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Chirality effects on an electron 
transport in single‑walled carbon 
nanotube
J. Charoenpakdee1, Ongart Suntijitrungruang1 & S. Boonchui1,2*

In our work, we investigate characteristics of conductivity for single‑walled carbon nanotubes caused 
by spin–orbit interaction. In the case study of chirality indexes, we especially research on the three 
types of single‑walled carbon nanotubes which are the zigzag, the chiral, and the armchair. The 
mathematical analysis employed for our works is the Green‑Kubo Method. For the theoretical results 
of our work, we discover that the chirality of single‑walled carbon nanotubes impacts the interaction 
leading to the spin polarization of conductivity. We acknowledge such asymmetry characteristics 
by calculating the longitudinal current–current correlation function difference between a positive 
and negative wave vector in which there is the typical chiral‑dependent. We also find out that the 
temperature and the frequency of electrons affect the function producing the different characteristics 
of the conductivity. From particular simulations, we obtain that the correlation decrease when 
the temperature increase for a low frequency of electrons. For high frequency, the correlation is 
nonmonotonic temperature dependence. The results of the phenomena investigated from our study 
express different degrees of spin polarization in each chiral of single‑walled carbon nanotube and 
significant effects on temperature‑dependent charge transport according to carrier backscattering. By 
chiral‑induced spin selectivity that produces different spin polarization, our work could be applied for 
intriguing optimization charge transport.

Carbon nanotube (CNT) photonics is an emerging �eld with fascinating  properties1–4. It o�ers a challenge to 
both fundamental and applied sciences. Many properties of CNT are related to its lattice structure, that allow for 
modulating charge dynamics through the curvature of the nanotube surface. Physical framework in condensed 
matter nature is discussed such as narrow-linewidth blackbody  emission5, the �rst electrically driven ultrafast 
CNT light  emitter6, electronic many-body correlation  e�ects7, etc. With interesting properties, the heat equation 
and Planck’s law was used to study the nanotube lamp fabrication  process8–11. In integrated micro-sized light 
sources for photonic and optoelectronic integrated circuits, and optical interconnection is applied by exploiting 
CNT devices with narrow line width. A one of the important properties in the twisted carbon is chirality. With 
the e�ect of chirality, many microscopic phenomena take place. For instance, the graphene nanoribbons with 
various edge orientations (chirality) exhibit edge-dependent electronic and optical selection  rules12–15. �e e�-
ciency of absorption and emission of di�erent chiralities CNT was  considered16,17. �e role played by the type of 
surfactant, surfactant concentration, and nanotube concentration on the e�ciency of absorption and emission 
is discussed. Other exciting properties occur when the curvature is presented. For an electrical conductivity of 
single-walled carbon nanotube (SWCNT), its anisotropy lattice structure e�ects in the electron transport of 
SWCNT are considered in many research works. For example, electron transport along a chiral trajectory is 
decomposed into current components along the tubule axis and its  circumference18,19. By the Boltzmann kinetic 
equation, Slepyan had shown that the impedance for di�erent SWCNT’s (zigzag, armchair, and chiral) is derived 
as a result of the dynamic  conductivity20. For metallic chiral, the longitudinal conductivity is proportional to 
the inverse of the radius tube. Nonlinear electron transport and chiral e�ects on the magnitude and the direc-
tion of the total time-averaged current were  predicted21. �e theory of photogalvanic e�ects was considered for 
particular chirality  e�ects22.

Spin–orbit interaction (SOI) plays an essential role in the electronic and optical properties of solid-state 
systems. For examples, group-IV monoelemental 2D honeycomb materials beyond graphene, such as silicene, 
germanene, and stanene, have been predicted to exhibit band gaps, depending on the strength of  SOI23. �e 
binary compounds of group III–V elements have also been proposed as the honeycomb lattices with large energy 
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 gaps24–26. For theoretical discussion, the SOI is regarded in many properties of SWCNT  in27. �e velocities of 
the Dirac particle is asymmetric due to these e�ects, showed by Izumida et al.28,29. Electron transport in the 
potential step, which mimics a long-range potential in the armchair nanotubes with curvature induced SOI, 
is  investigated30. Other property of SWCNT caused by the intrinsic magneto-optical properties of suspended 
SWCNT were studied for various chiralities essential on the signature of spin orbit  coupling31. A full analysis of 
spin orbit interaction in SWCNTs requires, however, to examine the impact on electron transport in the antisym-
metric group velocity of honeycomb carbon lattice of a tube. Carbon 2p orbitals presenting a weak spin–orbit 
interaction in SWCNT was  discussed32–34. Since the e�ect of this interaction is small, It needs to consider its 
e�ects on the lowest order of energy dissipation. In particular, carbon nanotubes applied by the magnetic �eld 
make breaking all of these symmetries, and the spin–orbit coupling is considerable. �e SOI is directly observed 
as a splitting of the four fold degeneracy of a single electron in ultra-clean quantum  dots35. Although the atomic 
spin–orbit coupling in carbon is weak, the spin orbit coupling in carbon nanotubes can be signi�cant due to 
their curved surface. However, the spin–orbit coupling in the carbon nanotube devices that is an order of mag-
nitude larger than previously measured was  reported36.  Experimentally37,38, in a recent experiment, DNA-carbon 
nanotube spin �lters in which carbon nanotube have been functionalized with two di�erent classes of sequences, 
exhibiting di�erent degrees of interaction with the carbon nanotube is  reported39. �is work shows that chirality-
induced spin selectivity induce di�erent degrees of spin polarization in the channel, with a signi�cant impact on 
temperature-dependent charge transport and interference phenomena arising from carrier backscattering. To 
understand chirality-induced spin selectivity or spin �lters e�ect, it implies an intriguing ways to control carrier 
transport at the nanoscale and the realm of mainstream spintronic devices.

In this paper, we theoretically studied the characteristics of conductivity for SWCNT caused by SOI. �is 
paper is organized as follows: we begin with results, and discussions of characteristics of the retarded cur-
rent–current correlation function depending on the chiral. We show the results of calculations. It implies that the 
signi�cance of spin polarization depends on each chiral of SWCNT and temperature-dependent charge transport. 
We, furthermore, interpret our simulation results in physical means that thermal energy boost the electron’s 
energy. In certain cases at speci�c frequencies, the characteristic of temperature dependence are nonmonotonic 
as a result of conduction energy band’s attribute. In “Conclusions”, our conclusion is shown. Finally, a theoretical 
method of the tight-binding model and current operator in a chiral SWCNT are shown. We demonstrate that 
characteristics of the retarded current–current correlation function depend on the chiral indexes.

Results and discussions
In order to theoretical explore properties in SWCNT, we consider SWCNT with the diameter and the chiral angle 
as the zigzag SWCNT, (0,4) (ρ = 0.313 nm, θ = 0◦) , the chiral SWCNT (2,6) (ρ = 0.565 nm, θ ≈ 19.1◦) , and the 
armchair SWCNT, (4,4) (ρ = 0.542 nm, θ = 30◦) as shown in Fig. 1a. Our calculations begin from considering 
the tight-binding model that the hopping integral between the π orbital is modi�ed and added the curvature-
induced σ − π due to tilted Dirac cones near the K point. We examine the results of SOI for each chiral a�ecting 

Figure 1.  (a) Molecular structures of three SWCNT forms that are the zigzag (0,4), the chiral (2,6), and the 
armchair (4,4). (b) �is �gure shows that its molecular bond angle of each form. �ese are the components of 
the nearest-neighbour lattice vector 

−→

δ  in the basis of direction perpendicular and parallel to the tube axis.
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the motion of electron spin up, which is along +z tube axis. We have shown that speci�c curvature induces 
the asymmetry conductivity of three types of SWCNT for positive and negative wave vectors, corresponding a 
shi� of the Dirac point. By shi�ed the Dirac point that makes asymmetric heat transfer, asymmetric electrical 
conductivity occurs. According to experiment  work40, in the certain chiral indexes of SWCNT, the asymmetric 
conductivity exists. Such phenomena is consistent with particular experiments on heat transfer. In 2006, A 
relevant attempt to build a thermal recti�er was based on a graded structure made of carbon and boron nitride 
nanotubes that transport heat between a pair of heating/sensing circuits. �e resulting nanoscale system yields 
asymmetric axial thermal conductance with higher heat �ow in the direction of decreasing mass  densitys41. 
On the other hand, the thermal recti�cation phenomenon in a single-wall mass graded carbon nanotube was 
investigated by molecular dynamics simulation. �e dependence of the recti�cation factor R on temperature, 
nanotube diameter, and length, as well as the mass gradient is  obtained42. �e dependence of the recti�cation 
factor R on temperature, nanotube diameter, and length as well as the mass gradient is obtained.

Moreover, our simulations demonstrate that e�ects from the spin–orbit coupling depend on the distance 
between the interacting atoms projected in the axial direction for each chiral SWCNT as a schematic diagram in 
Fig. 1b. �e transfer integral treated follow the approach of  Ando43 is modi�ed π state with σ state. �e hopping 
integral the neighbor orbitals induced by SOI can be written in terms of the distance d

||
δ
 as in Eq. (6). �e strength 

of SOI is proportional to the distance d
||
δ
 . When the distance close to zero, the separation of the conductivity van-

ish as it is shown in the case of the armchair SWCNT. Typical temperature-dependent spin polarization is shown 
according to the results of current–voltage (I–V) characteristics in carbon nanotube measured by  Rahman39. 
For this recent experiment, they show that the SOI induce di�erent degrees of spin polarization in the channel, 
with a signi�cant impact on temperature-dependent charge transport and interference phenomena arising from 
carrier backscattering. Chirality-induced spin selectivity induced spin polarization is present. �e experiments 
show the emergence of strong chirality-induced spin selectivity at lower temperatures. We theoretically studied 
characteristics of the spin polarization, which is estimated from the di�erence of the retarded current–current 
correlation function for the orbital ℓ = 1 and ℓ = −1 , consisting of the experiment.

In our numerical calculations, we choose all other parameters given as calculation following Ref.21. Let us 
start to consider plot energy band structures for a range of nanotube diameter and a series of chiral angle. Roll-
ing graphene to a tube imposes additional periodic boundary conditions on the wave functions, leading to the 
quantization of momentum in the transverse component of the vector �q, q⊥ = 2πℓ|Cnm| , with ℓ being an integer. 
If quantization lines run straight through Dirac points, then the line is a linear dispersion relation and zero band 
gap is obtained. However, if the lines bypass the Dirac points with separation, then a pair of hyperbolas with a 
bandgap is obtained. We attend the dispersion in the region ≈ (−4, 4) eV. Schematics of the quantization lines 
[blue (0,4), green (2,6), red (4,4)] are showed in the le� of the �gure. First, we consider a dispersion relation for 
an electron with a spin-up state, which is oriented parallel to the z-axis (tube axis). In the case of the quantization 
lines ℓ = 0 , the armchair (4,4) is gapless. But the energy gap occurs for the zigzag (0,4) and the chiral (2,6) as is 
shown in Fig. 2a. A minimum point of the band slides to the le� hand side in case of the armchair (4,4) and the 
chiral (2,6). For the quantization lines ℓ = ±1 , the energy gap exists for all each SWCNT shown in Fig. 2b,c. To 
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Figure 2.  Shi�ed K Point of the Dirac cones for the Zigzag, the chiral and the armchair in each orbinal number 
(a) ℓ = 0 , (b) ℓ = 1 and (c) ℓ = −1.
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discuss the le�-going (right-going) particle velocities, it is obvious from Fig. 2b,c that linear band tilting, that is, 
a di�erent slope for linear bands, is seen especially for the armchair SWCNT but not for the zigzag SWCNT and 
the chiral SWCNT. �e group velocity has the asymptotic velocity of the conduction and valence bands result-
ing in a linear dispersion. Here we de�ne the velocities from Fig. 2, which are given by Eq. (20). we, now, can 
estimate the ratio of velocities to be |vK

R
/vK

L
| . In Fig. 2b,c, It signify that the maximum ratio of velocities is about 

0.99, 1.98, and 3.73 for the zigzag (0,4), the chiral (2,6), and the armchair (4,4), respectively. In consequence of 
the di�erent velocities, the correlations π (R) and π (L) are not symmetric around the minimum point of the band, 
thereby causing unique characteristic of the conductivity.

Next, we will articulate remarkable characteristics of conductivity, which relates to �
(ℓ)
zz (ω, q;T) as Eq. (19). 

For �xed q at room temperature ( T = 300 K ), On the one hand, the real part of �
(ℓ)
zz (ω, q;T) closes to zero so 

that we can neglect such part. In the other hand, the imaginary part of the variable is considerable. �erefore, 
It is important to study the behavior of the frequency-dependent electrical conductivity tensor σαβ(q = 0) that 
depends on the imaginary part of the variable as presented in Fig. 3. From the Fig. 3a, we �nd that the �rst local 
minimum of �

(0)
zz (ω, 0;T) is above −0.3 eV . Hence, the value of the �rst local minimum increases when the 

chiral angle decrease for the quantization lines ℓ = 0 . We observe that as |ω| increases, the poles decrease to 
zero. In the opposite, the imaginary part of �

(1)
zz (ω, q;T) increases. In the Fig. 3b, the �rst local minimum of 

the imaginary part of �
(1)
zz (ω, 0;T) is above 0.5 eV . For example, the zigzag (0,4) (blue lines), at the �rst local 

minimum ω = 0.489 eV , we have �
(1)
zz (ω, 0;T) ≈ −0.018 . For the chiral (2,6) (green lines), at the �rst local 

minimum ω = 0.413 eV , we have �
(1)
zz (ω, 0;T) ≈ −0.117 . Finally, the �rst local minimum ω = 0.539 eV , we 

have �
(1)
zz (ω, 0;T) ≈ −0.097 for the armchair (4,4) (red lines). According to the Fig. 3c the quantization lines 

ℓ = −1 , �
(−1)
zz (ω, 0;T) has the same curve characteristic as for the zigzag (0,4) (blue lines) and the armchair 

(4,4) (red lines) but it has a little change from �
(1)
zz (ω, 0;T) for the chiral (2,6) (green lines).

�en, we will describe the dc conductivity at room temperature via taking the limit ω = 0 for the tensor in 
which there is the ratio between the complex variable �

(ℓ)
zz (ω, q;T) , and frequency. Although the frequency is 

close to zero, the conductivity is not unde�ned because the complex variable is close to zero as well. We calculate 
the imaginary part of �

(ℓ)
zz (ω, q;T) for the electron spin up parallel to the z-axis. Initially, we consider the quanti-

zation lines ℓ to be zero that show the behavior of the imaginary part of �
(ℓ)
zz (ω, q;T) as a function of q. In Fig. 4a, 

Such graphs are multiple maxima spikes, rapidly changing from positive to a negative value of �
(0)
zz (0, q;T) . 

�e absolute of a rapidly changing point increase when the chiral angle increase. For example, the zigzag (0,4) 
(blue lines), the spikes is q = ±1.55 nm

−1 . For the chiral (2,6) (green lines), the spikes is q = 1.114 nm
−1 and 

−2.30 nm
−1 . Finally, the spikes is q = 0.78 nm

−1 and −2.66 nm
−1 for the armchair (4,4) (red lines). Also, 

they possess asymmetric properties in which negative and positive wave vectors corresponds with the shi� of 
the Dirac point band structure according to Fig. 2a.

In the case of orbital motion, the imaginary part of the correlation function �
(±1)
zz (0, q;T) is signi�cant since 

as Eq. (19), the conductivity tensor is as a result of unit imaginary multiply with the function that consists of a 
negative imaginary value so that the conductivity is composed of real value. Now we will consider the imaginary 
part of �

(±1)
zz (0, q;T) . In Fig. 4b,c, �

(−1)
zz (0, q;T) demonstrate curve characteristic that resemble �

(1)
zz (0, q;T) 
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Figure 3.  �e simulation plots for the imaginary part of the current–current correlations �
(ℓ)
zz (ω, 0;T) relating 

to the frequency ω in the zigzag (0,4) (blue lines), the chiral (2,6) (green lines), and the armchair (4,4) (red lines) 
with di�erent orbital number where (a) ℓ = 0 , (b) for ℓ = 1 and (c) for ℓ = −1.
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for the chiral (2,6) (green lines) and the armchair (4,4) (red lines) but rather di�erent from �
(1)
zz (0, q;T) for the 

zigzag (0,4) (blue lines). For Fig. 4b,c, all lines vary di�erent when the electron has an orbital characteristics of a 
spiral clockwise (ℓ = 1) and counterclockwise (ℓ = −1) . For instance, at the minimum point of the chiral (2,6) in 
Fig. 4c, there is 26.5% di�erent from the minimum point of the same chiral index in Fig. 4b. �e characteristics 
of the graphs imply that the electron which is the spin-up state consists of two di�erent conductivity depending 
on the orbital motion. Even if the values of the conductivity are not equal in both orbital numbers, the tendencies 
of conductivity’s curves are similar. �e orbital of a spiral counterclockwise (ℓ = −1) has overall DC conductiv-
ity less than clockwise (ℓ = 1) for the electron in the spin-up state but it is usually opposite for the electron in 
the spin-down state. Consequently, if electrons moving through SWCNT become polarized, the backscattered 
electrons will be polarized in the opposite direction. �e electron transmission in SWCNT, as a result, has the 
spin-polarized characteristic in carrier transport owing to the chirality of SWCNT.

Now we will consider characteristics of the spin-polarized for each SWCNT in Fig. 5. From the simulational 
calculation, it implies that conductivity of the electron’s spin-up state which is based on the correlation split to 
two lines for di�erent of orbital (ℓ = 1) and (ℓ = −1) . For example, there is a maximum di�erence at q = 0 nm

−1 
for the zigzag (0,4) and at q = −0.53 nm

−1 for the chiral (2,6). �e maximum di�erence for the zigzag (0,4) as 
Fig. 5a is about 0.015(ω = 5 eV ) and 0.0078(ω = 10 eV ) and the maximum di�erence, for the chiral (2,6) as 
Fig. 5b is 0.0069 (ω = 5 eV ) and 0.0028(ω = 10 eV ) . Nevertheless, in the case of armchair (4,4), there is no 
conductivity’s spitting. Our theoretical results inform the chirality e�ects on SWCNT that if SOI caused by the 
distance between the interacting atoms projected on the tube’s axis exists (such as the Zigzag and the Chiral), 
there is the separation of the conductivity. �e strength of SOI considerably depends on the distance d

||
δ
 in Eq. 

(6). On the contrary, in the case of the armchair in which the distance close to zero, the separation of the con-
ductivity vanish.

�e certain parameters from Eq. (28) that a�ect the phenomena are (1) a spiral clockwise (ℓ = 1) or counter-
clockwise (ℓ = −1) of the electron motion, (2) the chiral index of SWCNT, and (3) temperature which is shown 
in Fig. 6. To explore the typical temperature dependence, we will consult Fig. 6a,b that are the representation 
orders of the magnitude di�erence from the imaginary part of �

(±1)
zz (ω, q;T) at temperature range 10–300 K. 

�e �gures demonstrate that the splitting of conductivity implied by the magnitude di�erence dwindles when 
the temperature increase. �is result corresponds to the recent experiment of  Rahman39 for the inversion asym-
metric helical potential of DNA creating a spin-�ltering e�ect, which polarizes carrier spins in the nanotube.

Such a tendency indicates that the phenomenon may disappear in the high-temperature case. From the �g-
ures, we observe the characteristics of inserted graphs which signify conductivity’s separation that graphs in the 
high-frequency case are nonmonotonic where the maximum conductivity’s spitting emerges at the speci�c critical 
temperature. We regard further for the high-frequency respect that if the electron’s frequency increase, the critical 
temperature increase. On the other hand, where the electron’s frequency is not high, the graph characteristic is 
rather monotonic decay in the zigzag but might be slightly nonmonotonic in the chiral. �is e�ect is due to the 
convolution of current–current correlation de�ned as a thermal average. As a result, the critical temperature is 
shi�ed according to the responding frequency of conductivity. �e theoretical results imply spin polarization 
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estimated by the di�erent imaginary part of the current–current correlation being two phases. In the �rst phase 
where the temperature is less than the critical temperature, increasing spin polarization corresponds with the 
increasing temperature. Nonetheless, in the later phase where the temperature is more than the critical tem-
perature, the result is opposite that increasing temperature leads to decreasing spin polarization. �e correlation 
function, therefore, is highest at the pole where thermal energy relates to responding frequency of conductivity in 
the case of nonmonotonic. However, in the case of the low frequency, the nonmonotonic characteristic disappear 
since the kinetic energy of the electron’s current is so low that the pole most occurs where the temperature close 
to zero. �e theoretical characteristic of �rst phase insinuates physical meaning that the thermal energy causes 
the electrons to transfer from the valence band to the bottom of conduction bands which are di�erent from the 
velocities v

(K)
L/R in the di�erent orbital. Consequently, in the �rst phase, increasing temperature induces the separa-

tion of conductivity. In the second phase, however, thermal energy boosts electrons to higher conduction bands 
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in which their velocities are a little di�erent. �e separation of conductivity is somewhat not explicit since most 
electrons in each orbital have the close energy. Accordingly, in the later phase, increasing temperature decreases 
the separation of conductivity. �e e�ects of SOI in our model is analogous to the Zeeman e�ect that the presence 
of the magnetic �eld makes a spectral line spilt into several components. If orbital and spin of the electron are the 
opposite directions, the produce magnetic potential is positive according to the nature of  SOI44. Such potential 
cause the backscattering e�ect, hence overall electron’s movement impedes. On the contrary, where orbital and 
spin of the electron are the same direction, the induced magnetic potential is negative. �e negative potential 
lead to reduced backscattering e�ect. By the di�erent orbital with the same spin direction, the conductivity of 
SWCNT separate via the unequal backscattering e�ect.

Conclusions
Our research investigates the characteristics of conductivity of carbon nanotubes of three types of single-wall 
carbon nanotubes by using the Green-Kubo method and thoroughly considering the tide-binding model. We 
derive the fascinating characteristics of the longitudinal current–current correlation function which leads to 
many peculiar attributes that the le�-going v

(K)
L

 and the right-going v
(K)
R

 velocity consist of asymptotic in con-
duction and valence bands possessing a linear dispersion, see in Fig. 2. To study the conductivity attribute, we 
emphasize especially on the imaginary part of the current–current correlation function which indicates implicitly 
overall conductivity. We found out that there are di�erent correlations between di�erent orbitals. In addition, 
we discovered the temperature dependence in the di�erent imaginary parts of the current–current correlation 
which is nonmonotonic at certain frequencies. We perceived that if responding frequencies of conductivity are 
high, the nonmonotonic attribute appears. We discerned that in the obvious nonmonotonic case, the di�erence 
between the imaginary part of the correlation exists to be two phases which are increasing function phase and 
decreasing function phase relating to the temperature. Such the di�erence is maximum at a certain critical 
temperature. However, in the low responding frequency case, the critical temperature is close to zero, then their 
nonmonotonic property likely vanishes. �e results of the phenomena investigated from our study express dif-
ferent degrees of spin polarization in each chiral of single-walled carbon nanotube and signi�cant e�ects on 
temperature-dependent charge transport according to carrier backscattering. �is work raises the intriguing 
possibility of engineering charge transport in nanotubes via chiral-induced spin selectivity produced frp, each 
chiral index of SWCNT and is applied for fascinating optimization charge transport.

Methods
Tight‑binding model and current operator for a single‑walled carbon nanotube with chiral‑
ity. Let us analyze SOI e�ects on the motion of electron spin up, de�ning the spin orientations “up” and 
“down” as parallel and antiparallel to the z-axis. We focus on the analytical calculation of energy band structures 
and the correlation function for each nanotube’s chiral index (n,m) as the armchair SWCNT, (4,4), and the 
zigzag SWCNT, (0,4) and the chiral SWCNT (2,6). �e honeycomb lattice can be described in term of two trian-
gular sublattices A and B. �e unit vector of the triangular sublattice are −→a 1 = a

2
(
√
3, 1) and −→a 2 = a

2
(
√
3,−1) 

with a =
√
3acc and acc is the distance between two nearest carbon atoms. Any A atom is connected to its 

nearest-neighbors on B sites by the three vectors 
−→

δ i : �δ1 = 1

3

(−→
a 1 +

−→
a 2

)

 and �δ2 = 1

3

(

−2
−→
a 1 +

−→
a 2

)

 and 
−→

δ 3 =
1

3

(

−→
a 1 − 2

−→
a 2

)

 . For discusing the electronic structure of the chiral SWCNT, we consider the tight-bind-
ing Hamiltonian with Nc lattice sites 

−→

R  and nearest-neighbor lattice vector 
−→

δ i,

when t−→
R ,

−→
R +

−→
δ

 is the hopping parameters between neighboring sites. We can completely determine the geometry 
of SWCNT by using a pair of integers (n, m), which denote the relative position of pair of atoms on graphene 
strip, 

−→
C mn = n

−→
a 1 + m

−→
a 2 . Each SWCNT can be uniquely de�ned by its roll-up, 

−→

C mn . �is chiral vector 
−→

C mn 
de�nes the circumference of the tube axis. �e roll-up vector connects two atoms on the graphite sheet which, 
once rlled up to form a nanotube, are mapped onto each other. �e radius ρ(n,m) and the chiral angle θ(n,m) 
of the tube are respectively given as

�e chiral angle θ(n,m) is in the range 0 ≤ θ(n,m) ≤ 30◦ , because of the hexagonal symmetry of the graphene 
lattice. �is chiral angle also denotes the tilt angle of the hexagons concerning the direction of the nanotube axis. 
Zigzag tubes of the type θ(n, 0) = 30◦ exhibit a zigzag pattern along the circumference. For metallic SWCNT, 
the armchair tube of the type θ(n, n) = 0◦ exhibits an armchair pattern along the circumference. Both zigzag 
and armchair nanotube is the achiral tube, in contrast with general chiral carbon nanotube, where m  = n  = 0.

Let us consider the dispersion relation tilted by a curvature e�ect of the nanotube. �ree special results are 
discussed (1) the curvature of the surface of the SWCNT modi�es the hopping integral between π electrons 
from the �at graphene and (2) curvature induces σ − π mixing. (3) Following the method used by Ref.32–34, the 
modi�cation of the 2pz atomic orbitals, presenting the spin–orbit coupling (SOI), is included. In this way, the 
tight-binding Hamiltonian of carbon nanotube with the Fourier components,

(1)Ĥ0 =

Nc∑

−→
R

∑

−→
δ i

[t−→
R ,

−→
R +

−→
δ i

â
†
−→
R
b̂−→
R ,

−→
R +

−→
δ i

+ H .c.]

(2)ρ(n,m) =
a

2π

√

n2 + nm + m2, θ(n,m) = arccos

[

2n + m

2
√
n2 + nm + m2

]

,



8

Vol:.(1234567890)

Scientific Reports |        (2020) 10:18949  | https://doi.org/10.1038/s41598-020-76047-9

www.nature.com/scientificreports/

can be written based on the Bloch function for the A and B sublattices as

where ĥ
(0)
AB

 is the single particle Hamiltonian

and tij(
−→

δ i) is the hopping parameters following Ref.21

where σ̂j; j = x, y, z are the component of the Pauli matrix and σ̂0 is the identity matrix, de�ning as

here d
‖
δ
 and d⊥

δ
 are the components of the nearest-neighbor lattice vector 

−→

δ  in the basis of direction perpendicular 
and parallel to the tube axis and θ̃ =

1

2
(θi + θj) . �e hopping between two neighboring pz orbitals at sites “i” 

and “j” as Vσ

pp and Vπ

pp are the transfer integrals giving rise to σ and π orbitals in �at two dimensional graphence, 
respectively, and κSO is a dimensionless parameter indicating the SOI strength.

Since we are interested in the current response, the vector potential 
−→

A  is introduced in the Hamiltonian Eq. 
(3) by means of the Peierls substitution 

−→
k →

−→
k +

e

c

−→
A  , which introduces the phase factor exp( e

hc i
−→

δ i ·
−→

A ) . 
We expand the Hamiltonian Eq. (3) to second order in the vector potential, one has

�e total current density operator is obtained by di�erentiating Eq. (5) with respect to 
−→

A  as

Here ĵ
(p)
α  and ĵ(d)

α  are the paramagnetic and the diamagnetic current density operator, respectively

and

where α and β are dummy indices.
We can expand the Hamiltonian Eq. (5) and the current density operator Eqs. (10) and (11) around the Dirac 

point, 
−→

K  and 
−→

K
′ , as we are interested in the physics taking place around µ the Femi energy. �e choice of 

−→
K = 4π

3
√
3acc

(−1, 0) and 
−→
K

′ = 4π

3
√
3acc

(1, 0) allows us to write the two independent Fermi point in a compact form 

as 
−→

K τ with τ = +1 for −
−→

K  and τ = −1 for 
−→

K
′ . For the expansion of Eq. (5), we substitute 

−→
k = τ

−→
K +

−→q ,
−→
k  , 

being small enough to justify the expansion ei
−→
k ·

−→
δ i ≈ eiτ

−→
K ·

−→
δ i (1 + i

−→
δ i ·

−→q ) . With the de�nitions

and

(3)â−→
R

=

∫
d
2
−→
k

(2π)2
e
i
−→
k ·

−→
R
â−→
k

b̂−→
R

=

∫
d
2
−→
k

(2π)2
e
i
−→
k ·

−→
R
b̂−→
k

(4)Ĥ0 =

∫

d
2
−→
k

(2π)2

(

â
†
−→
k

b̂
†
−→
k

)

(

0 ĥ
(0)
AB

ĥ
†(0)
AB

0

)(

â−→
k

b̂−→
k

)

(5)ĥ
(0)
AB

=

∑

−→
δ i

e
i
−→
k ·

−→
δ i

(

t11(
−→
δ i) t12(

−→
δ i)

t21(
−→
δ i) t22(

−→
δ i)

)

(6)

tij(
−→
δ i) =

(

Vπ
pp

(

1 −
1

2

(

d⊥
δ

ρ

)2
))

− (Vσ
pp − Vπ

pp)
(d⊥

δ )4

4accρ3
σ0 +

(

Vπ
pp

(

d⊥
δ

ρ

)

− (Vσ
pp − Vπ

pp)
(d⊥

δ )3

2ρa2cc

)

σz

+ i
κSO(d⊥

δ )2

ρa2cc
d

�
δ (V

σ
pp − Vπ

pp)

(

1 −
1

8

(

d⊥
δ

ρ

)2
)

(

cosθ̃ σ̂x − sinθ̃ σ̂y

)

(7)σ0 =

(

1 0

0 1

)

, σx =

(

0 1

1 0

)

, σy =

(

0 − i
i 0

)

, σz =

(

1 0

0 − 1

)

.

(8)

ĥAB = ĥ
(0)
AB

−
∑

−→
δ i

e

c

−→
A ·

−→
δ ie

i
−→
k ·

−→
δ i

(

t11(
−→
δ i) t12(

−→
δ i)

t21(
−→
δ i) t22(

−→
δ i)

)

+
1

2

∑

−→
δ i

(

e

c

)2−→
A ·

−→
δ ie

i
−→
k ·

−→
δ i

(

t11(
−→
δ i) t12(

−→
δ i)

t21(
−→
δ i) t22(

−→
δ i)

)

−→
δ i ·

−→
A .

(9)ĵα = −e∂α ĥ
(0)
AB = ĵ

(p)
α + ĵ(d)

α

(10)ĵ
(p)
α =

∑

−→
δ i

1

c
δ
(α)
i ei

−→
k ·

−→
δ i

(

t11(
−→
δ i) t12(

−→
δ i)

t21(
−→
δ i) t22(

−→
δ i)

)

(11)ĵ(d)
α =

1

2

∑

−→
δ i

1

c
δ
(α)
i δ

(β)
i ei

−→
k ·

−→
δ i

(

t11(
−→
δ i) t12(

−→
δ i)

t21(
−→
δ i) t22(

−→
δ i)

)

Aβ ,

(12)�kc⊥ =
acc

4ρ2
τ

(

1 +
3

8

(

Vσ
pp − Vπ

pp

Vπ
pp

))

cos3θ , �flip =
κSO

4ρ

(

Vσ
pp − Vπ

pp

Vπ
pp

)

,
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we can write ĥ
(0)
AB

 as

where vF = 3πacc
h |Vπ

pp| ≈ 8.6 × 10
5
m s

−1 is the group velocity at the Fermi point. �e non-interacting single 
Hamiltonian Eq. (9) has the eigenvalue as

In addition, a boundary condition is imposed that yield the appropriate quantization of the vector −→q  . �e 
SWCNT is obtained by rolling a graphene layer into a tube, in the angular direction its wave function always obey 
periodic boundary condition �(

−→

C nm) = exp(i−→q ·

−→

C nm)�(0) = ei2πℓ�(0) . �is boundary condition leads to 
a quantization of the transverse component of the vector −→q , q⊥ = 2πℓ/ |

−→
C nm | , with ℓ being an integer.

For the dispersion relation Eq. (18), we are interested in the asymmetric velocities obtained by di�erentiating 
Eq. (18) with respect to q� → q as

�e asymmetric velocities can be approximated as

where the velocity di�erence between the le�- and right-going velocities in the linear band �v is given as

here σ is a spin index ( +1 for a spin up and −1 for a spin down), it implies that e�ect of SOI on charge transport 
depending on the spin electron in SWCNT.

Electrical conductivity. Let us consider the current density operator for the paramagnetic and diamag-
netic contribution Eq. (6). �e frequency-dependent electrical conductivity tensor σαβ(ω) is calculated using 
the Kubo  formula45

where �αβ(ω) is the retarded correlation function for current is given by

and

here ρ̂ = exp[−Ĥ/kBT]/Z is the density matrix of the canonical ensemble, Z = Tr[exp[−Ĥ/kBT]] is the parti-
tion function at temperature T, and ĵα(t) are the current density operator as

For the particle density of the lattice model

the charge density ρ̂c(
−→q ) = e−→n (

−→q ) obeys the continuity equation ˙̂ρc(�q) − �q ·
−̂→
j (�q) = 0 for the paramagnetic 

current operator. We can thus consider this operator to be the paramagnetic current operator of the lattice model 
for general −→q  . It is usually easiest to calculate the retarded correlation function in G(t,

−→

k ) the Matsubara Green’s 
function formalism,

(13)�kso⊥ =
2κSO

ρ

(

1 +
3

8

(

Vσ
pp − Vπ

pp

Vπ
pp

))

, �kc� = −
acc

4ρ2
τ

(

1 +
5

8

(

Vσ
pp − Vπ

pp

Vπ
pp

))

sin3θ ,

(14)

ĥ
(0)
AB = ℏvFe

−iτθ
(

τ(q⊥ + �kc⊥) − i(q� + τ�kc�)
)

σ̂0 − ℏvFe
−iτθ�kso⊥ σ̂y − iℏvFe

−iτθ�flip

(

cosθ̃ σ̂x − cosθ̃ σ̂z

)

(15)

E±(
−→q ) = ±ℏvF

(

(q⊥ + �kc⊥)2 + (q� + τ�kc�)
2 + (�kso⊥)2 + �2

flip

+2σ

(

(�kso⊥)2 + (q� + τ�kc�)
2�2

flip + (�kso⊥)2(q⊥ + �kc⊥)2
)

1

2

)

1

2

.

(16)v
(K)
L = −

1

ℏ

∂E(
−→q )

∂q
(q < 0), v

(K)
R =

1

ℏ

∂E(
−→q )

∂q
(q > 0.)

(17)v
(K)
L = vF −

1

2
σvF�flip, v

(K)
R = vF +

1

2
σvF�flip

(18)�v = σvF�flip = σ
3κSOπacc

4ρh
|Vπ

pp|

(

Vσ
pp − Vπ

pp

Vπ
pp

)

.

(19)σαβ(ω) =
i

ω

(

�αβ(ω) +
ne

2

m
δαβ

)

(20)�αβ(ω) =

∫
∞

−∞

dte
iωt�R

αβ(t)

(21)�R
αβ(t) = −

i

A
�(t)Tr(ρ̂ ĵα(

−→q , t)ĵβ(
−→q , 0)).

(22)ĵα(t) = e
i
ℏ
Ĥt ĵα(q, 0)e−

i
ℏ
Ĥt
.

(23)
n̂(−→q ) =

∑

−→
k

(

â†(
−→
k )â†(

−→
k +

−→q ) + b̂†(
−→
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�us we can rewrite �αβ(ω) = Tr[ρ̂ ĵα(
−→q , t)ĵβ(

−→q , 0)] in terms of the matrix element of the current operator 
ĵα(t = 0) , and the Matsubara Green’s function, by using the representation for the retarded current–current 
correlation function can �nd in the form

where the Fourier transformation of Matsubara Green’s function, G(ωn,
−→q ) , is given as

and ωn = (2n + 1)πkBT . Now we consider the longitudinal correction function �zz(ω,
−→q ) for the lowest order 

of energy dissipation. Inserting Eq. (19) to the retarded current–current correlation function Eq. (28), It is pos-
sible to rewrite Eq. (28) in the form

here �(
−→q ) is the Heaviside step function and π (R(L))(ω,

−→q ; σ) the le�- and right-going correlation function 
is given as

�is equation corresponds to the axial conductivity derived in Ref.20 by using the Boltzmann kinetic equation. 
In the opposite case, Eqs. (16) and (17) contain the e�ect of SOI giving a di�erent result for a spin up and down 
and antisymmetric of the le�- and right-going correlation function, which not appear in the axial conductivity 
derived in Ref.20. Because of antisymmetric velocity between the le�- and right-going shows that asymmetric 
charge transport in the lattice structure of SWCNT as same as to calculate the local temperatures and heat cur-
rents we �nd the stationary state by solving a system of algebraic  equations46.

Received: 7 May 2020; Accepted: 13 October 2020

References
 1. Miura, R. et al. Ultralow mode-volume photonic crystal nanobeam cavities for high e�ciency coupling to individual carbon 

nanotube emitters. Nat. Commun. https ://doi.org/10.1038/ncomm s6580  (2014).
 2. Laird, E. A. et al. Quantum transport in carbon nanotubes. Rev. Mod. Phys. 87, 703. https ://doi.org/10.1103/RevMo dPhys .87.703 

(2015).
 3. Rosati, R., Dolcini, F. & Rossi, F. Electron–phonon coupling in metallic carbon nanotubes: Dispersionless electron propagation 

despite dissipation. Phys. Rev. B 92, 235423. https ://doi.org/10.1103/PhysR evB.92.23542 3 (2015).
 4. Li, Z., Bai, B. & Dai, Q. E�cient photo-thermionic emission from carbon nanotube arrays. Carbon 96, 642–646. https ://doi.

org/10.1016/j.carbo n.2015.09.074 (2016).
 5. Mori, T., Yamauchi, Y., Honda, S. & Maki, H. An electrically driven, ultrahigh-speed, on-chip light emitter based on carbon 

nanotubes. Nano Lett. 14, 205407. https ://doi.org/10.1021/nl500 693x (2015).
 6. Miyauchi, Y. et al. Tunable electronic correlation e�ects in nanotube-light interactions. Phys. Rev. B 92, 3277. https ://doi.

org/10.1103/PhysR evB.92.20540 7. (2014)
 7. Fan, Y., Singer, S. B., Bergstrom, R. & Regan, B. C. Probing planck’s law with incandescent light emission from asingle carbon 

nanotube. Phys. Rev. Lett. 102, 187402. https ://doi.org/10.1103/PhysR evLet t.102.18740 2 (2009).
 8. Miyauchi, Y. Photoluminescence studies on exciton photophysics in carbon nanotubes. J. Mater. Chem. C 1, 6499. https ://doi.

org/10.1039/c3tc0 0947e  (2013).
 9. Fujiwara, M., Tsuya, D. & Maki, H. Electrically driven, narrow-linewidth blackbody emission from carbon nanotube microcavity 

devices. Phys. Rev. Lett. 103, 143122. https ://doi.org/10.1063/1.48242 07 (2013).
 10. Barkelid, M., Steele, G. A. & Zwiller, V. Probing optical transitions in individual carbon nanotubes using polarized photocurrent 

spectroscopy. Nano Lett. 11, 5649. https ://doi.org/10.1021/nl302 789k (2012).
 11. Singer, S. B., Mecklenburg, M., White, E. R. & Regan, B. C. Polarized light emission from individual incandescent carbon nanotube. 

Phys. Rev. B 83, 23304. https ://doi.org/10.1103/PhysR evB.83.23340 4 (2011).
 12. Hsu, H. & Reichl, L. E. Selection rule for the optical absorption of graphene nanoribbons. Phys. Rev. B 76, 045418. https ://doi.

org/10.1103/PhysR evB.76.04541 8 (2007).
 13. Chung, H. C., Lee, M., Chang, C. P. & Lin, M. F. Exploration of edge-dependent optical selection rules for graphene nanoribbons. 

Opt. Express 19, 23350–23363. https ://doi.org/10.1364/OE.19.02335 0 (2011).
 14. Sasaki, K.-I., Kato, K., Tokura, Y., Oguri, K. & Sogawa, T. �eory of optical transitions in graphene nanoribbons. Phys. Rev. B 84, 

085458. https ://doi.org/10.1103/PhysR evB.84.08545 8 (2011).
 15. Hsien-Ching, C., Cheng-Peng, C., Chiun-Yan, L. & Ming-Fa, L. Electronic and optical properties of graphene nanoribbons in 

external �elds. Phys. Chem. Phys. 18, 7573. https ://doi.org/10.1039/C5CP0 6533J  (2016).
 16. Fantini, C. et al. Investigation of the light emission e�ciency of single-wall carbon nanotubes wrapped with di�erent surfactants. 

Chem. Phys. Lett. 473, 96. https ://doi.org/10.1016/j.cplet t.2009.02.077 (2009).
 17. �iti, T., Watchara, L., Tula, J. & Boonchui, S. Curvature e�ect on polarization of light emitted from chiral carbon nanotubes. Opt. 

Express 25, 25588. https ://doi.org/10.1364/OE.25.02558 8 (2017).
 18. Charlier, J. C. & Lambin, P. Electronic structure of carbon nanotubes with chiral symmetry. Phys. Rev. B 57, R15037–R15039. https 

://doi.org/10.1103/PhysR evB.57.R1503 7 (1998).

(24)G(t,
−→
k ) = −Tr

(

ρ̂

(

â(
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(0)∗
AB

(iωn + µ)2 − E2(−→q )
,

(27)�(ℓ)
zz (ω,

−→q ;T) = π (R)(ω,
−→q ; σ)�(q) + π (L)(ω,

−→q ; σ)�(q).

(28)π (R(L))(ω,
−→q ; σ) = e2

∑

ωn

Tr

(

(

v
(K)

R(L)

)2

G(ωn,
−→q )G(ωn − ω,

−→q )

)

.

https://doi.org/10.1038/ncomms6580
https://doi.org/10.1103/RevModPhys.87.703
https://doi.org/10.1103/PhysRevB.92.235423
https://doi.org/10.1016/j.carbon.2015.09.074
https://doi.org/10.1016/j.carbon.2015.09.074
https://doi.org/10.1021/nl500693x
https://doi.org/10.1103/PhysRevB.92.205407.
https://doi.org/10.1103/PhysRevB.92.205407.
https://doi.org/10.1103/PhysRevLett.102.187402
https://doi.org/10.1039/c3tc00947e
https://doi.org/10.1039/c3tc00947e
https://doi.org/10.1063/1.4824207
https://doi.org/10.1021/nl302789k
https://doi.org/10.1103/PhysRevB.83.233404
https://doi.org/10.1103/PhysRevB.76.045418
https://doi.org/10.1103/PhysRevB.76.045418
https://doi.org/10.1364/OE.19.023350
https://doi.org/10.1103/PhysRevB.84.085458
https://doi.org/10.1039/C5CP06533J
https://doi.org/10.1016/j.cplett.2009.02.077
https://doi.org/10.1364/OE.25.025588
https://doi.org/10.1103/PhysRevB.57.R15037
https://doi.org/10.1103/PhysRevB.57.R15037


11

Vol.:(0123456789)

Scientific Reports |        (2020) 10:18949  | https://doi.org/10.1038/s41598-020-76047-9

www.nature.com/scientificreports/

 19. Maiti, A., Svizhenko, A. & Anantram, M. Electronic transport through carbon nanotubes: E�ects of structural deformation and 
tube chirality. Phys. Rev. Lett. 88, 126805. https ://doi.org/10.1103/PhysR evLet t.88.12680 5 (2002).

 20. Slepyan, G. Y., Maksimenko, S. A., Lakhtakia, A., Yevtushenko, O. & Gusakov, A. V. Electrodynamics of carbon nanotubes: 
Dynamic conductivity, impedance boundary conditions, and surface wave propagation. Phys. Rev. B 60, 17136–17149. https ://
doi.org/10.1103/PhysR evB.60.17136  (1999).

 21. Yevtushenko, O. M., Slepyan, G. Y., Maksimenko, S. A., Lakhtakia, A. & Romanov, D. A. Nonlinear electron transport e�ects in a 
chiral carbon nanotube. Phys. Rev. Lett. 79, 1102–1105. https ://doi.org/10.1103/PhysR evLet t.79.1102 (1997).

 22. Ivchenko, E. L. & Spivak, B. Chirality e�ects in carbon nanotubes. Phys. Rev. B 66, 155404. https ://doi.org/10.1103/PhysR 
evB.66.15540 4 (2002).

 23. Liu, C.-C., Jiang, H. & Yao, Y. Low-energy e�ective hamiltonian involving spin–orbit coupling in silicene and two-dimensional 
germanium and tin. Phys. Rev. B 84, 195430, https ://doi.org/10.1103/PhysR evB.84.19543 0 (2011).

 24. Zhuang, H. L., Singh, A. K. & Hennig, R. G. Computational discovery of single-layer iii–v materials. Phys. Rev. B 87, 165415, https 
://doi.org/10.1103/PhysR evB.87.16541 5 (2013).

 25. Zhao, M., et al. Driving a gaas �lm to a large-gap topological insulator by tensile strain. Sci. Rep. 5, 8441. https ://doi.org/10.1038/
srep0 8441 (2015).

 26. Dabsamut, K., �ienprasert, J., Jungthawan, S. & Boonchun, A. Stacking stability of c2n bilayer nanosheet. Sci. Rep. 9, 6861, https 
://doi.org/10.1038/s4159 8-019-43363 -8 (2019).

 27. Saito, T., Nugraha, A. R. T., Hasdeo, E. H., Hung, N. T. & Izumida, W. Electronic and optical properties of single wall carbon 
nanotubes. Top. Curr. Chem. 84, 165427, https ://doi.org/10.1007/s4106 1-016-0095-2 (2019).

 28. Izumida, W., Vikström, A. & Saito, R. Asymmetric velocities of dirac particles and vernier spectrum in metallic single-wall carbon 
nanotubes. Phys. Rev. B 85, 165430, https ://doi.org/10.1103/PhysR evB.85.16543 0 (2012).

 29. Izumida, W., Okuyama, R., Yamakage, A. & Saito, R. Angular momentum and topology in semiconducting single-wall carbon 
nanotubes. Phys. Rev. B 93, 195442, https ://doi.org/10.1103/PhysR evB.93.19544 2 (2016).

 30. Konstantin, P., Nikolaevich, M.P. & Rashid, N.G. Spin–orbit e�ects in carbon nanotubes—Analytical results. Phys. Rev. B 87, 124, 
https ://doi.org/10.1140/epjb/e2014 -50076 -6 (2014).

 31. Gandil, M., Matsuda, K., Lounis, B. & Tamarat, P. Spectroscopic signatures of spin–orbit coupling and free excitons in individual 
suspended carbon nanotubes. Phys. Rev. B 100, 081411, https ://doi.org/10.1103/PhysR evB.100.08141 1 (2019).

 32. Tsuneya, A. & Spivak, B. Spin–orbit interaction in carbon nanotubes. J. Phys. Soc. Jpn. 69, 1757–1763, https ://doi.org/10.1143/
JPSJ.69.1757 (2002).

 33. Tsuneya, A. & Spivak, B. �eory of electronic states and transport in carbon nanotubes. J. Phys. Soc. Jpn. 74, 777–817, https ://doi.
org/10.1143/JPSJ.74.777 (2005).

 34. Valle, M., Marganska, M. & Grifoni, M. Signatures of spin–orbit interaction in transport properties of �nite carbon nanotubes in 
a parallel magnetic �eld. Phys. Rev. B 84, 165427, https ://doi.org/10.1103/PhysR evB.84.16542 7 (2011).

 35. Kuemmeth, F., Ilani, S., Ralph, D. C. & McEuen, P. L. Coupling of spin and orbital motion of electrons in carbon nanotubes. Nature 
452, 448-452, https ://doi.org/10.1038/natur e0682 2 (2013).

 36. Steele, G. A. et al. Large spin–orbit coupling in carbon nanotubes. Nature 4, 1573, https ://doi.org/10.1038/ncomm s2584  (2013).
 37. Jae, S. J. & Hyun, W. L. Curvature-enhanced spin–orbit coupling in a carbon nanotube. Phys. Rev. B 80, 075409, https ://doi.

org/10.1103/PhysR evB.80.07540 9 (2009).
 38. Asadpour, S. H. Goos-hänchen shi�s due to spin–orbit coupling in the carbon nanotube quantum dot nanostructures. Appl. Opt. 

56, 2201, https ://doi.org/10.1364/AO.56.00220 1 (2017).
 39. Rahman, M. W. Carrier transport engineering in carbon nanotubes by chirality induced spin polarization. ACS Nano 14, 3389–

3396, https ://doi.org/10.1021/acsna no.9b092 67 (2020).
 40. Jakubka, F. et al. Mapping charge transport by electroluminescence in chirality-selected carbon nanotube networks. ACS Nano 7, 

7428–7435, https ://doi.org/10.1021/nn403 419d (2013).
 41. Chang, C.-W., Okawa, D., Majumdar, A. & Zettl, A. Solid-state thermal recti�er. Science (New York, N.Y.) 314, 1121–1124, https 

://doi.org/10.1126/scien ce.11328 98 (2006).
 42. Azadeh, S. �ermal recti�cation of a single-wall carbon nanotube: A molecular dynamics study. Solid State Commun. 179, 54–58, 

https ://doi.org/10.1016/j.ssc.2013.10.0 (2014).
 43. Tsuneya, A. Spin–orbit interaction in carbon nanotubes. Phys. Soc. Jpn. 69, 1757–1763, https ://doi.org/10.1143/JPSJ.69.1757 (2000).
 44. Winkler, R. Spin–Orbit Coupling E�ects in Two-Dimensional Electron and Hole Systems. (Springer, New York, 2003). https ://doi.

org/10.1007/b1358 6
 45. Gerald, M.D. Many-Particle Physics, 3rd edn (Plenum, New York, 2000).
 46. Simón, M. A., Martínez-Garaot, S., Pons, M. & Muga, J. G. Asymmetric heat transport in ion crystals. Phys. Rev. E 100, 032109, 

https ://doi.org/10.1103/PhysR evE.100.03210 9 (2019).

Acknowledgements
�is research is supported in part by the Graduate Program Scholarship from �e Graduate School, Kasetsart 
University. S. Boonchui would like to thank Kasetsart university research and development institute (KURDI) 
and Faculty of Science, Kasetsart University for partial support.

Author contributions
J.C., O.S. conceived of the project. S.B. designed the way to calculations and simulations. S.B. carried out the 
analytical modeling of the numerical data. J.C., O.S. wrote the �rst dra� of the manuscript and S.B. provided 
input to the �nal dra� of the manuscript.

Competing interests 
�e authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to S.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional a�liations.

https://doi.org/10.1103/PhysRevLett.88.126805
https://doi.org/10.1103/PhysRevB.60.17136
https://doi.org/10.1103/PhysRevB.60.17136
https://doi.org/10.1103/PhysRevLett.79.1102
https://doi.org/10.1103/PhysRevB.66.155404
https://doi.org/10.1103/PhysRevB.66.155404
https://doi.org/10.1103/PhysRevB.84.195430
https://doi.org/10.1103/PhysRevB.87.165415
https://doi.org/10.1103/PhysRevB.87.165415
https://doi.org/10.1038/srep08441
https://doi.org/10.1038/srep08441
https://doi.org/10.1038/s41598-019-43363-8
https://doi.org/10.1038/s41598-019-43363-8
https://doi.org/10.1007/s41061-016-0095-2
https://doi.org/10.1103/PhysRevB.85.165430
https://doi.org/10.1103/PhysRevB.93.195442
https://doi.org/10.1140/epjb/e2014-50076-6
https://doi.org/10.1103/PhysRevB.100.081411
https://doi.org/10.1143/JPSJ.69.1757
https://doi.org/10.1143/JPSJ.69.1757
https://doi.org/10.1143/JPSJ.74.777
https://doi.org/10.1143/JPSJ.74.777
https://doi.org/10.1103/PhysRevB.84.165427
https://doi.org/10.1038/nature06822
https://doi.org/10.1038/ncomms2584
https://doi.org/10.1103/PhysRevB.80.075409
https://doi.org/10.1103/PhysRevB.80.075409
https://doi.org/10.1364/AO.56.002201
https://doi.org/10.1021/acsnano.9b09267
https://doi.org/10.1021/nn403419d
https://doi.org/10.1126/science.1132898
https://doi.org/10.1126/science.1132898
https://doi.org/10.1016/j.ssc.2013.10.0
https://doi.org/10.1143/JPSJ.69.1757
https://doi.org/10.1007/b13586
https://doi.org/10.1007/b13586
https://doi.org/10.1103/PhysRevE.100.032109
www.nature.com/reprints


12

Vol:.(1234567890)

Scientific Reports |        (2020) 10:18949  | https://doi.org/10.1038/s41598-020-76047-9

www.nature.com/scientificreports/

Open Access �is article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. �e images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

© �e Author(s) 2020

http://creativecommons.org/licenses/by/4.0/

	Chirality effects on an electron transport in single-walled carbon nanotube
	Results and discussions
	Conclusions
	Methods
	Tight-binding model and current operator for a single-walled carbon nanotube with chirality. 
	Electrical conductivity. 

	References
	Acknowledgements


