavy-ion collisions, i.e., collisions of
atomic nuclei in which the center-of-mass (cms) energy per nucleon is (much) larger than the
nucleon rest mass [1, 2]. The principal goal of this initiative is to explore the phase structure of the
underlying theory of strong interactions – Quantum Chromodynamics (QCD) – by creating in the
laboratory new states of matter. Through varying experimental conditions such as the collision
energy or impact parameter, one aims at covering as broad a regime as possible in temperature
and baryon density of the excited nuclear system. In nature such new states are believed to have
existed and still may be encountered on large scales in at least two astrophysical contexts: in the
evolution of the early universe where a few tens of microseconds after the ’big bang’ a transient
stage of strongly interacting matter prevailed at temperatures a few times 1012 K (∼ 200 MeV)
with very small net baryon excess; in the interior of neutron stars where mass densities are likely
to exceed 1015 g/cm3 – about four times the central density of nuclei – while surface temperatures
are as low as 105 K or less. Experiments have been performed until recently at the Alternating
Gradient Synchrotron (AGS) in Brookhaven (BNL) with cms energies around

√
s ∼ 5 AGeV

and are currently underway at the CERN Super-proton-Synchrotron (SpS) at
√
s ∼ 20 AGeV.

In the near future the Relativistic Heavy-Ion Collider (RHIC) at BNL will start data-taking at√
s ∼ 200 AGeV, and eventually heavy ions will also be injected into the CERN Large Hadron

Collider (LHC) reaching
√
s ∼ 10 ATeV.

As nuclear matter is heated and compressed hadrons occupy more and more of the available
space. Eventually they start to overlap and the initially confined quarks and gluons begin to
’percolate’ between the hadrons thus being ’liberated’. This simple picture has originally provided
the basis for models of the quark-hadron transition and has been essentially confirmed by ab-initio
numerical QCD lattice calculations at finite temperature. The latter demonstrate that strongly
interacting matter exhibits a rapid change in energy- and entropy-density (possibly constituting a
true phase transition) within a narrow temperature interval indicating a change-over from confined
hadrons to a ’quark-gluon plasma’ (QGP). At the same time the quarks – most notably up (u)
and down (d) quarks, carrying an effective mass of a few hundred MeV in the confined phase – lose
their ’constituent mass’ leading to the restoration of ’chiral symmetry’, an approximate symmetry
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of QCD in the sector of ’light’ quarks. Once massless, left- and right-handed quarks decouple
leading to a degeneracy in (hadronic) states of opposite parity. The expected phase diagram
of hadronic matter is shown in Fig. 1.1. The ’confined phase’ consists of an interacting gas of
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Figure 1.1: QCD phase diagram [3, 4] in the temperature and baryon chemical potential plane
with freezeout points extracted from hadrochemical analyses at SIS, AGS and SpS energies.

hadrons (a ’resonance gas’) while the ’deconfined phase’ is comprised of a (non-ideal) gas of quarks
and gluons. The hatched ’phase boundary’ reflects the present uncertainties from lattice QCD
extrapolated to finite baryochemical potential, µB. Also shown are locations realized in heavy-ion
systems for various laboratory bombarding energies at the point where inelastic collisions between
the particles in the fireball cease – the so-called ’chemical freezeout’ – characterizing the stage
where the fireball acquires its final particle composition. The ’thermal freezeout’ refers to the
stage where elastic collisions are no longer supported as the mean-free paths of the hadrons exceed
the size of the fireball. Their momentum distributions do no longer change and they stream freely
to the detector. Based on the assumption of thermodynamic equilibrium the chemical freezeout is
determined from a hadrochemical analysis of the measured abundances of particle species [5, 3] with
the conclusion that at the highest presently available energies the produced systems must be close
to the phase boundary. However, subsequent rescattering still maintains local thermal equilibrium
for about 10 fm/c, cooling the system to appreciably lower temperatures until the thermal freezeout
is reached. The latter is reconstructed from a combination of (comoving) thermal distributions
and a collective transverse and longitudinal expansion of the fireball.
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If the quark-hadron transition can indeed be induced in heavy-ion collisions the challenge
is how to detect it in the laboratory and isolate observable signals (see, e.g., Refs. [6, 7] for
recent reviews). Because of their negligible final-state interactions with the hadronic environment,
dileptons (correlated lepton pairs, l+l− = e+e− or µ+µ−) as well as photons are considered ideal
probes for the high-density/-temperature regions formed in the early stages of the collision [8, 9].
However, as they are emitted continuously, they sense in fact the entire space-time history of the
reaction [10, 11]. Because of an additional variable, the invariant pair mass Mll, dileptons have the
experimental advantage of a superior signal to background ratio as compared to real photons [12].
Consequently, dileptons provide the most promising electromagnetic data up to date.

The finally measured dilepton spectra can be chronologically divided into several phases. Before
the nuclear surfaces actually touch dileptons are produced through coherent Bremsstrahlung [13] in
the decelerating Coulomb field of the approaching nuclei. Their contribution seems to be negligible
as compared to subsequent sources [14]. Within the first 1 fm/c or so of the nuclear overlap, the
excited hadronic system is far from thermal equilibrium and the corresponding ’pre-equilibrium’
dilepton radiation mostly consists of hard processes such as Drell-Yan annihilation leaving its
trace mainly at large invariant masses Mll ∼> 3 GeV. A rapid thermalization [15] is expected to
subsequently establish the QGP phase, sometimes also called the ’partonic phase’, where dilepton
production proceeds predominantly via (perturbative) quark-antiquark annihilation. It should
reflect a thermal spectrum even though, towards smaller masses, radiative corrections from gluons
as well as thermal loop effects are likely to become important. At later stages when, upon expansion
and cooling, the QGP has converted into a hot hadron gas, dileptons are preferentially radiated
from pion and kaon annihilation processes as well as other collisions between various hadrons.
The two-body annihilation processes are dynamically enhanced through the formation of (light)
vector meson resonances, such as the ρ, ω and φ mesons, which directly couple to l+l− pairs.
Thus the invariant mass of the lepton pair directly reflects the mass distribution of the vector
meson at the moment of decay! This explains the distinguished role that vector mesons – in
conjunction with their in-medium modifications – play for dilepton measurements in heavy-ion
reactions. The situation is somewhat different for the heavy quarkonium states such as the J/Ψ
or Υ: in contrast to the light vector mesons, their lifetime is substantially longer than the typical
one of the hadronic fireball such that they will predominantly decay after freezeout. Therefore, as
detailed further below, the importance of the corresponding dilepton signal largely resides in its
magnitude and not so much in the spectral shape. Finally, when the freezeout stage is reached,
the dominant sources are hadronic resonance as well as Dalitz decays, mostly from π0, η and ω
mesons, all feeding into the low-mass region, Mll ∼< 1 GeV.

A schematic view of characteristic dilepton sources in ultrarelativistic heavy-ion collisions
(URHIC’s) is given in Fig. 1.2. With respect to invariant mass one can roughly distinguish three
regions. Let us try to draw some qualitative connections with the basic properties of strong inter-
actions that might be addressed in the respective regimes. The low-mass region below and around
the φ meson is governed by the light-quark sector of u, d and s quarks. In fact, it is known that in
the limit of vanishing (current) quark masses the order parameter of the QCD finite-temperature
phase transition is associated with chiral symmetry restoration (e.g., the quark condensate) and is
most likely of first order for three flavors. Thus, in the low-mass region signals of chiral restoration
should turn up, transmitted in terms of medium modifications of light hadrons. On the other
hand, in the limit of very large current quark masses, the order parameter of the QCD finite-T

5



0 1 2 3 4 5

mass [GeV/c2]

dN
ee

 / 
dy

dm

πo,η Dalitz-decays

ρ,ω

Φ

J/Ψ

Ψl

Drell-Yan

DD

Low- Intermediate-  High-Mass Region
> 10 fm > 1 fm < 0.1 fm

Figure 1.2: Expected sources for dilepton production as a function of invariant mass in ultrarela-
tivistic heavy-ion collisions[16].

transition is associated with deconfinement (the so-called ’Wilson line’), again realized in a strong
first-order transition. Thus, for heavy quarks one might hope to become sensitive to features of
deconfinement. This seems indeed to be the case: the confining potential within heavy quarkonium
states (J/Ψ, Υ) will be Debye-screened due to freely moving color charges in a QGP leading to a
dissolution of the bound states [17]. As a consequence the final abundance of, e.g., J/Ψ mesons
– and thus their contribution to the dilepton spectrum – is suppressed, signaling (the onset of)
the deconfinement transition. This very important topic will not be covered in the present review,
see Refs. [18] for the recent exciting developments. Finally, the intermediate-mass region (IMR)
might allow insights into aspects of quark-hadron ’duality’. As is evident from the saturation of
the vacuum annihilation cross section e+e− → hadrons by perturbative QCD above ∼ 1.5 GeV,
the essentially structureless thermal ’continuum’ up to the J/Ψ can be equally well described by
either hadronic or quark-gluon degrees of freedom. However, as a QGP can only be formed at
higher temperatures than a hadronic gas, the intermediate mass region might be suitable to ob-
serve a thermal signal from plasma radiation [9, 19] in terms of absolute yield. The most severe
’background’ in this regime is arising from decays of ’open-charm’ mesons, i.e., pairwise produced
DD̄ mesons followed by individual semileptonic decays. Although an enhanced charm production
is interesting in itself – probably related to the very early collision stages – it may easily mask a
thermal plasma signal. To a somewhat lesser extent, this also holds true for the lower-mass tail of
Drell-Yan production.

Until today, the measurement of dilepton spectra in URHIC’s has mainly been carried out at
the CERN-SpS by three collaborations: CERES/NA45 is dedicated to dielectron measurements in
the low-mass region [20, 21, 22, 23], HELIOS-3 [24] has measured dimuon spectra from threshold
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up to the J/Ψ region, and NA38/NA50 [25, 26, 27, 28] measures dimuon spectra from threshold to
very high masses of about 8 GeV, with emphasis on J/Ψ suppression (for a summary of low- and
intermediate-mass dilepton measurements see Refs. [29, 30, 31]). In the near future, with RHIC
coming on line pushing the collision energies to new frontiers, high resolution dilepton spectra will
be measured by the PHENIX collaboration [32]. At much lower bombarding energies dilepton data
have also been taken by the DLS collaboration at the BEVALAC [33, 34] and will soon become
available from the high-precision detector HADES at SIS (GSI) [35]. Here only the low-mass
region up to the kinematical limit of around 1 GeV is accessible and the focus is on the role of
high baryon density. Unfortunately, no dilepton measurements have been performed at the AGS
where presumably the highest baryon densities were attained. However, the already commissioned
low-energy run at the CERN-SpS at a projectile energy of 40 AGeV is believed to close this gap
penetrating into the regime of extreme baryon density.

The objective of the present article is to review the theoretical efforts in understanding the ex-
perimental results in the low-mass region which – as discussed above – is intimately connected to
the question of chiral symmetry restoration. A great deal of theoretical activity has been triggered
by recent observations from the CERES [20, 23] and the HELIOS-3 [24] collaborations that central
nucleus-nucleus (A-A) collisions exhibit a strong enhancement of low-mass dilepton production as
compared to proton-nucleus reactions1. Whereas the p-A data can be well reproduced by final-
state hadron decays with known abundances – the so-called hadronic ’cocktail’ – (Fig. 1.3), the
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Figure 1.3: Invariant mass spectra of dileptons as measured by the CERES collaboration [20] in
450 GeV proton-induced collisions on Beryllium (left panel) and Gold targets (right panel). The
data are compared to expectations from various hadron decay channels (labeled explicitly) based
on measured hadron multiplicities. The bands indicate the systematic uncertainty in the cocktail.

1One should note that similar effects have not been found by NA38/50 [28], which, however, is most likely related
to a rather large MT -cut applied in their analysis. On the other hand, the DLS-data [34], taken at much lower
incident energies, do show a very strong enhancement.
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latter strongly underestimate the A-A spectra. As several hundreds of pions are produced in A-A
collisions, the observed increase of dilepton pairs has been attributed to π+π− → l+l− annihila-
tion during the interacting phase of the hadronic fireball. Using vacuum meson properties many
theoretical groups have included this process within different models for the space-time evolution
of A-A reactions. Their results are in reasonable agreement with each other, but in disagreement
with the data: the experimental spectra in the mass region from 0.3–0.6 GeV are significantly
underestimated as seen from Fig. 1.4 (see also Ref. [29]). This has led to the suggestion of various
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Figure 1.4: Dilepton invariant mass spectra as measured in central collisions of 200 AGeV sulfur
nuclei with Au targets (left panel: e+e− spectra from CERES/NA45 [20]) and W targets (right
panel: µ+µ− spectra from HELIOS-3 [24], no systematic errors included) as compared to a compi-
lation [22] of theoretical calculations using free meson properties performed by Koch/Song [36], Li
et al. [37], Cassing et al. [38, 39], Srivastava et al. [40], Baier et al. [41], the Frankfurt group [42],
Hung/Shuryak [43] as well as Murray et al. [44]. The histograms indicate the hadron ’cocktail’ of
final state decays which gives a good description of the p-A data as shown in Fig. 1.3.

medium effects that might be responsible for the observed enhancement. Among these, the ’drop-
ping’ vector meson mass scenario [37, 45, 46], as will be detailed below, provides an interesting
possibility since it conjectures a direct link between hadron masses and the quark condensate and
thus to the restoration of chiral symmetry towards the phase transition. When incorporated within
a transport-theoretical treatment of the collision dynamics it is found to provide a unified descrip-
tion of both the CERES and HELIOS-3 data. Based on an interacting hadron gas many-body
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approaches also seem to be able to describe the observed phenomena [47, 48, 49, 50]. Here the
restoration of chiral symmetry manifests itself in more subtle ways which will be one of the key
issues in our review.

More explicitly, the article is organized as follows: In Chapter 2 we will first recall some
basic properties of strong interactions in the light-quark sector, with emphasis on the underlying
symmetries of the QCD Lagrangian and their consequences in the nonperturbative regime, such
as the emergence of quark and gluon condensates and the non-degeneracy of chiral partners in the
hadronic spectrum. Special attention is paid to the vector and axialvector mesons as the former
directly couple to dileptons. We then present model-independent methods to evaluate medium
modifications of their spectral properties. Being based on virial expansions the results are in
general restricted to low density and low temperature.

In Chapter 3 we move on to more specific model calculations that have been performed to
assess medium modifications of vector and axialvector mesons. The presentation here concentrates
on hadronic Lagrangians which can be classified into two categories, namely purely mesonic ones
addressing temperature effects and those including the impact of finite baryon densities.

Chapter 4 starts out by discussing how hadronic models can be (and have been) subjected to
empirical constraints that do not involve dilepton data in URHIC’s. The philosophy here is to
essentially fix the underlying model parameters to enable reliable predictions for thermal dilepton
rates in hot and dense matter. In addition we will also discuss rate calculations within ’non-
standard’ (or non-hadronic) scenarios for highly excited strong-interaction matter that cannot be
reliably founded on empirical information, such as Disoriented Chiral Condensates (DCC’s) or ther-
mal quark-antiquark annihilation. The main part of Chapter 4 is then devoted to a confrontation
of the various model results within a detailed analysis of recent dilepton data taken in heavy-ion
experiments at the BEVALAC and CERN-SpS. An additional crucial ingredient needed to do so
is the description of the space-time collision dynamics, which thermal rates have to be convoluted
over. We will briefly discuss three approaches, i.e., relativistic hydrodynamics, transport simula-
tions and more simplistic fireball expansions. Chapter 4 will end with a critical reassessment of
the different mechanisms that have been invoked and outline possible theoretical implications for
the nature of chiral symmetry restoration as indicative from the present status of the observed
spectra.

Chapter 5 tries to summarize the major theoretical achievements in the field over the past five
years or so. Based on these we will attempt to draw conclusions on our current understanding
of the QCD phase transition in hot/dense matter as evidenced from the interplay of vigorous
experimental and theoretical efforts in low-mass dilepton production.
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Chapter 2

’Strong QCD’ and Vector Mesons

In the Standard Model (SM) of particle physics strong interactions are described by Quantum
Chromodynamics (QCD), a local SU(3) gauge theory with quarks and gluons as elementary degrees
of freedom [51]. The dynamics is governed by the QCD Lagrangian

LQCD = ψ̄(iγµDµ −M◦)ψ − 1

4
GaµνG

µν
a (2.1)

with the non-abelian gluonic field-strength tensor given as

Gaµν = ∂µA
a
ν − ∂νA

a
µ + igfabcAbµA

c
ν , (2.2)

where Aaµ represents the spin-1 gauge field with color index a (a = 1, 8). The gauge covariant
derivative

Dµ = ∂µ − ig(λa/2)Aaµ (2.3)

induces a coupling between the spin-1/2, colored matter fields ψ of Nf flavors and the gauge fields
Aaµ (with λa denoting the usual SU(3) Gell-Mann matrices).

In Eq. (2.1) M◦ represents the diagonal matrix of current quark masses,

M◦ =











mu

md

ms

. . .











, (2.4)

which are parameters of the SM. With mu,md,ms ≃ 4, 7, 150 MeV and mc,mb,mt ≃ 1.5, 4.5, 175
GeV there is an obvious separation into sectors of ’light’ and ’heavy’ quarks. For the discussion in
the present article only the light-quark sector will be relevant.

To fully specify QCD we need to take account of the fact that – due to quantum-loop effects –
the ’fine-structure constant’ αs ≡ g2/4π depends on the space-time distance or, equivalently, the
four-momentum transfer Q of a given strong process,

αs(Q) =
αs(Λ)

1 + αs(Λ)
33−2Nf

12π ln
(

Q2

Λ2

)
, (2.5)
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where Λ is a scale at which the coupling constant is to be fixed by experiment,e.g., αs(MZ) = 0.118
at the Z boson mass MZ = 91 GeV (see Fig. 2.1). As Q increases αs decreases logarithmically

Figure 2.1: The ’running’ of the strong coupling constant αs(Q) from various measurements com-
pared to theory [52].

(’asymptotic freedom’) and perturbation theory can be applied. In this regime QCD is well tested.
At momentum scales ofQ ≃ 1 GeV – a typical mass scale for ’light’ hadrons – standard perturbation
theory, however, breaks down due to a rapid increase of αs. This is the realm of ’strong QCD’ where
not only effective couplings but also the relevant degrees of freedom change with scale. It is this
phenomenon that poses the most challenging intellectual problem in strong interaction theory and
is subject to intense study via ab-initio lattice calculations and model building. At large distance
scales the QCD degrees of freedom become encoded in colorless (’white’) light mesons, low-mass
baryons and glueballs rather than quarks and gluons. In dealing with their mutual interactions
the underlying symmetries and anomalies of QCD are of utmost importance.

2.1 Symmetries and Anomalies of QCD

The structure of the lowest-mass hadrons – involving the light-quark sector comprised of u, d, s
quarks – is largely determined by chiral symmetry [53] and its dynamical breaking in the physical
vacuum with confinement presumably playing a much lesser role. This is evidenced from the
dominant role of instantons – believed to be responsible for chiral symmetry breaking and other
nonperturbative phenomena – in hadronic correlators [54]. Recent lattice QCD calculations with
cooling algorithms corroborate such a picture [55].

Apart from invariance under local SU(3)color transformations and a global U(1) symmetry,
i.e., multiplication of the matter fields ψ by a phase – entailing baryon number conservation – the
QCD Lagrangian (2.1) has additional symmetries for vanishing quark masses. In this limit – well
justified in the up- and down-quark sector and to a somewhat lesser extent in the strange-quark

11



sector – the theory is invariant under global vector and axialvector transformations in SU(3)-flavor
space

ψ → e−iα
i
V

λi

2 ψ , ψ → e−iα
i
A

λi

2
γ5ψ (2.6)

with conserved vector and axialvector Noether currents

jµV,i = ψ̄γµ
λi
2
ψ , jµA,i = ψ̄γµγ5

λi
2
ψ . (2.7)

As a consequence, the corresponding charges

QVi =

∫

d3xψ† λi
2
ψ , QAi =

∫

d3xψ† λi
2
γ5ψ (2.8)

commute with the QCD Hamiltonian, [QV,Ai , HQCD] = 0.
When decomposing the quark fields into left and right chirality components, ψL,R = 1

2 (1∓γ5)ψ,
the Lagrangian (2.1) takes the form

LQCD = ψ̄Liγ
µDµψL + ψ̄Riγ

µDµψR − 1

4
GaµνG

µν
a − (ψ̄LM◦ψR + ψ̄RM◦ψL) (2.9)

and the transformations (2.6) translate to

ψL → e−iα
i
L

λi

2 ψL , ψR → ψR (2.10)

ψR → e−iα
i
R

λi

2 ψR , ψL → ψL , (2.11)

which – in the limit of vanishing quark masses – constitutes a global SU(3)L × SU(3)R chiral
symmetry in flavor space. Left- and right-handed quarks are not mixed dynamically and thus
preserve their ’handedness’ in strong interactions. The associated conserved charges

QLi =

∫

d3xψ†
L

λi
2
ψL =

1

2
(QVi −QAi ) (2.12)

QRi =

∫

d3xψ†
R

λi
2
ψR =

1

2
(QVi +QAi ) (2.13)

again commute with the QCD Hamiltonian.
For mq = 0, the Lagrangian of QCD contains yet another symmetry. Under global UA(1)

(axial) transformations
ψ → e−iαγ5ψ (2.14)

(2.1) is also invariant implying a conserved (singlet) Noether current of the form

jµA,0 = ψ̄γµγ5ψ . (2.15)

However, in the full quantum theory the divergence of jµA,0 has an anomaly

∂µj
µ
A,0 =

3

8
αsG

a
µνG̃

µν
a , G̃aµν = ǫµναβGaαβ , (2.16)
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– the U(1)A axial anomaly – such that finally QCD is symmetric only under the group

SU(3)L × SU(3)R × U(1)V . (2.17)

This implies the conservation of the baryonic as well as the vector and axialvector currents.
Moreover, at the classical level, massless QCD is scale invariant. To see this consider a scale

transformation in Minkowski space,
xµ → x′µ = λxµ . (2.18)

Quantum fields scale as
φ(x) → φ′(x) = λdφ(λx) , (2.19)

where d = 3/2 for fermions and d = 1 for vector bosons. A field theory is called scale invariant if
the action S remains invariant under scale transformations (2.18):

S′ =

∫

d4xL′(x) =

∫

d4xλ4L(λx) = S , (2.20)

i.e., L scales as λ4. Associated with scale invariance is another conserved current – the dilation
(or scale) current –,

jµD = xνT
µν , ∂µj

µ
D = T µµ = 0 , (2.21)

where T µν denotes the energy-momentum tensor of the theory. Considering classical quark and
gluon fields and explicitly constructing T µν it is easily verified that the dilation current of QCD is
conserved.

As in the case the of the axial anomaly, scale invariance is broken in the full quantum theory.
Renormalization requires the introduction of a scale Λ resulting in a running coupling constant,
Eq. (2.5). As a consequence the dilation current is no longer conserved. Including finite quark
masses the full expression becomes

∂µj
µ
D =

β(αs)

4αs
GaµνG

µν
a + (1 + γ)ψ̄M◦ψ , (2.22)

where β(αs) = Λdαs(Λ)/dΛ is the Gell-Mann-Low β-function of QCD and γ = d(lnmq(Λ))/d(ln Λ)
the anomalous dimension. Expanding the β-function in powers of αs,

β(αs) = −(33 − 2Nf)
α2
s

6π
+O(α3

s) , (2.23)

and keeping only the lowest term results in the operator identity [56]

T µµ = −9

8
G2 + ψ̄M◦ψ , (2.24)

where G2 ≡ αs

π G
a
µνG

µν
a and the (small) anomalous dimension γ has been neglected.
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2.2 Vacuum Condensates

In the physical vacuum quarks and gluons condense giving rise to nonvanishing vacuum expectation
values 〈ψ̄ψ〉 [57, 58] and 〈G2〉 [59]. The physical mechanism is believed to be provided by instantons
– semiclassical configurations of the gluon fields in 4-dimensional euclidean space [54]. The gluon
condensate may be viewed as a strength parameter associated with nonperturbative scale breaking
effects. A finite quark condensate implies that chiral symmetry is spontaneously broken. In
mathematical terms the symmetry group (2.17) is broken down to

SU(3)V × U(1)V . (2.25)

The baryon and vector current remain conserved but the QCD vacuum is no longer symmetric
under axialvector transformations (2.6). While the axial charges QAk still commute with the QCD
Hamiltonian the axial charge of the vacuum is nonvanishing: QAk |0〉 6= 0. The situation is analogous
to a ferromagnet which consists of separate domains of aligned spins. For a given domain rota-
tional symmetry is partially broken in the ground state, although the Hamiltonian is rotationally
invariant.

For the light meson spectrum spontaneous chiral symmetry breaking manifests itself in two
ways:

(i) the appearance of eight (nearly) massless Goldstone bosons (pions, kaons, eta) which interact
weakly at low energies. The ferromagnetic analogy of Goldstone particles is the occurrence
of a spin wave. For large wavelengths the spin configuration begins to resemble a uniform
rotation of all the spins. In the limit of infinite wavelength this does not cost any energy,
thus yielding a massless Goldstone mode.

(ii) the absence of parity doublets, i.e., the splitting of scalar and pseudoscalar, as well as vector
and axialvector mesons. For massless fermions helicity eigenstates are also parity eigenstates.
Were chiral symmetry unbroken one would expect degenerate hadronic isospin multiplets of
opposite parity which is clearly not observed in nature as apparent from Fig. 2.2.

As a further consequence of chiral symmetry breaking the axial-current matrix element between
the vacuum and a Goldstone boson is nonvanishing. For pions one has for instance:

〈0|jµA,k(x)|πj(p)〉 = −iδjkfπpµe−ipx , (2.26)

and the pion decay constant fπ = 93 MeV serves as an order parameter which measures the
strength of the symmetry breaking. A second order parameter is the quark condensate

〈ψ̄ψ〉 ≡ 〈0|ψ̄LψR + ψ̄RψL|0〉 , (2.27)

which exhibits the explicit mixing of left- and right-handed quarks in the QCD vacuum. The order
parameters fπ and 〈ψ̄ψ〉 are related. To see this one makes use of the operator identity

[QAi , [Q
A
j , HQCD]] = δij

∫

d3x ψ̄(x)M◦ψ(x) . (2.28)

14



qq-excitations of the QCD vacuum

π

ρ ω

φ

(140)

(770) (782)

(1260)

(1020)

(1285)

(400-

1200)

a f

f

f

1 1

1

0

Energy (MeV)

P-S, V-A splitting

in the physical vacuum

(1420)

Figure 2.2: Experimentally observed spectrum of low-mass mesons.

Taking the vacuum matrix element and inserting a complete set of excited states |n〉 one obtains
the ’energy-weighted sum rule’ [60]

∑

n

2En|〈n|QAi |0〉|2 = −〈muūu+mdd̄d〉 = −2m̄〈q̄q〉 (2.29)

where m̄ denotes the average of mu and md and 〈q̄q〉 ≡ 〈ūu〉 = 〈d̄d〉. Upon saturating |n〉 by
single-pion states the Gell-Mann-Oakes-Renner relation (GOR) [58]

m2
πf

2
π = −2m̄〈q̄q〉 (2.30)

is obtained. Taking m̄ = 6 MeV yields a value for the quark condensate, 〈q̄q〉 = −(240 MeV)3 =
−1.8 fm−3. Focusing on vector mesons a further order parameter can be specified as the differ-
ence between the vector and axialvector current correlators, 〈jµV,k(x)j

µ
V,k(0)〉 − 〈jµA,k(x)j

µ
A,k(0)〉.

It provides a direct link between chiral symmetry breaking and the spectral properties of vector
and axialvector mesons and will be of most relevance in connection with dilepton production in
heavy-ion experiments. Also this order parameter is related to fπ via ’Weinberg sum rules’ as will
be discussed later.

For the medium modification of the quark condensate it will be important to consider matrix
elements of the operator identity (2.28) for a given hadron h. This defines the hadronic sigma
commutator, or ’σ-term’

Σh = 〈h|[QAi , [QAj , HQCD]|h〉 = 〈h|ψ̄M◦ψ|h〉 , (2.31)

and the ratio Σh/m̄ has the physical interpretation of the scalar quark density inside the hadron
h. By using the Feynman-Hellmann Theorem Σh can also be expressed in terms of the hadron
mass as

Σh = mq
∂mh

∂mq
. (2.32)
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From this relation and the GOR one immediately derives for the pion that Σπ = mπ/2 = 69 MeV,
i.e., the scalar quark density inside the pion is Σπ/m̄ ≃ 12. This large value reflects the Goldstone
nature of the pion in which quark-antiquark pairs are highly correlated. The sigma commutator for
the nucleon can be inferred phenomenologically from low-energy pion-nucleon scattering [61] and
has a value ΣN ≃ 45 ± 8 MeV. In models such as the ’cloudy bag model’ about 2/3 of this value
originates from the virtual pion cloud around the nucleon [62, 63], again reflecting the collective
nature of the pion.

2.3 In-Medium Condensates via Low-Density Expansions

It is to be expected that the quark and gluon condensates are modified at finite temperature,
T , and quark chemical potential, µq. To discuss these modifications we first recall some basic
thermodynamics. The equilibrium properties of a given system of 3-volume V in contact with a
reservoir are specified by the grand canonical partition function

Z(V, T, µq) = Tr{e−(Ĥ−µqN̂)/T } , (2.33)

where Ĥ is the Hamiltonian and N̂ the quark number operator. The thermal average of any
operator O is then given as

〈〈O〉〉 = Z−1
∑

n

〈n|O|n〉e−(En−µq)/T , (2.34)

where the sum extends over a complete set of eigenstates of H and En are the corresponding
eigenvalues. When applied to the QCD condensates one has

〈〈ψ̄ψ〉〉 = Z−1
∑

n

〈n|ψ̄ψ|n〉e−(En−µq)/T (2.35)

and
〈〈G2〉〉 = Z−1

∑

n

〈n|G2|n〉e−(En−µq)/T , (2.36)

where |n〉 and En are now the exact QCD eigenstates and energies. The equation of state (EoS)
can be directly obtained from the logarithm of Z. The free energy density is given as

Ω = −T

V
lnZ , (2.37)

while the energy density and pressure are derivatives of lnZ with respect to T and V ,

ǫ =
T 2

V

(

∂lnZ
∂T

)

V,N

+ µq
N

V
(2.38)

p = T

(

∂lnZ
∂V

)

T,N

. (2.39)
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In the thermodynamic limit (V → ∞; N/V = const) the pressure is directly given by the free
energy density as

p = −Ω . (2.40)

In fact, the state variables of the EoS determine directly the condensates. The quark condensate
is obtained as the derivative of the free energy density (or pressure) with respect to the current
quark mass,

〈ψ̄ψ〉 =
∂Ω

∂mq
= − ∂p

∂mq
. (2.41)

This is analogous to a spin system in an external magnetic field, where, in QCD, the role of the
latter is played by the quark mass. To relate the gluon condensate to the thermodynamic variables
one should notice that the thermal average of the trace of the energy-momentum tensor is given
by

〈〈T µµ 〉〉 = ǫ− 3p . (2.42)

From Eq. (2.24) we then have

〈〈G2〉〉 = −8

9

[

(ǫ− 3p) +mq
∂p

∂mq

]

. (2.43)

Model-independent results for the changes of the quark and gluon condensate can be obtained
at low temperatures and small baryon densities. In both cases one deals with a low-density gas
of confined hadrons. It is therefore appropriate to evaluate the thermal averages (2.35) and (2.36)
in a hadronic basis including the vacuum as well as the lowest-mass mesons and baryons. As the
temperature increases pions are thermally excited first since they represent the lightest hadrons.
Considering a dilute, non-interacting pion gas, the leading correction to the vacuum condensate
〈ψ̄ψ〉 is therefore given by the matrix element 〈π|ψ̄ψ|π〉, and from (2.30) and (2.32) it is easily
worked out that the condensate ratio becomes

〈〈ψ̄ψ〉〉
〈ψ̄ψ〉 ≃ 1 − Σπ̺

s
π(T )

f2
πm

2
π

, (2.44)

where Σπ denotes the pion σ-term and ̺sπ the pion scalar density at given temperature. This
expression is consistent with Eq. (2.41) when using the free energy density of a non-interacting
Bose gas and the σ-term as the quark-mass derivative (2.32). A similar argument holds for finite
baryon density and vanishing temperature. In this case nucleons give the dominant correction to
〈ψ̄ψ〉 and

〈〈ψ̄ψ〉〉
〈ψ̄ψ〉 ≃ 1 − ΣN̺

s
N(µN )

f2
πm

2
π

, (2.45)

where ΣN is the nucleon σ-term and ̺sN the nucleon scalar density at given µq (the nucleon chemical
potential is related to the one of quarks by simply µN = 3µq). Since nucleons are heavy the scalar
density is nearly equal to the number density, ̺N . The underlying physical picture that emerges
from the low-density expansion is very simple. Whenever a hadron is created in the vacuum, the
condensate is changed locally since the ψ̄ψ-expectation value inside a hadron is different from that
of the vacuum.
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Let us now turn to the low-density expansion of the gluon condensate. At finite temperature
the leading correction to the vacuum condensate should again be given by non-interacting pions.
Since G2 is a chiral singlet its one-pion matrix element vanishes and there is no contribution from
the ideal pion gas. At finite baryon density the situation is different. First we note that the nucleon
mass is determined by T µµ as

〈N |T µµ |N〉 = mN ψ̄NψN =

[

−9

8
〈N |G2|N〉 + 〈N |ψ̄M◦ψ|N〉

]

ψ̄NψN , (2.46)

where ψN represents the nucleon spinor and the operator identity (2.24) has been used. According
to (2.32) the term proportional the quark mass, mq, is nothing but the nucleon σ-term which is
about 45 MeV. Thus the bulk of the nucleon mass is in fact generated by the gluon field. Putting
things together the leading correction to the gluon condensate arises from finite baryon density
such that

〈〈G2〉〉 − 〈G2〉 = −8

9
m

(0)
N ̺sN (µN ) , (2.47)

where m
(0)
N denotes the contribution of the nucleon mass from the G2 matrix element.

One important conclusion which can be drawn from the above arguments is that, in spite of
changing condensates, the properties of the involved hadrons by definition remain unchanged to
lowest order.

At vanishing baryon density interactions in the pion gas can be included via chiral perturbation
theory leading to a rigorous low-temperature expansion of the condensates [64, 65, 66]. The starting
point are the thermodynamic relations (2.41) and (2.43). For simplicity we restrict ourselves to
the chiral limit, mq → 0. In this case the leading contribution to p or ǫ is from the massless ideal
Bose gas which is of order O(T 4). The interactions among the Goldstone bosons only show up at
order O(T 8) such that

p =
π2

90
(N2

f − 1)T 4

[

1 +N2
f

( T 2

12f2
G

)2
ln
(Λp
T

)

]

+O(T 10) , (2.48)

where fG denotes the weak-decay constant of the Goldstone boson in the chiral limit and Λp
appearing in the chiral logarithm is the regularization scale. There is no T 6-term since – in the
chiral limit – the forward scattering amplitude for two Goldstone bosons vanishes. The quark-
mass derivative occurring in (2.41) can be rewritten in terms of a derivative w.r.t. the mass of the
Goldstone boson, mG, and by means of the Gell-Mann-Oakes-Renner relation,

〈〈ψ̄ψ〉〉
〈ψ̄ψ〉 = 1 +

1

f2
G

∂p

∂m2
G

. (2.49)

Injecting the expression (2.48) for the pressure one arrives at

〈〈ψ̄ψ〉〉
〈ψ̄ψ〉 = 1−

(N2
f − 1)

Nf

T 2

12f2
G

+
(N2

f − 1)

2Nf

(

T 2

12f2
G

)2

−Nf(N2
f −1)

(

T 2

12f2
G

)3

ln
(Λq
T

)

+O(T 8) . (2.50)
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While the T 2- and T 4-terms are model-independent, model dependence enters at order O(T 6)
through the regularization scale Λq which is related to Λp as [66]

ln
(Λq
Λp

)

=
N2
f + 1

6N4
f

+ 0.491 . (2.51)

The numerical value Λq ≃ 470 MeV (Nf = 2) is determined by the isoscalar D-wave ππ scattering
length. For two flavors the temperature scale is set by

√
8fπ ≃ 260 MeV. To derive a low-

temperature expansion for the gluon condensate from (2.43) one uses the fact that

〈〈T µµ 〉〉 = ǫ− 3p = T 5 d

dT

(

p

T 4

)

, (2.52)

from which 〈〈G2〉〉 can be expressed in terms of the Bose gas pressure alone. The use of Eq. (2.48)
leads to

〈〈G2〉〉 − 〈G2〉 = − π2

3240
N2
f (N2

f − 1)
T 8

f4
G

[

Λp
T

− 1

4

]

+ · · · . (2.53)

The leading O(T 8)-behavior is easily understood from the observation that to order O(T 4) one has
a massless ideal Bose gas for which ǫ = 3p and hence 〈〈T µµ 〉〉 = 0. This is in agreement with the fact
that a free gas of massless particles is scale invariant. The change in the gluon condensate arises
solely on account of the interaction of Goldstone bosons which is not scale invariant. The high
power of T implies that the gluon condensate ’melts’ much more slowly than the quark condensate.

2.4 Lattice Results

Obviously the low-density expansion of 〈〈ψ̄ψ〉〉 and 〈〈G2〉〉 discussed in the previous section is of
limited validity and cannot address the nature of the QCD phase transition. The low-temperature
expansion is restricted to below T ≃ 120 MeV, mostly because at this point heavier mesons
start to enter [65]. For finite ̺N and vanishing T the dilute gas expression (2.45) predicts a
decrease of the chiral condensate ratio which is linear in the number density. At nuclear saturation
density, ̺0 = 0.16 fm−3, this yields a ∼ 30 % drop and a naive extrapolation would indicate chiral
restoration at ̺c ≃ 3̺0. This clearly cannot be trusted, since the EoS of nuclear matter greatly
differs from that of a free Fermi gas at such high densities. Going beyond the dilute gas limit by
using a realistic EoS it has been found [67] that deviations from the dilute gas set in slightly above
̺0.

In the vicinity of the phase boundary nonperturbative methods are needed. Even though
many-body approaches [68] and renormalization-group techniques [69] are quite promising the
most stringent framework is lattice QCD. Here the aim is an ab-initio understanding of the quark-
hadron transition by evaluating the partition function (2.33) of QCD numerically. Because of
technical difficulties this has been achieved, so far, only at vanishing baryon density.

In a theory of interacting boson fields φ and fermion fields ψ in contact with a heat bath the
partition function Z at vanishing µq is given by the finite-temperature path integral

Z(V, T ) =

∫

DφDψDψ̄e−SE(φ,ψ,ψ̄) (2.54)
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involving the euclidean action

SE(φ, ψ, ψ̄) =

∫ T−1

0

dτ

∫

V

d3xLE(x) , (2.55)

where x = (~x, τ) with τ = it and LE denotes the imaginary-time Lagrange density. The boson
(fermion) fields obey periodic (antiperiodic) boundary conditions [70]. The thermal expectation
value of a given operator O is given as an ensemble average

≪O≫ =
1

Z tr{e−(Ĥ−µqN̂)/TO}

=
1

Z

∫

DφDψDψ̄O(φ, ψ, ψ̄)e−S
E(φ,ψ,ψ̄) , (2.56)

and the field theory has been turned into a statistical mechanics problem.
For QCD the euclidean Lagrange density is given by (cf. Eq. (2.1))

LEQCD(x) = ψ̄(x)(−iγµDµ − iM◦)ψ(x) +
1

4
Gaµν(x)G

a
µν(x) (2.57)

with the euclidean Dirac matrices obeying {γµ, γν} = 2δµν . The corresponding euclidean action is
obtained as

SEQCD(Aµ, ψ, ψ̄) =

∫ T−1

0

dτ

∫

V

d3xLEQCD(x) . (2.58)

For a numerical evaluation of the partition function ZQCD via the path integral a hypercubical
lattice of spacing a with Ns lattice points in each spatial direction and Nτ points in the temporal
direction is introduced. Temperature and volume are related to the lattice size, N3

s ×Nτ , as

T−1 = Nτa , V = (Nsa)
3 , (2.59)

and the temperature and volume derivatives are replaced according to

∂

∂T
→ 1

Nτ

∂

∂a
∂

∂V
→ 1

3a2N3
s

∂

∂a
. (2.60)

Because of the scale dependence of αs, Eq. (2.5), the lattice spacing becomes a function of the bare
gauge coupling β ≡ 6/g2 which fixes the temperature and the physical volume at a given coupling.
The next step is to discretize the euclidean QCD action (2.58). Two requirements have to be met.
The first is the correct continuum form of the action in the limit a→ 0. The second is local gauge
invariance. To proceed one considers the ’Schwinger line integral’

Uµ(x) = e
ig
∫

x+aµ̂

x
dyAµ(x+y)

(2.61)
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rather than the gauge field Aµ. In terms of Uµ the QCD partition function is expressed as

ZQCD =

∫

DUDψDψ̄e−SE
QCD(U,ψ,ψ̄) . (2.62)

The discretization of the field variables Uµ(x) → Uµn and ψ(x) → ψn turns the line integral into a
’link variable’ which connects lattice site n to its neighbor n+ µ̂. The quark fields are defined on
the lattice sites n.

In the Wilson formulation [71] the gluonic part of the action, SG =
∫

1
4 (Gaµν)

2, is expressed in
terms of elementary plaquettes

U✷ ≡ UµnU
ν
n+µ̂U

µ†
n+ν̂U

ν†
n , (2.63)

which constitute the smallest closed path starting from lattice site n. In terms of these plaquettes
one has

SEG = β
∑

✷

(1 − 1

3
ReTrU✷) , (2.64)

where the sum runs over all possible plaquettes. For small a

SEG =
βg2

12

∑

n

a4(TrGµν(n)Gµν(n) + O(a2)) , (2.65)

which extrapolates to the proper continuum limit with β = 6/g2 and hence satisfies both require-
ments of the lattice action.

To find an appropriate form for the fermionic part is more difficult. A naive discretization of
the continuum Dirac action,

SEF =

∫ T−1

0

dτ

∫

V

d3xψ̄(x)(γµDµ + M◦)ψ(x) , (2.66)

leads to a lattice action
SEF =

∑

n,m

a4ψ̄nKnm[U ]ψm , (2.67)

where

Knm = γµDµ,nm + M◦δnm

Dµ,nm =
1

2a
{Uµn δn+µ̂,m − Uµ†n−µ̂δn−µ̂,m} . (2.68)

In the continuum limit it describes 24 = 16 fermion species rather then one. This fermion doubling
per field component has its origin in the first derivative occurring in the Dirac equation. To remove
the spurious degeneracy two methods have been proposed: Wilson fermions [71] in which the naive
lattice action is supplemented by an extra term which ensures that in the continuum limit the
extra 15 species are removed. It has the disadvantage that the numerical realization of the chiral
limit mq → 0 is extremely time consuming. In studies which focus on the chiral phase transition
the method of staggered fermions [72] is more suitable. Here the unwanted fermions are removed
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by doubling the effective lattice spacing: two separate fermion fields are introduced for even and
odd lattice sites, which in the contimuum limit are associated with the upper-two and lower-two
components of the 4-component Dirac spinor, i.e., the quark fields ψ can be reconstructed by
suitable linear combination on hypercubes of length 2a. More recently, another promising method
called ’domain wall fermions’ has been developed to treat fermions in discretized vector gauge
theories [73]. Here, a fifth dimension (in addition to 4-dimensional space-time) is introduced, and
the low-lying (zero mode) fermion states are localized on ’domain walls’ in this extra dimensions.
This method has the attractive feature that – contrary to staggered or Wilson fermions – the full
chiral symmetry of QCD is preserved to a high accuracy in its discretized version.

On a finite lattice the QCD partition function finally takes the form

ZQCD =

∫

∏

n,µ

dUµn
∏

n1

dψ̄n1

∏

n2

dψn2
e−S

E
QCD(Uµ

n ,ψ̄n1
,ψn2

) . (2.69)

In contrast to the symbolic notation in Eq. (2.62) the measure DUDψ̄Dψ ≡ ΠdUΠdψ̄Πψ now has
a well-defined meaning: dUµn refers to the measure on the SU(3) gauge group while dψ, dψ̄ are the
usual measures over Grassmann variables on site n.

The discretized fermion fields appear quadratic in the action and can therefore be integrated
out to yield

∫

∏

n1

dψ̄n1

∏

n2

dψn2
eS

E
F [Uµ

n ,ψ̄n1
ψn2

] = detK[U ] . (2.70)

Thus the QCD partition function is given by a path integral solely over gauge fields U

ZQCD =

∫

∏

n,µ

dUµn e
−SE

G(Uµ
n )detK[U ] . (2.71)

When factorizing out the quark mass dependence in the matrix Knm (2.68) as

Knm = mq(
1

mq
γµD

µ
nm + 1δn,m) , (2.72)

one sees that in the limit of large quark masses (mq → ∞) the term involving the covariant
derivative gives a negligible contribution and the Grassmann integration (2.70) becomes a pure
Gaussian integral. This results in a constant multiplicative factor in the partition function which
cancels out in the expectation values of operators, 〈〈O〉〉. Thus the limit of large mq reduces to a
pure gauge theory and is referred to as the ’quenched approximation’. Physically it corresponds
to the omission of vacuum polarization effects via quark loops.

Although in principle the condensates and the EoS can be derived from the free energy density
as discussed in Sect. 2.3, in practice a direct computation of the partition function is rather difficult.
Instead one calculates the expectation value of the action by taking the derivative of lnZQCD with
respect to the bare gauge coupling β and the bare quark masses mq. In this way the pressure, the
energy density and the condensates are obtained by proper extrapolation to the continuum limit
a→ 0 via a renormalization group analysis on the lattice.

Recent two-flavor results for ǫ, p and the so-called ’interaction measure’ ∆ ≡ (ǫ − 3p)/T 4 =
〈〈T µµ 〉〉/T 4 are shown in Fig. 2.3. One observes a rapid rise in ǫ (left panel) above a critical coupling
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Figure 2.3: Left panel: the energy density ǫ/T 4 and 3p/T 4 as a function of β = 6/g2 [74]. The
lattice data are for amq = 0.0125. Right panel: the interaction measure ∆ as a function of
T/Tc [75].

of βc = 5.36 roughly reaching the continuum Stephan-Boltzmann limit at the last data point.
The critical coupling of βc = 5.36 translates to a transition temperature Tc = 140 MeV. On the
other hand, the pressure rises much more slowly such that ∆ remains large above the transition
(right panel). This implies that above Tc the system is far from being ideal. However, the entropy
density quickly approaches that of an ideal gas of quarks and gluons. A natural interpretation of
this feature is that the dominant part of the nonperturbative pressure is provided by the remnant
of the (vacuum) gluon condensate [76], which persists across the transition to a substantial extent
(see below). Thus, above Tc one might indeed have a deconfined plasma of weakly interacting
quarks and gluons in the background of a residual ’bag’ pressure.

Lattice results for the condensates 〈〈ψ̄ψ〉〉 and 〈〈G2〉〉 are shown in Fig. 2.4. The condensate ratio
stays basically flat up to about 0.9 Tc after which it rapidly decreases. At first sight the relative
constancy at small temperatures is at variance with the rigorous result from chiral perturbation
theory which predicts a T 2-dependence of the condensate ratio. It should, however, be realized
that the lattice results are not in the chiral limit. Instead the simulations implicitly contain a
rather ’heavy pion’ with a mass of roughly twice the physical mass. This explains the apparent
differences with chiral perturbation theory. The temperature dependence of the gluon condensate
can be inferred from the interaction measure ∆ and the quark condensate via the relations (2.43)
and (2.41). The right panel of Fig. 2.4 displays results for two flavors (solid squares) and for four
flavors (open squares) while the dashed line shows the condensate in the quenched approximation
rescaled by the number of degrees of freedom. While the condensate remains essentially unchanged
below Tc which is consistent with the T 8-dependence predicted from chiral perturbation theory,
there is a rapid decrease slightly above Tc and the condensate eventually turns negative around
T = 200 MeV. Asymptotic freedom implies that the effects of nonperturbative scale breaking
disappear at high temperature where perturbation theory should become reliable. Intuitively one
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Figure 2.4: Left panel: the quark condensate ratio 〈〈ψ̄ψ〉〉/〈ψ̄ψ〉 as a function of T/Tc [77]; right
panel: the temperature dependence of the gluon condensate [75].

might therefore expect the gluon condensate to vanish at high temperature in accordance with the
notion of an ideal quark-gluon plasma. As the lattice results (as well as chiral perturbation theory)
show, this is however not the case. Scale invariance remains broken also in the high-temperature
phase. This is related to the scale dependence of the running coupling constant (2.5). Identifying
the scale with T introduces 1/ ln(T ) corrections to the pressure such that at high temperatures
〈〈T µµ 〉〉 is of order T 4/(lnT )2 ∝ g4T 4 [66]. While small compared to the energy density of the plasma,
〈〈T µµ 〉〉 itself grows without bounds as the temperature rises such that the gluon condensate does
not dissappear but becomes negative and large.

As a further result of lattice QCD we discuss the temperature dependence of ’screening masses’
which will become relevant for the later discussion of axial-/vector correlation functions. In general
screening masses are extracted from the ensemble averaged current-current correlation functions
〈〈jµ(x)jµ(0)〉〉 where the appropriate currents are denoted generically by jµ(x). In practical calcu-
lations these correlation functions are evaluated for spatial separations r. For large r they show
exponential behavior

〈〈jµ(x)jµ(0)〉〉 → e−mhr , (2.73)

from which the (screening) masses of the lowest-energy hadron in the appropriate channel can be
extracted numerically. Fig. 2.5 displays results for the screening masses of the ρ and a1 meson.
As dictated by spontaneous chiral symmetry breaking they are different in the physical vacuum.
At the chiral transition they are found to be degenerate. The point of degeneracy coincides with
the transition temperature for the melting of the condensate. The screening masses need not
necessarily correspond to the ’pole masses’ in the propagators of the ρ and a1 meson but rather
represent the ’centroids’ of the in-medium vector and axialvector spectral functions. The spectral
distributions themselves are likely to be quite complicated with significant reshaping, e.g., a strong
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Figure 2.5: The temperature dependence of the ρ and a1 screening masses. The results are taken
from Ref. [78].

broadening as emerging in models of an interacting hadron gas, to be discussed later.

2.5 Dilepton Production and Vector Mesons

As mentioned in the Introduction dileptons probe all stages in the course of a heavy-ion reaction.
The most interesting hot and dense phase emits low-mass dileptons predominantly from thermal
annihilation processes such as quark-antiquark or pion and kaon annihilation.

The thermal rate for the production of dileptons at four-momentum q from a heat bath at
temperature T is given by [8, 19]

d8Nl+l−

d4xd4q
≡ d4R

d4q
= Lµν(q)Wµν(q) , (2.74)

where to lowest order in the electromagnetic coupling, α=1/137, the lepton tensor is obtained as

Lµν(q) =
(4πα)2

M4

∫

d3p+

(2π)32p0,+

d3p−
(2π)32p0,−

tr [(6p+ −m)γµ(6p− +m)γν ] δ
(4)(q − p+ − p−)

= − α2

6π3M2

(

gµν −
qµqν
M2

)

(2.75)
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with p0,± = (m2
l± + ~p2

±)1/2. For simplicity we will focus on the e+e− case and thus neglect the rest
mass of the leptons as compared to their individual 3-momenta |~p+|, |~p−|. M2 = (p+ + p−)2 is the
total four-momentum of the pair in the heat bath. The effect of the hadronic medium is encoded
in the hadron tensor Wµν(q). It is obtained from the thermal average of the electromagnetic
current-current correlation function as [8, 19]

Wµν(q) =

∫

d4x e−iqx〈〈jemµ (x)jemν (0)〉〉 , (2.76)

where the average is taken in the grand canonical ensemble. For invariant masses below the charm
threshold (M < 2mc ≃ 3 GeV) the current can be decomposed as

jemµ =
2

3
ūγµu− 1

3
d̄γµd−

1

3
s̄γµs . (2.77)

With the identification

jemµ = jρµ + jωµ + jφµ (2.78)

jρµ =
1

2
(ūγµu− d̄γµd) (2.79)

jωµ =
1

6
(ūγµu+ d̄γµd) (2.80)

jφµ = −1

3
(s̄γµs) , (2.81)

its flavor content can be expressed in physical channels with the quantum numbers of the ρ, ω and
φ meson.

For an ideal plasma of quarks and gluons at finite temperature and vanishing chemical potential
the rate (2.74) is readily evaluated. Applying lowest-order perturbation theory and integrating over
the three-momentum of the dilepton pair one obtains the familiar expression

dRq

dM2
= Rq

α2

6π2
MTK1(M/T ) (2.82)

where K1(M/T ) denotes a modified Bessel function and Rq involves the sum over squared quark
charges and the number of colors,

Rq = Nc
∑

f

e2f = 3(
4

9
+

1

9
+

1

9
) . (2.83)

A similar expression can be derived for an ideal resonance gas at finite temperature:

dRh

dM2
= Rh(M)

α2

6π2
MTK1(M/T ) , (2.84)

where

Rh =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
(2.85)
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Figure 2.6: Lower panel: experimental cross section ratio Rh(s)/12π2 according to Eq. (2.85)
from a recent data compilation [79] of various experiments on e+e− annihilation [80, 81, 82, 83,
84]. The middle and upper panel show the individual experimental information on vector and
axialvector spectral densities, Eqs. (2.92) and (2.93), as extracted from e+e− → 2nπ and τ -decay
data, respectively.

is accessible from experiment as indicated in the lower panel of Fig. 2.6.
From the rates (2.82) and (2.84) a simple estimate can be made for the expected dilepton signal

when the hadronic fireball is close to the phase boundary (Fig. 1.1). As displayed in Fig. 2.7 for
T = 160 MeV and µB = 0 the predicted rates coincide above ∼ 1.5 GeV but differ greatly below
due to the ρ, ω and φ resonance structures in the electromagnetic spectral function (lower panel
of Fig. 2.6)

2.6 Vector-Axialvector Mixing

As has been discussed the quark-hadron phase transition is accompanied by the restoration of chiral
symmetry, i.e., a ’melting’ of the quark condensate at the transition temperature, Tc ≃ 160 MeV.
The change of 〈〈ψ̄ψ〉〉 is not an experimental observable, however. On the other hand it follows
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Figure 2.7: Three-momentum integrated dilepton production rate at a temperature T = 160 MeV
using either the resonance gas approximation, Eq. (2.84), or the perturbative qq̄ prediction,
Eq. (2.82).

from chiral symmetry alone that, at the phase boundary, vector and axialvector correlators must
become identical (in the chiral limit). This is evidenced by the temperature dependence of the
lattice screening masses (Fig. 2.5) as will be discussed more generally in the following.

First we consider the isovector (I = 1( vacuum vector and axialvector correlators for two
flavors. The former clearly dominates the electromagnetic spectral function (Fig. 2.6) and hence
the dilepton rate. One has

Π◦µν
V (q) = −i

∫

d4x eiq·x〈0|T jµV (x)jνV (0)|0〉

Π◦µν
A (q) = −i

∫

d4x eiq·x〈0|T jµA(x)jνA(0)|0〉 , (2.86)

where

jµV =
1

2
(ūγµu− d̄γµd) (2.87)

jµA =
1

2
(ūγµγ5u− d̄γµγ5d) (2.88)

carry the quantum numbers of the ρ and a1 meson, respectively. The imaginary parts of (2.86)

28



can be expressed in terms of the vector and axialvector spectral densities, ρV and ρA, as

1

π
ImΠ◦µν

V (q) = (q2gµν − qµqν)ρ◦V (q2)

1

π
ImΠ◦µν

A (q) = (q2gµν − qµqν)ρ◦A(q2) − qµqνf2
πδ(q

2 −m2
π) . (2.89)

Due to spontaneous symmetry breaking in the physical vacuum and the resulting Goldstone nature
of the pion the axialvector correlator contains an additional pion pole term. Chiral symmetry also
dictates a relationship between the vector and axialvector sector which is encoded in two sum
rules [85]:

∫

ds

(

ρ◦V (s) − ρ◦A(s)

)

= f2
π (2.90)

∫

dss

(

ρ◦V (s) − ρ◦A(s)

)

= 0 . (2.91)

The first one directly links the spectral functions to fπ, one of the order parameters of spontaneous
symmetry breaking, while the second one is a well-known consequence of the conservation of vector
and axialvector currents in the chiral limit.

The vacuum spectral functions ρ◦V (s) and ρ◦A(s) are related to physical processes. The vector
spectral function can be obtained from the e+e−-annihilation into an even number of pions:

ρ◦V (s) = − s

16π3α2

∑

n=1

σ(e+e− → 2nπ) , (2.92)

while ρ◦A(s) can be extracted from data on τ -decay into a ντ -neutrino and an odd number of pions:

ρ◦A(s) =
8πm3

τ

G2
F cos θc(m2

τ + 2s)(m2
τ − s)2

∑

n=1

dΓ(τ → ντ (2n + 1)π)

2s
. (2.93)

An available data compilation [79] is displayed in the upper and middle panel of Fig. 2.6. The
two spectral functions are clearly different which is one of the experimental signatures that chiral
symmetry is spontaneously broken. Replacing the spectral functions by a simplifying pole ansatz

ρ◦V (s) =
m4
ρ

g2
ρ

1

s
δ(s−m2

ρ) , ρ◦A(s) =
m4
a1

g2
a1

1

s
δ(s−m2

a1
) , (2.94)

one immediately derives from the Weinberg sum rules (2.91) that

m4
ρ

g2
ρ

=
m4
a1

g2
a1

, m2
ρ = ag2

ρf
2
π with a =

(

1 −
m2
ρ

m2
a1

)−1

. (2.95)

Forma1
=

√
2mρ (i.e., a = 2), which is not too far from reality, the KSFR relation [86] is recovered.
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Turning to the hot hadronic medium the current-current correlation functions – in analogy to
Eq. (2.86) – are given as the thermal averages

Πµν
V (q) = −i

∫

d4xeiq·x〈〈jµV (x)jνV (0)〉〉 (2.96)

Πµν
A (q) = −i

∫

d4xeiq·x〈〈jµA(x)jνA(0)〉〉 . (2.97)

Since the thermal medium specifies a preferred frame and thus explicitly breaks Lorentz invariance
the tensor structure is now more complicated giving rise to a separate dependence on energy q0
and three-momentum ~q as well as a splitting into longitudinal and transverse components. One
has

Πµν
V,A(q0, ~q) = ΠL

V,A(q0, ~q) P
µν
L + ΠT

V,A(q0, ~q) P
µν
T (2.98)

where PL and PT are the usual longitudinal and transverse projection operators:

PµνL =
qµqν

M2
− gµν − PµνT

PµνT =

{

0 , µ = 0 or ν = 0

δij − qiqj

~q2 , µ, ν ∈ {1, 2, 3} (2.99)

(the space-like components of µ and ν are denoted by i and j, respectively), and ΠL,T
V,A(q0, ~q)

denote the longitudinal and transverse polarization functions. In general they are different and
only coincide for vanishing three-momentum ~q = 0, i.e., excitations which are at rest relative
to the medium. In-medium Weinberg sum rules have been derived in Ref. [87]. Introducing the
in-medium spectral distributions for vanishing three-momentum as

ρV,A(q0) = − 1

q20π
ΠL
V,A(q0, 0) , (2.100)

these sum rules are given by
∫

dq20

(

ρV (q0) − ρA(q0)

)

= 0 (2.101)

∫

dq20q
2
0

(

ρV (q0) − ρA(q0)

)

= 0 . (2.102)

Due to the presence of pions in the thermal heat bath the vector and axialvector correlators mix
(Fig. 2.8). At low temperature this mixing can be calculated in a virial expansion. To lowest order
in temperature one obtains [88] the model-independent ’mixing theorem’ of vacuum correlators:

Πµν
V (q) = (1 − ǫ) Π◦µν

V (q) + ǫ Π◦µν
A (q)

Πµν
A (q) = (1 − ǫ) Π◦µν

A (q) + ǫ Π◦µν
V (q) . (2.103)

The mixing coefficient ǫ is given by the thermal pion loop

ǫ =
2

f2
π

∫

d3k

(2π)3
fπ(ωπ(k))

ωπ(k)
(2.104)
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Figure 2.8: Diagrammatic representation of the mixing of vector and axialvector correlators in a
heat bath of pions.

(fπ(ω) = 1/(exp[ω/T ]−1): pion Bose distribution, ωπ(k)
2 = m2

π+k2). In the chiral limit (mπ → 0)
this reduces to

ǫ =
T 2

6f2
π

. (2.105)

To lowest order there is no change in the spectral shapes themselves but rather a temperature-
dependent coupling between the free vector and axialvector correlators. As is easily verified the
mixing theorem fulfills the in-medium Weinberg sum rules and according to (2.103) chiral symmetry
is restored for ǫ = 1/2. Eq. (2.105) thus implies a transition temperature Tc =

√
3fπ ≃ 160 MeV

which coincides with the transition temperature Tc = 150 ± 20 MeV from lattice QCD. Clearly
the low-temperature expansion cannot be trusted to such high temperature. Nonetheless it is
instructive to see what the consequences for the dilepton spectrum are. This is displayed in
Fig. 2.9. By comparing with the results from a quark-gluon plasma one observes that both are
indistinguishable down to invariant masses of ∼ 1 GeV. This is significantly lower than without
mixing in which case the two rates only coincide above ∼ 1.5 GeV (the latter is conceivable from
the fact that chiral symmetry breaking is a long distance phenomenon which does not impact
the short-distance behavior of the correlators). In other words: the vector-axialvector mixing at
finite temperature entails that the ’duality threshold’ – where hadronic and quark-gluon based
descriptions start to agree – is reduced from its vacuum location at M ≃ 1.5 GeV to about
M ≃ 1 GeV in the medium. At this level, the φ and ρ/ω resonance structures (which themselves
are not affected by the simple mixing mechanism) inhibit a further penetration of the duality
threshold into the low-mass region. However, let us note already at this point that it is precisely
the broadening (or ’melting’) of the resonances in the medium (as predicted in various hadronic
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Figure 2.9: Three-momentum integrated dilepton production rates at fixed temperature T =
160 MeV using the free electromagnetic correlator (labeled ’vacuum’), the fully mixed one from
Eq. (2.103) (’in-medium’) and the perturbative quark-gluon one according to Eq. (2.82) (’pQCD’).

model calculations) that – at the same time – flattens the (ρ) resonance structure and generates
low-mass dilepton enhancement below the free ρ mass. These important issues will be reiterated
in some detail throughout this article.

Further interesting conclusions about the in-medium correlators can be drawn by using a pole
approximation [87] similar to (2.94):

ρV (q0) =
m4
ρ

g2
ρ

Zρ
1

q20
δ(q20 −m∗2

ρ ) , ρA(q0) =
m4
a1

g2
a1

Za1

1

q20
δ(q20 −m∗2

a1
) + f∗2

π δ(q20) , (2.106)

where m∗
ρ, m

∗
a1

and f∗
π denote the in-medium masses and pion decay constant while Zρ and Za1

are the residues at the quasiparticle pole. Inserting (2.106) into the Weinberg sum rules (2.101),
(2.102) yields Zρ = Za1

from the second one, and thus from the first one

f∗2
π

f2
π

= aZρ

(

m2
ρ

m∗2
ρ

−
m2
ρ

m∗2
a1

)

, (2.107)

where a is given by (2.95). Since f∗
π is an order parameter of chiral symmetry the latter is
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restored when m∗
ρ = m∗

a1
. Such an approach to mass degeneracy is indeed observed in lattice QCD

calculations.
In close reminiscence to the finite temperature case, Krippa [89] derived an analogous mixing

theorem for a zero-temperature gas of noninteracting nucleons using soft pion theorems and current
algebra,

Πµν
V (q) = (1 − ξ) Π◦µν

V (q) + ξ Π◦µν
A (q)

Πµν
A (q) = (1 − ξ) Π◦µν

A (q) + ξ Π◦µν
V (q) . (2.108)

Here, the mixing parameter

ξ ≡ 4̺N σ̄πN
3f2
πm

2
π

(2.109)

appears in terms of the leading nonanalytic term in the current quark mass (∝ m3
π) in the chiral

expansion of the nucleon σ-term, given by

σ̄πN = 4π3m2
π〈N |π2|N〉

≃ 20 MeV . (2.110)

It is related to the pion mass contribution to the in-medium nucleon mass and arises from the
long-distance physics encoded in the nuclear pion cloud being governed by chiral symmetry [90].
Naive extrapolation of the mixing to chiral restoration (i.e., ξ = 1/2) yields ρc ≃ 2.5̺0, which
again is not unreasonable.

2.7 QCD Sum rules

The QCD sum rule approach [59] aims at an understanding of physical current-current correlation
functions in terms of QCD by relating the observed hadron spectrum to the nonperturbative QCD
vacuum structure. This is achieved by a separation of short- and long-distance scales. The principal
tool is the ’operator product expansion’ (OPE) which evaluates the time-ordered product of the
light-quark QCD currents at large space-like momenta Q2 ≡ −q2 > 0. In this case the current
product can be related to a series of gauge invariant local operators On as

− i

∫

d4x eiq·xT jµ(x)jν(0) = −
(

gµν − qµqν

q2
)

∑

n

cn(Q2,Λ2)On(Λ
2) , (2.111)

where Λ is the renormalization scale and cn denote c-number functions (the Wilson coefficients)
which contain the short-distance physics and can be calculated reliably. The Q2-independent
operators On, on the other hand, encompass the long-distance properties of QCD, manifest in the
appearance of various condensates such as 〈ψ̄ψ〉 or 〈G2〉. These operators have various dimensions,
d, such that at largeQ2 (2.111) can be considered as an expansion in inverse powers ofQ2 (corrected
by logarithms due to renormalization). An increase in dimension implies extra inverse powers of
Q2 such that operators of higher dimension are suppressed.
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The general strategy is to take the vacuum matrix elements of (2.111) and to consider a dis-
persion relation (possibly subtracted) of the type

Π◦(Q2 = −q2) = Π◦(0) − Q2

π

∫ ∞

0

ds

s

ImΠ◦(s)

Q2 + s
= Π◦(0) +Q2

∫ ∞

0

ds
ρ◦(s)

Q2 + s
, (2.112)

where ρ◦(s) = −(1/πs)ImΠ◦(s) denotes the vacuum spectral function of the current-current cor-
relator in question. For the electromagnetic current Π◦(0) = 0, since the photon is massless in
the vacuum. The l.h.s. of Eq. (2.112) is evaluated in the OPE by determining the Wilson coeffi-
cients up to a certain dimension d while the r.h.s. is taken from measured cross sections (or simple
parameterizations thereof) in the time-like region. For the l.h.s. one obtains

12π

Q2
Π◦(Q2) =

d

π

[

−c0ln(Q2/Λ2) +
c1
Q2

+
c2
Q4

+
c3
Q6

+ · · ·
]

, (2.113)

which exhibits the power series expansion in Q2. In case of the ρ meson [91]

cρ0 = 1 +
αs
π

cρ1 = −3(m2
u +m2

d)

cρ2 =
π2

3
〈G2〉 + 4π2〈muūu+mdd̄d〉

cρ3 ∝ αs〈(q̄q)2〉 , (2.114)

where αs(Q
2) is the running QCD coupling constant given in Eq. (2.5). Explicit expressions

for the coefficients ci of other mesons can be found in Ref. [91]. While for c2 the quark and
gluon condensates enter, which are rather well known, c3 contains the four-quark condensate,
i.e., 〈(q̄q)2〉, which is quite uncertain. Based on the assumption of vacuum saturation it is usually
approximated in factorized form, 〈q̄q〉2, and higher meson states, especially pions, are incorporated
by a phenomenological factor κ > 1 such that

c3 = καs〈q̄q〉2 (2.115)

The parameter κ typically varies between 1 and 6 [46, 92, 91].
Rather than working with (2.113) the convergence of the hadronic side can be improved by

observing that the physical spectrum is dominated by low-lying resonances (Fig. 2.6). To enhance
their weight one employs the fact that dispersion theory implies the following relation for derivatives
of Π◦:

1

n!

(

− d

dQ2

)n

Π◦(Q2)|Q2=Q2
0

=
1

π

∫

ds
ImΠ◦(s)

(s+Q2
0)
n+1

. (2.116)

This leads to the introduction of the ’Borel transformation’

L̂M = lim
Q2→∞,n→∞

Q2/n=M2

1

(n− 1)!
(Q2)n

(

− d

dQ2

)n

, (2.117)
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where M is the so-called Borel mass. When applied to both sides of Eq. (2.112) and by using
general properties of L̂M the result of the transformation is

1

πM2

∫

dsρ◦V (s)e−s/M
2

=
dV

12π2

[

c0 +
c1
M2

+
c2
M4

+
c3

2M6
+ · · ·

]

. (2.118)

Note the appearance of the exponential factor in the integrand of the l.h.s. which suppresses the
contribution from higher resonances. The r.h.s. converges rapidly if M is sufficiently large such
that the few lowest terms in the OPE suffice. Typically the minimum value of the Borel mass to
achieve rapid convergence is around 1 GeV.

The QCD sum rule analysis in the vacuum can now be performed in two ways. Either the
phenomenological side is experimentally accessible in which case values for the various condensates
can be extracted, or, by using ’known’ values for the condensates the properties of the physical
spectrum, i.e., masses and coupling constants, can be inferred. The latter procedure forms the
basis of QCD sum rule applications in hadronic matter. The most simple ansatz for the vacuum
spectral density consists of a ’delta function’ parameterization of the resonance part supplemented
by a ’continuum step function’ (cf. Fig. 2.10):

ρ◦(s) =
ZV
12π2

δ(s−m2
V ) +

dV
12π2

(

1 +
αs
π

)

Θ(s− sV ) , (2.119)

where ZV denotes the pole strength, mV the vector meson mass and sV the continuum threshold.
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Figure 2.10: QCD sum rule parameterization of the strength function.

The continuum strength dV is determined by perturbative QCD with dρ = 3/2, dω = 1/6, dφ =
1/3. Applying this parameterization to (2.118) with αs = 0.36, 〈ūu〉 ≃ 〈d̄d〉 ≃ 〈s̄s〉 = (−250 MeV)3,
〈αs

π G
a
µνG

µν
a 〉 = (330 MeV)4 and κ = 2.36 the l.h.s. and r.h.s. match for Zρ = 9 GeV2, Zω =
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2.4 GeV2, Zφ = 0.79 GeV2, mρ,ω = 0.77 GeV, mφ = 1.02 GeV and sρ,ω = 1.5 GeV2, sφ = 2.2 GeV2

in a ’Borel window’ of 0.8-1.5 GeV [91]. Inclusion of the vector-meson decay widths (especially for
the ρ meson) does not affect these results appreciably.

The in-medium QCD sum rule analysis involves the vector current-current function in the
interacting hadron gas (2.97). In the following it will be focused on the case of ~q = 0 for which

ΠL,T
V (q0) from Eq. (2.98) coincide. In analogy to the vacuum case (2.118) the in-medium sum rules

at zero temperature are given by

1

πM2

[

ΠV (0) +

∫

dq20ρV (q0)e
−q20/M2

]

=
dV

12π2

[

c0 +
c1
M2

+
c2(̺)

M4
+
c3(̺)

2M6
+ · · ·

]

, (2.120)

where ρV (q0) denotes the in-medium vector spectral function (2.100). Note that, in contrast to
the vacuum, ΠV (0) no longer vanishes for the ρ and ω meson. It is related to the ρ/ω-nucleon
forward-scattering amplitude [91]. On the r.h.s. of Eq. (2.120) the medium enters through the
density-dependent Wilson coefficients c2(̺) and c3(̺). These in turn are chiefly determined by the
density-dependent quark and gluon condensates

〈〈q̄q〉〉 = 〈q̄q〉 − ΣN
2m̄

̺ , 〈〈G2〉〉 = 〈G2〉 − 8

9
m

(0)
N ̺ . (2.121)

which follow from the dilute gas expressions (2.45) and (2.47) at zero temperature. As was pointed
out in Ref. [46] additional contributions to the Wilson coefficients arise from new condensates which
involve mixed quark and gluon fields, the latter entering through the gauge covariant derivative Dµ

(2.3). These matrix elements are proportional to moments of the quark and antiquark distribution
functions

Aqn = 2

∫ 1

0

dxxn[q(x) + q̄(x)] (2.122)

in the nucleon. Restricting oneself to the lowest moments and leading order in density one finally
arrives for the ρ meson at [46]

cρ2(̺) ≃ cρ2(0) − (
8π2

27
m

(0)
N − 2π2Au+d

1 mN )̺ (2.123)

and

c3(̺) ≃ c3(0) + (
896

81
κπ3αs

ΣN
m̄

〈q̄q〉 − 10

3
π2Au+d

3 m3
N )̺ , (2.124)

where mN denotes the physical nucleon mass while m
(0)
N represents the nucleon mass in the chiral

limit (m
(0)
N ≃ 750 MeV [95]). Expressions for the density-dependent Wilson coefficient of other

mesons can be found in Ref. [91].
In keeping the simple parameterization (2.119) for the in-medium spectral function,

ρV (q0) =
Z∗
V

12π2
δ(q20 −m∗

V
2) +

dV
12π2

(

1 +
αs
π

)

Θ(q20 − s∗V ) , (2.125)

Hatsuda and Lee [46] extracted the medium dependence of the non-strange vector-meson masses
as

m∗
ρ,ω

mρ,ω
= 1 − (0.18 ± 0.06)

̺

̺0
. (2.126)
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The fact that these masses decrease as density increases has initially been taken as an indication
of the ’dropping mass scenario’ of Brown and Rho [45] to which we will return below. Rather than
using the parameterization (2.125), it is, however, natural to take into account the fact that the
strength distributions might broaden significantly in the hadronic medium, as will be discussed
in detail later. A first step in this direction was taken in Ref. [93] by including effects of the ∆-
nucleonhole polarization in the pion cloud of the ρ meson. Its net impact on the in-medium QCD
sum rule, however, turned out to be rather moderate, i.e., a strong decrease of the in-medium
ρ mass very similar to the Hatsuda-Lee results was still needed to satisfy the sum rule. A more
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Figure 2.11: Constraints on allowed values for the in-medium width and mass of the ρ meson from
the QCD sum rule analysis of Ref. [94]. The full and dashed lines boarder allowed regions at 0.2%
and 1% accuracy level, respectively. The diamond marks the mass and width of the free ρ meson.

general investigation of broadening effects was performed in in Ref. [94] by assuming a schematic
Breit-Wigner spectral function

AV (q0) =
1

π

q0ΓV (q0)

(q20 −m2
V )2 + q20ΓV (q0)2

(2.127)
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with

ΓV (q0) = Γ0

(

1 − (ωthr
V /q0)

2

(1 − (ωthr
V /mV )2

)
1
2

Θ(q20 − (ωthr
V )2) , (2.128)

ωthr denoting the appropriate in-medium threshold (for the ρ meson ωthr
ρ = mπ was chosen which

is correct to leading order in the density) and Γ0 being a constant width parameter. One concludes
from Fig. 2.11 that QCD sum rules give no stringent prediction for a dropping of vector-meson
masses. This result is corroborated by the findings of Ref. [91] where a microscopic spectral function
for vector mesons was used.

2.8 Chiral Reduction Formalism

Another model-independent approach that has been put forward to assess medium modifications
of the vector correlation function is the so-called chiral master formula framework developed in
Ref. [96]. In the general case, it starts out from gauge covariant divergence equations (Veltmann-
Bell equations [97]) including explicit chiral breaking in the presence of external sources,

∇µj
µ
V,a + ǫabcaµ,bj

µ
A,c = −fπǫabcpbπc (2.129)

∇µj
µ
A,a + ǫabcaµ,bj

µ
V,c = fπ(m

2
π + s)πa − fπpaσ , (2.130)

where the (axial-) vector currents

jµV,a(x) =
δS

δvaµ(x)
, jµA,a(x) =

δS

δaaµ(x)
(2.131)

and (pseudo-) scalar densities

σ = − mq

fπm2
π

q̄q , πa =
mq

fπm2
π

q̄iγ5τ
aq (2.132)

have been defined as functional derivatives of an action S w.r.t. a pertinent set of auxiliary fields
φ ≡ {vaµ, aaµ, s, pa}, respectively (here, a, b, c=1–3 are isospin indices and the short-hand notation
for the covariant derivative is defined as ∇µj

µ
a ≡ [∂µδac+ ǫabcvµ,b]j

µ
c ). More specifically, the action

can be thought of as the QCD action plus an external source part,

S =

∫

d4x {LQCD + Lext}

Lext = q̄

(

γµ[vaµ + aaµγ5]
τa

2
− mq

m2
π

[m2
π + s− iγ5τ

apa]

)

q . (2.133)

With the help of the Peierls-Dyson formula [98] for the S-matrix, the Veltmann-Bell equations can
be rewritten as

(

Xa
V + ǫabcpb

δ

δpc

)

S = 0 (2.134)

(

Xa
A − (m2

π + s)
δ

δpa
+ pa

δ

δs

)

S = 0 , (2.135)
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where XV,A are functional differential operators involving the vaµ and aaµ fields. The feature of
spontaneous chiral symmetry breaking is then imposed through appropriate boundary conditions,
namely that asymptotic stable states are given in terms of (massive) pion fields, i.e., for x0 → ±∞
one requires

jµ,aA (x) = −fπ∂µπain,out(x) (2.136)

∂µj
µ,a
A (x) → fπm

2
ππ

a
in,out(x) . (2.137)

With these boundary conditions the Veltmann-Bell equations (2.134), (2.135) can be integrated
to give the so-called master formula for the SU(2)L × SU(2)R symmetric S-matrix for massive
pions, which can be found in Ref. [96]. From the master formula one can derive expressions for
pion Greens functions in terms of the (axial-) vector currents and (pseudo-) scalar densities, as well
as corresponding Ward identities. Since the S-matrix plays the role of a time evolution operator
(within the Heisenberg picture), the Fourier transform of the master formula takes the form of a
LSZ reduction formula, incorporating the proper chiral Ward identities, and thus has been coined
’chiral reduction formula’. It allows to express hadronic on-shell scattering reactions, determined
by the on-shell S-matrix (given by the limit of vanishing external fields φ → 0), through well-
defined correlation functions and form factors. The latter have to be either inferred from other
experimental information (in which case the predictions for the processes under consideration are,
in principle, exact, i.e., compatible with unitarity, crossing symmetry and broken chiral symmetry)
or evaluated in an appropriate expansion scheme.

Applications of this formalism to calculate medium modifications are readily performed using
virial-type low-density approximations, as the processes have to be expressed in terms of stable
final states within the hadronic matter, i.e., pions and nucleons. For electromagnetic thermal
production rates, this has been carried out in Refs. [99, 100]. Starting from the usual eightfold-
differential rate expression,

d8N

d4xd4q
= − α2

6π3q2
W (q) , (2.138)

the thermal correlator W has been related to the time-ordered (Feynman) one by

W (q) =
2

1 + eq0/T
ImWF (q)

WF (q) = i

∫

d4x eiqx
1

Z tr
[

e(Ĥ−µN N̂)/TT jµ(x)jµ(0)
]

. (2.139)

Up to first order in the density of either pions or nucleons the imaginary parts of the latter become

ImWF (q) = −3 ImΠ◦
V (q) +

1

f2
π

∫

d3k

(2π)32ωπ(k)
fπ(ωπ(k);T ) ImWF

π (q, k)

+

∫

d3p

(2π)32EN(p)
fN (EN (p);µN , T ) ImWF

N (q, p) (2.140)

(fπ: pion Bose distribution, fN : nucleon Fermi distribution; note that our definition of the corre-
lation functions Π(q) differs from the one in Refs. [99, 100] by a factor of q2). The first term on the
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r.h.s. represents the vacuum part containing the free electromagnetic current correlator, whereas
the second and third terms involve the forward scattering amplitudes of (real or time-like) photons
on on-shell pions and nucleons from the medium,

WF
π (q, k) = i

∫

d4x eiqx 〈π(k)|T jµ(x)jµ(0)|π(k)〉

WF
N (q, p) = i

∫

d4x eiqx 〈N(p)|T jµ(x)jµ(0)|N(p)〉 . (2.141)

The relevant expansion parameters for both cases have been quoted as κπ = nπ/2mπf
2
π and κN =

̺Ng
2
A/2mNf

2
π , which should provide reasonable lowest-order results for κ ∼< 0.3, corresponding

to temperatures T ∼< 140 MeV and nucleon densities ̺N ∼< 2.5̺0. However, especially for the
nucleonic case, this counting scheme may be subject to large corrections if low-lying resonances or
opening thresholds are present [100], see below.

Applying the chiral reduction formulae to the scattering tensors, the relevant terms of the pionic
piece take the form [99]

ImWF
π (q, k) ≃ 12 ImΠ◦

V (q) − 6 ImΠ◦
A(k + q) + 6 ImΠ◦

A(k − q)

+8[
(k · q)2
q2

−m2
π] ImΠ◦

V (q) Re[DR
π (k + q) +DR

π (k − q)] (2.142)

with DR
π denoting the retarded pion propagator and Π◦

A the free axialvector current correlator
(extracted from τ -decay data as indicated in the upper part of Fig. 2.6).

The nucleonic piece is more difficult to assess; at the photon point it can be inferred via the
optical theorem from the total γN cross section,

e2 ImWF
N (q, p) = −4(s−mN) σtotγd (s) (2.143)

(here, the deuteron cross section has been taken as representative for the isospin summed result).
For time-like photons, an absorptive part starts to build up only from loop corrections for which a
one-pion loop expansion was performed for non-resonant πN states (being related to on-shell πN
scattering data). However, as is obvious from the experimental γN cross section, the ∆ resonance
has to be included. Its contribution has been evaluated as

ImWF
∆ (q, p) = Im

[

4mNm∆

s−m2
∆ + im∆Γ0

∆

]

|MN∆|2 + (s→ u) (2.144)

with |MN∆|2 the spin-isospin summed modulus squared of the N∆ transition amplitude. The
latter has been constructed compatible with current conservation and crossing symmetry, and its
parameters are constrained by electric and magnetic polarizabilities as well as the electromagnetic
decay width Γ∆→Nγ ≃ 0.7 MeV. In subsequent work – after the importance of the N(1520) for
dilepton production has been realized [101, 102, 48, 103, 49] – the N(1520) contribution has been
included along similar lines as the ∆ in Ref. [104]. Higher order terms ∝ κπκπ, κπκN , κNκN have
also been estimated and claimed to be rather small in the region of interest (i.e., above invariant
masses of about 200 MeV).

The discussion of the numerical results for the dilepton and photon production rates in the
chiral reduction formalism is deferred to Sect. 4.2, where it will be put into context with other
(model) approaches, most of which are elucidated in the following Chapter.
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Chapter 3

Modeling Vector Mesons in the
Medium

So far our assessment of medium effects in the current-current correlators was of a rather general
nature focusing on the QCD aspects and model independence. We have repeatedly stressed the
intimate relation between vector and axialvector channels, governed by chiral symmetry. The
discussion now proceeds to various models that have been employed to investigate the properties
of vector and axialvector mesons in hot and dense matter. On the one hand, this allows for much
more specific predictions, but also implies at least a partial loss of generality. However, a careful
comparison of the underlying assumptions and associated characteristic features of the results
should provide valuable information on the relevant mechanisms for chiral symmetry restoration.
Large efforts have been undertaken to investigate the in-medium vector meson properties, especially
those of the ρ meson, due to its prominent role in heavy-ion dilepton measurements, as will be
extensively addressed in Chapter 4. Much less has been done in the axialvector channel, dominated
by the a1(1260) meson. This is mainly due to the fact that experimental information, in particular
concerning medium effects, is and will be scarce (the hope is, of course, that ultimately QCD
lattice calculations will be able to overcome this unfortunate situation). Thus, in the following,
the emphasis will inevitably be biased towards the vector channel, in particular the ρ meson.

The various approaches can be roughly divided into two categories, namely those which are
based on purely mesonic Lagrangians, addressing the impact of finite temperature, and those in-
cluding baryonic fields to account for finite density effects. For each model we will first briefly
discuss its construction and vacuum properties, subsequently proceeding to the in-medium appli-
cations.

3.1 Effective Meson Lagrangians: Impact of Finite Temper-

ature
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3.1.1 Gauged Linear σ-Model + VDM

Based on the presumption that for the properties of the lowest-lying meson multiplets near the
phase boundary chiral symmetry restoration (rather than deconfinement) should be the prevailing
feature of the QCD transition Pisarski proposed [105] to study the simplest version of an effective
theory which incorporates the appropriate symmetry structure, i.e., the linear σ-model. A low-
lying genuine σ meson might not be the most realistic description of the zero temperature situation,
as it strongly couples to two-pion states. As a result the width is of the order of the mass such that
the σ meson does not represent a well-defined degree of freedom (or quasiparticle). He argued,
however, that given the fact that at chiral restoration the pion and the sigma have to become
degenerate there might well arise the situation in which the phase space for σ → ππ is locked and
the σ field becomes a well-defined excitation [106].

In the linear σ-model the pion and sigma fields are grouped into the standard four-dimensional
vector

Φ = σ t0 + i~π · ~t , (3.1)

where ~t = ~τ/2 is defined via the standard Pauli matrices and t0 = 11/2 is proportional to the
unit-matrix in isospin space. The (axial-) vector fields are introduced via left- and right-handed
combinations as

AµL = (ωµ + fµ1 ) t0 + (~ρµ + ~a1
µ) · ~t

AµR = (ωµ − fµ1 ) t0 + (~ρµ − ~a1
µ) · ~t (3.2)

in obvious notation. The crucial step is now to assume that the SU(2) chiral transformations
for vector fields are local ones, promoting it to a gauge symmetry. The basic motivation is a
natural emergence of conventional vector dominance. Once the field-strength tensor and covariant
derivative on the scalar fields are accordingly defined,

FµνL,R = ∂µAνL,R − ∂νAµL,R − ig
[

AµL,R, A
ν
L,R

]

Dµ = ∂µΦ − ig (AµLΦ − ΦAµR) , (3.3)

the gauged linear σ-model Lagrangian takes the form

Lglσ = tr|DµΦ|2 − 2 h t0 tr(Φ) − µ2 tr|Φ|2 +
1

2
λ
(

tr|Φ|2
)2

+
1

4
tr
(

(FµνL )2 + (FµνR )2
)

+
1

2
m2

0 tr
(

(AµL)2 + (AµR)2
)

. (3.4)

The corresponding vector (Noether) current is then solely determined by the mass term, resulting
in

jµL,R =
m2

0

g
AµL,R . (3.5)

This is precisely the desired current-field identity of the vector dominance model [107] (VDM)
where g is the universal (dimensionless) vector coupling and m0 the (bare) vector meson mass.
Furthermore, in Eq. (3.4), λ denotes the (dimensionless) scalar coupling. The ’mass parameter’
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µ2 is taken positive to generate the spontaneous breakdown of chiral symmetry in the physical
vacuum. Explicit chiral symmetry breaking through a ’magnetic background field’ h ensures that
the resulting vacuum state is aligned in the σ direction implying a non-vanishing expectation value
〈σ〉 ≡ σ0 = µ/

√
λ and a finite pion mass. However, after the standard shift σ → σ0 +σ a ’spurious’

mixing term of the form g ~a1
µ · ∂µ~π between the pion and the a1 field emerges which has to be

eliminated by a shift of the a1 field,

~a1
µ → ~a1

µ − gσ0

m2
0 + (gσ0)2

∂µ~π . (3.6)

As a consequence the vector and axialvector meson masses, determined by the tr(AL,R)2 term,
split according to

m2
ρ = m2

ω = m2
0

m2
a1

= m2
f1 = m2

0 + (gσ0)
2 , (3.7)

and the standard relations of the linear σ-model are modified as

fπ =
mρ

ma1

σ0

m2
π =

(

mρ

ma1

)2
h

σ0

m2
σ =

h

σ0
+ 2λσ2

0 . (3.8)

At the mean-field level, the parameter values are fixed as σ0 = 152 MeV, g = 6.55, h = (102MeV)3

by imposing the experimental values for fπ = 93 MeV, mπ = 138 MeV, mρ = 770 MeV and
ma1

= 1260 MeV. Some latitude arises in the choice of λ and µ due to the uncertainty in the σ
mass; when identifying it as mσ = 600 MeV, one has λ = 7.6 and µ = 412 MeV. As emphasized in
Ref. [105], the virtue of complying with VDM through the requirement of locally gauge invariant
couplings greatly restricts the number of possible interaction terms (i.e., the mere requirement of
a global chiral symmetry would allow many more terms).

When moving to the finite-temperature modifications, Pisarski evaluated selfenergy corrections
in terms of a thermal loop expansion to lowest order in g for two limiting cases. At low temperatures
and in the chiral limit, one can additionally expand in small pion momenta p ∼ T ≪ mρ,ma1

to
obtain for the on-shell thermal pole masses of the ρ and a1 meson [105]

m2
ρ(T ) ≃ m2

ρ −
g2π2T 4

45m2
ρ

(

4m2
a1

(3m2
ρ + 4q2)

(m2
a1

−m2
ρ)

2
− 3

)

+ . . .

m2
a1

(T ) ≃ m2
a1

+
g2π2T 4

45m2
ρ

(

4m2
a1

(3m2
ρ + 4q2)

(m2
a1

−m2
ρ)

2
+

2m4
ρ

m2
a1

(m2
a1

−m2
σ)

− m2
a1

m2
ρ

)

+ . . . . (3.9)

This result is consistent with the model-independent mixing theorem (2.103) of Dey et al. [88]
stating that there are no mass corrections to order T 2. However, as stressed in Ref. [105], this only
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holds strictly on the mass shell, i.e., for q2 = m2
ρ, but not away from it. Moreover, for explicitly

broken chiral symmetry, i.e., for h 6= 0, the on-shell a1 pole mass does pick up a T 2-term

m2
a1

(T ) ≃ m2
a1

+
g2m2

πT
2

4m2
σ

+ . . . . (3.10)

One should also note that in Ref. [108], where the O(T 4) corrections have been assessed using the
OPE in connection with deep-inelastic scattering amplitudes on the pion, both the ρ and a1 masses
have been found to decrease.

As a second limit Pisarski considered the behavior of the masses at the critical temperature for
chiral restoration. For the gauged linear σ-model the latter is given in terms of the zero temperature
σ expectation value by T χc =

√
2σ0 ≃ 215 MeV (in the chiral limit). By definition, σ0 → 0 for

T → T χc , such that in the immediate vicinity of the transition several of the trilinear vertices ∝ σ0

encoded in the Lagrangian (3.4) vanish. Neglecting furthermore small terms of order T 2/m2
ρ, the

temperature corrections to both the ρ and a1 selfenergies turn out to be

Σ
Tχ

c
ρ,a1 =

1

6
g2T 2 (3.11)

resulting in m2
ρ(T

χ
c ) = m2

a1
(T χc ) = (2m2

ρ + m2
a1

)/3 = (962 MeV)2 (note that the (gσ0)
2-term in

Eq. (3.7) vanishes at T χc ). Since the rather large value of the coupling constant g implies that a
lowest-order calculation cannot be quantitatively trusted the emphasis here is not on the exact
mass values but rather on the qualitative feature that ρ and a1 masses become degenerate at a
common value in between their vacuum masses. One should note the somewhat peculiar feature
that in the low-temperature limit (3.9) the ρ and a1 masses start out by moving apart. As another
striking result the ω meson mass turns out not to be affected at all, mω(T χc ) = mω, thus lifting
the (theoretically not well-understood) zero temperature degeneracy with the ρ meson.

Pisarski also studied situations where vector meson dominance does not hold, e.g., when re-
placing the local chiral symmetry-breaking vector mass term ∝ m2

0 in Eq. (3.4) by

Lζ = ζ tr(|Φ|)2 tr
[

(AµL)2 + (AµR)2
]

. (3.12)

In this case the vacuum ρ and a1 masses are still split by the spontaneous breaking term (gσ0)
2, but

an explicit finite-temperature calculation shows that close to the transition the masses uniformly
decrease to mρ(T

χ
c ) = ma1

(T χc ) = mω(T χc ) = 629 MeV. Other possible terms outside the VDM
might induce different behavior. Thus, within the gauged linear σ-model, the fate of the (axial-)
vector masses (especially for the ρ) crucially depends on whether vector meson dominance, as
represented by the field-current identity Eq. (3.5), continues to hold at finite temperature.

3.1.2 Massive Yang-Mills Approach

As a second variant of the chiral Lagrangian framework to study in-medium vector meson properties
we discuss the massive Yang-Mills (MYM) approach. It is very similar in spirit to the gauged linear
σ-model, only that the σ degrees of freedom have been eliminated using the non-linear realization of
the SU(3)L×SU(3)R chiral symmetry [109]. From a phenomenological point of view this might be
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the more appropriate effective theory at zero and low temperatures. The Lagrangian is expressed
through a matrix representation

U = exp(i
√

2φ/fπ) , φ ≡ φa
τa√
2
, (3.13)

where, in the SU(2) case, the isospin index a of the pseudoscalar fields φa runs from 1 to 3,
contracted with the Pauli matrices τa. The vector and axialvector fields are introduced in complete
analogy to the linear σ-model of the previous Section, i.e., as massive gauge fields. Defining them
via

V µ ≡ V µa τa/
√

2 , Aµ ≡ Aµaτa/
√

2

AµL ≡ 1

2
(V µ +Aµ) , AµR ≡ 1

2
(V µ −Aµ) (3.14)

leads to the Lagrangian

Lmym =
1

4
f2
π tr

[

DµUD
µU †]− 1

2
tr
[

(FµνL )2 + (FµνR )2
]

+m2
0 tr

[

(AµL)2 + (AµR)2
]

−iξ tr
[

DµUD
µU †FµνL +DµUD

µU †FµνR
]

+ σ tr
[

FµνL UFRµνU
†] . (3.15)

Note that the normalization convention chosen in Eq. (3.14) (which differs from the previous
Section by a factor of 1/

√
2), entails a factor of 2 in the terms bilinear in the (axial-) vector fields.

Also, the ρππ coupling constant picks up an additional factor in its relation to the gauge coupling
constant g, i.e., g =

√
2gρππ. This is due to the definition of the covariant derivative which in

(3.15) is taken as
DµU = ∂µ − ig(AµLU − UAµR) . (3.16)

The last two terms in the Lagrangian (3.15) are so-called non-minimal coupling terms (i.e., of
higher order in the derivatives than the other ones), which are necessary for a realistic description
of the vector and axialvector meson sector in vacuum. The four free parameters (m0, g, σ, ξ) are
readily adjusted to reproduce the phenomenological masses and decay widths of ρ, ω, a1, etc..

At finite temperature the calculation of the vector correlator – saturated by the ρ meson in
VDM – has been shown [110] to obey the general low-energy theorem of Ref. [88]. To lowest
order in the ’mixing parameter’ ǫ = T 2/6f2

π, the finite-temperature ρ meson selfenergy receives
two corrections from thermal one-pion loop diagrams. The relevant terms in the MYM Lagrangian
(3.15),

Lmym =
1

2
m2
ρ~ρ

2
µ +

[

m2
ρ + g2f2

π

]

~a1
2
µ + g2fπ~π × ~ρµ · ~a1µ +

1

2
g2
[

~ρ2
µ~π

2 − ~ρµ · ~π ~ρµ · ~π
]

+ . . . , (3.17)

induce a ρρππ ’tadpole’ diagram (last term) as well as a πa1 resonance loop (prelast term). The
leading temperature dependence is driven by loops of pions from the heat bath. When evaluated
in the chiral limit the resulting vector correlator takes the form

Πµν
V (q) =

(

gµν − qµqν

m2
ρ

)

g2
ρ

×
[

i

m2
ρ − q2

+
i

m2
ρ − q2

ig2f2
πǫ

i

m2
ρ − q2

+
i

m2
ρ − q2

i3g4f4
πǫ

m2
a1

− q2
i

m2
ρ − q2

]

, (3.18)
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where the second and third terms arise from the interaction vertices in Eq. (3.17) and gρ = m2
ρ/g

is the VDM coupling constant. Making use of the Weinberg relation, m2
a1

= m2
ρ+ g2f2

π, one finally
obtains

Πµν
V (q) =

(

gµν − qµqν

m2
ρ

)

g2
ρ

[

(1 − ǫ)
i

m2
ρ − q2

+ ǫ
i

m2
a1

− q2

]

(3.19)

in accordance with the model-independent mixing theorem (2.103). Deviations occur, e.g., through
the finite pion mass or when including the non-minimal coupling term with σ 6= 0 in the Lagrangian
(3.15). As reported by Song [111] the ρmeson mass tends to increase whereas the a1 mass decreases.
Quantitatively, however, the temperature dependencies seem to be very weak. The masses only
change by a few percent even at temperatures as high as T = 200 MeV which already is clearly
beyond the range of applicability of the low-temperature expansion. Much before that chiral
restoration is likely to be realized through the mixing effect.

3.1.3 Hidden Local Symmetry

The third chiral Lagrangian framework to incorporate vector mesons is the so-called ’Hidden Local
Symmetry’ (HLS) approach proposed by Bando et al. [112]. It originated from the observation
that the conventional [SU(2)L × SU(2)R]global-symmetric non-linear σ-model Lagrangian,

Lnlσ =
1

4
f2
π tr

[

∂µU∂
µU †] (3.20)

(U as given in Eq. (3.13)), can be recast in a form that exhibits an additional [SU(2)V ]local
symmetry. This can be made explicit by rewriting the U -field as

U ≡ ξ†L ξR (3.21)

in terms of new SU(2)-valued variables ξL and ξR (notice that this implies the appearance of three
additional, unphysical scalar degrees of freedom). Defining the usual covariant derivative

Dµ = ∂µ − igV µ (3.22)

with an auxiliary gauge field V µ = V µa τa/2 and associated gauge coupling g allows to construct
two invariants under [SU(2)L ⊗ SU(2)R]global × [SU(2)V ]local transformations, namely

LA = −1

4
f2
π tr

[

DµξL · ξ†L + DµξR · ξ†R
]

LV = −1

4
f2
π tr

[

DµξL · ξ†L −DµξR · ξ†R
]

. (3.23)

When imposing the so-called unitary gauge

ξ†L = ξR = exp(−π/fπ) (3.24)

(which eliminates the unphysical scalar degrees of freedom) it can be verified that, with arbitrary
constant a, the combination

L = LA + aLV (3.25)
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is indeed equivalent to Eq. (3.20). In fact, LA is in one-to-one correspondence with the starting
Lagrangian Lnlσ, whereas LV identically vanishes by virtue of the equations of motion for the gauge
field. It can be assigned a physical significance by assuming that it develops its own dynamics,
generating a kinetic energy term in the Lagrangian (usually attributed to the underlying QCD-
dynamics or quantum effects at the composite level [112]). The physical vector field is then
identified with the (isovector) ρ meson, and the HLS Lagrangian becomes

Lhls = LA + aLV − 1

4
(~ρµν)2

=
1

4
f2
πtr
[

∂µU∂
µU †]− 1

4
~ρµν · ~ρµν +

a

2
g2f2

π~ρ
2
µ +

a

2
g~ρµ · (~π × ∂µ~π) + O(~π4) (3.26)

with the non-abelian field strength tensor

~ρµν = ∂µ~ρν − ∂ν~ρµ + g ~ρµ × ~ρν . (3.27)

The second line in Eq. (3.26) has been obtained using the weak-field expansion for the ξ-fields.
One reads off that

gρππ =
1

2
ag (3.28)

m2
ρ = ag2f2

π , (3.29)

i.e., the gauge symmetry is spontaneously broken generating a mass for the vector field via the
Higgs mechanism. This is accompanied by the disappearance of the scalar modes which have
turned into the longitudinal components of now massive vectors. A particular advantage of the
HLS framework is the unique way of introducing electromagnetic interactions. Since the photon

couples to the charge Q = I
(L)
3 + I

(R)
3 corresponding to the global [SU(2)L ⊗ SU(2)R] isospin

symmetry, the electromagnetic field can be introduced as a global gauge symmetry. Thus the
covariant derivative (3.22) can be simply extended to

DµξL,R = (∂µ − igV µ)ξL,R + e0ξL,RB
µ τ3

2
(3.30)

with the U(1)Q gauge field Bµ and associated coupling e0. In addition, the corresponding kinetic
term − 1

4B
2
µν (Bµν = ∂µBν − ∂νBµ) has to be added to the HLS Lagrangian in Eq. (3.26). After

rediagonalizing the fields one finds the following mass relations:

m2
γ = 0 , m2

ρ0 = a(g2 + e20)f
2
π , m2

ρ± = ag2f2
π . (3.31)

For the special case of a = 2, Eqs. (3.28) and (3.29) give the universality of the ρ couplings as well
as the KSFR relation [86]. Moreover, vector dominance emerges due to the vanishing of the direct
γππ coupling and the ρ-γ coupling is given as gργ = m2

ρ/g.
Let us now turn to the finite temperature calculations performed within the HLS framework.

The minimal version of the HLS Lagrangian does not involve the a1 field. Nevertheless, the low-
energy theorem, Eq. (2.103), ought to be satisfied for the vector correlator. This is indeed the case
and is realized through temperature-dependent corrections to the VDM coupling constant gργ . As
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Figure 3.1: Finite temperature correction to the γρ vertex through a thermal pion tadpole loop in
the HLS approach (wavy line: photon, solid line: ρ meson, dotted line: pion).

has been shown in Ref. [110], to lowest order in ǫ, the thermal pion tadpole loop on the ρ − γ
vertex, shown in Fig. 3.1, leads to correction factor (1 − 1

2ǫ). Therefore

g2
ργ(T ) = (1 − ǫ)g2

ργ + O(ǫ2) . (3.32)

Moreover, in the ’minimal’ HLS there is no ρρππ contact interaction. Thus, to lowest thermal pion-
loop order, the in-medium ρ mass is only modified through temperature effects in the two-pion
loop which do not pick up T 2-corrections due to the additional derivative in the ρππ coupling.

For practical purposes the HLS approach has been mainly employed to study finite-temperature
modifications of the pion electromagnetic form factor, Fπ, and dilepton/photon production rates.
The latter will be discussed in Chap. 4. In the thermal medium, the former can be defined through
the total electromagnetic vertex for the ππ → γ transition,

Γγππµ (T ) = qµ Fπ(q0, ~q;T ) . (3.33)

For a = 2 and in free space, it reduces to the well-known VDM expression,

F ◦
π (M) =

gρππgργ

M2 − (m
(0)
ρ )2 + Σρππ(M)

. (3.34)

In Ref. [113], Fπ(T ) has been evaluated in terms of thermal one-pion loop corrections (using a = 2).
The total γππ vertex function can then be written as

Γµ(T ) = Γmix
µ + Γvert

µ + Γrho
µ + Γdir

µ , (3.35)

where Γmix
µ encodes the pion-tadpole diagram (inducing V -A mixing diagrammatically represented

in Fig. 3.1), Γvert
µ represents thermal-loop corrections of the ππρ vertex (left panel of Fig. 3.2)

and Γrho
µ accounts for the temperature dependence in the ρ selfenergy Σρππ (i.e., in the two-pion

bubble). The appearance of a direct γππ vertex Γdir
µ is solely due to finite-temperature vertex

modifications, induced by the diagrams shown in the right panel of Fig. 3.2. In the limit of
vanishing three-momentum, ~q = 0, the in-medium form factor can be characterized by a single
scalar function (see Eq. (2.100)) depending on invariant mass M only, according to

Fπ(T ) = Zπ(T )

[

gρππ(T ) gργ(T )

M2 −m2
ρ + imρΓ◦

ρ − Σρ(T )
+ F ′

π(T ) .

]

(3.36)

48



(d)(c)

(a) (b)

(c)(a) (b)

Figure 3.2: Thermal loop corrections to the ρππ vertex (left panel) as well as the ’direct’ γππ;
the latter vanishes at zero temperature in the VDM (i.e. for a = 2 in the HLS framework). The
figures are taken from Ref. [113].

Here, Zπ(T ) is the pion wave function renormalization constant. It can be inferred from the
relevant Ward-Takahashi identity,

(pµ − p′µ)Γµ(p, p
′) = Σπ(p) − Σπ(p

′) , (3.37)

which ensures gauge invariance of the in-medium γππ transition with Σπ denoting the in-medium
pion selfenergy to be evaluated to thermal one-loop order. For on-shell pions of vanishing three
momentum, as considered in Ref. [113], the simple relation

Zπ(T ) =

[

1 − ∂Σπ
∂p2

0

(p0 = mπ, ~p = 0)

]−1

(3.38)

is obtained. In Eq. (3.36), the temperature-dependent ργ and ρππ couplings, the temperature
part of the ρ selfenergy, ΣTρππ, as well as the direct γππ piece, F ′

π, arise from the various vertex
terms in Eq. (3.35), respectively (Γ◦

ρππ denotes the free ρ decay width, and the real part of the
free ρ selfenergy has been absorbed into the physical ρ meson mass, mρ). The resulting pion
electromagnetic form factor is displayed in Fig. 3.3. One observes a strong suppression with
increasing temperature over the entire invariant mass range which, to a large extent, is driven by
the reduction of the vector dominance coupling gργ(T ), representing the vector-axialvector mixing
effect. One should note, however, that the imaginary part of the vector correlator (which in VDM
coincides with the imaginary part of the ρ meson propagator, i.e., the spectral function), involves
an additional factor from the imaginary part of the in-medium ρ selfenergy; e.g., in VDM the
isovector correlator is related to the pion electromagnetic form factor through

ImΠI=1
V =

ImΣρππ
g2
ρππ

|Fπ(T )|2 . (3.39)
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Figure 3.3: Pion electromagnetic form factor in a finite temperature pion gas as calculated within
the hidden local symmetry approach in Ref. [113].

Within the quasiparticle approximation for pions, one obtains

ImΣρππ(q0 = M,~q = 0) ∝ k4

ωπ(k)2
|∂ωπ(k)

∂k
|−1 (3.40)

with the in-medium pion dispersion relation ωπ(k). In a pion gas, the latter is softened at small
momenta due to the attractive interaction with thermal pions in the ππ → ρ channel, causing
a reduction of the group velocity vk = |∂ωπ(k)/∂k|−1. This generates some enhancement in the
vector correlator at low M , which is not captured by the electromagnetic form factor shown in
Fig. 3.3 (the functional form of Σρππ as quoted in Eq. (3.40) should be taken with care. It only leads
to a gauge invariant vector correlator in connection with the Z2

π factor (3.38) which in Ref. [113]
has been absorbed into the definition of |Fπ|2. In fact, one can show that Z2

πk
2/ωπ(k)

2 = v2
k, which

reduces the effect of the pion softening, see, e.g., Ref. [114] for a nice discussion on this point).
Qualitatively similar features for the in-medium behavior of the pion electromagnetic form

factor have been found earlier within a schematic treatment in Ref. [115]. Starting from the
on-shell expression for the free ρ meson decay width (ignoring any pion mass),

Γ◦
ρ =

g2
ρππ

4π

mρ

12
, (3.41)

the finite temperature corrections have been estimated assuming the validitiy of the in-medium
KSFR relation, 2g2

ρππf
2
π = m2

ρ, as well as an unmodified ρ mass (later on it has been realized that
mρ(T ) does indeed not attain corrections to lowest order O(T 2) [116], as said before). Then, using
the lowest-order chiral perturbation theory result for the pion decay constant (for three massless
flavors),

fπ(T ) = fπ(1 − T 2/8f2
π) (3.42)

(for Nf = 2 the coefficient 1/8 is to be replaced by 1/12), the temperature dependence of the ρ
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decay width has been cast in the form

Γρ(T ) ≃
Γ◦
ρ

1 − T 2/4f2
π

, (3.43)

indicating a broadening with increasing T . Vertex corrections of the ππρ coupling as required
by Ward identities to ensure the conservation of the vector current have not been included in
this estimate. When naively extrapolating Eq. (3.43) to high temperatures one finds the ρ width
to diverge at T = 2fπ ≃ 185 MeV (230 MeV when using the two-flavor result for fπ(T )). In
Refs. [117, 115] this kind of resonance melting has been qualitatively associated with the approach
towards color deconfinement.

3.1.4 Phenomenological Meson Lagrangians

The chiral Lagrangian frameworks discussed in the previous Sections allow a for systematic inves-
tigation of the low-temperature chiral dynamics of the vector meson properties. The inclusion of
higher resonances, however, can become a quite formidable task due to the increasing number of
interaction vertices. Furthermore, chiral symmetry does not always give unique prescriptions for
the latter, as we have seen above. Since the impact of certain meson resonances, which have not
been incorporated via chiral Lagrangians so far, may be non-negligible more phenomenologically
oriented approaches have been pursued [118, 119, 120, 47, 121, 122, 123]. They aim at including
the empirically important interactions in a tractable way that also respects the relevant symme-
tries, such as vector current conservation or chiral symmetry. In the following, we will elaborate
on two variants that have been employed in this context, namely kinetic-theory and many-body
type calculations.

At low and moderate temperatures the thermal meson gas is dominated by the light pseu-
doscalar Goldstone bosons P = π,K, K̄. A rather extensive treatment of the possible scattering
processes of on-shell vector mesons V in such a system has been undertaken by Haglin [120]. He
specified the following interaction Lagrangians (isospin structure suppressed)

LV PP = GV PP V µ P ∂µ P

LV V P = GV V P ǫµναβ ∂
µ V ν ∂α V β P

LAVP = GAV P Aµν V
µν (3.44)

for the exchange of pseudoscalar, vector (V ) and axialvector (A) mesons, respectively (V µν and
Aµν denote the usual field strength tensors). The average collision rate for the vector mesons in
binary collisions with particles h from the heat bath, V h→ 34 was then obtained from the kinetic
theory expression

Γ̄coll
V (T ) =

gV gh
nV (T )

∫

d3p̃V d
3p̃hd

3p̃3d
3p̃4|M̄ρh→34|2(2π)4δ(4)(pV + ph − p3 − p4)

×fV (T ) fh(T ) [1 + f3(T )][1 + f4(T )] , (3.45)

where d3p̃i ≡ d3pi/2ωi(pi)(2π)3, etc., gi are the spin-isospin degeneracy factors, f i(T ) thermal
Bose-Einstein distribution functions, and nV (T ) is the number density of the vector meson V . The
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Figure 3.4: Temperature dependence of the collisional broadening of ρ, ω and φ mesons (from left
to right) as calculated in the kinetic theory approach of Ref. [120].

coherent sum of invariant amplitudes,

MρP =
∑

R

MρPR , (3.46)

has been computed for both s- and t-channel exchanges of mesons R. For elastic ρπ scattering,
R = {π, ω, φ, a1(1260), ω(1390)}, for ρK scattering, R = K1(1270), and for ωπ interactions, R =
{ρ, b1(1235)} were used. For the φ meson the dominant processes involve kaon exchange (including
inelastic channels such as φπ → K∗K or φK → K∗π). The final results, displayed in Fig. 3.4,
reveal a moderate collisional broadening of about 40 MeV for the ρ meson at T = 150 MeV. A
similar value of ∼ 30 MeV has been found for the ω meson in which case, however, it amounts to
a factor of four times its natural width. The effects for the φ meson are smaller.

Along similar lines, Gao et al. [122] extended Haglin’s analysis for ρπ scattering by including
isospin-exchange interactions such as π+ρ0 → π0ρ+ and by using a different regularization method
for the singularity in the t-channel pion-exchange diagram. He also employed a somewhat modified
πρa1 vertex which improves the phenomenology of the a1 → πρ decay [124]. In addition, the in-
medium broadening of the ρππ decay width through Bose-Einstein enhancement factors of the
pions (which will be discussed in more detail below) were accounted for. The resulting ρ meson
spectral function,

Aρ(M) = − 2ImΣρ(M ;T )

[M2 −m2
ρ − ReΣρ(M ;T )]2 + [ImΣρ(M ;T )]2

, (3.47)

has been obtained in terms of a total in-medium ρ selfenergy,

Σρ(M ;T ) = Σρππ(M ;T ) + Σcoll
ρ (T ) , (3.48)

consisting of a medium-modified ρ → ππ part (including the Bose enhancement) and a collisional
contribution that has been approximated by its on-shell value (i.e., for M = mρ). Therefore
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Figure 3.5: ρ meson spectral function at T = 150 MeV (left panel) as evaluated in the kinetic
theory calculations of Ref. [122] including the in-medium Bose-enhancement of the ρ→ ππ width.
The right panel shows the temperature dependence of the collisional part (using two values for the
pion chemical potential) for the full result including t-channel processes (full curves, labeled ’πρ
scattering’) as well as for a calculation where only s-channel resonances have been accounted for
(dotted curves, labeled ’resonance approx.’).

it depends on temperature only. As apparent from Fig. 3.5, the ρ meson exhibits a thermal
broadening which substantially exceeds the previous estimate by Haglin: at T = 150 MeV, the
scattering contribution from a pion gas turns out to be Γ̄coll

ρ = 58 MeV (see also right panel
of Fig. 3.5), whereas the in-medium Bose-enhancement of the ρ → ππ decay width amounts to
25 MeV. The three-momentum dependence of the spectral function is rather weak.

The evaluation of the in-medium vector meson properties in the kinetic theory treatments of
Refs. [120, 122] was restricted to physical (on-shell) pole masses mV . On the other hand, one might
expect important effects from off-shell dynamics especially for the ρ meson as it is characterized by
an appreciable width already in free space (this, in turn, marks its distinguished role for low-mass
dilepton yields, Mll < mρ, in heavy-ion reactions, to be discussed in Chap. 4). Off-shell dynamics
are naturally accounted for within a many-body treatment of in-medium selfenergies, as we are
going to discuss now.

The usual starting point is a microscopic model for the ρ meson with coupling to its ’pion
cloud’ via two-pion states. This not only renders the correct decay width but also quantitatively
describes its energy dependence over a broad range of invariant mass as encoded, e.g., in ππ P -wave
scattering phase shifts or the pion electromagnetic form factor. Given the free π + ρ Lagrangian,

Lfree
π+ρ =

1

2
tr
[

(∂µπ)2 − φ2
]

− 1

2
tr
[

(ρ2
µν

]

+ (m(0)
ρ )2 tr

[

ρ2
µ

]

, (3.49)

Sakurai proposed to adopt the ρ meson as the gauge boson of the conserved isospin [125], which
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can be realized by introducing the covariant derivative ∂µ → (∂µ + igρππρ
µ). This is rather close

in spirit to the massive Yang-Mills approach discussed above. The resulting πρ interaction vertices
are then given by

Lint
ρπ = gρππ(~π × ∂µ~π) · ~ρµ − 1

2
g2
ρππ ~ρ

µ · ~π ~ρµ · ~π . (3.50)

To lowest order in gρππ the corresponding selfenergy in vacuum reads

Σ◦,µν
ρππ (M) = ig2

ρππ

∫

d4p

(2π)4
(2p+ q)µ(2p+ q)ν

((p+ q)2 −m2
π + iη)(p2 −m2

π + iη)

−i2g2
ρππ g

µν

∫

d4p

(2π)4
1

p2 −m2
π + iη

. (3.51)

The loop integrals have to be regularized. A symmetry conserving procedure is, e.g., provided by
the Pauli-Villars scheme which applies subtractions to the divergent integrals according to

Σµν(q;mπ) → Σµν(q;mπ) +

2
∑

i=1

ciΣ
µν(q;Mi) . (3.52)

The required regulator masses Mi can be related to a single form factor cutoff Λρ with [126]

c1 = −2 , M1 =
√

m2
π + Λ2

ρ

c2 = 1 , M2 =
√

m2
π + 2Λ2

ρ . (3.53)

Effectively, the same can also be achieved by writing the two-pion loop selfenergy in terms of a
once-subtracted dispersion integral [114] as

Σ◦
ρππ(M) = Σ̄◦

ρππ(M) − Σ̄◦
ρππ(0)

Σ̄◦
ρππ(M) =

∫

p2dp

(2π)2
vρππ(p)

2 G0
ππ(M,p) (3.54)

with the vacuum two-pion propagator

G◦
ππ(M,p) =

1

ωπ(p)

1

M2 − (2ωπ(p))2 + iη
, ωπ(p) =

√

m2
π + p2 (3.55)

and vertex functions

vρππ(p) =

√

2

3
gρππ 2p Fρππ(p) (3.56)

involving a hadronic form factor Fρππ [47]. From gauge invariance it follows that qµΣ
◦,µν
ρππ = 0 and

the ρ meson selfenergy can be cast in the general form

Σ◦,µν
ρππ (q) =

(

−gµν +
qµqν

M2

)

Σ◦
ρππ(M) . (3.57)
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Iterating it to all orders by solving the Dyson equation for the propagator, one arrives at

D◦,µν
ρ (q) =

(

−gµν +
qµqν

M2

)

D◦
ρ(M) (3.58)

with the scalar part

D◦
ρ(M) =

[

M2 − (m(0)
ρ )2 − Σ◦

ρππ(M)
]−1

. (3.59)

The three free parameters (coupling constant, bare mass and cutoff) can be readily adjusted to
the P -wave ππ phase shifts,

tan(δJI=11
ππ (M)) =

ImD◦
ρ(M)

ReD◦
ρ(M)

, (3.60)

and the pion electromagnetic form factor, which, imposing VDM, becomes

|F ◦
π (M)|2 = (m(0)

ρ )4 |D◦
ρ(M)|2 , (3.61)

cf. Fig. 3.6. Typical values are g2
ρππ/4π = (2.7 − 2.9), m

(0)
ρ = (0.82 − 0.85) GeV and Λρ =

0
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Figure 3.6: Pion electromagnetic form factor (left panel) and P -wave ππ scattering phase shifts in
free space as obtained in typical fits from phenomenological models for the ρ meson propagator.

(1 − 3) GeV, depending on the regularization procedure.
Based on this standard description of the free ρ meson one can distinguish two types of in-

medium effects: (i) modifications of the pion cloud, leading to a temperature-dependent ρππ
selfenergy Σρππ, and (ii) scattering of the (bare) ρ meson on surrounding matter particles. Con-
cerning (i) one needs to evaluate the in-medium properties of the pions. In a thermal pion gas
they are only mildly affected chiefly because of their Goldstone nature. The corresponding pion
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Figure 3.7: Pion ’optical’ potentials (left panel: imaginary part, right panel: real part) in a hot
pion gas as arising from a selfconsistent Brueckner calculation [128] of the pion selfenergy Σπ and a
chirally symmetric ππ interaction (’Jülich model’ [129, 130]) within the Matsubara formalism. The
on-shell potentials shown are defined as Uπ(k;T ) = Σπ(eπ(k), k;T )/2ωπ(k), where the quasiparticle
energy eπ(k) is determined by the solution of eπ(k)

2 = ωπ(k)
2 + Σπ(eπ(k), k;T ). The dashed,

dashed-dotted and dotted lines correspond to temperatures T =150, 175 and 200 MeV, respectively
(the light-dotted line is obtained in first order of the selfconsistency iteration at T=200 MeV).

’optical’ potentials amount to less than 10% corrections to the free pion dispersion relation even at
temperatures as large as T = 200 MeV [127, 128], cf. Fig. 3.7. In what follows, we shall therefore
neglect the effects of a modified pion dispersion relation on the pion cloud of the ρ meson. A
more important modification of Σρππ stems from the Bose-Einstein enhancement factors of the
(on-shell) intermediate two-pion states, representing an enhancement of the in-medium ρ → ππ
width by ’stimulated emission’. In the Matsubara formalism the (retarded) two-pion propagator
(3.55) takes the form

Gππ(M,p;T ) =
1

ωπ(p)

[1 + 2fπ(ωπ(p);T )]

(M + iη)2 − (2ωπ(p))2
, (3.62)

which has been first quoted in Ref. [131]. Strictly speaking, the temperature factors are only exact
for the imaginary part and the real part should be calculated from a dispersion integral. It has been
shown [129], however, that the latter is well approximated by (3.62) as long as the in-medium pion
dispersion relation is close to the free one. Furthermore, in Eq. (3.62) we have restricted ourselves
to vanishing total three-momentum of the pion pair, the so-called ’back-to-back kinematics’. It
has been verified in the model of Urban et al. [126] that the inclusion of finite three-momentum
gives virtually identical results.

Next we turn to the contributions from direct ρ scattering off thermal mesons. In the many-
body treatment of Refs. [47, 123] it has been assumed that the interactions in each spin-isospin
channel are saturated by s-channel resonance formation (’leading resonance approximation’). A
clue as to which meson resonances might be of importance is provided by their branching ratios
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into ρP states. This decay mode, however, is kinematically suppressed for resonance masses
significantly below the naive kinematical threshold mρ + mP . On the other hand, it should be
emphasized that it is just these subthreshold states which potentially generate substantial strength
for the in-medium ρ meson spectral function at low invariant masses (e.g., in ρπ → ω(782) where,
given a typical thermal pion energy of 300–400 MeV, the appropriate ρ meson mass would be
M ≃ 400− 500 MeV). Using VDM the subthreshold states can be largely identified through their
radiative decays R → Pγ. The various resonances R in ρP collisions can be grouped into three
major categories, namely vectors V , axialvectors A and pseudoscalars P ′. Following Ref. [123]
we restrict our discussion to states with masses mR ≤ 1.3 GeV; higher ones are only relevant for
invariant ρ masses beyond M ≃ 1 GeV.

For ρPA vertices a suitable interaction Lagrangian, compatible with chiral symmetry and
electromagnetic current conservation, is given by

LρPA = GρPA Aµ (gµν qαp
α − qµpν) ρν P , (3.63)

although other choices are possible [124]. The ρP scattering via intermediate vector mesons V is
determined by Wess-Zumino anomaly terms which are of unnatural parity and involve the four-
dimensional antisymmetric Levi-Civita tensor ǫµνστ :

LρPV = GρPV ǫµνστ k
µ V ν qσρτ P . (3.64)

In both Lagrangians (3.63) and (3.64), pµ, qµ and kµ denote the four-momenta of the pseudoscalar,
ρ and (axial-) vector mesons, respectively. As a third possibility ρP scattering can proceed via a
pseudoscalar resonance. Here an obvious candidate is ρπ → π′(1300) which can be described by

LρPP ′ = GρPP ′ P ′ (k · q pµ − p · q kµ) ρµ P . (3.65)

With increasing temperature the heat bath will consist of more and more heavier resonances, es-
pecially those with high spin-isospin degeneracy. After the light pseudoscalars the meson multiplet
with the smallest masses are the vectors, most notably the ρ meson with nine-fold degeneracy. Mo-
tivated by the observation that the f1(1285) resonance exhibits a large ργ decay width (together
with a predominant 4π decay), it has been interpreted as a ’resonance’ in ρρ scattering [123]. The
interaction vertex is also related to anomaly terms [132] and has been chosen in the following form,

LρV A = GρV A ǫµνστ pµV ν ρσα kαA
τ − λ

2
(kβA

β)2 , (3.66)

which again satisfies the appropriate conservation laws. Here, the kinetic-energy term of the
axialvector field has been explicitly written to indicate a gauge freedom associated with the constant
λ [133]. For practical purposes – following Ref. [123] – λ has been set to 1.

The free parameters involved, which are the coupling constants and the cutoffs for the hadronic
vertex form factors, can be rather accurately determined from a simultaneous fit to both the
hadronic R → ρP and radiative R → ργ branching ratios as will be detailed in Sect. 4.1.1.

Within the imaginary time (Matsubara) formalism the ρ meson selfenergy tensor arising from
binary collisions can now be calculated as

Σµνρh(q) =

∫

d3p

(2π)3
1

2ωh(p)

[

fh(ωh(p)) − fR(k0)
]

Mµν
ρh(p, q) (3.67)
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with the thermal Bose-Einstein distribution function fh(ωh(p)) = [exp(ωh(p))/T − 1]−1 of the
corresponding hadron species h with on-shell energy ωh(p) =

√

m2
h + ~p2. Mµν

ρh denotes the isospin-
averaged forward scattering amplitude which, in the leading resonance approximation employed
here, can be written as

Mµν
ρhR(p, q) = IF G2

ρhR FρhR(qcm)2 DR(s) vµνR (p, q) . (3.68)

The explicit expressions for the vertex functions vµνR (p, q) can be derived from the above interaction
Lagrangians as has been done in Ref. [123]. IF denotes an isospin factor and the hadronic vertex
form factor has been chosen of dipole type

FρhR(qcm) =

(

2Λ2
ρhR +m2

R

2Λ2
ρhR + [ωρ(qcm) + ωP (qcm)]

2

)2

, (3.69)

normalized to 1 at the resonance mass mR. The scalar part of the intermediate resonance propa-
gators is given by

DR(s) =
1

s−m2
R + imRΓtot

R (s)
(3.70)

with s = k2 = (p+ q)2 and the total resonance width Γtot
R (s). Using the standard projection oper-

ators of Eq. (2.99) the selfenergy tensors (3.67) can be conveniently decomposed into longitudinal
and transverse components,

Σµνρ (q) = ΣLρ (q0, ~q) P
µν
L + ΣTρ (q0, ~q) P

µν
T , (3.71)

which build up two independent modes of the in-medium ρ propagator according to

Dµν
ρ (q) =

PµνL

M2 − (m
(0)
ρ )2 − ΣLρ (q0, ~q)

+
PµνT

M2 − (m
(0)
ρ )2 − ΣTρ (q0, ~q)

+
qµqν

(m
(0)
ρ )2M2

. (3.72)

Fig. 3.8 shows the individual contributions to the spin-averaged selfenergy,

ΣρhR(M,~q) =
1

3

[

ΣLρhR(M,~q) + 2ΣTρhR(M,~q)
]

, (3.73)

at fixed three-momentum modulus |~q| = 0.3 GeV and temperature T = 150 MeV. Around and
above the free ρ meson mass the strongest absorption is caused by a1(1260) resonance formation,
which is about as large as the sum of all other channels, shared to roughly equal parts among
K1(1270), h1(1170) and π′(1300). The K1(1270) contribution acquires its maximum at lower M
than the pion-resonances due to the higher thermal energies of the kaons (including their rest mass).
In the low-mass region, M ≤ 0.6 GeV, the prevailing contribution is due to the ω meson which,
however, leaves little trace in the resonance region. It is also seen that the effect of the f1 meson is
very small. In the real part of the total selfenergy one observes appreciable cancellations until even-
tually all contributions turn repulsive (the latter feature is likely to be modified when accounting for
further higher resonances). Such cancellations are typical for this kind of many-body calculations.
They are the reason that one usually encounters only moderate modifications of the in-medium
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Figure 3.8: The real and imaginary parts (lower and upper panels, respectively) of the polarization-
averaged ρ selfenergy (left panel) from resonant scattering off thermal π,K, K̄ and ρ mesons in a
heat bath at T = 150 MeV and µπ = 0; the different channels are labeled by their intermediate
resonances; right panel: polarization decomposition of the combined selfenergy contributions.

pole masses. On the other hand, the imaginary parts of Σρ strictly add up, generating significant
broadening. Not shown here is the in-medium Bose enhancement of the ρ→ ππ selfenergy. It has
a very smooth behavior with a broad maximum of Im(Σρππ(M ;T ) − Σ◦

ρππ(M))/mρ ≃ 25 MeV
at about M ≃ 0.6 GeV. We also note that the three-momentum dependence of the selfenergies
is rather weak, being most pronounced at low M where the transverse part is responsible for the
build-up of finite values. This can be seen more explicitly from the right panel of Fig. 3.8 where
the summed selfenergy contributions have been separated into the two polarization states.

In Fig. 3.9 the full spin-averaged imaginary part of the ρ meson propagator,

ImDρ(M,~q;T ) =
1

3

[

ImDL
ρ (M,~q;T ) + 2ImDT

ρ (M,~q;T )
]

, (3.74)

in a thermal meson gas of temperatures T = 120, 150 and 180 MeV (left panel) as appropriate for
the hadronic phase in ultrarelativistic heavy-ion collisions is shown. More explicitly, one has

ImDL,T
ρ (M,~q) =

ImΣL,Tρ (M,~q)

|M2 − (m
(0)
ρ )2 − ΣL,Tρ (M,~q)|2

(3.75)
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Figure 3.9: Imaginary part of the ρ propagator (which, up to a factor of (-2), coincides with the
spectral function) in the vacuum (full curve) and in a thermal πKK̄ρ gas as calculated in the
many-body framework of Ref. [47, 123]; left panel: for fixed three-momentum q = 0.3 GeV at
temperatures T = 120 MeV (long-dashed curve), T = 150 MeV (dashed curve) and T = 180 MeV
(dotted curve); right panel: for fixed temperature T = 150MeV at three-momenta q = 0 (long-
dashed curve), q = 0.5 GeV (dashed curve) and q = 1 GeV (dotted curve).

with the longitudinal and transverse selfenergy parts

ΣL,Tρ = Σρππ +
∑

α

ΣL,Tρα , (3.76)

where the summation is over the mesonic excitation channels α=πω, πh1, πa1, ππ
′, KK1, K̄K̄1,

ρf1, as discussed, and Σρππ now contains the Bose-Einstein factors through Eq. (3.62). The
thermal ρ meson spectral function exhibits an additional broadening (defined as the full width
at half maximum) of about 80 MeV at T = 150 MeV which almost doubles to ∼ 155 MeV at
T = 180 MeV. On the other hand, the three-momentum dependence of the spectral function at
fixed temperature is rather weak, cf. right panel of Fig. 3.9.

The results of the many-body approach are quite close to those obtained recently using kinetic
theory [122] (see Fig. 3.5). The latter, however, attribute some portion of the collisional broadening
to t-channel meson exchanges. Those have not been included in the many-body calculations,
where the net medium effect is entirely driven by large imaginary parts from resonant s-channel
interactions (including subthreshold states). At tree level, the neglected t-channel exchanges do
not generate an imaginary part. They would do so once iterated in a Lippmann-Schwinger-type
equation to construct a scattering amplitude beyond tree level. In this case, however, care has to
be taken in avoiding double counting when performing a combined treatment of s- and t-channel
graphs (in fact, the ’leading resonance approximation’ implies that non-resonant interactions are,
at least partially, subsumed in the resonance parameters). For the ρ meson selfenergy in a hot pion
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gas an unambiguous way to disentangle s- and t-channel interactions would require experimental
information on πρ scattering phase shifts which, owing to the short lifetime of the ρ meson, can
only be inferred by very indirect means.

3.2 Finite Baryon Density

The investigation of vector meson modifications in an environment of finite nucleon density via
effective hadronic models has mainly been pursued within more phenomenologically oriented ap-
proaches. This is partly due to the fact that the impact of chiral symmetry on ρ-nucleon interactions
is much less obvious than in the purely mesonic case (such as πρa1 dynamics). Also, the extension
of VDM to the baryonic sector is less accurate such that electromagnetic observables provide less
direct access to vector meson interactions involving baryons. Pionic interactions with nucleons and
nuclei, on the other hand, are much better known: a wealth of pion-nucleus scattering data has
provided a detailed understanding of the underlying physical mechanisms for their modification in
cold nuclear matter [134] which are substantial. Since especially ρ mesons (and, to a lesser extent,
also ω mesons) exhibit a strong coupling to two- (three-) pion states, early analyses have focused
on medium effects in the virtual pion cloud. These developments will be reviewed in the second
part of this Section. Subsequently it has been realized that also direct ρ-N interactions can induce
substantial modifications of the ρ meson spectral function which we will discuss in the third part
of this Section. The first part, however, will be devoted to recall the mean-field based analysis of
effective chiral Lagrangians by Brown and Rho [45] which culminated in the famous conjecture of
’Brown-Rho Scaling’. It is not exaggerated to say that, although (or just because) this conjecture
is controversial, the associated hypothesis for a ’dropping’ of vector meson masses has been one of
the main triggers for an ensuing intense theoretical (and experimental) activity.

3.2.1 Mean-Field Approach: Brown-Rho Scaling

As we have already eluded to in Sect. 2.1, in the massless limit the QCD action is scale invariant
on the classical level implying that the QCD Lagrangian has scale dimension 4. Chiral meson
Lagrangians, being constructed as effective low-energy theories of QCD, should in principle exhibit
the same property. In the non-linear realization they are formulated in terms of the chiral field
U ≡ eiπ/fπ (π = ~π · ~τ ) which, when including up to fourth-order derivatives (involving the quartic
’Skyrme term’), read

L =
f2
π

4
tr(∂µU∂

µU) +
η2

4
tr
[

U †∂µU,U
†∂νU

]2
+ c tr(M◦U + h.c.) . (3.77)

Here, also the explicit symmetry breaking term being proportional to the current quark mass mq

in the quark mass matrix M◦ has been incorporated. As has been argued in Ref. [135] the U field
carries scale dimension zero which means that the three terms on the r.h.s. have scale dimensions
2,4 and 0, respectively.

Following Ref. [45] the first step in the derivation of Brown-Rho scaling consists of modifying
the effective Lagrangian (3.77) to reflect the appropriate scaling behavior of the QCD Lagrangian.
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The simplest way to restore it has been proposed by Ellis et al. [135] and is realized by introducing
an effective ’glueball’ field χ with scale dimension 1 according to

Lχ =
f2
π

4

(

χ

χ0

)2

tr(∂µU∂
µU) +

η2

4
tr
[

U †∂µU,U
†∂νU

]2
+

1

2
∂µχ∂

µχ

+c

(

χ

χ0

)3

tr(M◦U + h.c.) + V (χ) . (3.78)

Besides a scale invariant (i.e., dimension-4) kinetic energy term for the glueball field a potential-
energy term of the form

V (χ) = B

[

1

4
χ4

0 + χ4 ln(χ/e4χ0)

]

(3.79)

has also been added. Minimizing V in χ yields a nonzero ground state expectation value χ0 ≡
〈0|χ|0〉 signaling the spontaneous breakdown of scale invariance which mimics the (quantum part
of the) QCD scale anomaly on the effective Lagrangian level. The divergence of the corresponding
dilation current (2.21) becomes [135]

∂µj
µ
D = −Bχ4 . (3.80)

Thus, comparing to the trace anomaly of QCD (2.22) χ0 can be related to the gluon condensate
〈G2〉. In addition, the QCD trace anomaly receives a contribution from explicit scale breaking
through the quark mass term (ψ̄M◦ψ) which has scale dimension 3 requiring the χ3 factor in the
corresponding term in Eq. (3.78).

As has been emphasized by Brown and Rho in subsequent work [136], the introduced χ-field
is to be understood as consisting of a ’soft’ (mean-field) and a ’hard’ (fluctuation) component
according to

χ = χ∗ + χ′ . (3.81)

It is the soft mean-field component χ∗ that will govern the medium modifications in the chiral
effective Lagrangian, whereas the hard component χ′ is to be associated with the glueball mass
scale of > 1 GeV, well beyond the applicability range of low-energy effective theory. Indeed, as
discussed in Sect. 2.4, lattice calculations show that in the chiral transition with light quarks only
about half of the gluon condensate is ’melted’, corresponding to the χ∗ field (an analogous feature
emerges within the instanton model [54] where it has been identified as a rearrangement of the
chirally broken ’random’ instanton liquid into a chirally restored phase with I-A molecules, the
latter characterizing the ’hard’ component of the gluon fields that survive the transition).

In their second main step Brown and Rho postulate that, as the (quark and gluon) condensates
change in dense matter, the symmetries of the Lagrangian remain intact such that the variation in
the condensates can be absorbed in a density-dependent change in masses and coupling constants
of the effective theory. In line with the above arguments, the change in the quark condensate at a
given density can be expressed as

〈〈ψ̄ψ〉〉
〈ψ̄ψ〉 =

(

χ∗

χ̃0

)3

, (3.82)
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where χ̃0 denotes the vacuum expectation value of the χ∗ field. This suggests to define an in-
medium pion decay constant as

f∗
π = fπ

χ∗

χ̃0
(3.83)

leading to the effective Lagrangian of the form

L∗ =
f∗
π

2

4
tr(∂µU∂

µU) +
η2

4
tr
[

U †∂µU,U
†∂νU

]2
+ c

(

f∗
π

fπ

)3

tr(M◦U + h.c.) + · · · , (3.84)

where the fields are now defined as ensemble averages in cold nuclear matter, i.e., χ∗ ≡ 〈〈χ〉〉 etc..
In particular, with

U = exp(iπ∗/f∗
π) , (3.85)

the pion field π∗ ≡ πχ∗/χ̃0 has picked up a scale dimension of one. Furthermore, it was argued
that the fluctuating part of the glueball field strongly mixes with an effective low-lying σ meson
(the quark-antiquark component of the scalar), and therefore the effective mass of the latter is
inferred from

f∗
π/fπ ≈ χ∗/χ̃0 ≈ m∗

σ/mσ . (3.86)

Moreover, when using the Goldberger-Treiman relation one has

m∗
N/mN ≈ (g∗A/gA)1/2f∗

π/fπ . (3.87)

Since in the Skyrme model, the (scale invariant) coefficient η2 of the quartic Skyrme term is directly
related to the axialvector coupling constant gA, the latter is not affected at the mean-field level.
(The ’quenching’ of gA from 1.26 to 1, observed in Gamow-Teller and magnetic transitions in
nuclei, has been argued to be due to loop effects, indicating an additional, lower scale induced in
nuclei). Finally, making use of the KSFR relation [86],

m2
V = 2g2f2

π , (3.88)

and the fact that within the Skyrme model the hidden-gauge coupling g2 = 1
8η

2 is scale invariant,
the vector meson masses are conjectured to complete the (approximate) Brown-Rho (BR) scaling
relation:

Φ(̺) ≡ f∗
π

fπ
=
m∗
σ

mσ
=
m∗
N

mN
=
m∗
ρ

mρ
=
m∗
ω

mω
. (3.89)

In fact, early QCD sum rules calculations of Hatsuda and Lee [46] have given support to this
relation, as discussed in Sect. 2.7, with typical values for Φ(̺0) = 0.82 ± 0.06 at normal nuclear
matter density.

There might be, however, some problems with the BR scaling hypothesis, mainly in the finite
temperature sector. On very general grounds the chiral condensate is locally altered whenever a
hadron is present as discussed in Sect. 2.3. This leads to the dilute gas expressions (2.44) and
(2.45) which are rigorously valid at low temperature and low density. Even though the quark
condensate is decreased, by definition, nothing happens to the masses, the pion and the nucleon
in this case. Secondly, when applied at low temperatures, the scaling relation (3.89) is at variance
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with the low-temperature expansion of the in-medium vector and axialvector correlators (2.103)
and the chiral condensate ratio (2.50). While the latter is reduced already at order O(T 2), the
T 2-dependence of the correlators is governed by mixing and corrections to the mass are of order
O(T 4) (in the chiral limit). This is implied by chiral symmetry [88] and manifest in various effective
models that we have discussed in the previous Section.

3.2.2 Pion Cloud Modifications

Let us first recall some basic features of the single-pion properties in nuclear matter (for a review
see, e.g., Ref. [137]). The most prominent effect on (on-shell) pions propagating through the nu-
clear environment is generated through resonant P -wave interactions exciting isobar-hole (∆N−1)
states. As is well-known from pion nuclear physics another important pionic excitation channel is
represented by P -wave nucleon-hole (NN−1) states. On the other hand, S-wave πN interactions
are suppressed by about an order of magnitude in symmetric nuclear matter owing to an almost
exact cancellation between the isospin 1/2 and 3/2 partial waves [134]. The standard Lagrangians
for the πNN and πN∆ P -wave interactions are given (in non-relativistic form) by

LπNN =
fπNN
mπ

Ψ†
N ~σ · ~k ~τ · ~π ΨN

LπN∆ =
fπN∆

mπ
Ψ†

∆
~S · ~k ~T · ~π ΨN + h.c. , (3.90)

which leads to corresponding pion selfenergies in nuclear matter of the type

Σ(0)
πα(k) = −~k2 χ(0)

πα(k) (3.91)

(k = (k0, ~k), α = NN−1,∆N−1). The so-called (pionic) susceptibilities are given by

χ(0)
πα(k) =

(

fπα Fπα(k)

mπ

)2

SI(πα) φα(k) (3.92)

in terms of spin-isospin factors SI(πα), coupling constants fπα (cf. Table 3.1) and a hadronic
vertex form factor usually chosen of monopole type,

Fπα(k) =

(

Λ2
π −m2

π

Λ2
π + ~k2

)

. (3.93)

In Eq. (3.92), φα denote the Lindhard functions which, for the more general case of a α = ab−1

particle-hole excitation, read

φα(k) = −
∫

p2dp

(2π)2
f b[Eb(p)]

+1
∫

−1

dx
∑

±

1 − fa[Ea(~p+ ~k)]

±k0 + Eb(p) − Ea(~p+ ~k) ± i
2 (Γa + Γb)

(3.94)

including direct (sign ’+’) and exchange (sign ’–’) diagrams with

Ea(p) = (m2
a + p2)1/2 ,

Eb(~p+ ~k) = (m2
b + p2 + k2 + 2pkx)1/2 (3.95)
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πα πNN−1 π∆N−1 πN∆−1 π∆∆−1

SI(πα) 4 16/9 16/9 400
f2
πα/4π 0.08 0.32 0.32 0.0032

Table 3.1: Spin-isospin transition factors and coupling constants for pion induced (longitudinal)
P -wave particle-hole excitations in a hot N∆ gas [138].

and Fermi-Dirac distribution functions fa, f b. Γa and Γb are the (energy- and density-dependent)
total decay widths of particle a and hole b−1, respectively (notice that the holes carry the imaginary
part with opposite sign). For a realistic description of the pion selfenergy short-range correlations
between particle and hole have to be accounted for. These are conveniently parameterized in terms
of ’Migdal parameters’ g′αβ , which also induce a mixing between the channels. The resulting system
of coupled equations,

χα = χ(0)
α −

∑

β

χ(0)
α g′αβ χβ , (3.96)

is solved by an elementary matrix inversion yielding

Σπ(k0, ~k) = −~k2
∑

α

χα(k0, ~k) . (3.97)

As an illustrative example we show in Fig. 3.10 the off-shell two-pion propagator (restricted to zero
total momentum) in nuclear matter,

Gππ(E,~k) =

∫

idk0

π
Dπ(k0, ~k) Dπ(E − k0,−~k)

Dπ(k0, ~k) =
[

k2
0 − ~k2 −m2

π − Σπ(k0, ~k)
]−1

, (3.98)

which directly enters into the two-pion selfenergy of the ρ meson, cf. Eq. (3.54). Clearly, the
combination of ∆N−1 and NN−1 excitations entails a rather rich structure with substantial shifts
of strength towards low energies (i.e., invariant ρ masses).

Besides the modification of the intermediate pion propagators in the in-medium ρ meson selfen-
ergy, the ∆N−1- and NN−1-bubbles induce a number of corresponding vertex corrections for the
ρππ and ρρππ couplings that have to be incorporated to ensure transversality (i.e., gauge invari-
ance) of the resulting vector propagator. They can be systematically inferred from the appropriate
Ward-Takahashi identities [139], as will be detailed below. The first investigations along these lines
were performed by Herrmann et al. [140], Chanfray and Schuck [114] as well as Asakawa et al. [141].
Their calculations were restricted to the effects from the ∆N−1 excitation and to vanishing total
3-momentum ~q = 0 of the ρ meson. Nevertheless, appreciable modifications of the spectral function
were found, in particular an in-medium broadening as well as a rather pronounced peak structure
at invariant masses M ≃ 3mπ stemming from transverse ∆N−1 excitations (corresponding to the
vertex correction represented by the left diagram in the middle panel of Fig. 3.12). In a next
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Figure 3.10: Two-pion propagator (upper panels: imaginary part, lower panels: real part) in cold
nuclear matter at densities ̺N/̺0 =0.5, 1, and 1.5 represented by the long-dashed, full and dotted
lines, respectively (the pion selfenergies have been evaluated using the πα form factor cutoff from
the Bonn potential, ΛπNN = ΛπN∆ = 1.2 GeV, together with correspondingly large values for the
Migdal parameters of g′NN = 0.8, g′N∆ = 0.5). The vertical lines indicate the on-shell two-pion
energy Eon = 2ωπ(k) in free space.

step, the additional effects from P -wave NN−1 excitations were incorporated in Refs. [142, 47].
Although the NN−1 channel predominantly populates the space-like momenta in the in-medium
pion spectral function, it is nevertheless of significance for the ρ selfenergy, since the off-shell inte-
gration over intermediate pion states does involve space-like pion kinematics, generating additional
low-mass strength in the spectral function, as we have seen above. At the same time, additional
broadening at the ρ meson resonance peak emerges.

In subsequent work, Urban et al. [126] could overcome the restriction to back-to-back kinematics
of the previous analyses. One starts from the Ward-Takahashi identities, which for the ρππ and
ρρππ interaction vertices from Eq. (3.50) read

qµ Γ
(3)
µab(k, q) = gρππ ǫ3ab

(

D−1
π (k + q) −D−1

π (k)
)

(3.99)

qµ Γ
(4)
µνab(k, k, q) = igρππ

(

ǫ3ca Γ
(3)
νbc(k,−q) − ǫ3bc Γ(3)

νca(k + q,−q)
)

, (3.100)

respectively. The spin, isospin and momentum assignments are indicated in Fig. 3.11 (for simplicity,
we only consider neutral ρ mesons characterized by the third isospin component of the isovector ~ρ
field). In free space, where

Γ
(3),0
µab (k, q) = gρππ ǫ3ab (2k + q)µ

Γ
(4),0
µνab(k1, k2, q) = 2ig2

ρππ (δab − δ3aδ3b) gµν , (3.101)
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q! k + qk� ab q % . k2& q � k1 + k2k1 -�a �b
Figure 3.11: ρππ (left) and ρππ (right) vertices involving neutral ρ mesons (curly lines); µ, ν
correspond to the ρ meson polarizations, whereas a, b are isospin indices of the pions (dashed
lines); all other labels refer to the in-/outgoing four momenta.

Eqs. (3.99) and (3.100) are trivially satisfied. In nuclear matter, when including NN−1 and ∆N−1

loops in the pion propagation, the required in-medium vertex corrections can be constructed by
coupling the ρ meson to the lines and vertices of the pion selfenergy insertions in all possible ways,
leading to the diagrams displayed in Fig. 3.12. The final result for the ρ meson selfenergy tensor
in cold nuclear matter can then be written as

Σµνρππ(q) = i
1

2

∫

d4k

(2π)4
iDπ(k) Γ

(3)µ
ab (k, q) iDπ(k + q) Γ

(3)ν
ba (k + q,−q)

+i
1

2

∫

d4k

(2π)4
iDπ(k) Γ(4)µν

aa (k, k, q) . (3.102)

The tensor can be decomposed into longitudinal and transverse components in the usual way, see
Eq. (3.71). In Fig. 3.13 the spin-averaged ρ spectral function is shown for various densities (left
panel) and 3-momenta (right panel). As opposed to Fig. 3.10 the underlying πNN and πN∆ form
factor cutoffs (cf. Eq.(3.93)), which essentially determine the magnitude of the medium effects,
have been fixed at ΛπNN = ΛπN∆ = 300 MeV (together with rather small Migdal parameters of
g′NN = 0.6, g′N∆ = 0.2). These choices emerge as a consequence of model constraints imposed
through the analysis of πN → ρN scattering data (this will be discussed in detail in Sect. 4.1.1
where we also elaborate on the appearance of such ’unnaturally’ soft form factors). In spite of
the soft form factors, the ρ meson spectral function still exhibits a significant broadening due to
the pion cloud modifications, being about 55 MeV at nuclear saturation density. However, this
is substantially smaller as compared to earlier calculations [140, 114, 141, 47, 126] where the πα
form factors were used with the ’Bonn value’ (1.2 GeV) [143] for the cutoff. On the other hand,
the common feature shared by all previous calculations, i.e., an upward shift of the resonance
peak persists. Furthermore, the relative smallness of the medium effects does not allow for a
strongly developed momentum dependence: the most significant feature of finite momenta is an
enhancement of the spectral function for low invariant masses M ≤ 0.4 GeV (see right panel of
Fig. 3.13; for the chosen momentum of q = 0.5 GeV the effects are largest).

On more general grounds it is important to note that the models for the in-medium ρ propagator
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Figure 3.12: In-medium corrections to the ρππ (upper panel) and ρρππ vertex (middle and lower
panel) when including NN−1 and ∆N−1 excitations in the intermediate pion propagators of the ρ
selfenergy; curly lines: ρ0’s, dashed lines: π’s, solid lines: nucleons or deltas (when forward-going)
and nucleon holes (backward-going).

discussed above contain a mixing of vector and axialvector correlators much in the same way as
for the purely thermal case discussed in Sect. 2.6 and displayed in Fig. 2.8. This has been shown
explicitly by Chanfray and collaborators [144] for the case in which the ρ meson couples to the
pion-nucleon system (the conclusions remain valid when the ∆-isobar is included in addition). To
make the argument, consider the longitudinal and transverse selfenergies of the ρmeson. According
to (3.71) these can be written as

ΣLρ (q0, ~q) =
q2

q20

qiqj
~q2

Σijρ (q) ≡ g2
ρππ

q2

q20

qiqj
~q2

V ij(q)

ΣTρ (q0, ~q) =
1

2

(

δij −
qiqj
~q2

)

Σijρ (q) ≡ g2
ρππ

1

2

(

δij −
qiqj
~q2

)

V ij(q) (3.103)

and (up to vertex form factors) define the spatial components of the vector correlator V ij (i, j =
1, 2, 3). When evaluated by including nucleons and pions one obtains [114]

Vij(q) = i

∫

d4k1

(2π)4
[(

1 + Π0(k1)
)

k1i −
(

1 + Π0(k2)
)

k2i

]

×Dπ(k1)Dπ(k2)
[(

1 + Π0(k1)
)

k1j −
(

1 + Π0(k2)
)

k2j

]
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Figure 3.13: Spin-averaged in-medium ρ propagator when accounting for P -waveNN−1 and ∆N−1

excitations in its pion cloud; left panel: density dependence at fixed three momentum q = 0; right
panel: three-momentum dependence at fixed nucleon density ̺N = 2̺0.

+i

∫

d4k1

(2π)4

{[

k̂1ik̂1jΠ
0(k1) + (δij − k̂1ik̂1j)Π

T (k1)
]

Dπ(k2)

+
[

k̂2ik̂2jΠ
0(k2) + (δij − k̂2ik̂2j)Π

T (k2)
]

Dπ(k1)
}

, (3.104)

where k1 and k2 are the single-pion four-momenta (their sum is the incident momentum q = k1+k2).
In the above expression the dimensionless irreducible response function Π0 is related to the pion
selfenergy (including effects of short-range correlations via Migdal parameters) as Π0 = Σπ/~k

2 (see

Eq. (3.97)), whileDπ(k) = 1/[k2
0−~k2−m2

π−~k2Π0(k)] denotes the fully dressed pion propagator with
NN−1 insertions, cf. Eq. (3.98). Finally ΠT denotes the fully iterated spin-transverse response
function, where the nucleon bubble is iterated to all orders. Expression (3.104) coincides with
Eq. (3.102). The corresponding axial correlator Aij can be defined in analogy to (3.103) and takes
the form [144]

1

f2
π

Aij(k) = kikjDπ(k) + 2kikjΠ
0(k)Dπ(k) + k̂ik̂jΠ

L(k) + (δij − k̂ik̂j)Π
T (k)

= kikj
(

1 + Π0(k)
)2
Dπ(k) + k̂ik̂jΠ

0(k) + (δij − k̂ik̂j)Π
T (k) , (3.105)

where also the fully iterated spin-longitudinal response function ΠL has been introduced. The
pertinent diagrams are depicted in Fig. 3.14. The crucial observation of Chanfray et al. is now
that Vij(q) can be expressed in terms of the axial correlator in a form

Vij(q) = i

∫

d4k1

(2π)4
[ 1

f2
π

(

Aij(k1)Dπ(k2) +Aij(k2)Dπ(k1)
)
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Figure 3.14: The axial correlator in nuclear matter.

−(1 + Π0(k1)
)(

1 + Π0(k2)
)

(k1ik2j + k2ik1j)Dπ(k1)Dπ(k2)
]

, (3.106)

which displays the mixing effect through the first term. This term arises from the vertex corrections
displayed in Fig. 3.11. Indeed, removing a (dressed) pion one is left with the axial correlator taken
at the momentum of the other pion. In contrast to the thermal case the extra pion is, however,
not provided by the heat bath but rather by a nucleon from the medium. The second term in
Eq. (3.106) does not reduce to the product of the axial correlator with the pion propagator. Its
existence is due to the interaction of the photon with the pion via the derivative term ~π × ∂µ~π in
the interaction term of the VDM Lagrangian (3.50). The extra term does not invalidate the basic
mixing concept. In fact, removing a pion the remainder is still of axial nature.

It is very pleasing to see that partial restoration of chiral symmetry through mixing of vector and
axialvector correlators is also manifest in cold nuclear matter. As pointed out in Ref. [114, 126] the
dominant mechanism for shifting strength to lower energies in the ρ spectral function is provided
by coupling to π∆N−1-states through vertex corrections. These are precisely of the type AijDπ

arising from the last term of the axial correlator (3.105) with a transverse ∆N−1-bubble. Thus
the manifestation of partial restoration of chiral symmetry is in the broadening of the spectral
function! Due to the lack of the a1 meson as an explicit degree of freedom it is not clear at present
whether the in-medium Weinberg sum rules (2.101), (2.102) are fulfilled.

A somewhat different approach for evaluating vector meson spectral distributions in cold nuclear
matter has been pursued by Klingl et al. [91]. They start from an the SU(3) chiral Lagrangian for
pseudoscalar mesons and baryons [145], based on pseudovector coupling as

LΦB = F tr
(

B̄γµγ5[u
µ, B]

)

+D tr
(

B̄γµγ5{uµ, B}+

)

, (3.107)

where {., .}+ and [., .] denote anti-/commutators, respectively, and the SU(3) field matrices are
given by

B =







Λ√
6

+ Σ0

√
2

Σ+ p

Σ− Λ√
6
− Σ0

√
2

n

Ξ− Ξ0 −2Λ√
6






, Φ =







π0

√
2

+ η√
6

π+ K+

π− −π0

√
2

+ η√
6

K0

K− K̄0 −2η√
6






. (3.108)

The parameters F ≃ 0.51 and D ≃ 0.75 are chosen to comply with axial coupling constant
gA = F +D = 1.26. The four vector

uµ = − 1

2fπ
(∂µΦ − ie[Q,Φ]Aµ) (3.109)
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contains the axialvector current of the pseudoscalar fields as well as the minimal coupling term for
the electromagnetic field Aµ, Q = diag(2/3,−1/3,−1/3) being the SU(3) charge matrix. The vec-
tor meson-baryon interactions are then obtained from the minimal coupling scheme, i.e., replacing
eQAµ by gV µ/2 with

V µ = diag(ρµ + ωµ,−ρµ + ωµ,
√

2φµ) , (3.110)

and the relevant terms for V -B interactions become

LV ΦB =
ig

4fπ

{

F tr
(

B̄γµγ5 [[V µ,Φ], B]
)

+D tr
(

B̄γµγ5{[V µ,Φ], B}+

)}

L(1)
V B =

g

2

{

tr
(

B̄γµ[V
µ, B]

)

− tr(B̄γµB) tr(V µ)
}

L(2)
V N =

gκρ
4MN

N̄~τσµνN∂
µ~ρν +

gκω
4MN

N̄σµνN∂
µων . (3.111)

The last part, L(2)
V N , has been added to include corrections due to anomalous V N tensor couplings

(using κρ = 6, κω = 0.1, κφ = 0). Finally, the V B and (axial) ΦB vertices are supplemented by
phenomenological monopole form factors

FV B(k2) =
Λ2
V −m2

V

Λ2
V − k2

, FA(k2) =
Λ2
A

Λ2
A − k2

, (3.112)

respectively, with rather large cutoff parameters, ΛV = 1.6 GeV and ΛA = 1 GeV.
The in-medium vector meson selfenergies are then constructed from a low-density expansion as

ΣV (q0, ~q = 0) ≃ Σ◦
V (q0) − ̺N TV N (q0) , (3.113)

which has been restricted to the case of vanishing three momentum ~q = 0 where the longitudinal
and transverse parts coincide. The V -N scattering amplitudes TV N are constructed from the
interaction vertices, Eqs. (3.111). The imaginary parts are evaluated from standard Cutkosky
rules, and the real part is then obtained from a subtracted dispersion relation,

Re TV N (q0) = lV +

∞
∫

0

dω2

π

ImTV N (ω)

(ω2 − q20)

q20
ω2

, (3.114)

the subtraction constants being fixed by the Thompson limit (q0 → 0) for Compton scattering
of real photons. The set of diagrams contributing to the ρN amplitude is depicted in Fig. 3.15.
Except for the last two ’box’ diagrams involving ω mesons, they are equivalent to the ρ selfenergy
contributions obtained by Urban et al. [126] as encoded in the various vertex corrections displayed
in Fig. 3.12.

Fig. 3.16 shows the resulting vector current correlators (divided by the energy squared) in the
ρ, ω and φ meson channel for ~q = 0. In the improved vector dominance scheme of Ref. [91], they
are related to the vector meson selfenergies via

ΠV (q0, ~q = 0) =
1

g2
V

(

ΣV (q0, 0) + [aV q
4
0 − ΣV (q0, 0)q20 ] DV (q0, 0)

)

(3.115)
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Figure 3.15: Diagrams contributing to the ρ-N scattering amplitude in the approach of Klingl et
al. [91]; dashed lines: pions, wavy lines: ρ mesons (in graphs (l) and (m) the internal wavy lines
represent ω mesons), solid lines: nucleons or deltas (the latter only for internal lines).

with constants aρ = 1.1, aω = aφ = 1 (which give a good fit to the free e+e− → hadrons
cross sections). As in the other approaches discussed above, the ρ (as well as the ω) spectrum
exhibit a strong broadening with increasing nuclear density (note, however, that it is quantitatively
overestimated, as the hard form factors employed in this calculation, Eqs. (3.112), entail a large
overprediction of πN → ρN and πN → ωN scattering data). In addition, the in-medium ω meson
mass is reduced, the ρ meson mass being practically unchanged (as is revealed by inspection of the
real part of the correlator (not shown); the apparent peak shift in the left panel of Fig. 3.16 is due
to an additional division by ω2 in the plot). The modifications in the φ channel, which are due to
modifications in the kaon cloud, are rather moderate.
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Figure 3.16: Medium Modifications of the vector correlators in nuclear matter within the approach
of Klingl et al. [91]; panels (a), (b) and (c) correspond to the ρ, ω and φ meson, respectively.

3.2.3 Direct ρ-Nucleon Resonances

Besides modifications of the pion cloud the (bare) ρ meson may couple directly to the surrounding
nucleons. From meson-exchange models such as the Bonn potential [143] one knows that, e.g., the
ρNN (or ρN∆) coupling constant can be quite large, even though the corresponding s-channel
process ρN → N → ρN is kinematically strongly disfavored. Such a kinematic suppression will be
much less pronounced with increasing energy of the resonance in the intermediate state. There are
indeed several baryonic resonances listed in the particle data table [146] which exhibit a significant
branching fraction into the ρN channel.

Friman and Pirner [147] first suggested to calculate a ρ meson selfenergy from direct ρ-N
interactions in terms of N(1720) and ∆(1905) resonances. The latter two have large branching
ratios of well above 50% to P -wave ρ-N states. Later on it was realized [101, 102] that some lower-
mass resonances – well below the naive ρN -threshold of mN + mρ – can have a strong coupling
to predominantly S-wave ρ-nucleon states, most notably the N(1520). Its decay into ρN is only
possible due to the finite width of the ρ going into ππ. However, the kinematically accessible
fraction of the ρ spectral function in N(1520) → ρN decays,

F =

Mmax
∫

2mπ

MdM

π
Aρ(M) , (3.116)

amounts to only about F ≃ 2 % (with Mmax = mN(1520) − mN ≃ 580 MeV). Yet the exper-
imental branching ratio for this decay is ∼ 20% out of the total width of ΓtotN(1520)=120 MeV.

Another indication for the importance of the N(1520) in its coupling to vector meson-nucleon
states is found in γN cross sections, where, next to the ∆(1232), the N(1520) represents the most
prominent resonance structure. Besides the (not always well-known) hadronic branching ratios,
the photoabsorption cross sections are an important source of information to constrain the various
ρNB couplings, as will be discussed in Sect. 4.1.2.

Appropriate ρNB interaction Lagrangians can be classified according to the parity of the
resonance B: negative/positive parity states are associated with S-/P -waves in ρ-N , respectively,
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B lρN SI(ρBN−1) Γ0
ρN [MeV] Γ0,fit

ρN [MeV]
(

f2
ρBN

4π

)

ΛρBN Γmed [MeV]

N(939) P 4 – – 6.0 1500 0
∆(1232) P 16/9 – – 16.2 700 25
N(1440) P 4 <28 0.5 1.1 600 200
N(1520) S 8/3 24 23.5 6.8 600 300
∆(1620) S 8/3 24 36 1.5 700 200
∆(1700) S 16/9 128 111 2.5 1000 200
N(1720) P 8/3 115 100 8.5 600 100
∆(1905) P 4/5 >210 315 14.5 1200 50
N(2000) P 6/5 ∼300 75 1.0 1500 50

Table 3.2: Parameters of the ρBN vertices as obtained from the interaction Lagrangians,
Eqs. (3.117) and (3.118), when adjusted to photoabsorption spectra and πN → ρN scatter-
ing [102, 49]; table columns from left to right: baryon resonance B, relative angular momentum
in the ρN decay as implicit in the interaction Lagrangians, spin-isospin factor (note that in its
definition we have absorbed an additional factor of 1

2 as compared to table 2 in Ref. [47]), average
value for the partial decay width into ρN as extracted from Ref. [146] (including all possible partial
waves), partial decay width resulting from the fit using the parameter values in the subsequent two
columns, and in-medium correction to the total decay width.

which are the dominant partial waves for moderate three-momenta. In the non-relativistic limit,
gauge invariant interaction vertices can be written down as

LS−waveρBN =
fρBN
mρ

Ψ†
B (q0 ~s · ~ρa − ρ0

a ~s · ~q) ta ΨN + h.c. (3.117)

LP−wave
ρBN =

fρBN
mρ

Ψ†
B (~s× ~q) · ~ρa ta ΨN + h.c. . (3.118)

The summation over a is in isospin space with isospin matrices ~t = ~τ , ~T depending on whether the
resonance B carries I=1/2 or 3/2, respectively. Analogously, the various vector/scalar products

act in spin-momentum space with spin operators ~s = ~σ, ~S corresponding to J=1/2- or J=3/2-
resonances (spin-5/2 resonances such as B = ∆(1905) considered in Ref. [147] require a tensor
coupling of type [Rijqiρj,aTa]). From these interaction vertices one can derive in-medium selfenergy
tensors for ρ-inducedBN−1 excitations, which proceeds in close analogy to the pionic case discussed
above. Due to the spin-1 character of the ρ meson one encounters both transverse and longitudinal
components as

Σ(0),T
ρα (q0, q) = −

(

fρα Fρα(q)

mρ

)2

SI(ρα) Q2 φρα(q0, q) (3.119)

Σ(0),L
ρα (q0, q) = −

(

fρα Fρα(q)

mρ

)2

SI(ρα) M2 φα(q0, q) (3.120)
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with Q2 = q2, q20 for the transverse P - and S-wave contributions, respectively, whereas the lon-
gitudinal part appears only for the S-wave interactions. The spin-isospin factors SI for various
resonances can be found in Table 3.2, where also a typical set of coupling constants and cutoff pa-
rameters (entering the hadronic vertex form factor, taken to be of monopole form, cf. Eq. (3.93))
is quoted. The Lindhard functions φ coincide with the pionic case, Eq. (3.94).

An important feature when calculating the corresponding ρ meson selfenergy and spectral
function has been pointed out in Ref. [101]: as a result of low-energy strength appearing in the in-
medium ρ spectral function (due to broadening), the phase space for the in-medium N(1520) → ρN
decay increases substantially, i.e., the fraction F defined in Eq. (3.116) becomes much larger than
the 2% in case of a free ρ meson. This induces a strong density-dependent increase of the in-
medium N(1520) decay width, which has to be reinserted into the expression for the N(1520)
width entering into the Lindhard function. This selfconsistency problem has been solved by nu-
merical iteration in Ref. [101], where besides the N(1520) eight further ρN resonances have been
included (essentially coinciding with the set given in Table 3.2, although using a somewhat differ-
ent parameter set: most notably, the cutoffs have been uniformly set to ΛρBN = 1500 MeV with
associated coupling constants to reproduce the ρN branching ratios). The converged results for
the transverse and longitudinal parts of the ρ spectral function, ATρ and ALρ , at normal nuclear
matter density are shown in Fig. 3.17. One observes a strong broadening of 200–300 MeV (on

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
0.5

1

0

0.5

1

1.5

2

2.5

3

-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
0.5

1

0

0.5

1

1.5

2

2.5

3

-

Figure 3.17: Transverse and longitudinal parts of the ρ spectral function in cold nuclear matter
when including direct ρ-induced BN−1 excitations according to Ref. [101] (note that in this figure
the spectral function has been defined as AL,T = −1

π ImDL,T
ρ , which differs, e.g., from Fig. 3.13 by

a factor of −1
π .

top of the free width) with the only visible structure being a shoulder at M ≃ 0.5 GeV (at zero
three-momentum) originating from the N(1520)N−1 channel, which, however, is strongly washed
out by a simultaneously emerging in-medium width of ΓtotN(1520) ≃ 350 MeV. Similar results arise

in the calculations of Ref. [102].
In Ref. [148] a πN/ρN/ωN coupled channel approach has been pursued to asses the ρN scat-

tering amplitude. Using the standard T -̺ approximation to calculate in-medium selfenergies again
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reveals a strong coupling of both ρ and ω to collective N(1520)N−1 states with roughly equal
strength. In-medium corrections to the widths have not yet been accounted for. In Ref. [103] they
have been shown to somewhat reduce the strength in the low-lying N(1520)N−1 excitation in the
ρ spectral function (in addition to a strong smearing).

3.2.4 Dispersive Approaches at High Energies

For ρ mesons of large energies, q0 ≫ 1 GeV, the resonance descriptions discussed in the previous
Sections should become less reliable. On the one hand, the couplings to resonances with masses
beyond 2 GeV are not very well known. On the other hand, on general grounds, one should expect
that a hadronic description ceases to be the appropriate one. An alternative way to extract in-
medium ρ meson properties at large energies has been suggested in Ref. [149] using high-energy
γN cross sections in connection with vector dominance. Via the optical theorem the imaginary
part of the γN forward scattering amplitude can be related to the total cross section as

σtotγN (q0) = −4π

q
ImTγN(q0) , (3.121)

where q0 = q denotes the incoming photon energy or laboratory momentum. A dispersion relation
is applied to extract the real part as

ReTγN(q0) =

∞
∫

0

dω2

π

ImTγN(ω)

(ω2 − q20)

q20
ω2

, (3.122)

the subtraction point at zero energy being determined by the Thompson limit (cf. also eq. (3.114)).
VDM then provides the link to the vector meson-nucleon scattering amplitude as

TγN = 4πα

(

1

g2
ρ

fρN +
1

g2
ω

fωN +
1

g2
φ

fφN

)

. (3.123)

Both naive quark model arguments (where TρN ≃ TωN , while g2
ω/g

2
ρ ≃ 8) and empirical information

inferred from photoproduction data of ρ, ω and φ mesons (see, e.g., Ref. [150]) suggest that the
second and third term in eq. (3.123) are comparatively small. This allows the direct extraction of
mass and width modifications for (on-shell) ρ mesons in the low-density limit (neglecting Fermi
motion) according to the expressions

∆mρ(q0) ≃ −2π
̺N
mρ

ReTρN (q0)

∆Γρ(q0) ≃ −4π
̺N
mρ

ImTρN (q0) , (3.124)

which reflect a simple version of the well-known in-medium optical potentials. In the applicable
energy regime of q0 ≥ 2 GeV, Eletsky and Ioffe obtained ∆mρ ≃ (60−80) MeV and ∆Γρ ≃ 300 MeV
for transversely polarized ρ mesons at nuclear saturation density. However, the thus obtained ∆Γ
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does not directly have the meaning of a resonance broadening as at high energies it includes
contributions from both elastic and diffractive scattering processes.

A similar analysis has been performed by Kondratyuk et al. [151] based on photoproduction
(rather than Compton scattering) data to extract TγN→ρN , and then using TρN = (e/gρ)TγN→ρN

to obtain the ρN scattering amplitude. The results agree within ∼30% with those of Ref. [149].
Moreover, using a resonance model for the low-energy regime (based on similar ρN resonances as
discussed in the previous Section), they demonstrated that the T−̺ approximation does not lead to
reliable predictions for mass shifts due to the importance of higher-order-in-density corrections as,
e.g., induced through the N∗ broadening in matter. On the other hand, given the large broadening
of the ρ spectral function as found in previous Sections, the quasiparticle nature of the in-medium
ρ meson is lost and its in-medium mass ceases to be a well-defined quantity (note that, in general,
the calculation of an in-medium spectral function does not rely on the quasiparticle concept).

3.2.5 Finite Temperature Effects in Baryonic Matter

When applying hadronic models to calculate dilepton production in (ultra-) relativistic heavy-
ion collisions at present lab-energies, ranging from 1-200 AGeV, sizable temperatures and baryon
densities are encountered simultaneously. Whereas (in thermal equilibrium) the meson densities
are exclusively determined by a given temperature T (with an additional possibility of meson
chemical potentials), the composition of baryon matter at fixed density ̺B changes appreciably
with temperature. Apart from the appearance of finite thermal meson abundances, the heating of
a cold nuclear system induces two additional features:

(i) the nucleon Fermi-distribution functions experience a substantial smearing. Given a (ki-
netic) Fermi energy of ǫFN ≃ 40 MeV at nuclear saturation density, it is clear that even at
BEVALAC/SIS energies of 1-2 AGeV, where the typical temperatures are in the 50-100 MeV
range, thermal motion is quite significant as seen from the left panel in Fig. 3.18.

(ii) a certain fraction of the nucleons is thermally excited into baryonic resonances; e.g., at
a temperature of T = 170 MeV and in chemical equilibrium the nucleon and ∆ number
densities are equal owing to the larger spin-isospin degeneracy factor of the ∆ (g∆ = 16) as
compared to nucleons (gN = 4) (right panel of Fig. 3.18).

Realistic calculations of spectral functions in a hot and dense meson/baryon mixture should
include these effects. The first one is readily incorporated by using finite-temperature Fermi distri-
bution functions in connection with thermal propagators; e.g., in the imaginary time (Matsubara)
formalism, the finite-T Lindhard functions for an excitation of a baryon resonance B on a nucleon
N takes the form

φα(q0, q;µB, T ) = −
∫

p2dp

(2π)2

+1
∫

−1

dx
∑

±

fN [EN (p)] − fB[EB(~p+ ~k)]

±q0 + EN (p) − EB(~p+ ~k) ± i
2 (ΓB + ΓN )

(3.125)

which, in fact, not only includes the direct BN−1 bubble and its exchange term, but also the
corresponding NB−1 excitation (and exchange term) occurring on the finite (thermal) abundance

77



0 200 400 600 800
p [MeV]

0.0

0.2

0.4

0.6

0.8

1.0

fN
(p

;T
)

T=  0
T= 25MeV
T= 75MeV
T=150MeV

Figure 3.18: Finite-temperature effects in baryonic matter. Left panel: Fermi-distribution func-
tions for nucleons at normal nuclear matter density ̺0 = 0.16 fm−3 at temperatures T=0 (dot-
ted curve), T=25 MeV (dashed-dotted curve), T=75 MeV (dashed curve) and T=150 MeV (full
curve). The corresponding (relativistic) nucleon chemical potentials are µN = 975, 956, 832 and
542 MeV, respectively. Note that the nuclear (kinetic) Fermi energy at zero temperature is about
ǫFN(pF ) ≃ 37 MeV. Right panel: composition of a hot πN∆ gas as a function of temperature at
a fixed baryon density of ̺B = ̺N + ̺∆ = 0.16 fm−3. For comparison, the thermal pion number
density is also shown. Note that the nucleon density will be further depleted when including other
baryonic resonances.

of the resonance species B. Apparently, φα has the correct analytic (retarded) properties, i.e.,
φα(q0) = φ∗α(−q0).

Eq. (3.125) can be directly generalized to obtain baryonic resonance excitations on thermally
excited baryons. Of course, the corresponding coupling constants (and form-factor cutoff param-
eters) for ρB1B2 vertices (B1, B2 6= N) are mostly unknown. In Ref. [103] it has been argued,
however, that (in analogy to the ’Brink-Axel’ hypothesis for nuclear giant dipole resonances on
excited states) the most important nucleonic excitation pattern, i.e., the N(1520)N−1 should also
be present on other baryonic resonances. From the particle data table one can indeed find some
evidence for this conjecture: e.g., the Σ(1670) (which is a well-established four-star resonance with

spin-isospin IJP = 1 3
2

−
), when interpreted as a ρΣ (or ρΛ) ’resonance’, very much resembles the

quantum numbers and excitation energy (∆E ≃ 500− 700 MeV) of the ρN → N(1520) transition.
In addition, the branching ratio of Σ(1670) decays into ’simple’ final states such as NK̄,Σπ or
Λπ is substantially less than 100% . Similar excitations on non-strange baryonic resonances are
even more difficult to identify as the latter themselves decay strongly via pion emission (i.e., the
B1 → B2ρ decay is immediately followed by further B2 → Nπ and ρ→ ππ decays). Nevertheless,
from pure quantum numbers it is tempting to associate, e.g., ∆(1930)∆−1 or N(2080)N(1440)−1

excitations with S-wave ’Rhosobar’ states.
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Figure 3.19: Spin-averaged ρ meson spectral function (at fixed 3-momentum q = 0.3 GeV) in hot
and dense hadronic matter in the many-body approach of Refs. [50] at various temperatures and
total baryon densities corresponding to a fixed baryon chemical potential of µB = 0.408 GeV and
vanishing meson chemical potentials.

To end this Chapter we show in Fig. 3.19 the final result of a many-body calculation [47,
49, 123, 50] for the ρ meson spectral function at finite temperatures and density including both
thermal mesonic (Sect. 3.1.4) and baryonic resonances (Sects. 3.2.3 and 3.2.5) as well as pion cloud
modifications (Sect. 3.2.2), also at both finite T and µB. One finds a very strong broadening of
the ρ in hot/dense matter, resulting in an almost entire ’melting’ of the resonance structure at the
highest temperatures and densities. Possible consequences for experimentally measured dilepton
spectra in heavy-ion collisions and theoretical interpretations will be discussed in detail in the
following Chapter.

79



Chapter 4

Analysis of Dilepton Spectra:
Constraints, Predictions and
Implications

As already mentioned in the Introduction, recent experimental analyses of dilepton production in
fixed target heavy-ion collisions at both relativistic (1-2 AGeV, BEVALAC) and ultrarelativistic
(158-200 AGeV, CERN-SpS) projectile energies have exhibited a strong enhancement of low-mass
pairs as compared to expectations based on free decay processes of the various hadrons in the final
state (’freezeout’). Once the hadronic composition of the freezeout state is known, this so-called
’hadronic cocktail’ contribution to the observed spectra dilepton spectra can be quite reliably
assessed without further assumptions, and has been shown to be in excellent agreement with the
measurements performed under equivalent conditions in proton-induced collisions on various nuclei.
This corroborated the naive expectation that the projectile protons essentially traverse the target
nuclei with the hadronization of the produced secondaries mostly taking place outside the nucleus,
thus leaving no traces of significant in-medium effects in the observed dilepton decays.

As a first step further from the theoretical side, various authors have calculated the contribu-
tions from π+π−-annihilation occurring during the lifetime of the interacting hot fireball formed in
the heavy-ion induced reactions. Even without invoking any in-medium modifications, this already
requires some knowledge about the dynamics within the fireball, in particular its pion abundance
and momentum distributions. However, many different models for the URHIC-dynamics arrive at
the same conclusion, namely that the experimentally observed enhancement at invariant masses
Mll ≃ (0.2 − 0.6) GeV cannot be explained when using free ππ annihilation (see also Fig. 1.4).

To learn about the type of medium modifications which eventually can account for the spec-
tacular experimental results, it is most desirable to perform as ’parameter-free’ calculations as
possible. Although at the present stage, modeling of the collision dynamics unavoidably involves
some uncertainty, the underlying microscopic processes for dilepton production can and should be
determined imposing as much independent experimental information as possible. This is particu-
larly true for hadronic models involving medium effects, where the predictive power resides in the

80



reliability of the density dependence. Such models typically comprise a large number of different
processes, some of which can be subjected to consistency checks.

The outline of this Chapter is as follows: in Sect. 4.1 we discuss various constraints that
the existing hadronic models have been (partially) exposed to. In Sect. 4.2 the predictions for
the dilepton production rates within different hadronic approaches and more exotic ones will be
confronted. Photon rates are discussed in short in Sect. 4.3. Sect. 4.4 gives a brief (by no means
complete) survey of the different ways to model heavy-ion collision dynamics with focus on those
that have been employed to calculate dilepton spectra. We then proceed to the analysis of low-
mass dilepton spectra, starting in Sect. 4.5 from intermediate bombarding energies (1–2 AGeV)
as performed at the BEVALAC (DLS collaboration) and to be remeasured in future precision
measurements at SIS (HADES collaboration). The main part, presented in Sect. 4.6, reviews the
extensive theoretical efforts that have been made to date in studying the experimental data on
low-mass dilepton production at the full CERN-SpS energies (158–200 AGeV), where most of our
current understanding on the possible mechanisms involved is based on. Sect. 4.7 contains a much
less comprehensive view at direct photon measurements, mainly to illustrate their potential for
providing consistency checks on existing models for dilepton enhancement. Finally, in Sect. 4.8,
we attempt to give a critical assessment of the theoretical implications that have emerged so far.

4.1 Constraints on Hadronic Dilepton Production

As with most problems in nonperturbative QCD, the calculation of low-mass dilepton radiation
from interacting hot and dense hadronic matter has invariably to rely on effective approaches for
the underlying production processes. To aim at quantitative predictions it is thus of essential
importance to minimize the corresponding uncertainties in the calculations. In principle, two
guidelines are at our disposal: (i) explicit implementation of (dynamical) symmetries shared with
QCD, (ii) model constraints imposed by independent experimental information. Constraints of
type (i) typically govern the interaction dynamics, (approximate) chiral symmetry in our context,
whereas (ii) usually serves to narrow the range of the parameters within effective models on a
quantitative level. Ideally, both aspects should be satisfied; in practice, however, the complexity
of the problem enforces compromises in one or the other way.

In the previous two Chapters we have already elaborated on the chiral symmetry aspects of the
various approaches in some detail, and how models for the vector-vector correlator in free space can
be constructed in accordance with empirical data. Here we will address the issue of imposing con-
straints of type (ii) on the in-medium behavior of the vector mesons and their coupling to photons.
Depending on the type of data, substantially different kinematical regimes may be probed, thus
not only narrowing parameter choices but also sensing dynamical (off-shell) properties of the model
under consideration. The simplest constraints on coupling constants of the interaction vertices one
is interested in are provided by the partial decay widths of the corresponding resonances. These are
usually not very precise and, more importantly, do not contain information on energy-momentum
dependencies or combined effects of several processes. More stringent constraints are thus obtained
from scattering data. We will discuss both purely hadronic reactions and photoabsorption spectra
– which are more directly related to the dilepton regime – where a wealth of high-precision data
on both the nucleon and various nuclei exists. The focus will again be on the ρ meson which,
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as repeatedly mentioned, is the most important player in the game of low-mass dileptons from
URHIC’s.

4.1.1 Decay Widths and Hadronic Scattering Data

A standard approach to calculate modifications of a particle a embedded in the medium is based on
the two-body scattering amplitude Tab, integrated over the momentum distributions of the matter
particles b. In the simplest version this represents the standard T -̺ approximation and thus
captures the linear-in-density effects. However, for the ρ meson, which is a short-lived resonance
(on strong interaction scales), the following complications arise: firstly, elastic ρ-hadron scattering
amplitudes are not directly accessible from experiment. Secondly, the large (vacuum) width implies
that in realistic calculations one cannot just use the physical pole mass, but has to account for its
spectral mass distribution, Aρ(M). This, in turn, allows one to consistently incorporate processes
involving off-shell ρ mesons, in particular for masses M ≤ mρ which are most relevant for low-mass
dilepton spectra.

As mentioned in Chap. 3, a straightforward estimate of coupling constants for ρ-meson scatter-
ing on surrounding matter-hadrons, h, into a resonance R can be obtained from the reverse process,
i.e., the decay R → ρh, cf. Tab.4.1. Based on the interaction Lagrangians given in Chap. 3, one

R IGJP Γtot [MeV] ρh Decay Γ0
ρh [MeV] Γ0

γh [MeV]

ω(782) 0−1− 8.43 ρπ ∼ 5 0.72
h1(1170) 0−1+ ∼ 360 ρπ seen ?
a1(1260) 1−1+ ∼ 400 ρπ dominant 0.64
K1(1270) 1

21+ ∼ 90 ρK ∼ 60 ?
f1(1285) 0+1+ 25 ρρ ≤8 1.65
π(1300) 1−0− ∼ 400 ρπ seen not seen
a2(1320) 1−2+ 110 ρπ 78 0.31

Table 4.1: Mesonic Resonances R with masses mR ≤ 1300 MeV and substantial branching ratios
into final states involving either direct ρ’s (hadronic) or ρ-like photons (radiative).

can derive the expression for the decay width ΓR→ρh and then adjust the coupling constant to
reproduce the experimentally measured value.

Let us first discuss purely mesonic interactions relevant for the finite-temperature modifications
of the ρ meson [123]. For the axialvector meson resonances in Pρ scattering the vertex (3.63) leads
to

ΓA→ρP (s) =
G2
ρPA

8πs

IF (2Iρ + 1)

(2IA + 1)(2JA + 1)

Mmax
∫

2mπ

MdM

π
A◦
ρ(M) qcm

× [
1

2
(s−M2 −m2

π)
2 +M2ωP (qcm)2)] FρPA(qcm)2 . (4.1)
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From Eq. (3.64) one obtains for vector mesons

ΓV→ρP (s) =
G2
ρPV

8π

IF (2Iρ + 1)

(2IV + 1)(2JV + 1)

Mmax
∫

2mπ

MdM

π
A◦
ρ(M)

× 2q3cm FρPV (qcm)2 . (4.2)

Besides the coupling constant, G, the cutoff parameter Λ entering the hadronic vertex form factors
is a priori unknown. From principle reasoning it should be in a sensible range for hadronic processes,
i.e., Λ ≤ 1-2 GeV. The hadronic widths are not very sensitive to the precise value of Λ, e.g.,
variations in the above mentioned range entail variations in G2 of typically 10% or less. However,
as has been stressed in Ref. [123], one can do better by simultaneously adjusting the radiative
decay widths of the resonances. Within the vector dominance model the radiative decay widths
follow from the hadronic ones by (i) taking the M2 → 0 limit, i.e., substituting A◦

ρ(M) = 2πδ(M2)
for real photons, (ii) supplying the VDM coupling constant (e/g)2 ≃ 0.0522 and (iii) omitting the
(2Iρ + 1) isospin degeneracy factor for the final state. This yields for both axialvector and vector
resonances (R = A, V )

ΓR→γP =
G2
ρPR

8π

(

e

g

)2
IF

(2IR + 1)(2JR + 1)
2q3cm FρPR(qcm)2 . (4.3)

Since the decay momentum, qcm, acquires its maximum value at the photon point it is clear that
the latter is more sensitive to the form-factor cutoff. With the dipole form factors of Eq. (3.69) a
universal ΛρPR = 1 GeV yields quite satisfactory results for the decay widths of most resonances
(cf. Tabs. 4.1, 4.2). If suitable data are available, an additional consistency check can be performed

R IF (ρhR) GρhR [GeV−1] ΛρhR [MeV] Γ0
ρh [MeV] Γ0

γh [MeV]

ω(782) 1 25.8 1000 3.5 0.72
h1(1170) 1 11.37 1000 300 0.60
a1(1260) 2 13.27 1000 400 0.66
K1(1270) 2 9.42 1000 60 0.32
f1(1285) 1 35.7 800 3 1.67
π(1300) 2 9.67 1000 300 0
a2(1320) 2 5.16 2000 80 0.24

Table 4.2: Results of a fit [123] to the decay properties of ρ-h induced mesonic resonances R with
masses mR ≤ 1300 MeV (the f1(1285), π(1300) and a2(1320) coupling constants are in units of
GeV−2).

by comparing to the dilepton Dalitz decay spectra for R → Pl+l− as, e.g., done in Ref. [152] for
the case of the ω meson.

A similar procedure can be applied for baryonic resonances. With the commonly employed
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non-relativistic ρNB Lagrangians given in Sect. 3.2.3, the decay width into ρN states becomes

ΓB→ρN (
√
s) =

f2
ρNB

4πm2
ρ

2mN√
s

(2Iρ + 1)

(2JB + 1)(2IB + 1)
SI(ρNB)

√
s−mN
∫

2mπ

MdM

π
A◦
ρ(M) qcm FρNB(qcm)2 vρNB(M) (4.4)

with the vertex function vρNB(M) = (0.5M2 + q20) or q2cm for S- or P -wave resonances, respec-
tively. However, the experimental values for ΓB→ρN are often beset with substantial uncertainties,
especially for resonance masses below the free ρN threshold. Moreover, the simple version of
VDM seems to be less accurate in the baryonic sector. As a consequence radiative decay widths,
ΓB→γN , can easily be overestimated [147]. But unlike the case for the mesonic resonances, much
more quantitative constraints for the radiative couplings of baryonic excitations can be drawn from
the analysis of photoabsorption spectra on single nucleons as well as nuclei, to be discussed in the
following Section in detail. Before we come to that let us elaborate here on some further purely
hadronic reactions which can provide valuable, comprehensive information on low-density nuclear
effects in the vector correlator.

As first pointed out by Friman [153] the analysis of πN → ρN scattering data is closely related
to the modifications of the ρ-propagator in nuclear matter. Diagrammatically, any cut through
the in-medium ρ-selfenergy insertions represents a pertinent scattering process. In particular, all
single cuts going through NN−1 lines in the diagrams of Fig. 3.12 or in the dressed single-pion
propagator constitute a contribution to the πN → ρN reaction. Formally, this amounts to taking
the imaginary part of the relevant contributions to the in-medium ρ-meson selfenergy. By using
the optical theorem and detailed balance one finds for the isospin-averaged cross section

σπN→ρN (s,M) =
−3qcmmN

k2
cm

√
s

lim
̺N→0

ImΣ◦
ρ(M) − ImΣ̂ρπN (M)

̺N
, (4.5)

where Σ̂ρπN denotes the in-medium selfenergy containing only the diagrams with πNN−1 cuts.
The center-of-mass 3-momenta kcm and qcm(M) belong to the incoming pion and outgoing ρ meson
with fixed mass M , respectively. For comparison with experimental data, σπN→ρN (s,M) has to
be integrated over the free ρ-meson spectral mass distribution, i.e.,

σπN→ρN (s) =

∫

√
s−mN

2mπ

MdM

π
A◦
ρ(M) σπN→ρN (s,M) . (4.6)

Two types of contributions to Σ̂ρπN arise: (i) from the medium modifications in the pion cloud of
the ρ meson, namely pion-induced NN−1 excitations corresponding to t-channel pion exchange in
the πN → ρN reaction, and (ii) from Rhosobar-type excitations through the B → πN partial decay
widths corresponding to the s-channel processes πN → B → ρN . The surprising result [153] is that
the total cross section (4.6) is very sensitive to the cutoff parameter ΛπNN in the πNN form factor
appearing in the pion cloud. Using the standard monopole form, ΛπNN -values of slightly below
400 MeV already saturate the experimentally measured cross sections above the free ρN threshold.

84



When additionally allowing for the type (ii) s-channel baryon resonance contributions which are
essential for the description of the photoabsorption spectra (see next Section), this number has to
be further reduced to about ΛπNN ≃ 300 MeV. Such on typical hadronic scales ’unnaturally’ small
values are presumably related to the lack of unitarity in the resulting Born-type scattering graphs
for the πN → ρN process, as implicit in most models for the in-medium ρ-meson selfenergy. In
fact, rather soft πNN/∆ form factors (with 300-500 MeV cutoffs) have been encountered in the
literature, e.g., in separable models of πN scattering [154] (which resembles our model for the pion
selfenergy) or pion photoproduction [155].

Other ways to extract information on the ρ-meson properties in nuclear matter which actually
go beyond the low-density limit might be provided by two-pion production experiments on nuclei.
Pion-induced experiments of the type π + A → A + ππ have been performed at TRIUMF for
ππ invariant masses of up to 400 MeV. This mass regime is, however, dominated by S-wave
states [156]. Alternatively, one could use proton-induced reactions as had been proposed for 2.5-
2.9 GeV energy beams at SATURNE [157]. At low scattering angle one might be able to probe
the in-medium ρ-meson spectral function close to the q0 = q line around q0=1 GeV, where P -
wave Rhosobars are expected to be important. Very interesting results have also been reported by
the TAGX collaboration [158] for the reaction 3He(γ, π+π−)ppn where, based on a partial wave
analysis of the outgoing pions, the data have been interpreted in terms of a large downward shift of
the in-medium ρ-meson mass, although no calculations using medium-modified ρ-meson spectral
functions are available yet. Another possibility might be provided by extracting phase information
on electro-produced ρ-mesons in A(e, e′) reactions at TJNAF [159].

For the ω meson a similar analysis has been performed in the πN → ωN reaction [153] which
also hints at a soft πNN form factor. In Refs. [153, 148] the effects of direct ωN scattering have
been assessed. It seems that the ω-N(1520)N−1 excitation (the ’Omegasobar’) plays an equally
important role as in the ρN interaction, leading to strong effects for the ω-meson spectral function
in nuclear matter.

A promising experiment to assess the in-medium ω properties is planned at GSI [160]. In
pion-induced reactions (via the elementary process πN → ωN), ω mesons can be produced in
nuclei almost recoil free, thus allowing sufficient time for decay in the nuclear environment. The
invariant mass spectrum will then be measured through the dilepton channel. Another option is
the proposed transfer reaction d+A→3He +ω(A− 1) [161].

4.1.2 Photoabsorption Spectra

A very important consistency check for any model of dilepton production can be inferred from
photoabsorption spectra on both proton and nuclei [100, 162, 102, 104]. They represent the M2 = 0
limit of the (time-like) dilepton kinematics and are most relevant for heavy-ion energy regimes
with sizable baryon densities (on the order of normal nuclear matter density and above). These
are clearly realized at BEVALAC/SIS energies but apparently also at the CERN-SpS where, as
seen from rapidity spectra, significant baryonic stopping is exhibited. Whereas the absorption
spectra on the proton provide low-density constraints, the various nucleus data constitute a true
finite-density test ground with the additional advantage over hadronic probes that the incoming
photon suffers little absorption thus probing the inner, most dense regions of nuclei. The proton
photoabsorption cross sections have been used by several groups to check their models for dilepton
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production.
In the microscopic BUU transport model of Effenberger et al. [163] the elementary γN cross

sections have been calculated in terms of resonance contributions from ∆(1232), N(1520), N(1535)
and N(1680) as well as smooth background parameterizations of one- and two-pion photoproduc-
tion amplitudes to reproduce the nucleon data. When moving to finite nuclei, medium effects have
been accounted for through modifications in the resonance widths (explicitely treated in terms of
collisional broadening and Pauli-blocking), collective potentials in ∆ and nucleon propagation as
well as Fermi motion. Reasonable agreement with the experimental data is obtained. However,
applications for dilepton production in nucleus-nucleus colisions are not available yet.

In the ’master formula approach’ for the vector correlator [99, 100] (cf. Sect. 2.8), γ absorption
spectra have been calculated in Refs. [100, 104]. Fig. 4.1 shows the results for the nucleon (left
panel) and nuclei (right panel). The dashed curve in the left panel represents a parameter-free
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Figure 4.1: Total photoabsorption cross section on the nucleon (left panel) and on nuclei (right
panel) within the chiral reduction approach taken from Ref. [104]; the nucleon and nuclei data are
from Ref. [164] and Refs. [165, 166, 167, 168], respectively.

prediction of the contribution from non-resonant πN states (opening at the threshold energy of
about q0 = 140 MeV) as extracted from πN scattering data. It corresponds to non-resonant
one-pion photoproduction and essentially saturates the data beyond the ∆ resonance region. This
is at variance with both the BUU calculations mentioned above [163] as well as experimental
phase analyses [169, 164, 170] which show that for incoming photon energies q0 ≥ 0.6 GeV two-
pion production processes start to prevail [171]. The photoabsorption cross sections on nuclei are
calculated by averaging the nucleon cross section over Fermi motion,

σγA
A

=

∫

d3p

4πp3
F /3

Θ(pF − |~p|)σγN (s) , (4.7)

yielding a reasonable fit to the experimental data. The dashed curve in the right panel of Fig. 4.1
was obtained with the πN background being artificially reduced by a factor of three (compensated
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by larger ∆(1232) and N(1520) contributions to still reproduce the nucleon data) which seems to
improve the fit. Note here that a simple averaging over Fermi motion seems to give a sufficient
smearing of the N(1520) resonance, in contrast to previous findings in the literature [172, 173, 163,
102] where a strong in-medium resonance broadening was required.

In the effective Lagarangian approaches where the in-medium vector meson properties are cal-
culated in terms of explicit interactions with surrounding matter particles, the resulting spectral
functions can be related to total photoabsorption cross sections. In Refs. [162, 91] the electromag-
netic current-current correlation function has been expressed to lowest order in density in terms of
the Compton tensor for forward γN scattering, T µνγN , as

Πµν
em(q) = Π◦µν

em (q) + gN

∫

d3p

(2π)3
MN

ENp
T µνγN(q; p) Θ(pF − |~p|) . (4.8)

For real photons, only the transverse part of TγN survives. Taking the low-density limit, pF → 0,
and using the optical theorem,

σγN (q0) = −4πα

q0
ImT TγN(q0, |~q| = q0) , (4.9)

as well as VDM,

ImΠT
em(q0, ~q) =

∑

V=ρ,ω,φ

1

g2
V

ImΣTV (q0, ~q) , (4.10)

one obtains the desired relation between the isospin-averaged γ-nucleon cross section and the vector
meson selfenergies:

σγN (q0) = −4πα

q0
lim
̺N→0

1

̺N

∑

V=ρ,ω,φ

1

g2
V

ImΣTV (q0, |~q| = q0) (4.11)

(note that ImΠ◦(M2) vanishes below the two-pion thresholdM = 2mπ). Unfortunately, no explicit
results for photoabsorption spectra are available in the approach of Refs. [162, 91].

A slightly different way of deriving analogous relations has been pursued in Ref. [102]. Here,
the starting point is the total cross section of a photon per unit volume element d3x of cold nuclear
matter, averaged over the incoming polarizations,

dσ

d3x
=

1

2

∑

λ

∑

f

1

vin

1

2q0
|Mfi|2 (2π)4 δ(4)(pf − q)

= −4πα

q0

1

2

∑

λ

εµ(q, λ) εν(q, λ) ImΠµν
em(q) , (4.12)

where Mfi = e 〈f |jemµ (0)|0〉 εµ(q, λ) is the transition matrix element of the electromagnetic current,
taken between the initial nuclear ground state |i〉 = |0〉 and final states |f〉 with εµ(q, λ) being the
photon polarization vector. Neglecting small contributions from isoscalar vector mesons within
the VDM, the electromagnetic correlator can be saturated by the neutral ρ meson using the field-
current identity

jµem = (m(0)
ρ )2/gρ ρ

µ
3 . (4.13)
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Using the completenes relation for photon polarization vectors,
∑

λ

εµ(q, λ) εν(q, λ) = −gµν , (4.14)

the total photoabsorption cross section, normalized to the number of nucleons A, takes the form

σabs
γA

A
=

1

̺N

dσ

d3x

= −4πα

q0

(m
(0)
ρ )4

g2
ρ

1

̺N
ImDT

ρ (q0, |~q| = q0) (4.15)

with the transverse in-medium ρ-meson propagator

ImDT
ρ =

ImΣTρ

|M2 − (m
(0)
ρ )2 − ΣTρ |2

(4.16)

(for M2 = 0 the longitudinal part vanishes identically). Note that Eq. (4.15) does not involve any
low-density approximations. However, for ̺N → 0 and A = 1 (corresponding to the absorption
process on a single nucleon), one has

lim
̺N→0

ImDT
ρ (q0, ~q) = lim

̺N→0
ImΣTρ (q0, ~q)/(m

(0)
ρ )4 , (4.17)

thus readily recovering Eq. (4.11). In the model of Ref. [102] the ρ-meson selfenergy in nuclear
matter receives two contributions,

ΣTρ = ΣTρππ + ΣTρN , (4.18)

representing the renormalization of the pion cloud through πNN−1 and π∆N−1 excitations as
well as direct ρBN−1 interactions, respectively. However, as has been noted long ago, the most
simple version of the VDM (4.13) typically results in an overestimation of the B → Nγ branching
fractions when using the hadronic coupling constants deduced from the B → Nρ partial widths.
One can correct for this by employing an improved version of the VDM [174], which allows to adjust
the BNγ coupling µB (the transition magnetic moment) at the photon point independently [147].

It amounts to replacing the combination (m
(0)
ρ )4 ImDT

ρ (q0, ~q) entering Eq. (4.15) by the following
’transition form factor’:

FT (q0, ~q) = −ImΣTρππ|dρ − 1|2 − ImΣTρN |dρ − rB|2

dρ(q0, ~q) =
M2 − ΣTρππ − rBΣTρN

M2 − (m
(0)
ρ )2 − ΣTρππ − ΣTρN

, (4.19)

where
rB =

µB
fρBN

mρ

e
g

(4.20)

denotes the ratio of the photon coupling to its value in the naive VDM. In principle, each resonance
state B can be assigned a separate value for rB but, as will be seen below, reasonable fits to
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the photoabsorption spectra can be achieved with a single value making use of some latitude
in the hadronic couplings fρBN and form-factor cutoff parameters Λρ within the experimental
uncertainties of the partial widths (4.4). The final expression to be used for the photoabsorption
calculations then reads

σabs
γA

A
=

4πα

g2q0

1

̺N
FT (q0, |~q| = q0) . (4.21)

Let us first discuss the γN spectra, in particular the role of background contributions (which
in this context can be regarded as ’meson exchange’ processes), encoded in the low-density limit
of Σρππ. With the coupling constants of the πNN - and π∆N -vertices fixed at their standard
values (cf. Tab. 3.1), the strength of the background is controlled by the cutoff ΛπNN in the
phenomenological (hadronic) vertex form factors. In early applications to dilepton spectra [140,
114, 141, 142, 47, 91] the values were chosen around (1–1.2) GeV in reminiscence to the Bonn
potential [143]. However, with the analysis of photoabsorption spectra [102] it became clear that
much lower values are required, at most of around 600 MeV. Shortly thereafter, Friman pointed
out [153] that this is still too large to be compatible with available πN → ρN scattering data as
discussed in the previous Section, enforcing even smaller values [49], thereby further suppressing
the ’background’ contribution in the photoabsorption spectra. Using the value of Λπ ≃ 300 MeV
deduced in Sect. 4.1.1 actually improves the description of the γN spectra in the ’dip region’
between the ∆(1232) and the N(1520) resonances [49] as compared to the results obtained with
ΛπNN = 550 MeV in Ref. [102], see left panel of Fig. 4.2. Moreover, the non-resonant contribution
in the ∆ region now amounts to about 70 µb, which coincides with what has been extracted from
experimental phase analyses [169, 164, 170]. On the other hand, the parameter-free assessment of
this background component in the ’master formula approach’ [100] differs by approximately a factor
of 3 across the entire photon energy range under consideration (a very similar result is found when
using the Bonn-value of 1.2 GeV deduced from πN data in the framework of Ref. [126]). Given the
magnitude of the background, the resonance contributions encoded in ΣρB are readily adjusted to
obtain a good fit to the γN data. The employed resonances and vertex parameters are summarized
in Tab. 3.2. One should note that an unambiguous determination of coupling constants and form-
factor cutoffs paramaters is not possible from the total absorption cross section alone. To further
disentangle them more exclusive reaction channels (e.g., one- and two-pion photoproduction) need
to be analyzed. Nevertheless, for the purpose of predicting reliable dilepton production rates the
constraints from the total absorption cross sections give reasonable confidence.

For absorption spectra on nuclei, one experimentally observes an almost independent scaling
with the mass number A of different nuclei (cf. right panel of Fig. 4.2). This suggests that both
surface and nuclear structure effects play a minor role as might be expected since the incoming
photon predominantly probes the interior of the nuclei. Therefore it appears justified to perform
the calculations for the idealized situation of infinite nuclear matter at an average density, which has
been taken as ¯̺N=0.8̺0 (in fact, the results for the normalized cross section, Eq. (4.21), depend
only weakly on density within reasonable limits of 0.6 ≤ ̺/̺0 ≤ 1). As compared to the free
nucleon two additional features appear in the nuclear medium: short-range correlation effects in
the resummation of the particle-hole bubbles and in-medium corrections to the resonance widths.
Due to the rather soft form factors involved, the P -wave pion-induced excitations turn out to favor
rather small Landau-Migdal parameters of g′NN=0.6 and g′αβ=0.2 for all other transitions including
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Figure 4.2: Total photoabsorption cross section on the nucleon (left panel) and on nuclei (right
panel) as obtained in the ρ spectral function approach [102, 50]. Left panel: full result of the
fit using the parameters of Tab. 3.2 (solid line), ππ ’background’ (dashed line) as well as the
three dominant ρN resonances ∆(1232), N(1520) and N(1720) (dashed-dotted lines); the data
are averaged over proton [175] and neutron [176] measurements. Right panel: full result (solid
line) and non-resonant background contributions (short-dashed line) for ̺N = 0.8̺0, as well as
the lowest-order-density result from the nucleon fit (long-dashed line); the data are taken from
Refs. [165, 166, 167, 168].

P -wave Rhosobars. The S-wave ρBN−1 bubbles show only marginal evidence for short-range
correlations with a slight tendency towards larger values (the results in the left panel of Fig. 4.2
have been obtained with g′S−wave = 0.6). However, as already mentioned above, the observed
disappearance of the N(1520) resonance in the nuclear medium requires a large in-medium increase
of its width. Such a behavior has indeed been found in a selfconsistent microscopic treatment of the
ρ-meson spectral function and the N(1520) width in nuclear matter [101], which is based on a very
similar framework as employed here. The actual value used for ΓmedN(1520) in Fig.4.2 is in accordance

with Ref. [101]. On the other hand, the net in-medium correction to the ∆(1232) width is quite
small. This reflects the fact that a moderate in-medium broadening is largely compensated by Pauli
blocking effects on the decay nucleon. The sensitivity of the results with respect to the in-medium
widths of the higher lying resonances is comparatively small. It is also noteworthy that below
the pion threshold some strength appears. This is nothing but the well-known ’quasi deuteron’
tail above the giant dipole resonance, arising from pion-exchange currents. These are naturally
included in the spectral function framework through higher orders in density in the pion cloud
modifications. Also note that a linear-density approximation to Eq. (4.19), which is equivalent to
the γN result, does not properly reproduce the γA data.
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4.2 Dilepton Rates in Hot and Dense Matter

Having discussed the approaches that have been constructed to compute the vector correlator in hot
and dense matter as well as the corresponding efforts and philosophies to constrain the underlying
assumptions, we now turn our attention to the results for the dilepton production rates. To be
able to draw any conclusions from the eventual analysis of dilepton spectra in heavy-ion collisions
it is essential to assess the differences and similarities in the model predictions on an equal footing,
i.e., without the complications arising from modeling the space-time history of the collisions or
experimental acceptance cuts. In practically all microscopic approaches one calculates an eight-
fold differential rate per unit four momentum and four volume. To facilitate the comparison, it
has become common to focus on the 3-momentum integrated rates

dRl+l−

dM2
(M) =

∫

d3q

2q0

dRl+l−

d4q
(q0, ~q) (4.22)

at fixed temperature T and baryon density ̺B (or, equivalently, baryon chemical potential µB).
In the following we will first address the class of more ’conventional’, hadronic calculations based
on essentially known interactions, and then put these into context with results from scenarios
associated with ’new’ physics such as QGP or DCC formation.

4.2.1 Comparison of Hadronic Approaches

As elaborated in Sect. 2.5 the general expression for the dilepton production rate in a hadronic
medium of given temperature T and baryon chemical potential µB can be written as

dRl+l−

d4q
= Lµν(q)W

µν(q) , (4.23)

where Lµν and Wµν denote the leptonic and hadronic tensor, respectively, cf. Eqs. (2.75) and
(2.76). The latter can also be written as

Wµν(q;T ) =
∑

i

eEi/T

Z
∑

f

〈i|jµ(0)|f〉〈f |jν(0)|i〉(2π)4δ(4)(q + pf − pi) , (4.24)

which is straightforwardly related to the retarded current-current correlation function according
to

− 2 ImΠµν
em(q) = (eq0/T − 1) Wµν(q) . (4.25)

Inserting Eqs. (2.75) and (4.25) into (4.23), and exploiting gauge invariance, qµΠ
µν
em = 0, one

obtains the general result

dRl+l−

d4q
= − α2

π3M2
fB(q0;T ) ImΠem(q0, ~q) (4.26)

with the thermal Bose occupation factor fB(q0;T ) = (eq0/T−1)−1 and the spin-averaged correlator

ImΠem(q0, ~q) =
1

3

[

ImΠL
em(q0, ~q) + 2ImΠT

em(q0, ~q)
]

, (4.27)

given in terms of its standard decomposition into longitudinal and transverse projections.

91



Effects of a Hot Meson Gas

Let us start by considering a hot meson gas without any baryons. The most obvious source
of dilepton radiation from such a system is the free π+π− → l+l− annihilation process with
no further medium effects included. This process is reliably described within the simple VDM
framework, so that very little model uncertainty is involved once the experimental data for the
pion electromagnetic form factor in the time-like region are properly accounted for. Therefore we
will use this process as a standard baseline for comparing medium effects within various approaches.
In VDM (i.e., invoking the field-current identity (4.13)) ππ annihilation proceeds via the formation
of an intermediate ρ meson. The corresponding hadronic tensor is then saturated by the ρ-meson
propagator,

Wµν(q) = −2 fρ(q0;T )
(m

(0)
ρ )4

g2
ρππ

ImDµν
ρ (q) . (4.28)

Thus the dilepton production rate for π+π− → ρ→ γ∗ → e+e− becomes

dRππ→ee

d4q
(q0, ~q) = −α

2(m
(0)
ρ )4

π3g2
ρππ

fρ(q0;T )

M2
ImDρ(q0, ~q)

= − α2

π3g2
ρππ

fρ(q0;T )

M2
ImΣ◦

ρππ(M) |F ◦
π (M)|2 , (4.29)

where the second equality implies the use of the free ρ-meson propagator. As is well-known a
thermodynamically equivalent way to describe the same contribution is to consider the decay
of thermal ρ mesons in the system. Accounting for both ππ annihilation and ρ decays clearly
constitutes double counting.

In-medium modifications to the free ππ annihilation process in a hot meson gas have been
studied by several groups, as we have already discussed in some detail in Sect. 3.1. At a fixed
temperature of T = 150 MeV the three-momentum integrated rates (as given by Eq. (4.22)) are
confronted in Fig. 4.3 for some of the different approaches available in the literature. One of the
selected examples is of model-independent nature [99] putting the emphasis on chiral symmetry
aspects of the interactions, whereas the other two [119, 123] represent the more phenomenological
approaches based on effective Lagrangians.

The chiral reduction formalism employed by Steele et al. (which combines chiral Ward identities
with experimental data on spectral functions in the vector and axialvector channels, dominated
by the ρ and a1(1260) mesons, respectively, cf. Sect. 2.8) is shown as the short-dashed line in
Fig. 4.3. The appearance of the a1 (predominantly formed in resonant ρπ scattering) in the
electromagnetic rates represents the mixing effect of the vector and axialvector correlators as
dictated by chiral symmetry. Most of the enhancement over the free ππ rate for invariant masses
below Mee ≃ 0.6 GeV can indeed be assigned to the (Dalitz-decay) tails of the a1(1260). On the
other hand, note that there is practically no depletion of the ρ-meson peak around Mee ≃ mρ.
This is a consequence of the density expansion inherent in this virial-type expansion which evades
any kind of diagrammatic resummations. Such resummations naturally occur in the propagator
formalism: even if the (in-medium) selfenergy correction is evaluated to lowest order, the solution of
the corresponding Dyson equation automatically generates iterations to all orders which typically
leads to a downward shift of strength as we will see below.
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Figure 4.3: Three-momentum integrated dilepton rates in a hot meson gas at T = 150 MeV in the
hadron-based approaches of Gale/Lichard [119] (long-dashed line), Steele et al. [99] (short-dashed
line) and Rapp et al. [47, 123] (full line). The dotted line represents free ππ annihilation.

In Ref. [119] a large number of mesonic tree level scattering amplitudes involving e+e− final
states has been computed within the VDM, employing phenomenological Lagrangians compatible
with gauge invariance and inspired by the chiral properties of low-energy QCD [109]. The corre-
sponding coupling constants have been determined along the lines discussed in Sect. 4.1.1 using the
experimental branching ratios for radiative decays, etc.. Within standard relativistic kinetic theory
the dilepton production rate has then been obtained by suitable momentum integrations over the
squared matrix elements including appropriate thermal occupation factors (for a given process,
the kinetic theory expressions can be shown to be equivalent to standard finite-temperature field
theoretic results to leading order in temperature). The long-dashed curve in Fig. 4.3 represents
the final result of this analysis, also exhibiting substantial excess over the free ππ rate for low
masses Mee ≤ 0.6 GeV, which is predominantly generated by the radiative decay of the omega,
ω → π0e+e−. Contributions from a1(1260) mesons have not been included. The incoherent sum-
mation of the various processes does again not induce any depletion of the peak, leading to a close
overall resemblance with the rate from the chiral reduction formalism [99] (short-dashed curve).

In Ref. [47] the imaginary time (Matsubara) formalism has been employed to calculate the
ρ propagator in hot hadronic matter accounting for the full off-shell dynamics of the considered
interactions. As far as meson gas effects are concerned, only resonant ρπ → a1(1260) and ρK/K̄ →
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K1(1270)/K̄1(1270) contributions were included at the time, yielding very similar results as have
been obtained before in an (on-shell) kinetic theory framework [120] (which is mainly due to
the fact that both the a1 and K1 resonances are situated above the free ρπ and ρK thresholds,
respectively, resulting in little off-shell sensitivity). A more comprehensive analysis of the finite
temperature ρ-meson selfenergy was performed in Ref. [123] along the same lines as in Ref. [47].
The most notable of the additionally included mesonic resonances turned out to be the ω(782)
meson accessible through interactions of off-shell ρ mesons (with mass M ≃ 500 MeV, cf. Fig. 3.8)
with thermal pions. The corresponding dilepton production process is ρπ → ω → πee, i.e., the
radiative Dalitz decay of thermal ω mesons. It indeed quantitatively coincides with the equivalent
contribution calculated in Ref. [119]. In addition, the most simple temperature effect in the pion
cloud of the ρ meson has been included, consisting of a Bose-Einstein enhancement in the in-
medium ρ → ππ decay width. Schematically written it modifies the imaginary part of the ρππ
selfenergy as

ImΣ◦
ρππ(M) → ImΣρππ(M ;T ) = ImΣ◦

ρππ(M) [1 + 2fπ(M/2)] , (4.30)

cf. also Eq. (3.62). The full result of Ref. [123] is shown by the solid line in Fig. 4.3: in the low-
mass region it exceeds the results of both the chiral reduction approach [99] and of the incoherent
summation of decay/scattering processes [119]. The discrepancy to the latter can be traced back to
the a1-meson contribution and, more importantly, to the Bose enhancement in the ρ → ππ decay
width [123]. Also note that the ρ-meson spectral function calculation induces a ∼ 40% suppression
of the signal in the vicinity of the free ρ mass. This is a characteristic feature of many-body
type approaches and is not present in density-expansion schemes as implicit in the calculations of
Gale/Lichard and Steele et al.. It can be easily understood as follows [123]: the ρ spectral function
(which governs the dilepton rate in the many-body framework) can be schematically written in
terms of the selfenergy as

ImDρ =
ImΣρ

|M2 −m2
ρ|2 + |ImΣρ|2

, (4.31)

where we have absorbed the real part of the selfenergy in the (physical) ρ mass mρ. In the low-mass
region, where mρ ≫M and m2

ρ ≫ |ImΣρ|, the denominator is dominated by mρ so that

ImDρ(M ≪ mρ) ∝
ImΣρ
m4
ρ

. (4.32)

Since ImΣρ basically encodes a summation of scattering amplitudes times (pion-) density, one
immediately recognizes the close analogy to kinetic theory or low-density expansions. On the other
hand, in the vicinity of the ρ-peak, where M ≃ mρ, the denominator in Eq. (4.31) is dominated
by ImΣρ so that

ImDρ(M ≃ mρ) ∝
1

ImΣρ
, (4.33)

demonstrating that the consequence of an increase in density is a suppression of the maximum,
which cannot be straightforwardly casted in a low-density expansion.
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Effects of Finite Baryon Density

The situation becomes more involved when comparing dilepton production rates in the presence
of baryons. Most of the investigations so far have been restricted to the case of nucleons at
zero temperature, which is particularly obvious for model constraints inferred from ρN or γN/γA
scattering data as discussed in Sect. 4.1. The first complication arises from the fact that in any
finite temperature system with a net baryon density, some fraction of the nucleons will be thermally
excited into baryonic resonances and therefore, in principle, should not be included in medium
modifications generated by nucleons. For instance, at a temperature of T = 150 MeV and total
baryon density ̺B = ̺0 (which, when accounting for all baryonic resonances with masses mB ≤
1.7 GeV as well as the lowest-lying Λ and Σ hyperons, translates into a common baryon chemical
potential of µB ≃ 385 MeV) only about one third of the baryons are actually nucleons. On the
other hand, also excited resonances will have nonzero cross sections with pions or ρ mesons which
are, however, usually somewhat smaller in magnitude. The second subtlety consists of a substantial
smearing of the zero temperature nucleon distribution functions (Fig. 3.18) which might further
suppress any nucleon-driven medium effects in high-energy heavy-ion collisions. Nevertheless,
meson-nucleon interactions are typically much stronger than meson-meson ones, such that even
at full CERN-SpS energies (158–200 AGeV), where the final pion-to-nucleon ratio is about 5:1,
baryons have a substantial impact on pion and ρ-meson properties as has been demonstrated by
several authors.

In one class of models, medium effects in dilepton production rates are again studied by focusing
on the role of the ρ-meson spectral function [140, 114, 47, 147]. As a representative we choose the
most recent version of Refs. [102, 49, 123, 50], where both effects of finite temperature and finite
density have been incorporated. In the baryonic sector the naive VDM, which works well for the
description of purely mesonic processes (see previous Section), is improved by the Kroll-Lee-Zumino
coupling [174] in the transverse part to optimally reproduce photoabsorption data (cf. Sect. 4.1.2).
The dilepton rate is then given by

dRππ→ee

d4q
(q0, ~q) =

α2

π3g2
ρππ

fρ(q0;T )

M2

1

3

[

FL(q0, ~q) + 2FT (q0, ~q)
]

(4.34)

with the transverse transition form factor FT from Eq. (4.19), whereas the longitudinal part, not
being constrained by photon data, is obtained in the naive VDM,

FL(q0, ~q) = −(m(0)
ρ )4 ImDL

ρ (q0, ~q) . (4.35)

Within model-independent approaches, a simultaneous assessment of finite temperature and
finite density effects has been performed by Steele et al. [100, 104] using the chiral reduction
formalism. Here the in-medium dilepton rates are based on the in-medium vector correlator as
outlined in Sect. 2.8.

The thermal rate results employing the in-medium ρ spectral function and the chiral reduction
formalism are confronted in Fig. 4.4. We should stress again that both approaches have been
thoroughly constrained in both their finite density and finite temperature behavior (cf. Sects. 4.1.1
and 4.1.2). However, some differences emerge in the dilepton regime. At low invariant masses
Mee ≤ 0.6 GeV the rates qualitatively agree in that a strong additional enhancement due to the
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Figure 4.4: Three-momentum integrated dilepton rates in a hot meson-nucleon gas at T = 150 MeV
and a nucleon density ρN = 0.5ρ0 (corresponding to a nucleon chemical potential µN = 436 MeV)
in the hadronic approaches of Steele et al. [100] (dashed line) and Rapp et al. [102, 123] (dashed-
dotted line); the solid line corresponds to the full results of Ref. [50], i.e., when additionally
including scattering contributions off thermally excited baryonic resonances at a common baryon
chemical potential µB = µN as described in Sect. 3.2.5.

presence of nucleons is observed. Quantitatively, the spectral function results give up to a factor of
∼ 2 more e+e− yield around Mee ≃ 0.4 GeV – exactly the region where the N(1520) contribution
figures in most importantly. This discrepancy indeed originates from the different assignment of
’background’ and resonance contributions in the photoabsorption spectra: in the chiral reduction
formalism, the γN cross sections are dominated by the non-resonant ’background’ (see left panel
of Fig. 4.1), whereas the most recent ρ spectral function calculations attribute the major strength
to direct ρN resonances, most relevant the N(1520) (see left panel of Fig. 4.2). The important
point is now that when moving from the photon point to the time-like dilepton regime (at small
three-momentum), the resonance contributions are much more enhanced than the more or less
structureless background, which is essentially a kinematic effect1. As we have pointed out in

1Similar conclusions have been reached in Ref. [104]; it has been shown there that when ’artificially’ reducing the
πN background obtained from the chiral reduction formalism in the photoabsorption spectra by a factor of 3 and
assigning the missing strength to the N(1520), the resulting prediction for the dilepton rate in the M = 0.4 GeV
region increases by a factor of 2–3.
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Sect. 4.1.2, these deviations can be resolved by analyzing more exclusive channels in the photoab-
sorption data. A more severe, qualitative difference in the rate predictions of Fig. 4.4 again shows
up around the free ρ/ω mass. Whereas the virial-type density expansion of the chiral reduction
formalism leaves the dilepton yield essentially unchanged, the spectral function result exhibits a
strong reduction of the resonance peak due to a large in-medium broadening of the ρ meson (see
the discussion at the end of the previous Section). Thus, contrary to collective effects, which are
typically driven by strong resummation effects in the real part of the selfenergy, higher order effects
in the imaginary part of the vector meson propagators seem to play an important role. Finally we
remark that the additional inclusion of excitations on thermally excited resonances of type B1B

−1
2

(cf. Sect. 3.2.5) [50] further reinforces the broadening and low-mass enhancement by up to 20%,
see solid curve in Fig. 4.4.

To summarize this Section about the various hadronic dilepton rate calculations one may con-
clude that quite different approaches pursued in the literature so far have reached a reasonable
consensus in the pure mesonic sector. The corresponding enhancement over the ’standard candle’
of free ππ annihilation below the free ρ/ω masses amounts to a factor of ∼ 3−5 at typical temper-
atures around T = 150 MeV. At finite baryon density, due to the stronger nature of meson-baryon
interactions, a substantially stronger impact on in-medium dilepton rates has been found, entailing
more pronounced discrepancies between various models, differing quantitatively in the low-mass re-
gion (by factors of 2–3), and, more importantly, qualitatively as far as the fate of the vector meson
resonance peaks is concerned.

4.2.2 Beyond Conventional Scenarios for Dilepton Enhancement

In this Section we will present some more speculative mechanisms for dilepton production which
conceptually deviate from the rather well established hadronic reactions discussed in the previous
Section. In particular, we will address radiation from quark-antiquark annihilation, disoriented
chiral condensates and a dropping ρ-meson mass as implied by BR scaling.

Quark-Gluon Plasma

At sufficiently high invariant masses as well as temperatures and densities asymptotic freedom of
the quark interactions implies that the rate can be described by perturbation theory. In lowest
order of the strong coupling constant, O(α0

S), it is determined by the free qq̄ → γ∗ → e+e−

annihilation process through a convolution over anti-/quark three-momenta pq̄, pq according to

dRqq̄→ee

d4q
=

∫

d3pq
(2π)3

d3pq̄
(2π)3

∑

q

vqq̄ σqq̄→ee(M) f q(p0
q) f

q̄(p0
q̄) δ

(4)(q − pq − pq̄) , (4.36)

where the total color-averaged qq̄ → ee cross section for each flavor q = u, d, s, . . . is given by

σqq̄→ee(M) = e2q
4πα2

9M2

(

1 −
4m2

q

M2

)− 1
2
(

1 +
2m2

q

M2

)

(4.37)
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with current quark masses mq and fractional quark charges eq = − 1
3 ,+

2
3 . In Eq. (4.36)

vqq̄ =
M
√

M2 − 4m2
q

2ωpq
ωpq̄

(4.38)

denotes the relative velocity between quark and antiquark, and

f q(pq) =
NsNc

exp[u · pq − µq] + 1

f q̄(pq̄) =
NsNc

exp[u · pq̄ + µq] + 1
(4.39)

their Fermi distribution functions including spin-color degeneracy factors as well as the quark
chemical potential µq. The fluid velocity of the plasma relative to the thermal frame is denoted by
uµ . For a plasma at rest uµ = (1, 0, 0, 0) and in the limit of vanishing quark masses the momentum
integrations can be performed analytically yielding [177, 178]

dRqq̄→ee

d4q
=

α2

4π4

T

q
fB(q0;T )

∑

q

e2q ln
(x− + exp[−(q0 + µq)/T ]) (x+ + exp[−µq/T ])

(x+ + exp[−(q0 + µq)/T ]) (x− + exp[−µq/T ])
(4.40)

with x± = exp[−(q0 ± q)/2T ]. For µq = 0 Eq. (4.40) simplifies to

dRqq̄→ee

d4q
=

α2

4π4
fB(q0;T )

(

∑

q

e2q

)

(

1 +
2T

q
ln

[

1 + x+

1 + x−

])

. (4.41)

Note that, apart from the overall Bose factor fB, this result carries a temperature-dependent
correction factor as compared to the widely used O(T 0) approximation. The additional ln-term
gives in fact a negative contribution which becomes significant for invariant masses below Mee ≃
1 GeV, cf. Fig. 4.5. Another noteworthy feature is that with increasing net quark density (µq > 0)
the perturbative emission rate from a QGP decreases slightly at low masses due to the mismatch
between the quark and antiquark Fermi spheres.

Perturbative QCD corrections to the qq̄ rate have been studied, e.g., in Refs. [179, 180, 181]
and turned out to be appreciable, especially when extrapolated to invariant masses well below
1 GeV where the results cease to be reliable. Furthermore, since in the plasma phase at moderate
temperatures, T ≃ (1−2)Tc, the strong coupling constant is still of order 1, nonperturbative effects
might not be small either in this regime. In particular, the gluon condensate is non-vanishing as
discussed in Sect. 2.4. In Ref. [182], e.g., the somewhat speculative existence of an (euclidean)
A4 condensate of type 〈αs

π A
2
4〉 has been shown to generate a strong enhancement in the rate at

low invariant masses. More conservative approaches include instanton-induced interactions [54]
(known to be of prime importance for the nonperturbative QCD vacuum structure and the low-
lying hadronic spectrum) which, in somewhat modified appearance at finite temperature/density
(i.e., as so-called instanton-antiinstanton (I-A) molecules) might still prevail at moderate plasma
conditions [183, 184, 185]; in fact, I-A molecule induced qq̄ interactions, as opposed to single
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Figure 4.5: Three-momentum integrated perturbative qq̄ → e+e− annihilation rates at temperature
T=150 MeV: for µq = 0 (dashed line) and µq = 200 MeV (solid line) using Eq. (4.40), and at
µq = 0 using Eq. (4.41) to order O(T 0) (dashed-dotted line); all curves have been obtained for
three massless quark flavors.

instantons, lead to nonzero contributions in the vector channel, which, however, seem to be quite
small [184].

A generic feature of dilepton production rates from the plasma phase are the so-called van-Hove
singularities [179, 186, 187], i.e., (possibly) sharp structures as a function of the dilepton energy.
They originate from a softening of the quark dispersion relation in the medium (the so-called
’plasmino’ branch [179]) and are typically located at rather small energies below ∼ 0.5 GeV. On
the other hand, finite imaginary parts in the quark selfenergy as well as smearing effects when
accounting for finite three-momenta of the virtual photon [188] will damp these peaks. Also,
soft Bremsstrahlung-type processes involving gluons such as qq̄ → gγ∗ or qg → γ∗q may easily
overshine the van-Hove structures at low M [179], even after including Landau-Pomeranchuk type
effects [189], i.e., destructive interferences in the coherent emission.

Disoriented Chiral Condensate

Another possibility of increased (soft) dilepton radiation related to the chiral phase transition has
been associated with so-called Disoriented Chiral Condensates (DCC’s), which have been suggested
to develop in the cooling process of high-energy heavy-ion collisions [190, 191]. Assuming the
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formation of a chirally restored plasma phase in the early stages of the collision, a sufficiently rapid
transition into the chirally broken phase might not select the standard ground state characterized
by a single scalar (sigma) condensate 〈σ〉 = 〈q̄q〉 6= 0, but rather ’jump’ into a chirally rotated
(metastable) state carrying a nonvanishing pseudoscalar (i.e., pion-) condensate 〈~π〉 = 〈q̄γ5~τq〉 6= ~0.
In particular, this state carries nonzero net isospin, which provides the basis for detecting it
in event-by-event analyses of heavy-ion collisions through anomalous fluctuations in, e.g., the
number of π0’s. Since the pion condensates inherent in the DCC constitute an enhanced source
of predominantly soft pions, it has soon been realized that within this coherent state a copious
annihilation into soft dilepton pairs might occur, similar to the standard ππ annihilation, only at
much lower invariant masses. In fact, the dominant yield from such coherent radiation will be
concentrated well below the two-pion threshold [192]. Therefore, such a signal will be very difficult
to discriminate in a heavy-ion collision due to the notoriously large background from π0 → γe+e−

Dalitz decays after freezeout. However, as suggested in Ref. [193], non-coherent pions from the
surrounding heat bath may annihilate on the coherent state, forming dilepton pairs of typical
invariant masses in a rather narrow window around M ≃ 2mπ, thus avoiding the π0 Dalitz-decay
region. Starting from the standard linear σ-model Lagrangian,

Llsm =
1

2
∂µφ∂

µφ− 1

4
λ(φ2 − v2)2 +Hσ , (4.42)

the coupling to the electromagnetic current is realized through the third component of the isovector
current as

jemµ (x) = [~π × ∂µ~π]3

=
i

2

[

π†(x)
↔
∂ µ π(x)π(x)

↔
∂ µ π

†(x)
]

, (4.43)

where the pion fields in charge basis are related to the isospin fields as

π(x) =
1√
2

[π1(x) − iπ2(x)]

π†(x) =
1√
2

[π1(x) + iπ2(x)] . (4.44)

The electromagnetic current-current correlator entering the dilepton rate can then, employing a
mean-field treatment, be expressed by pion two-point functions as

Wµν(x, y) = 〈π†(x)π(x)〉 〈∂µπ(x)∂νπ
†(y)〉 + 〈∂µπ†(x)∂νπ(x)〉 〈π(x)π†(y)〉

−〈∂µπ(x)π†(x)〉〈π†(x)∂νπ(y)〉 − 〈∂π†(x)π(x)〉〈π(x)∂νπ
†(y)〉 . (4.45)

Further following Ref. [193], the charged pion fields are expanded in creation and annihilation

operators (a†k, ak for positive and b†k, bk for negative pions) with accompanying mode functions fk
as

π(~x, t) =

∫

d3k

(2π)3
ei
~k·~x

[

fk(t)ak + f∗
k (t)b†−k

]

. (4.46)
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The time evolution of the pion fields, and thus of the dilepton production rate, is then determined
by specifying the mode functions together with appropriate initial conditions for the σ mean-field.
Results have been obtained for both a purely thermal scenario (pion gas) and a DCC (’quench’)
scenario at equivalent initial energy density. A strong enhancement (factors of ∼ 10–50) of the
DCC based rates over the thermal ones, Eq. (4.29), was found at invariant masses around 2mπ,
but restricted to rather low total three-momenta |~q| ≤ 300− 500 MeV. The quoted ranges roughly
reflect the uncertainty in the underlying approximations as estimated from a second calculation
using classical equation-of-motion techniques to describe the time evolution of pion and σ fields.

’Dropping’ Rho-Meson Mass

The most prominent approach that has been successfully applied to explain the low-mass dilepton
enhancement in the CERN-SpS experiments in connection with the chiral restoration transition is
based on the BR scaling conjecture [45] for effective chiral Lagrangians. In the dilepton context,
the most relevant feature is the decrease of the ρ-meson mass at finite temperature and density
which, reinforced through enhanced thermal occupation factors at lower masses, leads to a strong
excess of e+e− pairs below the free ρ mass through the ππ-annihilation channel. As long as
no collisional broadening in the ρ width is included, the e+e− yield is sharply centered around
the corresponding in-medium mass m∗

ρ. Unlike in the DCC scenario, where the enhancement is
localized at invariant masses around 2mπ, m

∗
ρ will ’sweep’ over the entire low-mass region in the

course of a heavy-ion collision due to the continuous cooling and dilution of the system from the
chiral restoration point towards freezeout. More realistically, also in the dropping mass scenario
the ρ-meson spectral function will undergo a substantial broadening in the hot and dense hadronic
medium. In particular, if the decrease in the ρ mass is (partially) identified with resonant S-wave ρ-
N(1520)N−1 interactions (as discussed in detail in Ref. [103]), then large in-medium widths of the
N(1520) resonance (as inferred from nuclear photoabsorption data) inevitably induce a large width
of the low-lying N(1520)N−1 state. Since such an increase in width affects both the denominator
and the numerator of ImDρ, entering the dilepton rate (4.29), the broadening does in essence not
reduce the total number of produced pairs.

Off Equilibrium Pion Gas

Another class of non-conventional scenarios with potential impact on dilepton radiation is asso-
ciated with off-equilibrium situations. Deviations from thermal equilibrium are usually addressed
within kinetic theory or transport-type approaches, and the preferred method to assess dilepton
yields under these conditions should be numerical simulations. Fortunately, in the case of heavy-
ion collisions, thermalization of the hadronic system seems to require only a few rescatterings, so
that local thermal equilibrium (in the comoving frame of collective expansion) is established on
time scales which are much shorter than the typical lifetime of the hadronic fireball [194, 195]. A
fast approach to thermal equilibrium is further corroborated in scenarios with initially deconfined
matter as demonstrated, e.g., in QCD inspired event generators such as HIJING [196] or parton
cascades [15]. Complete chemical equilibration, however, is by far less certain; in an expanding
pion gas, e.g., the empirical absence of pion number changing processes in low-energy ππ interac-
tions (i.e., for invariant masses below Mππ ≃ 1 GeV) together with the assumption of isentropic
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expansion entails the build-up of a finite pion chemical potential µπ > 0 towards lower tempera-
tures [197]. Another possibility is that early hadron formation processes do not transform into a
chemically equilibrated initial hadron gas but rather follow, e.g., string dynamics [198].

The field-theoretical implementation of a finte µπ into the thermal dilepton production rate
from ππ annihilation has been studied by Baier et al. [41, 199] in the real-time formalism of finite
temperature field theory. For practical purposes they worked in an approximation which amounts
to introducing the chemical potential through Bose distribution functions as

f̃B(k0;µπ, T ) =

{

fB(|k0|;µπ, T ) , k0 > 0
−[1 + fB(|k0|;µπ, T )] , k0 < 0

(4.47)

with the standard finite-µπ Bose factor fB(|k0|;µπ, T ) = [e(|k0|−µπ)/T − 1]−1. In the Boltzmann
approximation and for situations not too far off equilibrium it was shown that the production rate
in the standard one loop approximation (i.e., Eq. (4.29) with Σρππ given by the free ππ bubble)
simply picks up an overall enhancement factor according to

dRππ→ee

d4q
(q0, ~q;µπ) = (1 + 2δλ)

dRππ→ee

d4q
(q0, ~q;µπ = 0) (4.48)

with δλ = λ− 1 and the ’fugacity’ λ = eµπ/T (to lowest order in µπ/T one recognizes (1 + 2δλ) ≃
e2µπ/T ).

The situation becomes more complicated if one includes higher thermal loop corrections in
the pion propagators of the intermediate two-pion states. Without going into further details, we
mention that the use of off-equilibrium distribution functions then implies the appearance of terms
involving products of retarded and advanced propagators, schematically given as

DR
π (k) DA

π (k) =
1

k2 −m2
π + isgn(k0)ǫ

1

k2 −m2
π − isgn(k0)ǫ

=
1

(k2 −m2
π)

2 − ǫ2
, (4.49)

which apparently exhibit ill-defined poles, the so-called ’pinch-singularities’. They have to be
regularized, e.g., by accounting for thermal pion selfenergies Σπ with finite imaginary parts ImΣπ 6=
0, as was done in Refs. [41, 199]. As a somewhat surprising result, to leading order in 1/ImΣπ the
pinch term actually generates an overall reduction (enhancement) of the dilepton production rate
for positive (negative) µπ.

4.2.3 Quark-Hadron Duality

A key question that is at the heart of the entire heavy-ion physics program concerns discriminating
signatures for the possible occurrence of a chiral restoration phase transition. In our context of
low-mass dilepton observables we have already qualitatively eluded to some of them in the preceed-
ing Section, most notably DCC formation (characterized by a strong enhancement in the two-pion
threshold region at low three-momenta) and the dropping ρ-meson mass (characterized by a com-
plete extinction of the yield around the ρ peak, accompanied by a strong enhancement for lower
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invariant masses). However, there is also the possibility that in the vicinity of the phase transition
the dilepton radiation from the hot and dense fireball does not depend on whether it is in the chirally
broken confined phase or the chirally restored QGP phase. In other words, in a certain temperature
and density window around the transition region the dilepton rate calculations using either hadronic
or quark-gluon degrees of freedom merge together, i.e., the two descriptions become dual. Although
this would imply that there is no unique dilepton signature which could distinguish the two phases,
it is a highly non-trivial scenario. In the low-mass region, say for invariant masses Mll ≤ 1.5 GeV,
it requires that the hadronic side, which at low densities/temperatures is dominated by rather nar-
row resonances ρ, ω, φ, ρ′, etc., develops into a supposedly more or less structureless quark-gluon
world (although the latter might still involve nonperturbative interactions). To illustrate that
there are indeed indications for such a scenario [50, 200], we compare in Fig. 4.6 the lowest-order
perturbative QCD qq̄ annihilation rates with the (most recent) full hadronic in-medium spectral
function calculations at identical temperatures and equivalent baryon-/quark-chemical potential.
Already at moderate temperature (T = 140 MeV) and density (ρB = 0.75ρ0) they are not very

0.0 0.5 1.0 1.5
Mee [GeV]

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

dN
/d

4 xd
M

2  [f
m

−
4 
G

eV
−

2 ]

free ππ
in−medium ππ
perturbative qq 

T=140MeV

0.0 0.5 1.0 1.5
Mee [GeV]

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

dN
/d

4 xd
M

2  [f
m

−
4 
G

eV
−

2 ]

free ππ
in−medium ππ
perturbative qq 

T=180MeV

Figure 4.6: Three-momentum integrated dilepton production rates at a baryon chemical potential
µB = 408 MeV and temperatures T = 140 MeV (left panel) and T = 180 MeV from free ππ
annihilation (dashed curves), in-medium ππ annihilation within the most recent hadronic many-
body approach of Refs. [47, 102, 123, 50], and from lowest order QCD qq̄ annihilation (dashed-
dotted curves); the latter two are calculated at equivalent baryon/quark chemical potentials of
µq = µB/3 = 136 MeV.

different from each other (left panel), especially when contrasted with the result for free ππ an-
nihilation. Nevertheless, the in-medium ππ curve still exhibits a clear trace of the ρ peak. The
latter is completely ’melted’ at T = 180 MeV, ρB = 4ρ0 leading to remarkably close agreement
with the qq̄ result in the invariant mass range of Mee ≃ (0.5 − 1.0) GeV (one should note that
the deviations between the partonic and the in-medium hadronic results towards low Mee might
be reduced once soft ’Bremsstrahlung’-type graphs are accounted for in the QGP environment.
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On the other hand, as discussed in Sect. 4.2.2, plasmino modes can lead to additional nontrivial
structures in the dilepton production rate [179, 186, 187] below Mee ≃ 0.5 GeV. The disagreement
beyond 1 GeV is mainly caused by missing states involving more than two pions (such as the
ρ′(1450)) in the hadronic description of the free vector correlator, most notably four-pion type πa1

annihilation graphs, see also below). From an experimental point of view this means that, even
if no distinct signatures for the appearance of new phases are extractable from low-mass dilepton
production, the absolute yields and spectral shape are very different from free ππ annihilation and
contain rather specific information on properties of strongly interacting matter in the vicinity of
the phase boundary. We will reiterate this point within a detailed analysis of low-mass dilepton
observables below.

The duality arguments can be made more rigorous starting from the intermediate-mass region,
1.5 GeV∼< Mll ∼<3 GeV. Conceptually the situation there is more transparent: firstly, one might
expect that at these energies the qq̄ annihilation process is already rather well described by a
perturbative treatment. In fact, there is strong empirical support for this expectation from the
well-known e+e− → hadrons cross section, which can be accounted for by the perturbative result
for e+e− → qq̄ within a 30% accuracy in the above mentioned range, i.e.,

σ(e+e− → hadrons) ≃ 4πα2

3M2
Rpert (4.50)

with the famous σ(e+e− → hadrons)/σ(e+e− → µ+µ−)-ratio

Rpert = Nc
∑

q

(eq)
2 . (4.51)

Secondly, since at ∼ 2 GeV one is probing space-time distances of the order of 0.1 fm, possible
corrections from the surrounding heat bath should also be small. This gives some confidence that
the perturbative expression for the dilepton emission rate from a quark-gluon plasma (4.36) is a
reasonable approximation at intermediate masses. The challenge then is to match this result to a
hadron-based calculation at temperatures in the vicinity of Tc.

In Ref. [201] this type of duality has been enforced in the spirit of a Hagedorn-type hadronic
mass spectrum, where the complicated structure of overlapping, interacting hadronic resonances is
encoded in some simple spectral density ξh(M). Using VDM for the dilepton decays of the vector
mesons,

ΓV→ll(M) =
1

g2(M)

4α2M

3
, (4.52)

the corresponding three-momentum integrated dilepton production rate at temperature T in Boltz-
mann approximation,

dRV→ll

dM2
= ξV (M)

α2M2T

6πg2(M)
K1(M/T ) (4.53)

(K1: modified Bessel function), is then determined by the subspectrum of vector mesons, ξV (M),
and the corresponding VDM coupling 1/g(M). Further assuming that the e+e− → hadrons cross
section is saturated by vector mesons,

σ(e+e− → V ) =
(2π)3α2

g2(M)M
ξV (M)
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≃ σ(e+e− → h) (4.54)

one can trade the dependence on g(M), ξV (M) for the experimental cross section ratio as [201]

dRV→ll

dM2
=
α2MT

6π3
K1(M/T ) Rexp(M) , (4.55)

where Rexp(M) now also accounts for (moderate) deviations from the lowest-order QCD result,
Eq. (4.51). A similar procedure has been pursued by Huang [79] who additionally included lowest-
order temperature effects through the vector-axialvector mixing phenomenon induced by soft pion
contributions from the heat bath (cf. Sect. 2.6), leading to

dRll
dM2

=
4α2MT

2π
K1(M/T )

(

ρ◦em(M) − (ǫ− ǫ2

2
) [ρ◦V (M) − ρ◦A(M)]

)

(4.56)

with ǫ = T 2/6f2
π (in the chiral limit and for two flavors). The first term involving the full vacuum

electromagnetic correlator coincides with (4.55), whereas the free vector and axialvector correlators
are responsible for the soft pion corrections. Huang also extracted them from data, as delineated
in Sect. 2.6, see Eqs. (2.92) and (2.93). It turns out that the finite-temperature corrections are
marginal for dilepton invariant masses 1.5 GeV ≤Mee ≤ 2.5 GeV and, moreover, that the ’empir-
ical’ results using Eq. (4.55) closely follow the perturbative results (4.51), cf. the open circles and
the dotted line in Fig. 4.7. This is not surprising recalling that the ’duality threshold’ in vacuum is
situated atM ≃ 1.5 GeV. On the other hand, it was pointed out in Ref. [201] that, when comparing
the ’empirically’ inferred rate (4.55) to the phenomenological hadronic rate calculations in terms
of binary collisions of Ref. [119], the latter fall short by a factor of 2–3. However, in the hadronic
treatment of Ref. [119] contributions from a1(1260) mesons (in particular πa1 → ll), which are
most relevant for the intermediate-mass region, had not been included at the time. This has been
improved later on [202, 203, 204] and shown to resolve the afore mentioned discrepancy (Fig. 4.7).
The yield from πa1 processes was indeed found to dominate other sources such as πω, πρ, ππ or
KK̄ channels for invariant masses 1.2 GeV≤Mll ≤ 2.2 GeV. In particular, it results in good agree-
ment with both the perturbative qq̄ and the ’empirical’ calculations including the lowest order V -A
mixing effect [79], Eq. (4.56), down to invariant masses of about 1 GeV, cf. solid line, dotted line
and open points, respectively, in Fig. 4.7. In fact, the πa1 → ρ′ → e+e− contributions exactly
correspond to the mixing effect since thermal pions colliding with an a1 meson ’move’ strength
from the axialvector to the vector channel! Also shown in Fig. 4.7 are the results obtained within
the chiral reduction formalism [205]; here the free correlators have been determined from a set of
12 ρ, ω, φ, a1 and K1 resonances below M = 2 GeV, and by a parameterization of Rexp(M) above.
Single-meson final-state corrections have then been inferred via chiral Ward identities. Again, the
agreement with the other approaches is quite satisfactory.

As we will see in Sect. 4.6.6, the intermediate-mass emission rates as deduced above provide a
good description of experimental µ+µ− spectra measured by the HELIOS-3 collaboration [24] at
full CERN-SpS energies (200 AGeV), which show an excess of a factor of 2–3 in S+W as compared
to p+W collisions. Similar observations have been made by the NA50/NA38 collaboration [25,
27], and the most natural explanation seems to be thermal radiation. This further supports the
theoretical arguments for quark-hadron ’duality’ in intermediate-mass dilepton production. Since
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Figure 4.7: Three-momentum integrated dilepton production rates in the intermediate-mass re-
gion at a temperature T = 150 MeV, as obtained in various approaches; solid, long-dashed and
dashed-dotted curve: hadronic calculations of Ref. [204] with different ways of estimating the πa1

contribution; short-dashed curve: chiral reduction approach [205]; dotted curve: using the pertur-
bative value Rpert = 2 in Eq. (4.55) [201]; open circles: using empirical spectral densities including
lowest order temperature corrections according to Eq. (4.56) [79]. The plot is taken from Ref. [204].

the intrinsic energy scales in this region are already suggestive for a perturbative treatment within
the partonic picture, the agreement with the phenomenological hadronic calculations above 1.5 GeV
may be considered as the more intriguing part (it will still be worthwhile to understand the origin
of the 30–40% deviations of Rexp(M) from the lowest-order perturbative qq̄ results). As we have
argued already in Sect. 2.6, medium effects start to become visible below 1.5 GeV, where the
lowest-order in temperature V -A mixing establishes a three-fold degeneracy between vector and
axialvector correlators on the one hand (dictated by chiral symmetry), and the perturbatively
calculated qq̄ rates on the other hand, reaching down to about 1 GeV.

4.3 Photon Production Rates

In our analysis of electromagnetic observables in heavy-ion reactions we will also address spectra of
single (real) photons. This is motivated by the observation that every process capable of creating a
dilepton pair can, in principle, lead to the radiation of a (real) photon: the latter simply constitutes
the M2 → 0 limit of the virtual (time-like) photon which occurs as an intermediate state in each
dilepton-producing reaction. This intimate relation has already been extensively exploited for
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imposing model constraints on in-medium effects through photoabsorption data on the nucleon
and nuclei, cf. Sect. 4.1.2. In Sect. 4.7 the reverse process, i.e., photon production in heavy-ion
reactions, will be used as an additional consistency check.

Theoretical calculations for photon production rates have been performed for both the hadronic
and the plasma phases. In the latter, one has mainly focused on lowest-order QCD calculations for
two-body reactions of the annihilation type, qq̄ → gγ, as well as the Compton type, q(q̄)g → q(q̄)γ.
The first analysis of hadronic photon rates has been performed in Ref. [206] for a heat bath of the
lightest, non-strange pseudoscalar (π, η) and vector mesons (ρ, ω). The most important reactions
have been attributed to the analogues of the QGP processes, ππ → ργ and πρ→ πγ, as well as the
vector meson decay channels ω → πγ and ρ→ ππγ. The conclusion of Ref. [206] was summarized
as ’the hadron gas shines as brightly as the quark-gluon plasma’, i.e., the photon production rates
of both phases closely coincided over a large range of photon energies Eγ ≥ 0.5 GeV. Later on the
importance of the a1(1260) meson – not included in Ref. [206] – as an intermediate state in πρ→
a1 → πγ has been realized, especially for photon energies above 0.5 GeV. The impact of nucleons on
photon production has been explicitely discussed, e.g., in Ref. [100]. In fact, analogous information
can be readily extracted from any dilepton rate calculation involving baryonic processes [47, 147, 91]
by extrapolating it to the photon point. To be specific, the differential photon production rate
can be obtained from the dilepton expression (4.23) by simply replacing the lepton tensor by the
photon tensor

Pµν = 4πα

∫

d3p

(2π)32p0

∑

λ

εµ
∗(λ, p) εν(λ, p) δ

(4)(p− q) (4.57)

such that
dRγ
d4q

= PµνW
µν , (4.58)

which can be simplified to

q0
dRγ
d3q

=
α

4π2
W (q) (4.59)

with q0 = |~q| and W (q) ≡ gµνW
µν . In the (improved) VDM, e.g., the photon rate becomes

q0
dRγ
d3q

=
α

π2g2
ρ

fρ(q0) FT (q0, |~q| = q0) (4.60)

with the transverse transition form factor from Eq. (4.19).

4.4 Space-Time Evolution of Heavy-Ion Collisions

Dilepton spectra as measured in (ultra-) relativistic heavy-ion collision experiments might be, at
least conceptually, split up into two components: the first one arises from the phase where the
system is characterized by strong interactions among its constituents, as a result of which a certain
amount of photons (real and virtual) is radiated. Once the hadronic system has reached a degree of
diluteness where the short-range strong interactions are no longer effective (the so-called hadronic
freezeout stage), all unstable resonances decay according to their vacuum lifetimes, with some
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probability into radiative channels. Therefore, this second component (which has become known
as the ’hadronic cocktail’ contribution to the dilepton spectra) does not contain any information
on in-medium properties of the parent particles. However, it can be reasonably well reconstructed
once the hadronic abundances at freezeout are known (this may not be that evident and we will
come back to this issue in Sect. 4.6.1). On the other hand, given one’s favorite dilepton production
rate in hot and dense matter, the calculation of the first component requires the knowledge of
the space-time history of the colliding and expanding nuclear system. This is one of the major
objectives in relativistic heavy-ion physics by itself. In the following we will discuss three different
approaches to simulate the reaction dynamics in their application to evaluate dilepton spectra.

4.4.1 Hydrodynamical Approach

The hydrodynamic description of heavy-ion collisions is based on the assumption that the strong
interactions in the matter are able to maintain local thermal equilibrium throughout the expansion
of the nuclear system until some breakup stage (the freezeout). Thus, each fluid cell in its rest frame
is characterized by standard thermodynamic variables such as pressure, temperature and (energy-)
density. For this reason the hydrodynamic framework is the most natural one for the implemen-
tation of equilibrium dilepton rates, as the latter are formulated in exactly the same variables. It
has a long tradition in its application to high-energy reactions involving high-multiplicity hadronic
final states, starting from hadron-hadron [207, 208] (or even e+e− [209]) collisions to the more
modern field of relativistic nucleus-nucleus reactions [210, 211, 212, 213, 214]. The basic equations
are the conservation of energy and momentum, which can be expressed in a Lorentz-covariant form
as

∂µT
µν(x) = 0 (4.61)

through the energy-momentum tensor T µν(x). For an ideal fluid, i.e., neglecting any viscosity, the
latter is given by

T µν(x) = [ǫ(x) + p(x)] uµ(x)uν(x) − p(x)gµν (4.62)

with local energy-density ǫ(x), pressure p(x) and fluid 4-velocity uµ(x). Additionally conserved
currents, such as the baryon number current, jµB = ̺Bu

µ, or the strangeness current are enforced
by pertinent continuity equations,

∂µj
µ
B = 0 , etc. . (4.63)

Let us also mention here that in the later stages of heavy-ion collisions the pion number might be
effectively conserved due to the empirical absence of pion-number changing processes at small cm
energies (see also Sect. 4.2.2). In this case, one has a further continuity equation,

∂µj
µ
π = 0 , (4.64)

which induces a nonzero pion chemical potential.
The basic ingredient governing the hydrodynamic evolution of the system is the equation of

state (EoS), i.e., the dependence of the pressure on energy- and baryon-density, p = p(ǫ, ̺B).
For heavy-ion collisions at (ultra-) relativistic energies, the early stages can be barely considered
as proceeding under any kind of equilibrium conditions. In the hydrodynamic description, one
therefore has to assume a so-called formation time τ0 (typically around 1-2 fm/c) together with
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some initial conditions for the energy density. Given a specific EoS, these have to be determined by
requiring a reasonable fit to the finally observed hadronic spectra, with some additional freedom
of how and at which temperature the freezeout occurs. The differential equations for the evolution
are usually solved numerically on a space-time grid using finite-differencing methods.

Many interesting issues can be addressed within the hydrodynamic framework, as, e.g., the
interrelation between collective flow and freezeout temperature [211] or properties of the EoS in
connection with potential phase transitions in strongly interacting matter [215, 213, 216]. Here,
we restrict ourselves to the evaluation of dilepton spectra. Given a thermal production rate,
dR/d4q, the total spectrum from in-medium radiation is straightforwardly obtained as a sum over
all timesteps in the evolution and over all fluid cells of the grid of individual temperature and
density above the freezeout value. The contribution of a single cell is given by

(

dNll
d4q

)

cell

=

(

dNll
d4qd4x

(q0, ~q;Tcell, µB,cell)

)

Vcell ∆t , (4.65)

where the time-step width ∆t and cell 3-volume Vcell are to be taken in the local rest frame
of the cell. As there is no preferred direction in this frame, the virtual photon of invariant mass
M = (q20−~q2)1/2 and three-momentum ~q can be assumed to decay isotropically into dileptons. The
resulting two lepton tracks then have to be boosted to the lab-system according to the local fluid
velocity uµ, where possible experimental acceptance cuts can be readily applied. However, in some
practical applications, this procedure might be too time consuming. An approximate but more
efficient way is to first integrate over the (possibly complicated) three-momentum dependencies to
obtain dR/dM2 and then regenerate rapidity and transverse momentum distributions according
to [217]

dR

dM2dyqtdqt
=

1

2MTK1(M/T )
e−E/T

dR

dM2
(M,T ) (4.66)

with E = qµu
µ. This procedure has been employed, e.g., in the hydrodynamic models of Refs. [214,

43], where dilepton spectra at the fulll CERN-SpS energies have been analyzed. In both works
the hydrodynamic equations have been solved locally in (2+1) dimensions assuming cylindrical
symmetry of the collision system (which implies a restriction to central collisions).

A further simplification can be made in the limit of ultrarelativistic collision energies, as sug-
gested by Bjorken [218]. In this case the longitudinal expansion is dominant and boost invariance
can be assumed so that the longitudinal velocity scales with the distance from the central region
as vL = z/t. Neglecting transverse expansion, the 4-volume element simply becomes

d4x = d2rtdzdt = πR2
tdyτdτ (4.67)

with the proper time τ = (t2 − z2)1/2 and cms rapidity

y =
1

2
ln
t+ z

t− z
. (4.68)

The transverse extension Rt is typically taken close to the overlap radius of the colliding nuclei.
From local entropy conservation,

∂(suµ)

∂xµ
= 0 , (4.69)

109



one finds the entropy-density to behave as s(τ) = s(τ0)τ0/τ . Moreover, for isentropic expansion
one can relate the final-state hadron multiplicity to the formation time τ0, initial entropy-density
and transverse size as [219]

dNh
dy

≃ πR2
t τ0 s(τ0) . (4.70)

If one further assumes an ideal gas EoS, the temperature scales as

T (τ) = T0

(

τ

τ0

)−1/3

. (4.71)

The dilepton rates are then easily integrated over the time history of the hot nuclear system,
as has been done, e.g., in Refs. [10, 177, 115, 220] or, specifically for CERN-SpS conditions at
158–200 AGeV in Refs. [40, 221, 41, 178].

The contribution to the dilepton spectrum from hadron decays after freezeout proceeds along
similar lines as in transport calculations (see the following Section).

The discussion of the actual results for the final dilepton spectra is deferred to Sect. 4.6 where
it will be put into perspective in comparison with other dynamical approaches for the heavy-ion
reaction dynamics.

4.4.2 Transport Simulations

The transport-theoretical approach has been extensively used in the past in various facets to
describe heavy-ion reaction dynamics over a broad range of collision energies. Among these are the
Boltzmann-Uehling-Uhlenbeck (BUU) approach [222] and its relativistic extensions (RBUU) [223,
224], Quantum Molecular Dynamics [225] and its relativistic versions RQMD [226], UrQMD [227],
or the Hadron-String Dynamics (HSD) [195].

In the relativistic treatments the evolution dynamics of the two colliding nuclei are governed
by a coupled set of (covariant) transport equations for the phase-space distributions fh(x, p) of
hadron h,

{(

Πµ − Πν∂
p
µU

ν
h −M∗

h∂
p
µU

S
h

)

∂µx +
(

Πν∂
x
µU

ν
h +M∗

h∂
x
µU

S
h

)

∂µp
}

fh(x, p)

=
∑

h2h3h4...

∫

d2d3d4 . . . [G†G]12→34...δ
(4)(Π + Π2 − Π3 − Π4 . . .)

×
{

fh3
(x, p3)fh4

(x, p4)f̄h(x, p)f̄h2
(x, p2) − fh(x, p)fh2

(x, p2)f̄h3
(x, p3)f̄h4

(x, p4)
}

. . . .

(4.72)

The lhs describes the motion of particle 1 under consideration in momentum-dependent relativistic
mean fields USh (x, p) and Uµh (x, p), which correspond to the real part of the scalar and vector hadron
selfenergies, respectively. The rhs represents the collision term for the process 1 + 2 → 3 + 4 + . . .
involving momentum integrations for incoming particle 2 as well as all outgoing particles 3, 4, . . ..
The associated ‘transition rate’ W ≡ [G+G]12→34...δ

(4)(Π+Π2−Π3−Π4 . . .) is given in terms of the
relativistic G-matrix (i.e., the in-medium scattering amplitude). For on-shell two-body scattering
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the transition rate can be expressed through the differential cross section as

W = s
dσ

dΩ
(s, θ) δ(4)(Π + Π2 − Π3 − Π4) (4.73)

with cms energy s = (Π + Π2)
2 and scattering angle θ. The hadron quasiparticle properties in

Eq. (4.72) are defined via the mass-shell constraint [228], characterized by δ(ΠµΠ
µ −M∗2

h ), with
effective masses and momenta given by

M∗
h(x, p) = Mh + USh (x, p)

Πµ(x, p) = pµ − Uµh (x, p) , (4.74)

while the phase-space factors
f̄h(x, p) = 1 ± fh(x, p) (4.75)

account for Pauli blocking or Bose enhancement, depending on the type of hadron in the final
and initial state. The ellipsis in Eq. (4.72) indicate further contributions to the collision term
with more than two hadrons in the final/initial channels. The transport approach (4.72) is fully
specified by in-medium potentials USh (x, p) and Uµh (x, p) (µ = 0, 1, 2, 3), which determine the mean-
field propagation of the hadrons, and by the transition rates G†Gδ(4)(. . .) in the collision term
that describe the scattering and hadron production/absorption rates. Clearly, these quantities
should be in accordance with empirical information as much as possible. Therefore, a frequently
used model for the underlying microscopic mean-field potentials is the σ−ω (Walecka) model [229]
(also known as ’Quantum Hadrodynamics’ or QHD) which accounts for the ground-state properties
of nuclear matter as well as proton-nucleus scattering, once momentum-dependent corrections are
properly included. To make a more direct link to the underlying quark structure, which should
become relevant at full CERN-SpS energies, the ideas of the Walecka model have been extended
to couple the mean fields to the constituent quarks within the hadrons [37], without distorting the
nuclear matter properties. In the HSD approach, where the (soft) hadronic dynamics are also based
on (chiral) quark dynamics along the lines of NJL-models, extra care has been taken to correctly
handle the ’hard’ processes (relevant in the collision term). This has been achieved by employing
the LUND string fragmentation model [198], which correctly describes inelastic hadronic reactions
over a wide energy regime. The HSD model has been successfully applied to heavy-ion reactions
ranging from SIS (1 AGeV) to CERN-SpS (200 AGeV) energies, see Ref. [195] for a comprehensive
presentation.

In the transport framework, dilepton observables can be calculated with relative ease by incor-
porating the relevant process in the collision term using the corresponding cross sections. In the
case of ππ annihilation, which in VDM proceeds through ρ-meson formation, one has

σπ+π−→e+e−(M) = σπ+π−→ρ0(M) Γρ0→e+e−(M)/Γtotρ0

=
4πα2

3

pπ
M3

|Fπ(M)|2 (4.76)

with the electromagnetic form factor Fπ and the pion decay momentum pπ = (M2/4 −m2
π)

1/2.
Since electromagnetic processes are suppressed by a factor α = 1/137 (for dilepton production
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by even a factor of α2, i.e., four orders of magnitude), the feedback on the heavy-ion reaction
dynamics can be neglected. To account for decays of ρ mesons which are not produced in the ππ
channel but, e.g., in πN or NN collisions, one integrates their (time-dependent) abundance in the
fireball over its lifetime tfo according to [37, 230]

dNρ→ee

dM
=

tfo
∫

0

dt
dNρ0(t)

dM
Γρ0→ee(M) , (4.77)

where dNρ0(t)/dM is the number of ρ mesons per invariant mass bin dM at time t. In fact, the
same treatment can be applied to ρ mesons produced in the ππ channel, but then the latter should
no longer be accounted for through Eq. (4.76) to avoid double counting. Without any further
medium modifications both variants have been shown to be equivalent [231]. For ω and φ mesons
relations analogous to Eq. (4.77) hold. Note, however, that apart from the absolute abundances
of the vector mesons (which should be similar for ρ0 and ω and somewhat suppressed for the φ
due to its higher mass) the key quantity which determines the dilepton yield in Eq. (4.77) are the
absolute values of the dilepton decay widths. The (on-shell) numbers are

Γ(ρ0 → ee) = 6.77 ± 0.32 keV

Γ(ω → ee) = 0.60 ± 0.02 keV

Γ(φ→ ee) = 1.37 ± 0.05 keV , (4.78)

clearly indicating the prevailing character of the ρ meson for radiation originating from the in-
teracting hadronic system. Three-body decays into dilepton channels are evaluated in a similar
fashion, e.g., for a1(1260) → πee:

dNa1→πee

dM
=

tfo
∫

0

dt Na1
(t)

dΓa1→πee

dM
(4.79)

with Na1
(t) being the number of a1 mesons present at time t. The differential Dalitz-decay width

is given via the radiative decay width Γa1→πγ = 0.64 MeV as [230]

dΓa1→πee

dM
=

2α

3π

Γa1→πγ

M

[

(m2
a1

+M2 −m2
π)

2 − 4m2
a1
M2)

]3/2

(M2
a1

−m2
π)

3
(4.80)

(this expression is reminiscent of Eq. (4.1) after stripping off the hadronic and VDM form factors
from the latter).

Due to the above argument, also transport analyses have primarily investigated in-medium
effects in dilepton production by focusing on modifications of the ρmeson (or ππ annihilation). The
most straightforward effect to incorporate is to simply change the in-medium ρ mass (as motivated
by theoretical predictions such as BR scaling discussed in Sect. 3.2.1). It can be accommodated by
appropriate mean-fields in the transport equations, together with replacing the free masses mρ by
m∗
ρ in Eqs. (4.76) or (4.77), as has been done, e.g., in Refs. [38, 37, 39, 232, 230, 233]. On the other
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hand, medium modifications which go beyond the mean-field treatment of on-shell quasiparticles
are not easily implemented. This is obvious for the case in which the in-medium widths of the
propagated hadrons become so large that they lose their quasiparticle nature. Although there is
no satisfactory solution to this problem yet (see Ref. [234, 235] for recent progress), some attempts
have been made to account for the broadening effect of the ρ in a transport framework. In
Ref. [36] the cross section approach based on Eq. (4.76) has been employed by simply multiplying
σπ+π−→e+e−(M) with a temperature-dependent ’in-medium correction factor’, which is determined
as the ratio

Rmed(M,T ) ≡
[

dR/dM2d3q
]med

q=0

[dR/dM2d3q]freeq=0

(4.81)

of the (equilibrium) dilepton production rate for free ππ annihilation over the in-medium one [113].
To assign a temperature for a given ππ event necessary to evaluate Rmed, the local (invariant)
pion density in the transport has been used assuming local thermal equilibrium. A possible three-
momentum dependence (at fixed invariant mass M) as well as dispersion corrections to the explicit
pion propagation in the transport have been neglected (the impact of a modified pion dispersion
relation on the overall transport dynamics has been shown to be small in Ref. [236]). Along similar
lines Refs. [48, 237] proceeded in taking the ππ annihilation cross section as

σπ+π−→e+e−(M) = −16π2α2

g2
ρππ

1

p2
πM

2
(m(0)

ρ )4 ImDρ(q0, ~q) (4.82)

with the full in-medium spectral function based on the many-body calculations of Refs. [47, 102,
126], including the non-trivial three-momentum dependence (for the vacuum spectral function
Eq. (4.76) is recovered). Here the temperature has been deduced from the slope parameter as-
sociated with the pion-momentum distributions in the local rest frame (’comoving’ frame). Both
calculations are in principle plagued by a singularity towards the two-pion threshold M = 2mπ,
caused by the inherent inconsistency of how the pions are treated in the transport and in the
dilepton rate. However, in practice this failure does not seem to entail severe disturbances except
for very close to threshold. In Refs. [48, 237] the additional decays of ρ mesons produced in meson-
baryon and baryon-baryon interactions have been accounted for by using a medium modified mass
distribution according to

dNρ
dM

= −2M

π
ImDρ(q0, ~q) , (4.83)

together with a constant branching ratio of Γρ→ee/Γ
tot
ρ = 4.5 · 10−5 for the dilepton channel. This

leads to a quite different spectral shape as compared to the ππ component included via Eq. (4.76),
and might not be realistic (see also the criticism in Ref. [235]). It has been improved in due course
by introducing an additional phase space factor (M/mρ)

2 into the electromagnetic branching ratio.
To avoid double counting when using medium-modified dilepton rates, it is important to omit

explicit production channels that are included in the medium effects [48]; e.g., if the ρ selfenergy in
the in-medium propagator contains πρ → a1 contributions, the explicit a1 → πe+e− decays have
to be switched off. This holds for any process that can be generated by cutting any selfenergy
diagram of the many-body spectral function.
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4.4.3 Thermal Fireball Expansion

A much simplified attempt to capture the basic features of a heavy-ion reaction relevant for dilep-
ton production is represented by fireball models, some of which are reminiscent to the Bjorken
hydrodynamical description. One class of approaches [47] is based on temperature evolutions
parameterized in accordance with microspcopic transport simulations [232], e.g.,

T (t) = (T i − T∞) e−t/τ + T∞ (4.84)

with the initial temperature of the hadronic phase, T i, a time constant τ and an ’asymptotic’
temperature T∞. The baryon density is determined by the number of participants supplememted
with an (isotropic) volume expansion, which can be approximately described by an ’average’ baryon
chemical potential, e.g., µB ≃ 350−400 MeV for lab-energies of 158–200 AGeV. The total dilepton
yield from ππ annihilation is then normalized to the transport results for the case when no-medium
effects are included. The pertinent normalization factor turns out to be N0 ≃ 2 − 3 and can be
understood as an overpoulation of the pion phase space due to a finite chemical potential. In fact,
for typical SpS freezeout temperatures of Tfo ≃ 120 MeV, the simplistic fireball model results in
a total pion number which falls short by about 50% as compared to the experimentally observed
pion-to-baryon ratio of 5:1 if no pion chemical potential is involved. This can be corrected for by
introducing a finite value of µπ ≃ 50 MeV, amounting to a pion fugacity (in Boltzmann approxi-
mation) of zπ = eµπ/Tfo ≃ 1.5. On the level of dilepton production from ππ annihilation [238, 239]
this results in an enhancement factor of N0 ≃ zρ = z2

π ≃ 2.3.
A more microscopic understanding of the emergence of finite (meson) chemical potentials can

be gained by noticing that the strong interactions of, e.g., pions – ππ scattering or πN interactions
dominated by baryonic resonances – are essentially elastic, i.e., pion-number conserving. Main-
taining the assumption of local thermal equilibrium pion-number and entropy conservation then
enforces the build-up of a pion chemical potential in the expansion and cooling process within the
hadronic phase of a heavy-ion collision, as has been first pointed out in Ref. [197]. Such a scenario
fits in fact nicely into the picture of recent hadro-chemical analysis [5, 240, 3], where a large body
of data for finally observed particle abundances at SpS energies (158 AGeV) could be accomo-
dated by a universal temperature and baryon chemical potential of (T, µN)ch ≃ (175, 270) MeV,
characterizing the chemical freezeout of the system (the same method successfully describes the
AGS data as well, cf. Fig. 1.1). From here on the particle composition in terms of (w.r.t. to strong
interactions) stable particles does no longer change, although the hadronic systen still interacts via
elastic collisions sustaining thermal equilibrium until the thermal freezeout is reached. The evolu-
tion proceeds along a trajectory in the T −µN plane which can be determined by imposing entropy
and baryon-number conservation within, e.g., a hadronic resonance gas equation of state. The in-
duced pion (µπ(T )) and kaon (µK(T ) ≃ µK̄(T )) chemical potentials along this trajectory increase

approximately linearly, reaching typical values of µfoπ ≃ 60− 80 MeV and µfo
K,K̄

≃ 100− 130 MeV

at thermal freezeout, being located around (T, µN)fo ≃ (115 ± 10, 430 ± 30) MeV. Other chem-
ical potentials associated with strong interactions are kept in relative chemical equilibrium, e.g.,
µ∆ = µN + µπ or µρ = 2µπ according to elastic reactions πN → ∆ → πN or ππ → ρ→ ππ.

Finally one needs to introduce a time scale to obtain the volume expansion. For SpS energies
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the latter is realistically approximated by a cylindrical geometry as

V
(2)
FC(t) = 2 (z0 + vzt+

1

2
azt

2) π (r0 +
1

2
a⊥t

2)2 , (4.85)

where two firecylinders expanding in the ±z direction have been employed to allow for a suffi-
cient spread in the particle rapidity distributions. Guided by hydrodynamical simulations [43]
the primordial longitudinal motion for Pb(158 AGeV)+Au reactions is taken to be vz = 0.5c,
and the longitudinal and transverse acceleration are fixed to give final velocities vz(tfo) ≃ 0.75c,
v⊥(tfo) ≃ 0.55c as borne out from experiment [241] (this, in turn, requires fireball lifetimes of about
tfo = 10−12 fm/c and implies transverse expansion by 3-4 fm, consistent with HBT analyses [242]).
The parameter r0 denotes the initial nuclear overlap radius, e.g., r0 = 4.6 fm for collisions with
impact parameter b = 5 fm and NB ≃ 260 participant baryons. The parameter z0 is equivalent to a
formation time and fixes the starting point of the trajectory in the (T, µN) plane. Estimates for the
initial baryon densities can be taken, e.g., from RQMD calculations which for CERN-SpS energies
typically lie around ̺iB ≃ 2 − 4̺0 [243], corresponding to, e.g., (T, ̺B)ini=(190 MeV,2.55̺0) on
the above specified trajectory.
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Figure 4.8: Time evolution of temperature (full line, right scale), total baryon density (long-
dashed line, left scale) and nucleon density (dashed-dotted line, left scale) as typical for central
Pb(158A GeV)+Au collisions at impact parameter b=5 fm with fixed entropy per baryon and
assuming effective pion- and kaon-number conservation.

Dilepton spectra from in-medium ππ annihilation (or, equivalently, ρ decays) are now straight-
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forwardly calculated by integrating the thermal rate, Eq. (4.34). Using q0dq0 = MdM , one has

dNππ→ee

dMdη
=

tfo
∫

0

dt VFC(t)

∫

d3q
M

q0

dRππ→ee

d4q
(q0, ~q;µB, µπ, T ) Acc(M,~q)

=
α2

π3g2
ππρM

tfo
∫

0

dt VFC(t)

∫

d3q

q0
fρ(q0;µρ, T ) F(M,~q;µB, µπ, T ) Acc(M,~q) ,

(4.86)

where the function Acc(M,~q) accounts for the experimental acceptance cuts specific to the detector
characteristics (e.g., in the CERES experiment each electron/positron track is required to have
transverse momentum pT > 0.2 GeV, to fall in the (pseudo-) rapidity interval 2.1 < η < 2.65, and
to have a pair opening angle Θee > 35 mrad). The meson chemical potentials have throughout
been introduced in Boltzmann approximation, i.e., fπ(ω;µπ, T ) ≡ fπ(ω;T ) eµπ/T , etc..

The fireball models certainly oversimplify the dynamics present in more realistic descriptions
of relativistic heavy-ion collisions. However, their relative simplicity enables more transparent
comparisons between various underlying models for the microscopic rates [142, 47, 100, 205, 244, 50]
at the level of experimentally observed data, potentially discriminating different temperature and
density dependencies of bare rates once integrated over a common ’cooling-curve’.

4.5 Dilepton Spectra at BEVALAC/SIS Energies

The first measurements of dilepton invariant mass spectra in proton and heavy-ion induced reac-
tions at bombarding energies in the 1-5 AGeV range have been performed by the DLS collabora-
tion for p+Be collisions at 1, 2.1 and 4.9 AGeV, for Ca+Ca at 1 and 2 AGeV and for Nb+Nb at
1.05 AGeV [33]. Although the cms energy available in a primary nucleon-nucleon collision at 1 GeV
laboratory energy only suffices to produce dilepton pairs of invariant masses up to M ≃ 0.45 GeV,
significant yields have been observed beyond this naive kinematical limit in the collisions involving
heavy ions. Therefore, these first generation DLS data have been interpreted as the first evidence
for the ππ → e+e− annihilation channel, predominantly populating the invariant mass region
Mee ≥ 0.4 GeV (up to about 1 GeV). Theoretical calculations based on BUU transport mod-
els [245, 246] have confirmed this conjecture. Also, for lower invariant masses, M ≤ 0.4 GeV, the
major contributions to the dilepton spectra were identified as Dalitz decays of ∆’s and η’s as well
as proton-neutron Bremsstrahlung processes, resulting in a fair agreement with the first generation
DLS data [245, 246]. The limited statistics of the latter did not allow for any further conclusions.

From more recent publications of the DLS collaboration [34] it turns out that new measurements
of dilepton yields in p+p, p+d as well as in 1 AGeV d+C, He+Ca, C+C and Ca+Ca collisions
have been substantially revised in comparison to the previous data set [33] due to improvements
of the DLS detector and of the data analysis, correcting for dead-time losses. The p+p data for
1–5 GeV incident energies are reasonably well described by standard Dalitz and vector meson
decay sources (for recent transport calculations see Ref. [247] using the UrQMD and Ref. [248]
using the HSD approach; both analyses essentially agree up to slight uncertainties in some meson
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production channels; also the role of N(1520) → Ne+e− decays, not included in Ref. [247], was
found to be significant in Ref. [248] especially for the higher energies). This gives confidence in the
elementary production channels when carrying the calculations to the more complicated systems.
Nevertheless, significant discrepancies start to build up already for light projectiles such as in
d+Ca and He+Ca systems [247]. In the 1 AGeV C+C and Ca+Ca reactions the experimental
reanalysis [34] resulted in corrections of up to factors of 6–7 as compared to the first generation
data. Consequently, the afore mentioned theoretical approaches now appreciably underestimate
the dilepton yield in the invariant mass region 0.15 GeV ≤ Mee ≤ 0.65 GeV. This is apparent,
e.g., from the left panels of Fig. 4.9, where a rather complete calculation of the various dilepton
sources including (free) ππ annihilation employing the HSD model is displayed [237]. In particular,
this calculation reproduces well the total yields and transverse momentum spectra of π’s and η’s
as measured for the same collision systems and energies by the TAPS collaboration [249]. This
imposes stringent constraints on the dilepton yields from π0 and η Dalitz decays. Note that the
former result in a satisfactory description of the mass region Mee ≤ 0.15 GeV. On the other hand,
it was noted in Ref. [34] that, assuming an isotropic dilepton emission from a thermal source, the
new DLS data could be accounted for by (arbitrarily) increasing the η contribution by a large
factor close to 10. This observation could be reconciled with the TAPS data imposing a dramatic
anisotropy in the η production, since the TAPS data are taken mainly at mid-rapidity, whereas
the DLS data are at forward rapidities. Although the HSD calculations show some enhancement of
the η distributions [237] at forward angles, this would at maximum allow for a 20% enhancement
of the total η yields [249] which is nowhere close to providing an excess of the η signal as required
to reproduce the DLS data.

The question thus arises whether in-medium effects can resolve the discrepancy. As an example
of the conditions probed at BEVALAC energies, Fig. 4.10 shows a typical time dependence of
the baryon density for inclusive Ca+Ca collisions at 1 AGeV bombarding energy as extracted
from the transport model of Ref. [250]. The evolution roughly proceeds in 3 stages: in the first
5 fm/c the nuclei penetrate each other to form a high-density phase at about 2̺0 which then quite
rapidly dilutes towards freezeout. The accompanying temperatures at the highest densities are
around T ≃ 80 − 100 MeV and therefore one should expect the system to stay in the hadronic
phase throughout. Since the pion densities are rather small (nπ = 0.03 fm−3 at T=100 MeV),
the dominant medium effects should be driven by nucleons and baryonic resonances in the system
(note that at T=100 MeV already ∼25% of the baryons are thermally excited into ∆’s).

In Ref. [237], the impact of many-body effects [47, 102] on the ρ-meson spectral function,
generated through πN and ρN interactions (also including finite-temperature effects, which are,
however, much smaller), has been investigated. The results are shown in the two right panels of
Fig. 4.9. Apparently, the full results still underestimate the second generation DLS data by a factor
of 2–3. Very similar results are obtained [237] when employing the finite-density/zero-temperature
ρ-meson spectral function of Ref. [101], which is based on a selfconsistent calculation of resonant
ρN interactions. Since present transport approaches cannot fully account for the off-shell dynamics
of the pions (especially close to and below the two-pion threshold), additional calculations using
the thermal fireball along the lines of Sect. 4.4.3 have been performed. Integrating the thermal
dilepton emission rates over the density and temperature profile of Fig. 4.10 leads to very similar
results as obtained in the HSD calculation.

Alternative theoretical attempts were made by including dropping vector meson masses in trans-
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Figure 4.9: Dilepton spectra as measured in Ca+Ca (upper panels) and C+C (lower panels)
reactions at 1.0 AGeV projectile energies. The experimental data from the DLS collaboration [34]
are compared to HSD transport calculations, using either a ’free’ ρ spectral function (left panels)
or the in-medium one from Refs. [47, 102] (right panels) for both ππ annihilation and direct decays
of ρ mesons produced in baryonic collisions. The DLS acceptance filter (version 4.1) as well as a
mass resolution of ∆M/M = 10% are included. The thick solid lines represent the total results.
The thin lines in the left panels indicate the individual contributions from the different production
channels, i.e., starting from low M : Dalitz decays π0 → γe+e− (dashed line), η → γe+e− (dotted
line), ∆ → Ne+e− (dashed line), ω → π0e+e− (dot-dashed line), N∗ → Ne+e− (dotted line),
proton-neutron bremsstrahlung (dot-dashed line), πN bremsstrahlung (dot-dot-dashed line); for
M ≈ 0.8 GeV: ω → e+e− (dot-dashed line), ρ0 → e+e− (dashed line), π+π− → ρ → e+e−

(dot-dashed line). The plots are taken from Ref. [237].
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Figure 4.10: Evolution of average baryon density as a function of time in inclusive 1 AGeV Ca+Ca
collisions as extracted from the transport model of Ref. [250] (solid curve); the dashed curve is
a simple parameterization thereof with a maximal temperature of Tmax = 100 MeV in the high
density phase and a time-independent baryon chemical potential of µB = 0.76 GeV.

port calculations. Ref. [233] focused on the role of the N(1520)-resonance, which exhibits a strong
coupling to the ρN/γN channel, see Sects. 3.2.3 and 4.1.2. Rather than including it via the in-
medium ρ-meson spectral function as was done in Ref. [237], the Dalitz decays N(1520) → Ne+e−

were evaluated explicitely, confirming its relative importance for the low-mass dilepton spectra.
However, once an additional reduction of the ρ mass is introduced (using, e.g., the QCD sum rule
results, m∗

V = mV (1 − C̺/̺0) with C ≃ 0.18), the hadronic decay width of the N(1520) strongly
increases due to the opening of phase space in the ρN decay, which results in a net reduction
of the dilepton yield from N(1520) decays (note that the in-medium broadening is included in
the many-body calculations of Refs. [102, 101]). Although the direct ρ decay contributions are
enhanced by a factor of about 3 with a dropping ρ mass, the total spectra still underestimate the
DLS data by a factor of 3–4 for invariant masses 0.15 GeV ≤ M ≤ 0.5 GeV. Similar conclusions
have been reached in Ref. [247] where the use of dropping vector meson masses has been found to
give a small net increase of the spectra around M ≃ 0.4 GeV, together with the reduction around
the free ρ/ω peak.

Concluding this Section we emphasize that there is currently no theoretical explanation of the
second generation DLS data for dilepton production in 1–2 AGeV heavy-ion collisions, with the
various model predictions falling short by large factors of 2–3 above the π0 Dalitz region and below
M ≃ 0.5 GeV. The upcoming high-precision dilepton measurements with the HADES detector at
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GSI will be crucial to shed new light on this situation.

4.6 Dilepton Spectra at CERN-SpS Energies

The dilepton program at the CERN-SpS started in 1990–1992 with the 32S beam at 200 AGeV,
followed by a 450 GeV proton run in 1993 and 208Pb nuclei accelerated to 158 AGeV in 1995,
1996 and 1998. Data have been taken by three collaborations: CERES/NA45 for e+e− pairs using
197Au targets (as well as 9Be in the proton run) [20, 23, 251], HELIOS-3 [24] for µ+µ− pairs
using 184W targets, and NA38/NA50 [25, 26, 27] also for µ+µ− pairs using 32S, Cu and 238U as
well as 208Pb targets for the lead runs. The major challenge in these experiments is the large
background due to both charged hadrons and, more severely, combinatorial misidentification of
pairs in the same event, i.e., the pairing of l+ and l− tracks which did not arise from the decay
of the same virtual photon (or other correlated physical processes, as, e.g., the so-called ’open
charm’ contributions, where a pairwise production of DD̄ mesons is followed by subsequent weak
decays D → l+X and D̄ → l−X). In the CERES experiment, e.g., charged hadrons are suppressed
with Cerenkov detectors, whereas the combinatorial background to the ’physical’ e+e− signal is
typically determined through pairing of like-sign pairs, i.e., e+e+ and e−e−.

As a result of the different ways in handling these problems, the kinematical regions covered by
the three experiments are quite distinct, see Fig. 4.11. Before one can identify non-trivial signals
from the highly complicated measurements in nucleus-nucleus collisions, one has to have good
control over the more simple systems first. The proton-induced reactions, supposedly governed by
the mere free decays of the produced hadrons involving no significant rescattering, thus serve as an
important aid in understanding the detector systematics. The free hadronic decay contributions
have become known as the hadronic cocktail and will be discussed in the next Section. Since at
full CERN-SpS energies the pion-to-baryon ratio observed in the final state of heavy-ion induced
reactions is about 5:1 (with little dependence on the impact parameter b), the dominant in-medium
source is expected to stem from ππ annihilation. The assessment of this contribution without any
medium-modifications will be addressed in sect. 4.6.2. In Sects. 4.6.3 and 4.6.4 we proceed to
the analysis of the experimental data in the available kinematic projections, i.e., invariant mass
and transverse pair-momentum, with emphasis on in-medium effects that have been proposed. In
Sect. 4.6.5 we discuss how the various parts of the in-medium signals relate to the time of emission
within different theoretical models. In particular, the issue of quark-gluon/hadron duality, raised
in Sect. 4.2.3, will be reiterated for both the low- and intermediate-mass region.

4.6.1 Decays after Freezeout: Hadronic Cocktail versus Experiment

From the experimental side, a systematic study of the cocktail contributions has been performed
by the CERES/NA45 collaboration. It has been shown [20] that the e+e− invariant mass spectra
in p+Be and p+Au, normalized to the number of charged particles observed in the same rapidity
window, can be well reproduced in terms of known hadron decays using particle production multi-
plicities from p+p data, cf. Fig. 1.3 in the Introduction. The low-mass end of the spectrum, Mee ≤
0.15 GeV, is completely saturated by π0 Dalitz decays, whereas for 0.15 GeV ≤Mee ≤ 0.6 GeV η
and ω Dalitz decays are prevailing. Beyond Mee = 0.6 GeV up to about 1.5 GeV the direct decays
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Figure 4.11: Kinematical regions covered by the three collaborations that have measured dilepton
spectra at full CERN-SpS energies of 158–200 AGeV. The plot is taken from Ref. [22].

of the light vector mesons, ρ, ω, φ → e+e−, are the dominant sources, substantially smeared due
to the finite mass resolution of about 10% in the CERES detector (which, in fact, stems from the
finite momentum resolution of the individual lepton tracks). Here one should note that, for an
equal number of produced ρ0’s and ω’s, the dilepton yield from the latter is by almost a factor of
2 larger than the former, since in free space the probability PV→ee for decaying into the dilepton
channel is determined by the relative branching ratio of electromagnetic over total decay width,
i.e.,

PV→ee =
ΓV→ee

ΓtotV
=







0.0045% , V = ρ
0.0071% , V = ω
0.0311% , V = φ

. (4.87)

This is a quite different characteristics as compared to the signal from an interacting (thermalized)
system, cf. Eq. (4.77) and the subsequent remarks. The CERES assessment of the cocktail in
proton-induced reactions has been confirmed by microscopic transport calculations [38, 232]. The
latter give equivalent results for the dimuon data of HELIOS-3 [24] taken in p+W reactions. Thus
the measured dilepton spectra in proton-induced reactions at CERN-SpS energies can be well
understood by the final-state hadron decays in a consistent way.

The situation changes drastically when moving to heavy-ion projectiles. In the first measure-
ments at the CERN-SpS, which were performed with a 200 AGeV 32S beam, the CERES collab-
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Figure 4.12: Dilepton spectra from heavy-ion collisions as measured by the CERES/NA45 col-
laboration. Left panel: central 200 AGeV S+Au collisions, contrasted with the hadronic cocktail
contributions as extrapolated from hadron multiplicities in p+p data. The plot is taken from
Ref. [20]. Right panel: 35% central 158 AGeV Pb+Au collisions (open squares: ’95 data, full cir-
cles: ’96 data), compared to a hadronic cocktail inferred from a thermal model with T = 175 MeV
and µB = 270 MeV [3], which reproduces the measured hadronic multiplicities in Pb+Pb collisions
at identical projectile energy.

oration found a total enhancement factor of measured pairs over the expectation based on the
cocktail of 5.0 ± 0.7(stat) ± 2.0(syst) (integrated over the invariant mass range 0.2–1.5 GeV) [20]
in central collisions with 197Au targets. The enhancement is in fact most pronounced around
Mee ≃ 0.45 GeV, reaching a factor of 10 (Fig. 4.12). Whereas the CERES data are taken close
to midrapidity (2.1 ≤ η ≤ 2.65), the HELIOS-3 experiment [24] covered more forward rapidities
3.7 ≤ η ≤ 5.2. Here the enhancement, when comparing to transport calculations [39, 232], is less
developed but still significant (although the HELIOS-3 collaboration did not quote any systematic
errors).

The ’95 and ’96 runs with 158 AGeV 208Pb projectiles in essence confirmed the sulfur results,
cf. right panel of Fig. 4.12. Here, the final state hadron decay contributions have been evaluated
in an alternative way as recently developed by the CERES collaboration. It is based on hadron
abundances from the thermal model of Ref. [3], where the (chemical) freezeout conditions for
temperature and baryon chemical potential have been deduced from an optimal fit to a large body
of hadronic observables at SpS and AGS energies (the such obtained cocktail agrees with sources
scaled from p+p collisions within 20–30%, with the only exception of the φ meson – related to
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strangeness enhancement –, which we will not address here). The resulting enhancement of the ’96
data over the ’thermal-model’ cocktail in the 30% most central Pb+Au collisions then amounts
to 2.6 ± 0.5(stat.) ± 0.9(syst.) [251] in the invariant mass range 0.25–0.7 GeV. In terms of the
experimental analysis, the ’96 data set is the best understood with the highest statistics (a factor
of 5 larger than in ’95). It is consistent with both the ’95 sample and the ’93 sulfur results within
two standard deviations (note that the S+Au data are based on a higher centrality selection).
Nevertheless, the net signal in the ’96 data seems to lie systematically below the ’95 data, this
trend being more accentuated towards higher masses. In particular, at the free vector meson
masses the ’96 data are basically accounted for by the hadronic cocktail. If this feature will be
confirmed in future measurements, it has severe consequences for the theoretical interpretation of
the spectra. A rather precise determination of the ω contribution, which is the dominant cocktail
component at the ρ/ω mass, will be most important to draw firm conclusions. Unfortunately, the
ω yield in heavy-ion reactions is not very well determined so far. In hydrodynamical calculations
as, e.g., presented in Ref. [252], the ω-meson yield might be substantially smaller than in the
CERES cocktail if its final abundance is determined by a simultaneous thermal and chemical
freezeout temperature as low as Tfo = 120 MeV. The most promising way to resolve this issue will
be provided by an improved mass resolution in the dilepton measurements. If the latter can be
reduced to about 2%, the ω peak will clearly stick out, thus putting valuable constraints on other
(in-medium) sources in its vicinity. An upgrade of the CERES experiment using an additional
time projection chamber (TPC) is expected to achieve the required resolution. An accordingly
small mass binning will critically depend on a sufficiently large data statistics.

Once the direct ω → e+e− decays are known, also the Dalitz-decay contributions ω → π0e+e−

are fixed. The latter constitute an important part of the cocktail in the mass region where the
experimental excess of dilepton pairs is the largest, i.e., 0.3 GeV ≤ Mee ≤ 0.6 GeV. The other
important hadronic decay in this region is η → γe+e− and, to a lesser extent, η′ → γe+e−.
Therefore, an enhanced production of η, η′ mesons in heavy-ion as compared to proton-induced
reactions could significantly alter the cocktail composition. Mechanisms for such a behavior have
indeed been proposed in connection with the (partial) restoration of the UA(1) symmetry (see also
Sect. 2.1) in high density/temperature matter, reducing the η and η′ masses and thus increasing
their (final) abundances [253]. However, an enhanced η, η′ production also entails an increase of
the direct photon yield from the two-photon decay modes η, η′ → γγ. In Ref. [254] upper limits
on inclusive photon measurements in heavy-ion collisions at the SpS have been converted to a
maximally allowed η production. Assuming that the upper limit of the photon signal is entirely
saturated by extra η decays, it has been shown that the η yield in 32S induced reactions cannot be
enhanced by more than a factor of 1.5 as compared to the p+p case. Similar arguments have been
drawn to limit the η′ enhancement to a factor of 2.5. As a result, using the upper bounds on η
and η′ numbers, the CERES cocktail in 200 AGeV S+Au collisions (displayed in the left panel of
Fig. 4.12) is increased by at most 40% which is far from accounting for the observed excess in the
0.3–0.6 GeV region (this situation is reminiscent to BEVALAC/SIS energies, where an increased η
yield as the source for the dilepton enhancement found by DLS in A-A collisions has also been ruled
out by means of the TAPS two-photon data, see Sect. 4.5). The failure of the hadronic cocktail
to describe the low-mass dilepton spectra in nucleus-nucleus collisions at the SpS thus inevitably
points towards radiation originating from processes occurring during the interaction phase of the
collisions, which will be discussed in the following sections.
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4.6.2 Free π
+
π
− Annihilation in the Hadronic Fireball

One of the strongest evidences for a ’non-trivial’ source of dilepton pairs in heavy-ion reactions is
illustrated in Fig. 4.13. The total e+e− pair yield, normalized to the number of charged particles
in the final state, exhibits a clear increase with multiplicity, indicating two- (or more) body anni-
hilations. Since the most abundant particles at SpS energies are pions, the obvious candidate for
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Figure 4.13: Total dilepton pair yield, normalized to the number of observed charged particles in
the corresponding rapidity interval, and resulting enhancement factor over the hadronic cocktail
(right vertical scale) as a function of charged particle multiplicity as found in different collision
systems; the horizontal solid line indicates the expectation from final-state hadron decays whereas
the dashed line is a linear interpolation of the data which implies a quadratic dependence on the
number of charged particles as expected from an additional two-body annihilation source. The
plot is taken from Ref. [23].

this behavior is the π+π− → ρ0 → e+e− process. Many authors have calculated its contribution
in various approaches to model the heavy-ion reaction dynamics, leading to rather good agreement
with each other as we have already eluded to in the Introduction, see Fig. 1.4 for the case of
32S-induced reactions. All calculations share the common feature that, although the total yield is
appreciably increased, the shape of the spectra strongly deviates from the data in that one finds
too much yield around the free ρ mass and too little below, which is a trivial consequence of the
free pion electromagnetic form factor peaking at the ρ resonance.
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At this point it is useful to notice an important difference between transport and hydrodynam-
ical approaches. In the latter the total yield is typically by a factor of at least 2 smaller than in
the former ones if no chemical potentials for pions are involved as is the case, e.g., for the (dotted)
Hung-Shuryak curve [43] in the left panel of Fig. 1.4 (see also Ref. [214]). Although in both schemes
the final hadronic spectra are usually equally well accounted for, hydrodynamic calculations involve
smaller (average) pion densities nπ (due to the restriction to µπ = 0) and hence larger fireball vol-
umes VFB to obtain an identical final number of pions. This means that, for a given total number
of pions, Nπ = nπ×V , larger average densities in the transport simulations lead to a larger dilepton
signal from ππ annihilation, since the latter is basically proportional to the pion density squared,
Nππ→ee ∝ n2

π×V . On the other hand, in the Bjorken-type hydrodynamical calculations of Baier et
al. [41] where a pion chemical potential of µπ = 100 MeV has been employed, the dilepton yield is
even slightly larger than in most of the transport results, cf. solid line in the left panel of Fig. 1.4.
This is understandable, as the ’average’ squared pion density in this calculation is increased over
the µπ = 0 case by roughly the squared fugacity (exp[µπ/T ])2 ≃ exp[2 × 100/150] ≃ 4. Another
quantity which governs the amount of dileptons radiated from the hadronic fireball is its total
lifetime. For Pb+Au collisions at the full SpS energy (158 AGeV) the latter is around 10-15 fm/c.
However, as pointed out by Shuryak and Hung [213], the upcoming low-energy run at 40 AGeV
may lead to initial conditions that are close to the so-called ’softest’ point in the EoS of the quark-
hadron transition, associated with a very small initial pressure. In this case, the system expands
very slowly entailing a much increased fireball lifetime which would have to leave its trace in the
total dilepton yield.

The incompatibility of free ππ annihilation persists in the Pb+Au data. Although the excess
signal in the more recent CERES measurements is somewhat reduced as compared to the early
sulfur runs the inclusion of free ππ annihilation in theoretical models can still not resolve the dis-
crepancy with the data. This statement is corroborated by the trend that in the Pb+Au system
the cocktail is close to saturating the data in the ρ/ω region, where the free π+π− → ρ0 → e+e−

process has its maximal contribution! Thus one is seemingly led to the following two alternatives:
(i) ππ annihilation is not an important ingredient in the dilepton spectra, but rather some very
different processes with flat characteristics as a function of invariant mass, e.g., qq̄ annihilation.
However, this is not easy to imagine for the SpS conditions, where one expects the excited nuclear
system to spend the major part of its space-time history in a hadronic phase with a large pion
component;
(ii) ππ annihilation is the dominant process. In this case drastic medium modifications are in-
evitable to fill in the 0.3–0.6 GeV mass region without giving too much yield around the free
ρ-meson mass.
Both possibilities will be considered in the forthcoming Sections.

4.6.3 Medium Effects I: Invariant Mass Spectra

Most of the in-medium effects proposed so far have drawn their attention to the pion-pion annihi-
lation channel. They can be roughly divided into the following two categories:

(I) a temperature- and density-dependent reduction (’dropping’) of the ρ meson mass, m∗
ρ, ac-

cording to BR scaling or the Hatsuda-Lee QCD sum rule calculations, usually applied without
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invoking any changes in the pion propagation. This then entails a reduction of the ρ-meson
width due to the shrinking pion phase space at smaller m∗

ρ as well as a sharp threshold –
at twice the free pion mass 2mπ – for the onset of the enhancement in the invariant mass
dilepton spectra;

(II) a modification of both π and ρ properties due to phenomenologically inferred interactions
with the surrounding hadrons in the hot and dense gas which, depending on the language
used, are encoded in the ρ-meson spectral function (e.g., Refs. [47, 147, 101]), in vector
current correlation functions (e.g., in Refs. [100, 91]), in the pion electromagnetic form factor
(Ref. [113]), etc.. Also the rate calculations for individual processes as, e.g., performed in
Refs. [119, 221], should be assigned to this category, as was discussed in Sect. 4.2.1.

200 AGeV Sulfur Beam Runs

For dilepton spectra in the 200 AGeV 32S-induced reactions the consequences of a dropping ρ-
meson mass have been explored in Refs. [38, 37, 39, 232]. All these analyses find good agreement
with the experimental data (Fig. 4.14). The mechanism is clear: in the early phase, characterized

Figure 4.14: Comparison of dilepton data from central 200 AGeV sulfur-induced reactions on heavy
nuclei with transport calculations employing a dropping ρ mass (full curves) as opposed to a free
ρ mass (dashed curves) [232]; left panel: CERES dielectron spectra on Au targets; right panel:
HELIOS-3 dimuon spectra on W targets.

by hadronic initial conditions of T i ≃ 170 MeV and ̺iB ≃ 2.5̺0, the in-medium mass m∗
ρ is close to
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the two-pion threshold. As the hot fireball expands thereby diluting and cooling, m∗
ρ starts to rise

and sweeps across the low-mass region thus filling the dilepton continuum between 0.3 and 0.6 GeV
(at freezeout, the ρ-meson has regained about 80% of its vacuum mass). At the same time, the
ρ (or ππ) contribution around the free ρ peak is strongly reduced, which is also in line with the
experimental data. However, between the ω and the φ mass the situation is less clear, mainly due
to limited experimental mass resolution and statistics (the former amounting to ∼8-11% in this
mass region for the ’92-’95 CERES data). The medium modifications of the ω meson itself have
only little impact on the dilepton spectra, although in BR scaling the ω mass is subjected to the
same reduction as the ρ mass. The reason is simply that the ω → e+e− decays mostly occur after
the hadronic freezeout where medium effects are absent. The final number of ω mesons is roughly
equal to the case where no dropping masses are assumed. This is so because in Refs. [37, 232]
rather large pion chemical potentials µπ ≃ 100 MeV are present in the initial conditions when
using the free masses to correctly reproduce the observed number of final pions. On the other
hand, when using in-medium masses, much smaller µπ are required to obtain about the same final
number of pions and ρ/ω mesons. Within the Walecka-type mean-field potentials employed in the
transport equations of Refs. [37, 232] the scalar field has been assumed to act on the constituent
u-/d- quark content of the hadrons only, thus leaving the mass of the φ meson, which is an almost
pure ss̄ state, unchanged. An important point to note is that the baryons (rather than pions which
govern the finite-temperature effects) in the hadronic fireball are the key component in generating
the large (attractive) scalar fields which are at the origin of the dilepton enhancement.

Dropping meson masses have also been implemented in hydrodynamical simulations [41, 43].
Although the total dilepton signal in the latter is typically smaller than in the transport frameworks
(if µπ ≡ 0, see previous Section), they also give reasonable agreement with the S+Au data [41, 43]

As representatives for the analyses of the CERES S+Au data that are based on more ’conven-
tional’ scenarios we have chosen the calculations within the chiral reduction approach [100] and
the many-body approach for the ρ-meson spectral function [47] in its recent version (including
constraints from nuclear photoabsorption [102] and πN → ρN data [49], Rhosobar excitations on
thermally excited baryon resonances as well as a more complete assessment of the mesonic contri-
butions [123]). The results are confronted in Fig. 4.15 with experiment. To facilitate the direct
comparison both spectra have been computed in the thermal fireball expansion of Ref. [47] (with
T i = 170 MeV, T∞ = 110 MeV, τ = 8 fm/c, tfo = 10 fm/c in Eq. (4.84), Npart

B = 110, a constant
isotropic expansion velocity v = 0.4c and µB = 0.39 GeV which translates into initial/freezeout

baryon densities of ̺iB = 2.49̺0 / ̺foB = 0.32̺0 and a freezeout temperature of T fo = 127 MeV; in
addition an overall normalization factor N0=3 has been introduced in reminiscence to transport
results [37], corresponding to an ’average’ pion chemical potential of ∼ 80 MeV). Neither of the
two ’conventional’ approaches gives as good agreement with the S+Au data as the dropping ρ
mass scenarios (this is even more pronounced for other attempts [40, 221, 36, 41]), although the
experimental uncertainty is not small. In the chiral reduction formalism (left panel in Fig. 4.15) the
incoherent summation of individual rate contributions in a low-density expansion (for both pions
and nucleons) generates some enhancement over the results based on free ππ annihilation (dotted
curve in the right panel), but does not lead to any depletion of the free ρ peak. Consequently,
the shape of the theoretical curves does not match the experimental data very well. This is qual-
itatively different in the many-body approach (right panel in Fig. 4.15). The strong broadening
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Figure 4.15: Comparison of CERES data from central 200 AGeV S+Au reactions with thermal
fireball calculations including in-medium effects according to the chiral reduction formalism [100]
(left panel; all curves include the hadronic cocktail as given by transport results [37]; in addition,
in-medium radiation is accounted for in the following ways: pure pion gas (dashed curve), pion-
nucleon gas using ̺iN = 0.7̺0 corresponding to the realistic case of µB = 0.39 GeV (full curve), and
pion-nucleon gas using the full baryon density ̺iN ≡ ̺iB = 2.5̺0 (dashed-dotted curve)), and within
the many-body approach for the ρ spectral function [47, 126, 49, 123] (right panel; dashed-dotted
curve: hadronic cocktail; dotted curve: cocktail plus ππ annihilation using the free ρ spectral
function; full curve: cocktail plus ππ annihilation using the in-medium ρ spectral function).

of the ρ-meson spectral function yields a factor of ∼ 2 more enhancement below Mee ≃ 0.6 GeV
together with some reduction in the ρ/ω region, which makes it somewhat more compatible with
the data. A possible caveat might be given by the fact that the (experimental) systematic errors
presumably have little (or at least a very smooth) dependence on invariant mass. This could
mean that an agreement of the theoretical curves in the 0.3–0.5 GeV region entails a disagreement
around Mee ≃ 0.2 GeV and vice versa. We will come back to this point further below. Another
noteworthy feature is that, although the in-medium spectral function is larger than the free one at
the high mass end for Mee ≥ 0.9 GeV (cf. Fig. 3.19), this feature does not show up in the dilepton
spectrum in the right panel of Fig. 4.15, which can be traced back to the mass resolution of the
CERES detector in the ’92 setup (δM/M ≃ 11% around M ≃ 1 GeV).

The spectral function approach has also been employed using a more realistic description of the
heavy-ion reaction dynamics within the HSD transport simulations [48]. Fig. 4.16 shows the results
for the HELIOS-3 data in 200 AGeV S+W collisions using the free (upper panel) and in-medium
(lower panel) ρ spectral function, the latter based on the model of Refs. [102, 126]. Again, the
broadening of the ρ spectral function significantly improves the agreement with experiment.
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Figure 4.16: Comparison of HELIOS-3 data from central 200 AGeV S+W reactions with HSD
transport calculations [48] employing free (upper panel) and in-medium (lower panel) ρ spectral
functions from Refs. [47, 102]; note that the high-mass end of the contribution labeled by ’ρ’ (which
stem from meson-baryon and baryon-baryon collisions) is probably somewhat overestimated, cf. the
remarks following Eq. (4.83).

158 AGeV Lead Beam Runs

Again, let us first address analyses that involve dropping meson masses. Fig. 4.17 shows results of
the HSD transport approach [230], which once more demonstrate that a reduced ρ-meson mass is
very well in line with the experimentally observed low-mass dilepton enhancement at full CERN-
SpS energies, most notably around the 0.5 GeV region. Similar conclusions have been drawn in
the transport calculations of Ref. [255] for the 8% most central sample of the ’95 CERES data, as
well as in the hydrodynamical description of Ref. [43].

Proceeding to category II (’conventional’ medium modifications), we display in Fig. 4.18 a
comparison of transport and fireball calculations. The left panel shows recent BUU transport
calculations [257] along the lines of Ref. [36] where the in-medium effects entirely reside in finite
temperature effects in the ππ annihilation channel and πρ-type contributions (dominated by the
a1(1260)). Due to collisional broadening introduced in the (denominator of) the pion electromag-
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Figure 4.17: Comparison of the (preliminary) ’95 CERES data [21] from 35% central 158 AGeV
Pb+Au reactions with HSD transport calculations [230] employing free (upper panel) and dropping
(lower panel) meson masses.

netic form factor the significance of the in-medium ππ channel is rather moderate; the processes
inducing the broadening (i.e., πρ collisions) are treated explicitely for dilepton production to ap-
proximately restore unitarity in the transport framework. Within 1.5 standard deviations, all data
points for 30% central Pb+Au are reproduced; in the low-mass region, Mee ≃ 0.3 − 0.6 GeV,
this is largely achieved through a strong contribution of the ω → π0e+e− and η → γe+e− Dalitz
decays, each about a factor of 2 larger than in the CERES cocktail. As we have mentioned earlier,
especially the ω contribution is as of now not very well under control (and has been introduced
through suitable initial conditions in the transport); on the other hand, one also realizes from the
left panel of Fig. 4.18 that at the free ρ/ω mass the direct decays ω → e+e− tend to overestimate
the experimental data, i.e., the freezeout ω abundance has been pushed to its limit. In contrast,
the in-medium spectral function approach [142, 47, 147, 91, 101] assigns the major part of the low-
mass enhancement to the (modified) ππ channel including the effects of baryons. The right panel
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Figure 4.18: Comparison of the CERES data from 35%/30% central 158 AGeV Pb+Au colli-
sions with BUU transport calculations [36, 257] including finite-temperature effects in the pion
electromagnetic form factor and through explcit πρ scattering (left panel). Right panel: fireball
calculations [47] using thermal production rates from in-medium ππ annihilation in three scenarios;
dashed-dotted line: CERES cocktail (no in-medium contribution, no ρ decays); dotted line: cock-
tail plus free ππ annihilation; solid line: cocktail plus ππ annihilation employing the in-medium ρ
spectral function [102, 123, 50]; long-dashed line: cocktail plus ππ annihilation using a dropping ρ
mass.

of Fig. 4.18 shows the pertinent results [123, 50] employing a thermal fireball model including the
experimentally determined hadro-chemical freezeout as well as the subsequent build-up of finite
pion chemical potentials (cf. Sect. 4.4.3) in 30% central Pb+Au (the time evolution is specified
by initial/freezeout conditions (T, ̺B)ini=(190 MeV,2.55 ̺0), (T, ̺B)fo=(115 MeV,0.33 ̺0) with
Npart
B = 260). The hadronic cocktail part has been taken from the CERES collaboration [256]

based on an identical chemical freezeout but with the ρ-meson contribution removed, since the
latter is accounted for by the in-medium ππ annihilation at the freezeout stage of the fireball. Also
included in Fig. 4.18 is the result obtained with a dropping ρ mass based on the same fireball
evolution. The density and temperature dependence of m∗

ρ has been assumed to resemble QCD
sum rule estimates,

m∗
ρ = mρ (1 − C ̺B/̺0)

(

1 − (T/T χc )2
)α

(4.88)

with C = 0.15, T χc = 200 MeV and α = 0.3. Given the experimental uncertainties both the drop-
ping ρ mass and the in-medium broadening give reasonable account for the dilepton enhancement
in the 0.3–0.6 GeV region. Substantial differences set in beyond, where the down-shifted ρ mass
does no longer contribute, as opposed to the broadening scenario. At the ρ/ω peak, the more
recent data seem to favor the former, but between the ω and φ, the in-medium spectral function
might do better, providing sufficient yield. Once again we see that an improved mass resolution
of the measurements, separating ω and φ cocktail ingredients more distinctly, is crucial to reach
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definite conclusions on these issues.
Hydrodynamical calculations employing in-medium rates of category II have been performed

recently in Ref. [252]. In particular, the differences between the many-body [47, 102] and the chiral
reduction approach [100] and their consequences for dilepton production in central Pb+Au have
been explored in some detail. On the level of the bare rates the two approaches agree reasonably
well in the pion gas sector, but differ by factors of ∼ 2 already at finite (nucleon) densities as low
as 0.5̺0, cf. Sect. 4.2.1 and Fig. 4.42. This directly translates into a similar discrepancy in the
ππ induced dilepton signal, with the many-body rates resulting in the larger yield (left panel of
Fig. 4.19), once more demonstrating that baryons play an important role at full SpS energies of 158–
200 AGeV. These findings are very reminiscent to the naive fireball calculations in central S+Au

Figure 4.19: Comparison of the ’95 and ’96 CERES data from 8% central 158 AGeV Pb+Au with
hydrodynamical calculations [252]; left panel: dielectron yields from the interaction phase using
hadronic rates without baryonic effects [119, 99] (solid line) and including baryonic effects according
to the chiral reduction [100] (dotted line) or the many-body framework [102] (long-dashed line),
and from the QGP phase using perturbative qq̄ annihilation (dashed-dotted line); right panel: final
spectra including hadron decays after freezeout (line identification as in left panel).

displayed in Fig. 4.15. Note that the absolute magnitude of the ππ-induced signal in Fig. 4.19 is
appreciably smaller than in transport calculations, owing to the vanishing pion chemical potential
implicit in the hydrodynamical framework. The final results are therefore not quite able to account
for the CERES data in the Mee ≃ 0.5 GeV region. At the same time, as a consequence of the rather
small thermal ω meson abundance at freezeout, the signal from direct ω → e+e− decays amounts

2One should note that the ρ spectral function on which the calculations in Ref. [252] are based, is not the most
recent (more complete) one, although it includes constraints from photoabsorption spectra according to Ref. [102].
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to only about 50% of the one in the CERES cocktail; thus, there is no issue of overpredicting the
ρ/ω region (right panel of Fig. 4.19).

One of the most attractive features of hydrodynamic simulations is their capability of incorpo-
rating phase transitions in the time evolution in a well-defined way via the equation of state. For
SpS energies at 158–200 AGeV, however, the general findings are [40, 43, 214] that the dilepton
signal from a possibly formed quark-gluon plasma, as estimated by employing perturbative qq̄ → ee
annihilation rates, is down by about an order of magnitude as compared to the ππ channel for in-
variant masses below 1 GeV (dashed-dotted curve in the left panel of Fig. 4.19). Recalling that the
thermal qq̄ production rates are not very different from the in-medium hadronic ones (cf. Fig 4.6
in Sect. 4.2.3), one has to conclude that at SpS energies the space-time volume occupied by the
QGP phase is rather small (this might not be the case for the mixed phase).

The CERES collaboration has also analyzed their data with respect to centrality dependence of
the invariant mass spectra, i.e., dividing them in four distinct event classes with average charged
multiplicities 〈Nch〉 = 150, 210, 270 and 350. Although one finds a clear increase of the en-
hancement with 〈Nch〉, especially the low-multiplicity events do not allow for more quantitative
statements. No systematic theoretical analyses are available yet.

4.6.4 Medium Effects II: Transverse Momentum Dependencies

An additional observable to help discriminate different mechanisms that lead to a similar en-
hancement in the invariant mass spectra is the dilepton transverse momentum qt, i.e., the total
momentum of the dilepton pair perpendicular to the beam axis of the colliding nuclei. From a
theoretical point of view this possibility is provided by the fact that the specification of a preferred
reference frame – that is, the thermal frame, in which the matter as a whole is at rest – breaks
Lorentz invariance of space-time. It implies that the in-medium propagators of the vector mesons
(or, equivalently, their spectral functions) separately depend on energy q0 and three-momentum
modulus |~q| (or on invariant mass M = (q20 − ~q2)1/2 and three-momentum). Moreover, their
polarization states are no longer isotropic, but split up into two completely independent modes,
most conveniently described in terms of longitudinal and transverse components, see Sect. 2.6,
Eqs. (2.97), (2.98). A different behavior of the latter might induce anisotropies in the dilepton
yield which are, however, extremely difficult to measure. No such attempt has been made to date.
On the other hand, transverse momentum spectra in three (four) adjacent invariant mass bins have
been extracted by the CERES collaboration in the ’95 (’96) lead runs. Since in the CERES exper-
iment the full kinematic information on the individual lepton tracks is recorded, their qt-spectra
are subject to the same statistical and systematic errors as the invariant mass spectra.

In the previous Section we have seen that both the dropping ρ mass and the in-medium spectral
function scenarios can reproduce the invariant mass spectra at full CERN-SpS energies reasonably
well. Both approaches have also been employed to calculate transverse momentum spectra [49, 103]
(Figs. 4.20, 4.21). Naively one would expect that a mere reduction of the ρ mass does not entail
any distinct traces in the qt-dependence; this is, however, not true due to a subtle interplay with
the thermal occupation factors fρ(q0), which depend on energy. Thus, for a small ρ mass m∗

ρ,

the three-momentum dependence of q0 = [(m∗
ρ)

2 + ~q2]1/2 is more pronounced, leading to a relative
enhancement of ρ mesons of small three-momentum. This is nicely reflected by the left panel of
Fig. 4.20, where the enhancement of the dropping ρ mass curve in the 0.2 GeV < M < 0.6 GeV
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Figure 4.20: Comparison of the CERES transverse momentum spectra in two invariant mass
bins from 30% central 158 AGeV Pb+Au [23] with dropping ρ mass calculations in a transport
model [103]; dashed and full curves: using free and in-medium masses, respectively.

invariant mass bin is predominantly concentrated at transverse momenta qt ∼< 0.6 GeV, in good
agreement with the ’95 CERES data. More complicated three-momentum dependencies may arise
in the spectral function approach. This was first pointed out in Ref. [147], where substantial effects
with increasing three-momentum were predicted on the basis of a strong ρN P -wave coupling to
the N(1720) and ∆(1905) resonances. The accompanying hadronic vertex form factors,

FρBN (q) = Λ2
ρBN/(Λ

2
ρBN + ~q2) , (4.89)

which govern the suppression of large three-momenta of the ρ, were used with rather hard cutoff
parameters of ΛρBN = 1.5 GeV. However, in a subsequent analysis of photoabsorption spectra [102]
it turned out that such values are not compatible with γp and γA data, requiring much softer
ΛρBN ≃ 0.6 GeV. These constraints have been extracted before any data on dilepton qt-spectra
were available. A spectral function calculation of the latter [50], including these constraints, is
shown in Fig. 4.21. Similar to the dropping ρ mass results, its basic features agree with the data.

In another projection of the data, the CERES collaboration generated invariant mass spectra
for two distinct regions of transverse pair momentum, i.e., qt < 0.5 GeV and qt > 0.5 GeV [251].
Again, one clearly observes that the major part of the low-mass enhancement is concentrated in
the low-momentum bin, whereas the high-momentum bin is essentially consistent with the cocktail
(Fig. 4.22). This is just opposite to the rate calculations based on P -wave ρN scattering performed
in Ref. [147], which confirms the necessity for rather soft form factors as predicted on the basis
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Figure 4.21: Comparison of the CERES transverse momentum spectra in four invariant mass bins
from 30% central 158 AGeV Pb+Au [251] using a thermal fireball model including finite µπ [50];
dashed-dotted curves: CERES cocktail; dotted curves: cocktail + free ππ annihilation, dashed
curves: cocktail + ππ annihilation with a dropping ρ mass, full curves: cocktail + ππ annihilation
using the in-medium ρ spectral function.

of photoabsorption data. The theoretical calculations shown in Fig. 4.22 contrast once more the
results of a dropping ρ mass and the in-medium broadened spectral function. At the present status
of the data, both explanations are viable.

4.6.5 Time Dependence of In-Medium Signals

The great hope that has been associated with dilepton observables as penetrating probes is to learn
about the innermost zones of high-density and high-temperature matter formed in the early stages
of nuclear collisions. Thus, after our detailed study of various models in their application to exper-
imental low-mass dilepton spectra we would like to address the question as to what extent signals
from the highest excitation phases can be disentangled, i.e., how certain features in the spectra
might be related to the time (or temperature/density) of emission. Unfortunately, the answers are
beset with strong model dependencies, even if the ’background’ from the hadronic cocktail were
accurately known (as we will for simplicity pretend in the following). The dropping ρ mass scenario
implies an obvious correlation between invariant mass and emission time for the in-medium signal:
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Figure 4.22: Comparison of 30% central 158 AGeV Pb+Au CERES invariant mass spectra in two
transverse momentum bins [251], qt < 0.5 (upper panel) and qt > 0.5 (lower panel) with thermal
fireball calculations [50] (including finite µπ) employing a dropping ρ mass (dashed curves) and an
in-medium spectral function (full curves); the dashed-dotted curve is the CERES cocktail (without
the ρ→ e+e− contribution), added to the respective ππ annihilation yields from the fireball.

using as a rough guideline the fireball evolution for 30% central Pb+Au collisions [50] (cf. Fig. 4.8)
together with a temperature- and density-dependent mass given by the QCD sum rule-type re-
lation (4.88), the time instances t=1, 6 and 11 fm/c correspond to masses m∗

ρ(t)=275, 465 and
650 MeV, respectively, which directly reflect the populated dilepton invariant mass regions. The
situation is less straightforward when an in-medium spectral function is employed. The left panel
of Fig. 4.23 shows a (partial) decomposition of the total in-medium signal in three equidistant time
slabs. Within a few percent the integrated yield from each of the three time intervals is essentially
equal which is due to a trade-off between increasing volume and decreasing temperature during the
expansion. Although lower masses are preferably populated at earlier stages, the time dependence
of the spectral shape is rather smooth especially when comparing to the dropping mass scenario.
The most prominent feature associated with early emission times is a strong depletion of the free
ρ peak around M ≃ 0.75 GeV. The total final spectrum (solid line in Fig. 4.23) in fact closely
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Figure 4.23: Decomposition of the ππ → ee signal employing the in-medium ρ spectral function
from Refs. [102, 123, 50] in 30% central Pb+Au (including the acceptance of the CERES detector);
the solid line is the total yield from a thermal fireball of lifetime tfo=11.5 fm/c. In the left panel,
the long-dashed, short-dashed and dashed-dotted curves represent the contributions from the time
intervals t=0–3 fm/c, t=4–7 fm/c and t=8–11 fm/c, respectively, and the dotted curve arises for an
emission via free ππ annihilation over a duration of ∆t = 3 fm/c being almost independent on the
evolution stage. In the right panel the yields arising during temperature intervals T=175–190 MeV
(long-dashed curve), T=145–160 MeV (short-dashed curve) and T=115–140 MeV (dashed-dotted
curve) are displayed.

resembles the contribution from intermediate times (4–7 fm/c, short-dashed curve) multiplied by
a factor of 4. This means that the time-integrated in-medium signal actually probes a hadronic
resonance gas at an average temperature and density of about T ≃ 150 − 160 MeV and ρB ≃ ρ0,
not very far from the expected phase boundary to the quark-gluon plasma. Also note that a typical
emission spectrum from free ππ annihilation is quite different from the in-medium pattern even
close to freezeout.

At low masses a more pronounced differentiation emerges when one divides the emission contri-
butions into temperature (density) slices, cf. right panel of Fig. 4.23. The strongest fingerprint of a
high temperature/density phase seems to be around the free two-pion threshold, Mee ≃ 0.3 GeV.
The difference to the time decomposition arises since the system spends somewhat longer time
(3 fm/c) in the high temperature interval than in the two lower temperature bins (about 2fm/c).
This effect originates from a (slight) softening of the equation of state as borne out of hydrody-
namic simulations [213]. It is expected to be much more pronounced in the low-energy (40 AGeV)
run at the SpS.
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4.6.6 Intermediate-Mass Spectra

In this Section we would like to investigate in how far medium effects that have been invoked to
explain the low-mass enhancement are relevant for/consistent with the intermediate-mass regime
(IMR). In Sect. 4.2.3 it has already been eluded to the conjecture that in vacuum, starting from
invariant masses of about Mee ≃ 1.5 GeV, one enters the ’dual’ regime, i.e., the thermal dilepton
emission rate can be reasonably well accounted for without further medium effects by either
(i) perturbative qq̄ → e+e− annihilation, based on the observation that the reverse process accounts
for the total inclusive cross section for e+e− → hadrons within ∼ 30%, or
(ii) binary hadronic collisions, once an appropriate set of meson states is included, being similarly
constrained by e+e− → hadrons cross sections in the corresponding (exclusive) channels.
Then the following questions have to be asked:
(1) Are such ’dual’ rates compatible with experimental spectra?
(2) How do medium effects, which are crucial at low masses, influence the intermediate-mass region?
For the quark-gluon description it has been argued that medium effects should play a minor role as
the small distance annihilation of (nearly) massless quarks and antiquarks inhibits large corrections
from the surrounding heat bath. However, this is much less obvious within the hadronic picture
since the interacting mesons (such as in the dominant πa1 channel) carry substantial rest masses
which already make up a large fraction of the cm energy so that the annihilation reactions involve
fairly small momentum transfers.

At the CERN-SpS, intermediate-mass dilepton spectra have been measured by the HELIOS-3
and NA38/NA50 experiments. In analogy to the low-mass case one can divide the spectra into
a (physical) background part and an in-medium signal radiated from the interaction phase of the
fireball. If one again defines the background as the contributions arising in p+p collisions, the
higher masses probed necessitate a somewhat different composition that now mainly stems from
hard processes occurring in the primordial stage of the collision. Most notably these are Drell-Yan
annihilation as well as open-charm decays (i.e., an l+l− pair originating from the separate decay of
an associatedly produced pair ofD and D̄ mesons) which are negligible in the low-mass region [258],
but start to dominate over the final-state meson decays for Mll ∼> 1.5 GeV. Contrary to the final-
state meson decays, the initial hard processes are assumed to scale with the number of primary
nucleon-nucleon collisions to provide their contribution in p+A and A+A reactions (for the open
charm, e.g., this has been verified for p+A collisions in Ref. [258]). Fig. 4.24 shows a comparison
of the the HELIOS-3 µ+µ− data from p+W and S+W collisions with the various background
sources [29, 204]. Whereas the total background reproduces the p+W spectra quite satisfactorily,
the S+W data are underestimated by a factor of 2–3 throughout the entire mass range from
1–2.5 GeV (equivalent observations have been reported from the NA38/NA50 collaboration [27]).

Li and Gale have performed transport calculations including the radiation from the fireball
using the mesonic production rates from binary collisions [204]. They find good agreement with the
HELIOS-3 data in the intermediate-mass region if no further medium effects are included (dotted
line in Fig 4.25). In particular, this implies that both perturbative qq̄ rates and the lowest-order in
temperature mixing effect in the axial-/vector correlator are compatible with the data (as follows
from the rate comparison discussed in Sect. 4.2.3). On the other hand, the low-mass end of the
spectrum (below ∼ 1 GeV) cannot be explained in terms of binary collisions without invoking any
further medium effects. Li and Gale therefore employed the dropping mass scenario extrapolated
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Figure 4.24: Dimuon invariant mass spectra from the HELIOS-3 collaboration [24] taken in
450 GeV proton-induced and 200 AGeV sulfur-induced reactions on tungsten targets (full and
open circles, respectively), compared to the expected background yields from light vector mesons
(dotted curve), Drell-Yan processes (long-dashed curve), open charm decays (short-dashed curve)
and their sum (solid curve). The plot is taken from Ref. [204].

to include the higher mass (non-strange) vector resonances as well. The data are then nicely
reproduced from the two-muon threshold up to about 1.2 GeV, but seem to be underestimated
beyond (possibly also between the ω and φ mass).

Using the emission rates from the chiral reduction formalism, together with an expanding
thermal fireball model [47], Lee et al. [205] have obtained similar results to the Li-Gale calculations
with free meson masses.

As of now there are no intermediate-mass dilepton calculations available using in-medium many-
body spectral functions. Here the question is whether a strong broadening of, e.g., the ρ resonance
could lead to an over-estimation of the data in the 1–1.5 GeV mass region. However, from a
theoretical point of view, if the broadening scenario indeed approaches chiral restoration by merging
into the perturbative plateau-value for the vector and axialvector correlators (as we have argued
in Sects. 2.6, 4.2.3), the HELIOS-3 data will be reproduced, see the above remarks. Also note that
the in-medium ρ-meson spectral function as used for the low-mass region actually exhibits only a
rather moderate enhancement (factor of ∼ 2) over the vacuum one for invariant masses somewhat
above the free ρ peak (Fig. 3.19). Above 1 GeV further contributions need to be included for a
more complete description of the vector correlator, such as πa1 → ρ′ selfenergies corresponding to
four-pion like processes. This will closely resemble the kinetic theory treatment in terms of the
various binary scattering processes, as performed in Ref. [204]. Since coherence effects in the many-
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Figure 4.25: Dimuon invariant mass spectra as measured by the HELIOS-3 collaboration [24] in
200 AGeV S+W reactions, compared to transport calculations using a purely hadronic description
for the dilepton radiation from the fireball; dotted line: employing free hadron masses; full line:
dropping mass scenario. The plot is taken from Ref. [204].

body treatment are expected to be small especially towards higher energies (already in the low-mass
region they were found to be quite moderate), there should be little discrepancies to the (incoherent)
kinetic approach, even on a quantitative level. Beyond M = 1.5 GeV the ’dual’ (hadronic or
partonic) production rates are characterized by an essentially flat spectral shape. Here the main
issue therefore is whether the space-time description used for the calculations in the low-mass
region will lead to a total yield that reproduces the experimentally observed enhancement. Another
possible source of this excess has been pointed out by the NA50 collaboration: they showed [27]
that the excess can be accounted for by introducing an anomalously increased production of open
charm mesons by a factor of ∼ 3. However, there are no theoretical indications for a suitable
mechanism of this kind (the final answer will be provided by a direct measurement of produced
D mesons at the CERN-SpS). Lin and Wang [259] have addressed the possibility of D meson
rescattering to enrich the dilepton yield in the NA50 acceptance; however, this does not constitute
more than a 20% effect. On the other hand, in the recent analysis of Ref. [244] it has been shown
that the use of the dual lowest-order qq̄ annihilation rate throughout the entire mass range from
0–3 GeV folded over a schematic fireball evolution [47] leads to very similar yields in the IMR as
obtained with a factor of 3 open charm enhancement; at the same time the (low-mass) CERES
data are approximately accounted for (see also dashed curve in Fig. 4.29). Similar conclusions are
reached in Ref. [260]: the NA50 enhancement between 1.5 and 3 GeV can be explained with the
dual qq̄ rate employing the same fireball model [50] (being consistent with hadro-chemical analysis
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of CERN-SpS data including finite pion chemical potentials towards thermal freezeout) that leads
to a satisfactory description of the CERES data once medium effects in the ρ spectral function are
incorporated.

4.7 Direct Photon Spectra

As we have stressed in Sect. 4.3, real photons and dileptons can be considered as two kinematical
realizations of otherwise identical electromagnetic production mechanisms. For heavy-ion reactions
it follows that any model which claims success in describing the observed dilepton spectra must also
be consistent with direct photon spectra. The notion ’direct’ has been introduced to refer to only
those photons which are originating from the interaction phase of the fireball, i.e., unlike the dilep-
ton case, the contributions from hadron decays after freezeout are considered as a background that
ought to be subtracted to obtain the final spectra. This, in fact, represents the main experimental
difficulty, since around 90% or more of the photons produced in heavy-ion collisions at full SpS
energies stem from the π0 → γγ and η → γγ decays. As a consequence direct photon observables
are about two orders of magnitude less sensitive to any in-medium signals than dileptons [261].
Also note that the observed single-photon energies pick up the laboratory three-momentum of
the decaying hadron and hence are not restricted by the hadron rest mass – as opposed to the
invariant masses of dileptons from the Dalitz decays, where Mll ≤ mπ, etc.. The major systematic
error then arises from the uncertainty in the π0 and η abundances. The contributions from other
mesons are usually estimated from the so-called ’mT scaling’, i.e., a ∼exp(−βmT ) dependence
of the transverse mass spectra with a universal slope parameter β. Photon measurements at the
CERN-SpS have been performed by the HELIOS-2 [262], CERES [263] and WA80/WA98 [264, 265]
collaborations. In central S+Au, WA80 found a photon excess of 5% ± 5.8%(syst) ± 0.8%(stat)
consistent with CERES and HELIOS-2 results which carry somewhat larger errors. From these
measurements they extracted an upper limit for direct photons at the 90% confidence level (see
below), which has been used to test theoretical models. More recently, a preliminary direct photon
spectrum for central Pb+Pb has been published [265].

In hydrodynamical simulations [266, 267] it has been claimed that the upper limits set by
WA80 are not compatible with purely hadronic scenarios. However, these conclusions have been
drawn using a very limited number of degrees of freedom in the hadronic gas phase (π, η, ω, ρ). For
equal initial energy densities this leads to much larger initial temperatures in the hadronic phase
than in a quark-gluon plasma, entailing much higher photon yields. Purely hadronic models with
lower initial temperatures cannot be ruled out by this reasoning. In fact, the thermal production
rates of photons from a QGP are presumably not very different from those of a hadron gas at the
same temperature, as has been first noted in Ref. [206]. Hence, similar to what has been found
for dileptons, one should expect that at CERN-SpS energies the rather small space-time volumes
occupied by a possibly formed QGP do not generate substantial photon signals as compared to
the hadronic phase. This has been explicitly demonstrated in the hydrodynamic calculations of
Refs. [266, 214]. Thus one is led to focus on the multiple possibilities for hadronic photon production
(Sect. 4.3).

Fig. 4.26 shows the photon transverse momentum spectra from various sources in central S+Au
collisions at 200 AGeV, evaluated in the transport framework [268]. A kinematical cut in pseu-
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Figure 4.26: Thermal single-photon spectra from meson decays (left panel), baryon decays (middle
panel) and two-body reactions (right panel) in transport calculations for central 200 AGeV S+Au
collisions [268].

dorapidity of 2.1 < η < 2.9 is applied to comply with the WA80 experiment. For transverse
momenta qt ≥ 0.5 GeV the dominant processes are radiative ω and a1 decays, the latter signifi-
cantly exceeding the nonresonant πρ→ πγ reactions. Note that the baryonic decays seem to have
little relevance here. Fig. 4.27 shows that the incoherent sum of all contributions (short-dashed
curve) respects the experimental upper limits of WA80. Furthermore, applying the dropping-mass
scenario within the same transport approach does not induce major changes in the final spectrum
(full curve in Fig. 4.27), which can be traced back to compensating mechanisms: for the radiative
decays of the vector mesons ρ, ω and a1, their increased abundance (due to the smaller masses)
is balanced by a reduced phase space for the decay products (see also Ref. [269], where similar
observations have been made at the relevant temperatures of about T ≃ 160 MeV). Analogous fea-
tures have been found for other variants of the dropping ρ-meson mass scenario when implemented
in the Hidden Local Symmetry approach for π-ρ-a1 dynamics [270]. Also shown in Fig. 4.27 are
the hydrodynamical results of Ref. [266] (long-dashed curve) which, as mentioned above, strongly
overshoot the WA80 bounds due to a high initial temperature in a purely hadronic description with
rather few degrees of freedom. On the other hand, using a larger set of hadronic states (including
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Figure 4.27: Total direct photon spectra in central 200 AGeV S+Au collisions compared to the
upper limits of the WA80 collaboration [264]; full and short-dashed curves: transport calculations of
Ref. [268] with and without dropping masses, respectively; long-dashed curve: Bjorken-type hydro-
calculations with a purely hadronic equation of state including π, η, ρ and ω mesons only [266];
dotted curve: 2+1 dimensional hydro-calculations employing a purely hadronic equation of state
with a larger set of mesons as well as baryons [214]; both hydro-approaches have used the photon
production rates of Ref. [206]. The compilation is taken from Ref. [268].

the lowest-lying pseudoscalar and vector meson nonet as well as baryon octet and decuplet), the
hydrodynamical calculations of Ref. [214] are essentially compatible with the data and also not
very different from the transport calculations.

Concerning the role of baryons, both the chiral reduction formalism [100] and the ρ-meson
spectral function approach [47, 102, 49, 123] have reached conclusions which are at some vari-
ance with the relative assignments of the incoherent decomposition given in Fig. 4.26. Using the
simple thermal fireball expansion for central S+Au collisions (where the baryon-density evolution
is taken from the transport simulations) yields the photon qt-spectra displayed in Fig. 4.28; for
each of the two approaches, they are based on exactly the same ingredients as the corresponding
dilepton spectra of Fig. 4.15. In the chiral reduction formalism the baryonic contributions are
exclusively associated with the finite nucleon density in the fireball. According to the decompo-
sition inferred from photoabsorption data (Fig. 4.1) the effects can be attributed to the ∆(1232)
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Figure 4.28: Direct photon spectra, compared to WA80 upper limits [264], in central 200 AGeV
S+Au collisions using a simple fireball evolution with thermal rates from the chiral reduction
formalism [100] (left panel; solid and dashed curve are obtained with and without the baryonic
contributions, respectively) and the in-medium ρ spectral function [47, 102, 49, 123] (right panel).

for qt ≤ 0.4 GeV and to the πN -’background’ above. In the photon production spectra for central
S+Au reactions they induce an enhancement over the mesonic contributions by a sizable factor
(left panel of Fig. 4.28). Very similar results follow from the ρ-meson spectral function approach,
which also reproduces well the nuclear photoabsorption spectra, albeit with a somewhat different
decomposition, i.e., a smaller πN ’background’ together with much larger contributions from direct
ρN resonances. This difference is not relevant for the direct photon spectra. On the other hand,
recalling the comparison to the CERES dilepton spectra in central S+Au, it has been found that
the ρ-meson spectral function approach does lead to a larger low-mass enhancement. This can be
readily gleaned from the rate comparison exhibited in Fig. 4.4: compared to the Steele et al.-rates,
the Rapp et al.-rates are by a factor 2–3 larger around M = 0.5 GeV (but agree with the former
towards the photon point).

4.8 Theoretical Implications

After the preceeding rather detailed discussion of the various efforts made in exploring low-mass
dilepton spectra in (ultra-) relativistic heavy-ion collisions (with additional impact from photon
and intermediate-mass dilepton spectra), we have to face the question in which respects it has
advanced our understanding of strongly interacting hot and dense matter. For that purpose let us
try to critically review and compare the successes and failures as well as the interrelations of the
different theoretical attempts that have been pursued to describe the various experiments.

Clearly, the BR scaling conjecture has been very successful in its application to low-mass
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dilepton data at CERN-SpS energies of 158–200 AGeV. In its original form it predicts a very specific
realization of chiral symmetry restoration, namely that all masses of the light (non-Goldstone)
hadrons merge to zero. Most of the underlying arguments in its favor rely on mean-field type
approximations, related to the decrease of the chiral quark condensate (via constituent quark
masses) or to the presence of strong scalar fields in hot/dense hadronic matter. More recently
connections have been drawn to link a reduction in the ρ and ω masses in nuclear matter to strong
collective excitations in ρ-N and ω-N interactions, most notably through N(1520)N−1 states. The
ramifications of this identification are still under debate.

On the other hand, the consequences of a strong in-medium broadening of the ρ-meson spectral
function, as predicted on the basis of phenomenologically well-established hadronic interactions
combined with standard many-body techniques, also seem to reproduce the SpS low-mass dilepton
data fairly well. If this scenario holds true close to the phase transition, it implies that the chiral
partner of the ρ, the a1(1260), becomes as broad and structureless: chiral symmetry restoration
manifests itself through a merging of both vector and axialvector correlators into a flat continuum
(such a behavior has been conjectured to signal deconfinement in Ref. [117]). If, in addition, the
height of the continuum corresponds to the perturbative qq̄ plateau value characterized by the
famous cross section ratio R = σ(e+e− → hadrons)/σ(e+e− → µ+µ−) = 5/3 (=2, when including
strange quarks), nonperturbative effects would be marked as no longer relevant which, after all,
constitutes the very essence of the quark-gluon plasma. This provokes the following theoretical
exercise: we simply replace the in-medium hadronic rates in the expanding fireball model (4.86) by
the perturbative qq̄ annihilation rates, (4.40), using the same time evolution of temperature and
density. The result shown in Fig. 4.29 indicates that the global use of the pQCD rate looks quite
reasonable but cannot fully account for the low-mass enhancement observed in the CERES data
(unless one invokes nonperturbative effects, see, e.g., Ref. [182]). More importantly, one should
note that, whereas the hadronic medium effects are more sensitive to finite baryon densities, the
lowest-order qq̄-rates exhibit a negligible dependence on a finite quark chemical potential. This
obvious ’duality-mismatch’ clearly deserves further studies.

Nevertheless, let us return to the hadronic approaches and first address the question what the
discriminating features for different fates of the ρ meson could be, i.e., ’dropping mass’ versus
’melting resonance’. Both lead to enhanced dilepton yields below the free ρ mass, but behave
very differently above. Whereas the in-medium broadening implies an enhancement over free ππ
annihilation between, say, the ω and the φ mass, the dropping mass scenario predicts a depletion
(the possible impact from higher states, such as the ρ′(1450), entering this region should be small,
since (a) it is not obvious that a large fraction of their mass is due to chiral symmetry breaking,
and (b) they have little significance in the pion electromagnetic form factor). As stressed above, an
improved mass resolution of the currently available dilepton measurements, together with sufficient
statistics, should be able to settle this issue. The mass region just above the ρ/ω resonances is also
supposed to be accessible by the PHENIX experiment at RHIC, although plagued by a tremendous
combinatorial background which may limit any sensitivity to resonance structures with sufficiently
narrow widths. Also, both the broadening and the dropping mass are predominantly driven by finite
baryon density effects, which are presumably small at RHIC. In this respect the upcoming low-
energy run at 40 AGeV at the CERN-SpS will be ideally suited, probing even lower temperatures
and higher baryon densities than with the 158 AGeV beams.

The lack of ’dramatic’ effects in the ρ properties in a thermal gas of mesons, as found by many
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fireball calculation using lowest order qq̄ → ee annihilation rates only (dashed line); also shown is
the full in-medium ρ spectral function calculation (solid line). Both fireball yields are supplemented
with the CERES cocktail.

authors [120, 47, 121, 122, 123], seems, however, somewhat puzzling. Phenomenologically this
can be traced back to the weaker meson-meson interactions (especially with ’Goldstone-protected’
pions), as compared to the meson-nucleon case. Thus, when carrying the calculations to higher
densities it seems plausible that the ρ and the a1 could ’degenerate through broadening’. On the
other hand, even at temperatures as high as T = 200 MeV, quite moderate in-medium corrections
to the ρ width have been deduced, reaching at most Γmed ≃ 200 MeV. Since this leaves a well-
defined resonance structure, it appears unclear how the ρ and a1 spectral distributions merge at this
point. These features might either point at some shortcomings in the phenomenological approaches
or indicate that the lowest-order in temperature vector-axialvector mixing is the prevailing effect
in pure meson matter. Also note that in most model calculations the chiral condensate exhibits a
strong, linear decrease with nuclear density (leading to an appreciable reduction already at normal
nuclear density), whereas its temperature dependence is much less pronounced until close to the
critical temperature T χc . Again, dilepton measurements at RHIC will hopefully shed more light on
the behavior of ρ, ω and φ mesons in a high-temperature and low-baryon-density environment.

Next, we compare the hadronic many-body calculations to the chiral reduction formalism put
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forward in its application to electromagnetic emission rates in Refs. [99, 100]. As far as low-mass
dilepton production at the CERN-SpS is concerned, the latter seems to give a factor of 2–3 less en-
hancement in the relevant region around Mll ≃ 0.4 GeV than the results obtained with in-medium
ρ spectral functions [47, 102, 49, 123, 50], see Figs. 4.15, 4.19. Although both approaches have
been constrained by photoabsorption spectra on nucleons and nuclei the differences in the dilepton
excess do mainly emerge from finite density effects. This is not due to a deviation at large densities
(i.e., through collective effects), but due to a different assignment of ’background’ and resonance
contributions in the photoabsorption data. When moving into the time-like dilepton regime (at
small three-momentum), the resonance contributions (which are larger in the spectral function ap-
proach, most importantly the N(1520)) are relatively much more enhanced than the structureless
background (which is larger in the chiral reduction approach), being essentially a kinematic effect.
This is further supported by the fact that in both approaches the direct photon spectra actually
agree quite well when integrated over the temperature and density history of central S+Au colli-
sions. Thus a careful separation of background and resonance contributions in the experimental
photoabsorption data should provide the key for a more quantitative discrimination of the effects
in the time-like regime.

From a theoretical point of view, the most distinctive feature between the many-body and the
chiral reduction treatment lies in the fate of the ρ resonance peak: in the master formula framework
in-medium corrections are obtained through additive terms in a temperature and density expansion,
which have almost no impact on the free ρ peak, whereas the resummation of large imaginary parts
in the many-body treatment of the ρ propagator induces a marked depletion. Model-independent
results for the in-medium vector and axialvector correlators indeed require that, due to their mixing,
strength should be removed from both the ρ and the a1 poles, at least to lowest order in temperature
and in the chiral limit [88] (cf. Sect. 2.6). The phenomenological many-body calculations seem to
comply with this feature, although their theoretical relation to chiral symmetry is not always
obvious.

In finite-temperature calculations based on chiral π-ρ-a1 Lagrangians the mixing theorem has
been shown to be satisfied [110], being mainly realized through a reduction of the γ-ρ vector
dominance coupling gργ(T ) due to a finite-temperature pion tadpole loop. However, corresponding
results for dilepton production rates cannot account for the low-mass enhancement observed at
the CERN-SpS [36]. One may raise the question whether phenomenological calculations at finite
temperature and density are still compatible with the data when including a suppression of the
VDM coupling. Since [gργ(T )/gργ(0)]2 decreases to only about 80% at the relevant temperatures of
T ≃ 150 MeV (using the physical pion mass rather than the chiral limit), the answer is that it will
only mildly affect the many-body results (in fact, a more complete calculation should also include
a (moderate) finite-temperature softening of the single-pion dispersion relation, which re-generates
a small enhancement below the free ρ mass).

Another, more practical, issue concerns the role of a finite pion chemical potential in the evo-
lution of (ultra-) relativistic heavy-ion collisions. Although it should have only moderate influence
on the shape of the dilepton spectra, it certainly has a severe impact on the total yield of dilepton
pairs originating from ππ annihilation in the interacting fireball (being proportional to the square
of the pion density). Both microscopic transport and hydrodynamical calculations correctly repro-
duce the total number of pions at freezeout, but the former seem to imply a finite µπ (not present
in current hydrodynamical analyses), resulting in a larger dilepton signal by a factor of 2–3. The
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introduction of a µπ > 0 in a thermal fireball calculation has been shown to essentially resolve this
discrepancy [50]. This needs to be confirmed in a full hydrodynamic treatment.

Finally we repeat that there is currently no theoretical explanation available for the strong
enhancement in the low-mass dilepton spectra measured by the DLS collaboration [34] in heavy-ion
collisions at relativistic projectile energies (1–2 AGeV). Both the dropping-mass scenario [233] and
the broadening of the in-medium ρ spectral function [237] fall short of the data by a factor of 2–3
at invariant masses around 0.4 GeV. Hopes to resolve this puzzle reside on the upcoming precision
measurments to be performed with the HADES detector at SIS (GSI) at similar bombarding
energies.
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Chapter 5

Conclusions

The investigation of hadron properties in a hot and dense environment as produced in energetic
collisions of heavy nuclei represents one of the main frontiers in modern nuclear physics. In par-
ticular, it is directly related to the approach towards the QCD phase transition, which constitutes
the ’Holy Grail’ of the ultrarelativistic heavy-ion initiative. In the present article we have tried to
review a very active subfield of this research program, namely the major theoretical accomplish-
ments that have been achieved in connection with low-mass dilepton production over the past five
years or so. Of course, the strong interest in this rapidly developing field is largely fueled by the
exciting data that our experimental colleagues have obtained despite the notorious difficulties in
extracting these observables.

The nature of dilepton final states mediated by electromagnetic currents immediately attaches
to the vector mesons as the key objects for gaining direct non-trivial information on in-medium
effects. In the low-mass region which we have focused on, these are the ρ, ω and φ mesons, with the
ρ meson playing the dominant role since it has the shortest lifetime and the largest dilepton decay
width. The now widely accepted viewpoint is that the main nonperturbative feature of low-energy
strong interactions – the spontaneous breakdown of the global chiral symmetry in the fundamental
QCD Lagrangian – is not only responsible for the build-up of the ’constituent’ quark masses but
governs the appearance of the low-energy hadron spectrum altogether. Hence the approach to
chiral restoration in hot/dense matter is intimately related to changing in-medium properties of
light hadrons. Here the only strict prediction from QCD is that the spectral distributions of ’chiral
partners’ have to become identical (or ’degenerate’). This is encoded in ’Weinberg sum rules’ which
(in the chiral limit) relate the energy-integrated difference of the vector and axialvector correlators
to the weak pion-decay constant, fπ, one of the order parameters for chiral symmetry restoration.
Medium effects of the ρ meson therefore necessarily have to be put into context with those of its
chiral partner, the a1 meson, as well as the pion. How the ’degeneration’ is realized in nature is far
from obvious and marks the central question to be answered in our context. For the ω meson the
problem is further complicated by the fact that it couples to three-pion (or π-ρ) states through the
Wess-Zumino term and hence the anomaly structure of QCD. Also the assessment of in-medium
properties of the φ meson is hampered by the fact that the current mass of the s-quark is quite
large so that arguments based on the chiral limit are not as stringent as in the u-d sector.
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Based on general properties of QCD we have started our discussion with a focus on model-
independent approaches. To lowest order in temperature (and in the chiral limit), soft pion the-
orems imply the leading temperature effect to be a mere mixing between vector and axialvector
correlators with no medium effects in the correlators themselves. QCD sum rules relate physical
vacuum correlators to the various condensates thus providing a direct link between physically ob-
served hadrons and the underlying QCD vacuum structure. It has now become clear that, when
applied within a hadronic medium, they have limited predictive power for in-medium spectral
distributions since they only provide a band of allowed combinations of large/small masses with
corresponding large/small widths of the light vector mesons.

More specific predictions can be obtained from hadronic model Lagrangians which have been
applied at various levels of approximations. Mean-field treatments typically focus on the in-medium
behavior of the masses, and here results from chiral Lagrangians including vector mesons as gauge
bosons (when applied at finite temperature) seem to allow for both an increasing ρ-meson mass –
becoming degenerate with the a1 – as well as a decreasing mass as conjectured in the famous Brown-
Rho paper based on scale invariance arguments. On the other hand, several independent many-
body calculations of in-medium vector meson spectral functions come to the consensus that mul-
tiple interactions in hadronic matter inevitably induce a broadening of the spectral distributions.
Nevertheless, certain S-wave scattering processes – most importantly resonant ρN → N(1520) ex-
citations – can be associated with a reduction of the ρ/ω mass. Towards higher densities, however,
the widths of the spectral functions (most prominently for the ρ meson) increase to such an extent
that the entire resonance structures are ’melted’ into an essentially structureless continuum. At
the same time the real parts in the propagators also become very flat so that the concept of a
single mass ceases to be meaningful.

We have argued that a scenario of melting resonances has in fact the very appealing feature to
establish a continuous link (’duality’) between hadron- and quark-gluon-based calculations of the
vector correlator, in the following sense: in vacuum the ’duality-threshold’, i.e., the invariant mass
where the total cross section σ(e+e− → hadrons) empirically starts to follow the perturbative
QCD prediction for qq̄ production is located at about M ≃ 1.5 GeV. Resonance formation at
lower invariant masses is an inherently nonperturbative effect associated with spontaneous chiral
symmetry breaking which is a ’large distance phenomenon’. It should not play any role at the small
space-time distances probed beyond 1.5 GeV. Consequently, above this mass also the axialvector
correlator, being identical to the vector one, ought to be given by perturbative QCD (which is
unfortunately not well-established experimentally). Medium modifications can be studied through
dilepton production, the reverse process of e+e− annihilation. We have pointed out that the
finite-temperature mixing of vector and axialvector channels, which to lowest order arises from
the coupling to pions of the heat bath, suffices to equalize the hadronic and quark-antiquark
description down to the φ meson mass when extrapolated to temperatures where chiral symmetry
is restored. This feature is corroborated by model-independent approaches, such as the chiral
reduction formalism, as well as detailed model calculations in the region above the φ meson peak.
It can thus be stated that ’duality’ of hadronic and quark descriptions for the in-medium rates
down to 1 GeV is well established for the case of vanishing baryon density and is likely to also hold
for the latter case. The appealing physical interpretation is that, as electromagnetic probes couple
to charges, in the vicinity of the phase boundary it becomes immaterial whether they reside in free
quarks or in a large number of strongly interacting hadrons.
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The continuation of the ’duality’ argument to even lower invariant masses is not rigorously es-
tablished at present, although suggestive indications have emerged. It is clear that the lowest-order
mixing does not affect dynamically generated (low-mass) resonance structures in the correlators.
This is precisely where the many-body effects enter through a flattening of the resonance peaks,
which now requires arbitrary orders in density introduced through resummations. Hadronic model
calculations near the phase boundary show that the resulting dilepton rates in the ρ region and
somewhat below continue to match rather well the perturbative quark-antiquark rates. Deviations
set in for M ∼< 0.5 GeV. At such low invariant masses it is, however, conceivable that ’soft’ pro-
cesses could significantly alter the quark rates. From a more practical point of view, the melting
of especially the ρ resonance directly entails an enhanced dilepton production below the free mass
which has turned out to be compatible with current data from the SpS. At the same time, to
verify the associated depletion of the in-medium signal in the free ρ/ω mass region of the spectra,
it will be crucial to discriminate free ω decays, occurring after freezeout, which is anticipated to
be feasible with improved mass resolution measurements at the CERN-SpS. Clearly, this applies
equally to both the commissioned low-energy run at 40 AGeV and additional future ones at the
full SpS energy.

There remain a number of further problems which have to be resolved. First, it will be important
to establish a more profound theoretical connection between the processes that reshape the vector
(ρ) and axialvector (a1) spectral distributions. In particular one has to find reliable ways to perform
a similarly advanced calculation for the in-medium properties of the a1 as has been achieved for the
ρ. Also, since (at comparable densities) the medium effects from baryonic matter seem to be more
pronounced than at finite temperature, the fate of the (light) vector mesons in purely mesonic
matter near the phase boundary is not really settled. Here, the upcoming collider experiments
at RHIC and LHC, where the meson-to-baryon ratios at midrapidity are expected to increase by
another substantial factor (∼ 5–10 at RHIC) as compared to current SpS conditions, will provide
answers.
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[220] B. Kämpfer, O.P. Pavlenko, A. Peshier and G. Soff, Phys. Rev. C52 (1995) 2704.

[221] K. Haglin, Phys. Rev. C53 (1996) R2606.

[222] G.F. Bertsch and S. Das Gupta, Phys. Rep. 160 (1988) 189.

[223] C.M. Ko and Q. Li, Phys. Rev. C37 (1988) R2270.

[224] B. Blättel, V. Koch, W. Cassing and U. Mosel, Phys. Rev. C38 (1988) 1767;
for a review, see e.g., B. Blättel, V. Koch and U. Mosel, Rep. Prog. Phys. 56 (1993) 1.

[225] J. Aichelin, Phys. Rep. 202 (1991) 233.
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