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Chirped  Gratings in Integrated  Optics 

A. KATZIR,  A. C. LIVANOS, J. B. SHELLAN, AND A. YARIV 

Abstract-Gratings  with  variable  periods  (chirped  gratings)  have  been 
fabricated  by  recording  the  interference  pattern  of  a  collimated laser 
beam  with  a converging  beam generated  by  a  cylindrical lens. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn anal- 
ysis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis presented  for the behavior  of  the  chirped  gratings  as  a  function 
of  wavelength,  the  angle  between  the  illuminating  beams,  the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF number 
of the lens,  and  its  position.  To  calculate  the  power  radiated  into  air, 
the  coupled-mode  equations  are solved for  the case of  a waveguide  with 
chirped  surface  corrugation.  Experimentally,  chirped  gratings  have 
been  etched  on  the  surface  of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan optical waveguide and used to couple 
tight out of the waveguide. It was  found  that  the  light was  focused 
outside  the waveguide, and  the  fraction  of  the  power  radiated  into zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAair 
compared  favorably  with  the  theoretical  calculation.  The  focal  point 
outside  the waveguide  was found to move by  about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 cm  when  the 
wavelength  was  changed by 500 A-in  agreement  with  theoretical 
estimates. 

P 
I .  INTRODUCTION 

ERIODIC STRUCTURES,  and  in  particular  corrugated 
structures, play  a  significant  role in  integrated  optics [ I ]  . 

Corrugated waveguides serve as narrow-band  filters, which re- 
flect wavelengths  which  satisfy Bragg's law [2].  Such reflec- 
tors  may be incorporated  in laser structures to form  distributed 
feedback lasers [3] or distributed Bragg reflectors [4] .  Peri- 
odic  structures  with longer  periods  have been used to  couple 
between guided modes  and  air,  such as in the cases of input 
or  output couplers [5] . 

In this paper, we consider the  problem  of gratings with 
large and  monotonic variation in  the  period. We describe  a 
method  for  fabricating  such  chirped gratings, present a theory 
for  treating  them,  and  present  experimental results demon- 
strating some of  their  unique  applications. 

11. GRATING FABRICATION CONSIDERATIONS 

The gratings  are fabricated, as in the case of  uniform  grat- 
ings,  by the  interference of two laser beams. The  period chirp 
is obtained  by cylindrical  focusing of one of the  two  beams, 
as shown in  Fig. 1. The  recording plate is located  at  the 
x = 0 plane,  the angle of  incidence of the plane wave is 612, 
and  the angle subtended by the collimated  beam and  the 
bisector of the converging beam angle is 8. The  interference 
pattern is recorded over a  distance L on the recording plate. 
The converging wave  is generated by  a  cylindrical lens of 
focal length f and  width zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd, and  the  focus  is  located  at  point 

Simple  geometrical calculations  relate  the focal  line co- 
P(Xf? Zf). 

ordinates  with f ,  L ,  d, and 0 ,  namely 
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Fig.  1.  Recording  arrangement  and  geometry  for  the  fabrication of 
chirped  gratings. 

and 

where 

is the convergence  half-angle. We note  that  in (1)xf is always 
negative, while z f  can take negative or positive values depend- 
ing on  the angles 0 and $. 

The  electric field in  the recording  plane (x = 0) is  given by 
the  sum  of  the reference wave and converging one  and is given 
by 

E(x = 0, z )  = A  exp - ikz sin (0/2) 

t CY exp ik { [(z - zf)' t xf] 2 1 1 2 )  (3) 

where k = 2n/X is the wavenumber for  the  incident  field,  and 
A and CY are the  amplitudes  of  the plane and converging wave, 
respectively. If we assume that  the transmission function of 
the recording medium t is proportional to EE" [6] , and  that 
A = CY, then 

t = p [ 1  t cos { k z  sin (812) + - zf)2 t x?)] (4) 

where f i  is a proportionality  constant.  The period A for  this 
particular grating is  given by 
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A(z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 
z - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ f  

In  the  paraxial  approximation (z - zf)' <<x!, (4) and (5) 
reduce to  

The  corresponding expression for (5) is therefore 

h 
sin (ei2) t (z - zf)/xf * 

A(z) = 

I t  is seen from (1), (2),  and (5) that  the period  variation 
A(zj  depends  on  the F number  of  the  lens ( F - f l d ) ,  and  that 
f3 is the angle subtended  by  the  collimated beam and  the  bi- 
sector of the converging beam angle, h is the wavelength of 
illumination,  and L is the  length of the grating. 

The  dependence  of  the  period variation on F is illustrated 
by Figs. 2 and 3. In Fig. 2,  the angle 6 is set  at 60" and  the 
grating has a total  length of 1 cm. For various F numbers, 
period  variations  from 0.8 pm  to 0.4 pm are obtained.  The 
lower  the F number  the greater the period variation; higher 
F numbers  result  in smaller and  more  linear  period variations. 
In Fig. 3 ,  the angle 0 has the value of 90". Here the  maxi- 
mum  period variation is for an F = 1  lens and  it  extends  from 
0.45 to 0.28 pm over a  distance of 1 cm.  It is noted  that 
large values of 0 produce smaller period  variations. 

This  particular  point is illustrated  in Fig. 4, where an F =  
1.33  lens was chosen and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 was varied from 45" to  120". 
Again the grating extends over a  distance of 1 cm.  It i s  seen 
that  with f3 = 120°,  the  period varies only by 0.05 pm, while 
for f3 = 45" the  period variation is 0.5 pm. 

The  linearity of the  period  variation as a function  of grating 
length L is shown in Fig. 5. It  should be noted  that  the 
beginning and  end  period is identical for all values of L .  
Again the F number is 1.33  and  the angle f3 is 90". 

111. WAVEGUIDE COUPLING 

Chirped grating etched  onto a  dielectric waveguide results 
in a simultaneous  output coupling and focusing to a point 
P ( x A ,  zA),  which will vary as a function  of  the  modes sup- 
ported  by  the waveguide and  the wavelength of the guided 
modes. 

Consider the  geometry  described  by Fig. 6. When the 
guided mode is propagating  unpertrubed in the waveguide, 
its z dependence is given by e-ipz, where 6 = knl cos e l .  
When the wave reaches the  perturbation,  the  radiated  mode 
will have  a z dependence given by  At  point z = 0, k, 
is given by 
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Fig. 2. Period  variation  as  a  function of the F number  of  the  con- 
verging lens ( F = f / d ) .   T h e  angle 0 = 60" is suitable  for  variations 
of 0.8-0.4 pm over  a  distance of 1 cm. 
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Fig. 3. Period  variation  as  a  function of the F number.  The angle 0 
has a value of 90" and  the  range of period  variation  is  from 0.45 
to 0.28 p n ,  again  over  a distance of 1 cm. 

0.0; 1--~ .. .L.. .. .~ .. ---d 
0.3 '3 2 04 06 0.8 I O  

z (cm) 

Fig. 4. Period  variation  as  a  function  of 6 (the angle between  the 
plane  wave  and the  bisector of the converging  wave). The F num- 
ber  of  the  lens is 1.33 and  the  illumination  wavelength  is 0.4579 km. 
The  recording  distance is kept  constant  at 1 cm. 

It can be shown  that  by a) matching  the  tangential  com- 
ponent of the  electric field  inside and  outside  the waveguide, 

a n d a t z = L  b) requiring that k2 = k i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf k: outside  the waveguide, and c) 
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Fig.  5.  Period  variation as a  function of recording  distance L .  The 
total  amount of chirp is the  same  for all curves; the linearity  of 
variation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis seen to improve  for large  values  of L. The  angle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB is 
90°,  the F number is 1.33, and  the wavelength is 0.4579  pm. 

n2 

Fig. 6. Geometry  for  a  chirped  grating  etched  on  the  top  surface of 
a  waveguide  of  index n l .  The  substrate  has  an  index zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn 2 ,  and n3 
in the  index of  refraction  of  air. A waveguide mode will focus 
at  point P(xh,  zh) ,  depending on  the chirp of the  grating  and  the 
wavelength. 

assuming that  the transmission function  for  the grating is 
given by (4), the light will focus  outside  at  a  point P(xx, z h )  

given by 

k,(O) L d k 2  - kz ( L )  

k,(O) .\lk2 - k:(L) - k,(L) .\lk2 - k: (0 )  
Zh = (10) 

and 

The focusing effect  and especially the variation of  the focus 
as function of wavelength and  period variation is illustrated  by 
Fig. 7. Taking n l  = 1.565, n2 = 1.51, 123 = 1.0, and  a wave- 
guide thickness of d =  1.35  pm,  the eigenvalue equation for 
0 was solved for wavelengths ranging from 4500 to  6500 a. 
Having thus  determined 0 for  the  unperturbed waveguide, we 
calculate k,(O), k,(L) for various ranges of period variation. 
It can be seen from  this figure that  a)  the larger the  period 
variation  the closer to  the waveguide the  locus of the focal 
points will be,  b)  the smaller the  period  variation  the larger 
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Fig. 7 .  Locus of the  foci of various  wavelenghts for  different chirps. 
The  grating is located  between z = 0 and z = 1.0 cm at x = 0. A(0) 
is the  longest  period  and A ( l  cm) is the  shortest.  The waveguide 
mode is traveling  in the positive z direction. 

the  separation  between  the  different wavelengths and  the 
larger the distance of  the  locus  of  the  focal  points  from  the 
waveguide, and c) if the average period  of  the  chirped grating 
is increased the focus will shift  towards greater values of z.  

IV. CALCULATION OF POWER OUTPUT 
DISTRIBUTION FOR CHIRPED GRATINGS 

In  the previous section we discussed the characteristics of 
the  chirped gratings and some of their  properties. To com- 
plete our  theoretical discussion we present  a calculation of 
the  actual  power  radiated  into air by  a  chirped grating. 

To analyze  this problem we expand  the electric field of the 
perturbed waveguide in terms of the guided modes,  the  sub- 
strate  modes,  and  the air modes. This work is essentially an 
extension of Marcuse's work [7] , in so much  that in our 
case the waveguide is no longer symmetric (we include  the 
substrate). Our notation  and  method are similar to his. 

We present  a  closed-form  solution  for  the power  radiated 
into air by  a  chirped grating, and  illustrate  the  solution  with 
examples of gratings where we vary the  amount  of chirp and 
the wavelength of the guided radiation. 

Consider the geometry and  notation as presented  in Fig. 
8(a). Using the results obtained  by Marcuse [8], we have 
for the  TE guided modes 

& =A,z -~X  
Y for x > 0 (12) 

f o r O > x > - d  

(1 3 )  

for x < -d (14) 
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n3 Air  z=o 
x = o  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

L 
n ,  Wovegulde nl 

n2  Substrate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA“ 2  
x=-d  x=-d 

(a) (b ) 
Fig, 8. (a) Geometry  for  a  dielectric waveguide. (b) Dielectric  wave- 

guide  with  a  chirped  grating  etched on the top surface. 

where n l ,  n 2 ,  n3 are the indices of  refraction of the wave- 
guide, substrate,  and  air, respectively, k is the wavenumber  in 
air, and p describes the z dependence  of  the electric field.  It 
should be noted  that  the  factor e iw e-ipz has been suppressed 
in (12)-(14).  Furthermore,  the  constants K ,  y, and S can be 
determined by  the eigenvalue equation 

The  amplitude  of  the  electric field A is related to  the power 

t -- (sin od t 4 cos ud)’ 
U2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P2 

and Fi can be chosen  arbitrarily. Following the  conventional 
procedure, F1 and Fz are chosen so that  the  two  radiation 
modes are orthogonal to  one  another. 

F1,’ = [(a’ - p ’ )  sin 2odl- ’  (u’ -- p ‘ )  cos  2od 

(a2 - A’) k [(u’ - p’)’ 

t 2(p/A)(~’  - p2)(u2 - A’). COS 2ad 

t (~’/A’)(u’ - A’)’] ‘1’ 1 
1 

where 

Again the  factor e i W t  e-ipz has been suppressed in  (20)- 
(22).  In  this  work /3 is an  inherently positive quantity. 

(19)  Next we expand  an  arbitrary TE electric field for  the  per- 
turbed waveguide in  terms of the  discrete guided modes  and 
the  continuum of both  substrate  and air modes 

p=---r-- J lEYl2 G?x 
2WPo -m - n: )” ’  

E y =  C Cn(z) g n  + z )  W P )  dP 
where P is the power  carried by  the  mode, d is the  thickness of discrete 

the guide, o is the  radian  frequency,  and po is the magnetic 
permeability  of  vacuum. 

These  guided modes  occur  for knz < I PI < knl . For the 
region kn3 < 101 < knz the  substrate  modes  exist,  and,  finally, 
in  the region 0 < 10 I < kn3 the  TE air modes of the  continuum 
occur.  For  the  purposes  of this  discussion we consider the air 
mode since we want  to calculate the  power  radiated by the 
waveguide into  the air.  Reference [8] gives the  electric 
field as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

8; = C,[cos Ax t (a/A)Fi sin Ax]  

fo rx  > 0 (20) 

= C,(cos ox t Fi sin ux j  

for O > x  2- -d (21) 

=C, [ ( cosod-~s inod jcosp (x+d)  

t - (sin od t 4 cos ad) sin p(x t d)] , 
U 

P 

for x < -d (22) 

A = (njk2 - P 2 ) 1 / 2  (23) 

t j- h(p,z) dP 
kn3 

(28) 
even k(n:  - n : )  
odd 

where g n  are the discrete  guided modes given by  (12)-(14) 
for  the n values of 0 determined  from  the eigenvalues of (18). 
Similarly, 8‘ are  the air modes given again by  (20)-(22), 
where even and  odd refer to  the choice of F, and F1 (27). 
8’ are the  substrate  modes  which have not  been  presented 
explicitly since they do not  affect  this  calculation.  It is to 
be noted  that  the previous expansion  for  the  total  electric 
field E,, is possible since the  set of eigenfunctions  is corn- 
plete.  The  calculation is simplified  due to  the  orthogonality 
of the  modes as a  result of the choice of Fi. Furthermore, 
this  expansion is similar to  the  one  present  in [7] , as well 
as the  notation  and  the  method used to  solve this  problem. 

To determine  the value of h ( p ,  z ) ,  we substitute  (28)  into 
the  Helmholtz wave equation,  multiply  by &*‘, integrate over 
x, and, using the  orthogonality  relations, get  a differential 
equation  for k ( p ,  z). This differential  equation is then  con- 
verted  into  an integral equation following the  procedures of 
[ 71 , namely 

(24’ k ( p ,  z )  = Q(p) t R ( p )  exp  2iPz t - 
1 

2ip 
(25) 

where C, is again related to the  power  carried  by  the  mode 
(29) 

cr 2 - ---.-..- 4wpop [ (cos od - F~ sin ad)’ nlPI where 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn2 describes the deviation of the corrugated-guide 
dielectric constant  from  that of a  uniform waveguide. 

To solve the previous  integral equation, we use the Born 
approximation.  In  other  words, we use zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACn(0) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 6on instead 
of Cn(z)  and  set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg(p ,  z )  = h ( p ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz) = 0 ,  in (30) ,  resulting  in 

Ih-(P, 0>l2 1 (36) 

The term involving the  integration  with respect to x gives 
the  fraction  of  the air mode  radiated  into  the air. Further- 
more,  the  boundary  conditions require that 

h+(p, z = 0 )  = 0 

m 
h-(p,  z = L )  = 0 

(3 1 )  
(3 7) 

h-=  [ $hz exp -2iPl   H(p,  t) d{ (3 8) 
In the  next  step, we assume that  the  perturbation  of  the 

guide from  its ideal shape is on  the  top surface of  the guide, 
as shown in Fig. 8(b). By taking  a shallow  grating and  setting Using the previous conditions  and (32),   (12),  and (20), we get 

x = 0 in the previous equation, we get 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA12- 

Equation (29)  can then be divided into  parts as follows: 
where 

(39) 

r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 /-z 7 and 
exp -2 iP l   H(p ,  {j d< exp 2iPz  (34) 

f ( z )  exp -i(P + P o )  z dz.  (42) 
such  that 

h =h++h- .  Using (19) and (26) we can  calculate h+(p, L ) ,  namely 

Recalling (28), we note  that  the  contribution  to  the  total k4(nj - n:)21@+12 K :  

electric field arises from  the  product  of h ( p ,  z) . &;“(p, z) .  I h + ( p , L ) i 1 2  = IPOI[dt  l/y, -I- l/sO](K; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt s; ) . r r lp I  
The z dependence of &“(p, z )  is e-@’. If we consider the z 
dependence  of  the  product,  then (cos od - Fi sin ~ d ) ~  t - (sin od 

r 

U2 

1 P2 

h ( p ,  Z )  €;“(p, z) = h+ exp -iPz t 
( z  dependence) 

. iz exp -2iP<H(p, {) d{ exp iPz. 1 where K ~ ,  yo, so refer to  the  zero-order-mode  solutions  for 
(15)-(18). 

(3 5) 
Similarly, 

Then we can associate the h+ part of the wave with  the ampli- Ih-(p, 0)il - 
tude  of  the forward-traveling radiating  mode  and  the  term  in 
brackets  with  the negative-traveling one.  Finally, to calculate the  fraction of the air mode  radiated  into 

2 - lh+(P,L)iI21@-l2 
1 @ + 1 2  (44) 

The  power  radiated  into air is given by  air, we use (20)-(22) 
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Fig. 9. Fraction of mode  power  radiated  into  air  per  unit p as  a  func- 
tion of p or e 3 ,  where e 3  is the angle of scattering  with  respect  to 
the z axis  (see  Fig. 6 )  for various  chirps.  The  area  under  each curve 
represents  the  total  power  radiated  into air for  a given chirp. 

r -  \ 
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(45) if 

y > o  a t p -  po < o  \J-, ' ' *  a t p - p o t 2 y L > O  

a t p - p o  + 2 y L < O  

a t p o  - p t 2 y L < o  

or 
where 

ui  = cos od - Fi sin ad 
r<O a t p - p o > o  

or 

y < o  a t p o  - p > o  
otherwise @+ = 0. 

Similarly, 

(3 

C 
w i  = - (sin ad f 4 COS ad). 

Now, using (45)-(43), (36)  becomes 

air  per unit p 

if 

y > o  a - p - p o < o  

or 

y < o  a - p - p o > o  

or 

y < o  O l + p t p o > o  

otherwise I @- l 2  = 0. 

a - p - p 0 + 2 y L > O  

a -  p -  po t 2 y L < O  

a t p t p o  t 2 y L < O  

where 

ui= 1 + - F 2  
U2 

A' ' (49) 

and 

These conditions, (52a)-(52c) and (53a)-(53c), give the 
range of  for which the guide radiates. 

To illustrate (48), we present Fig. 9. The guide is 1 .O ern 
long,  its  thickness is 0.6425  pm, and the  index  of  refraction is 
nl  = 1 S.5. The  substrate  index  of  refraction is n2 = 1.52, 
and  that  of air is taken to  be n3  = 1.0. The film perturbation 
is of the  form  of (51) and a was chosen to be 0.01  pm.  The 
calculation  for  the  fundamental  mode gave Po = 1 SO5 X lo7  
rn-' corresponding to a wavenumber  of  9.78 X lo6 m-l.  The 
figure illustrates  the  fractional  power  output  in  the air per 
unit as a function  of p for various  chirps. We see from  the 

Equation (48) shows  the  fractional  power radiated per  unit 
beta  for an arbitrary  perturbation  on  the  top  surface. Once 
the  perturbation is given, then @+ and q5- can be  calculated. 

For  the  particular case of  the  chirped grating with a trans- 
mission function given by  (4),f(z) can be  written as 

f(z) = a  sin (az t yz2). (5 1) 

Direct  substitution  into (41) and (42) and using the  method 
of stationary phase results  in 
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Fig. 10. Fraction of mode  power  radiated  into air  per unit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp as  a 
function of p for a chirp of 0.33-0.295 pm and  various wavelengths. 
The  amplitude of the  chirp is set at  500 A, and  the  corrugation  ex- 
tends over a length L of 1.1 cm. 

figure that  the lower the  chirp (curve 4) the  narrower  the 
range of /3 distribution. In the  limit of no chirp, we expect  the 
familiar 6-function.  For high chirp we have a wide range of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 
distribution  extending over most  of  the  theoretically possible 
range (k, = 0 to k).  The  total  power  output  radiated  into air is 
the area under  the curves. For Fig. 9, it ranges from 10 to 15 
percent of the  incident-mode  power. 

It is important  to  note  that  in  the  actual  calculation  the 
waveguide is divided into  approximately  one  hundred  sections. 
AP/P is calculated from  the first section  and  then  it  is  sub- 
tracted  from  the  total P. This new value o f P  is used as input 
power  for  the  next  section,  and so on. This  enables us to 
handle large power  coupling  and  not be limited  by  the  first 
Born approximation. This particular  point is illustrated  in 
Fig. 10. The  total  power  output  radiated  into air is greater 
than  45  percent,  due to the larger perturbation. In Fig. 10 the 
film thickness is 1.35 pm  and  its  index  of  refraction n l  = 1 S65. 
The  substrate has an index  of  refraction n2 = 1.5 1  and air n3 = 
1.0. The guide is 1.1 cm  long  and again the  perturbation  on 
the  top surface is given by (51). In this  case, a is 0.05 pm,  and 
the  period varies from  0.295  to  0.33 pm. The  different curves 
represent  the  fractional  power  output per unit p for various 
wavelengths. It can be seen from  this figure that  different 
wavelengths radiate over different  and  nonoverlappingo ranges. 

In addition, we have calculated the  fractional  power (per 
unit 0 radiated  into air and  substrate)  and  found  that, as pre- 
dicted  by  the  theory  [9] , i t  is twice as large as the  one radiated 
into air. 

V. EXPERIMENTAL  RESULTS 

As a first demonstration  of  a device based on  chirped grat- 
ings we chose a focusing output  coupler. This  grating coupler, 
with variable period, was corrugated on the surface of an optical 
waveguide, and was designated to  focus  the  light  a few centime- 
ters away from  the surface. 

A  layer o f  Corning 7059 glass which was sputtered  on  a glass 
substrate served as a waveguide. The  7059 glass was sputtered 
using Technics MIM Model 5.5 ion-beam  etching  machine, re- 
sulting in a  layer  of  a refractive index of 1.565 and thickness 
uniformity  of  about 5 percent.  For  the focusing experiment 

we deposited  a layer of thickness  1.35  pm (as measured by 
a Sloan Dektak  instrument). 

Chirped gratings were fabricated on the surface of  the wave- 
guide as follows: a  layer  of  undiluted Shipley AZ1350B  photo- 
resist was spin coated at  3600  rpm on the waveguide. After 
prebaking, the  photoresist was exposed to the  interference 
pattern of a collimated laser beam with  a converging beam. 
As detailed above, such interference  pattern gives  rise to 
chirped gratings. We used the X = 4579 a line from an Ar+ 
laser,  and  under  the following conditions 0 = 94.5, F = 1.33, 
L = 1.2 cm, we obtained gratings with periods varying from 
0.29  to  0.33  pm over a distance of 1.2 cm. 

Typically the laser beam intensity was 0.6 mW/cm2 (in each 
leg) and  the  exposure time used was 60 s. Gratings of high 
efficiency were obtained using an AZ 303 developer and 10-s 
development  time.  It should  be mentioned  that  the  intensity 
of Ar' lasers is usually inferior to  that  of He-Cd ones, and  in 
our  experiment we had to use a fringe-stabilization  system in 
order  to  improve  the  peak-to-trough  height  of  the  photoresist 
gratings. 

The  photoresist was next  postbaked  under vacuum  for 30 
min,  and  the waveguide was ion-beam etched  through  the 
photoresist,  at  ion  current density 0.1 mA/cm2  and  accelerat- 
ing voltage of 1800 V, for 30 min.  The sample was kept  at an 
angle of 30" with respect to  the  ion  beam.  The gratings thus 
fabricated in the glass had  a  peak-to-trough height of  about 
500 a. 

In  the focusing experiment, we coupled light from an argon 
laser into the waveguide using a prism coupler.  The  light 
entering  the  corrugated  section was focused  outside  the wave- 
guide. The  position of the focal point (xf, zf) was measured 
experimentally  for various  lines of the argon  laser. The  ex- 
perimental  points are shown  in Fig. 11, along with  the  theo- 
retical predicted curve for this particular waveguide. 

An  output prism coupler was added  at  the  end  of  the  cor- 
rugated region. The  light  intensity  which was coupled  out 
was measured  for  two cases: a) light going through  the  cor- 
rugated region, and  b) light going through  a neighboring un- 
corrugated region. The  ratio  between  the  intensities  in case 
a)  and case b) was found  to be 1 : 10. 
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Fig. 11. Experimental  and  theoretical  results  of  the  focusing  of  the  cor- 
rugated  structure  used.  The solid  line  represents the  theoretical  posi- 
tion  of  the  focus as a  function of wavelength. The solid dots repre- 
sent  the  focus  of  the  prominent  lines of the Ar’ laser.  The large 
circles  are the  experimental  points  for  these  wavelengths as mea- 
sured with  a  two-dimensional  translation  probe. 

VI.  DISCUSSION 

In  this  work  we have demonstrated first how  chirped  grat- 
ings can be fabricated  in a photoresist  layer  by  the  inter- 
ference of a collimated beam with a  converging beam. We 
have calculated  how  the chirping varies with  the various 
parameters  of  the  experimental  setup involved. As one  im- 
portant  application  of  chrped  grating, we demonstrated  the 
focusing effect  in a waveguide incorporating a chirped grating. 
The thickness  of this waveguide and  the  chirp were chosen so 
as to  focus  the  light  about 6 cm away from  the waveguide. 
The theoretical  calculations,  which were verified experi- 
mentally,  show  that  the focal point moves by  about 1.2 cm 
when  the wavelength was changed from 4579 to 5145 8. The 
chirped-grating structure  therefore  separates very well between 
propagating beams of different wavelengths, while focusing 
them  outside  the waveguide. 

Other devices, which are  based on  chirped gratings, can also 
be  realized. The  first is a broad-band  optical  filter [ lo] .   I t  
is well known [ 121 that a  grating structure  with a period A 
will act as a selective reflector,  and will reflect only wave- 
length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh that satisfies Bragg law X/2n = A. The reflectivity 
can  be rather high if the  depth of the  corrugations  and if the 
length of the  corrugated region are high. If the gratings have 
variable period A@), say between Al and A2, then all the 
wavelengths h2 > h > hl will be reflected,  provided hl = 
2nA1  and h2 = 2nA2. The response of  this  broad-band filter 
(i.e.,  reflectivity versus wavelength)  can  be  changed by chang- 
ing the  chirp.  Such  broad-band filters may well be incorpo- 
rated as reflectors in corrugated laser structures  such as DFB 
lasers [3] or DBR lasers [4] . 

Another device, which  may have a  significant importance is a 
beam splitter.  It was shown [lo]  that if a  guided beam  of 
wavelength h is incident  on a corrugated region with  an  in- 
cidence angle a, the beam will be deflected  at  an angle 2a, 
provided  h/2n  cos a = A, where A is the  period  and n is the 

refractive index of the waveguide. The  fraction  of  the  in- 
tensity  that is deflected  depends again on  the  corrugation 
depth  and  the  length of the  corrugated region. If the  cor- 
rugated region  consists now  of  chirped gratings with variable 
period A(z), then a particular wavelength XI  will be reflected 
from a particular region where the  period AI  satisfies Bragg’s 
law Al = hl 12n cos a.  

A different h2 will be reflected  by A2, so that A2 = h2 12n 
cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACY. Actually, XI = h(z1) and h2 = h(z2), so that  the  two 
wavelengths will be reflected  from  different regions, and  they 
will be separated  spatially.  And,  therefore, if we have  a  beam 
that consists of many wavelengths zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhi, the chirped-grating 
structure will demultiplex  it.  It is conceivable by this method 
to demultiplex a signal traveling in a fiber,  and  to send each 
frequency  component  to a different  fiber. If the  directions 
of  the previously mentioned beams are reversed, the  chirped 
grating structure will act as a multiplexer. Beams of different 
frequencies will be reflected now  to a common  direction,  and 
could  then be focused  into a single fiber.  Such  multiplexing 
and  demultiplexing  experiments are now  in progress  in our 
laboratory. 

Chirped-gratings structures will undoubtedly  be useful not 
only  in  integrated  optics  but in other fields. One important 
field is that  of surface acoustic waves, where gratings with 
variable periods have been made using electron-beam  writing 
[111. 
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