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Rbstract

An overview perspective of the potential of chitin and chitosan biopolymers to promote economically and environmentally 
sustainable development poles, which could be exploited especially in developing countries, is presented. Their following 
advantages have been considered and briefly outlined: (i) the natural sources of chitin have a wide distribution on the 
entire planet and are usually accessible as inexpensive waste materials; (ii) the great versatility of these materials, with 
applications in diverse fields such as agriculture, water treatments, food industry, environment, petroleum, healthcare, 
energy, technology, etc., with some trials conducted even off-planet; (iii) the production and use of these materials could 
promote advances in the endogenous capacity of some countries to create own technologies and generate products and 
applications, basic and advanced, in sensitive sectors, i.e., health services, food, water treatments, etc., in addition to 
promoting the necessary integration of the academic sector with other sectors such as industry and business.
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1. Introduction

It is difficult to find materials that offer such varied 
possibilities for the development of useful product lines, in 
so many fields of human activity, such as chitin and its main 
derivative, chitosan. But if this is not motivation enough, 
enthusiasm can be increased by the great diversity of easily 
accessible natural sources that allow them to be obtained 
sustainably, at relatively low costs from waste, as well as 
without the use of renewable resources traditionally employed 
to produce food for humans and animals. Other factors that 
can promote its use are related to the economic feasibility 
of its preparation[1] and the technological viability for the 
development of its applications in many industrial sectors[2]. 
As vivid examples of some of the fields of application in 
nanotechnology, the following can be briefly mentioned: 
the production of biodiesel using enzymes encapsulated 
in nanoparticles, which provide protection to bioactive 
species and extend the reusability of biocatalysts[3]; the use 
of nano-biocomposites for the preparation of active food 
packaging[4]; the use of chitosan nanoparticles as effective 
antimicrobial agents, especially due to the increasing resistance 
to traditional drugs developed by different pathogens[5]; the 
manufacture of nano-biocomposites with graphene and 
metal oxides, which have shown hopeful performances in 
hyperthermic magnetic therapy for cancer treatment[6]; etc.

On the other hand, there is little information on chitosan-
based growth poles promoted by the public sector, although 
there are many private biotechnological companies specialized 
in the production and the commercial exploitation of diverse 

products based on this biomaterial (see Table 1 with a brief 
list of them), which would point to the fact that this type of 
entrepreneurship can be economically sustainable.

This article presents an overview of the potential 
applications of chitosan in sensitive areas for the development 
of a country, for instance, through the creation of local 
development poles (see Figure 1) capable of transforming 
local resources into value-added goods to be used to meet 
domestic and external demand. It is intended to stimulate 
research on them as well as their use for the generation of 
proprietary technologies that contribute to the growth of 
related industrial and technological sectors, particularly 
those able to launch sustainable growth pathways.

2. Chitin and Chitosan Sources

The natural sources containing chitin are very varied, 
including the exoskeleton of insects as abundant as 
cockroaches[7] and crickets[8], continuing with the cell walls 
of fungi such as Mucor rouxii[9] and finding in the shells 
of a variety of crustaceans the traditional source for its 
current production[10]. Furthermore, the scales of some fish 
have been recently added to the extensive list of potential 
sources of chitin[11], which opens new horizons for using 
these resources. On the other hand, the controlled cultivation 
of microorganisms, such as microalgae[12] and fungi[13], has 
also been explored, with increasing conviction, in search of 
materials whose physicochemical properties do not show 

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-8582-4380


Lárez-Velásquez, C.

Polímeros, 33(1), e20230005, 20232/15

 
variations dependent on factors such as the stage of growth 
of the different species used for their traditional production, 
or the seasonality of their captures. Additionally, this type 
of material should have better qualities regarding allergen 
and metal contents[14].

The origin of the chitin used in the production of chitosan 
is a key factor to consider in its applications. For instance, 
β-chitin (obtained from squid feathers and possessing fibrils 
made up of parallel-oriented polymer chains) is easier to 
hydrolyze than α-chitin (obtained usually from crustacean 
shells, fibrils made up of polymer chains in anti-parallel 
orientation)[15]. Table 2 summarizes the main natural sources 
that have been assayed and used to obtain chitin.

3. Some Suggested Sectors for the Development of 
Chitosan-Based Applications

3.1 Agriculture

Applications of chitinous materials in agriculture can 
cover each of the stages involved in the production of 
vegetables and even expand outside the planet, since NASA 
began in 1997 the development of aeroponic to produce 
food in space, achieving chitosan-based formulations for 
such purposes, such as BEYONDTM from AgriHouse[40]. 
A few examples of proven agricultural applications for 
these materials are shown below.

- Soil conditioning and bioremediation: chitin has 
been studied in the amendment and remediation of 
the soil where a certain crop will settle[41]. Similarly, 
chitosan has been investigated in the remediation of 
soils contaminated with metals[42]. Additionally, chitin 
has also shown nematocidal activity when applied by 
spraying/irrigation or added directly to the soil[43].

- Seed preservation and bio-stimulation: chitosan-based 
coatings have notorious beneficial effects on seeds[44] 
which are not limited to protection due to their recognized 
fungicidal activity[15,45], or as a germination stimulant[46,47], 
but additionally these can serve as vehicles for the 
controlled release of other agrochemicals[48]. Another 
interesting application for these biopolymers could be the 
preparation of artificial or synthetic seeds (hydrated or 
dehydrated explants, naked or covered with a protective 
polymeric bead)[49].

- Inducer of resistance to diseases caused by phytopathogens: 
chitosan is a potent stimulant of the acquired resistance 
system to pathogens in plants[50], especially for the 
induction of defense mechanisms against fungi[51] such as 
suberization during the wound healing process in potato 
tubers[52], stimulation of the production of secondary 
metabolites, including phytoalexins[53], lignin[54], phenolic 
compounds[55], callose[56], etc., whose deposition plays an 
important role in limiting the spread of pathogens[57] and 
seems to be controlled by the molecular weight and the 

Table 1. Some specialized companies in the production and commercial exploitation of chitosan-based products.

Company Products Website
Alpha Chitin Chitin and chitosan from Hermetia illucens larvae, fungi, or krill http://alpha-chitin.com

Chibio Biotech Chitin-glucan, Agaricus bisporus chitosan, Aspergillus niger chitosan, 
Oyster nushroom chitosan, Carboxymethyl chitosan

https://www.chibiotech.com

ChitoLytic Crustacean chitosans, Mushroom chitosans, Chitosan lactate, Trimethyl 
chitosan, Chitin

https://chitolytic.com

Polymar Crustacean chitosan powder, Poly Floc (flocculant), Poly Protec (fungicide) https://www.polymar.com.br
ISF Chitin & Marine Products LLP Chitin and chitosan from marine product processing wastes, Carboxymethyl 

chitosan
https://www.isfchitin.com

Chitosanlab Chitosan from crustacean shells and squid pens, Micronized chitin and 
chitosan, Chitosan nanoparticles, Chitosan quaternary ammonium

https://chitosanlab.com

Figure 1. Tentative characteristics of prospective local development poles based on chitosan.
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degree of acetylation of the applied chitosan[58]. Among 
the numerous crops where elicitation by chitosan has 
been verified are tomato[59], peach[60], strawberry[61], 
table grape[62], etc.

- Growth biostimulant: chitosan is one of the most explored 
biostimulants in agriculture, with many successful 
applications[63], i.e., its effect on root development in 
maize plants is notorious, especially in crop conditions 
under water deficiency[64]. Similarly, chitosan notably 
increases the production of some secondary metabolites 
in plants, as noted for the menthol production in mint 
crops[65]. Furthermore, the foliar treatment of tomato 
crops under salt stress with chitosan solutions prepared 
using citric or ascorbic acids increases the production 
of some metabolites, including osmolyte substances, 
which help to reactivate their development[66].

- Postharvest protection: chitosan applications are 
profuse[67] because these biomaterials can simultaneously 
fulfill multiple functions such as an antimicrobial agent, 
elicitor, and physical isolation given their ability to form 
semi-permeable films[68]. Among the trends observed 
for these applications is the mixture with other natural 
materials to improve the effectiveness of these treatments, 
i.e., chitosan/Aloe vera gels to delay the post-harvest 
decay of mango fruits[69] and chitosan/carnauba wax/
oregano oil to protect cucumber[70]. Likewise, research 
on the development of edible films by combining 
chitosan with other natural materials is copious and 
with striking results, highlighting the emblematic case 
of strawberries[71].

3.2 Water treatments

The use of chitosan in processes related to water 
treatment is quite common today[72,73], and a wide range of 
commercial products based on these biomaterials can be 
found on the market, such as Tidal-Clear, HaloKlear, Cesco 
FC-100, Crystal Lagoon, etc. The following is a summary of 
the applications of these biomaterials in related processes.

- Coagulation/flocculation: chitosan has been proposed as 
a possible candidate to replace widely used coagulants 
such as aluminum sulfate and ferric chloride in a more 
environmentally friendly way[74]. Several mechanisms 
have been outlined to explain the coagulating/flocculant 
action of these biopolymers[75]: (a) neutralization of the 
negative surface charges of the suspended particles by 
electrostatic interaction; (b) the simultaneous formation 
of a bridge between the particles; (c) formation of 
charge neutralization patches. Reported studies include 
the separation of clay suspensions[76], mill effluents 
treatment during oil palm processing[77], the harvest 
of microalgae[78], protein recovery from fishmeal 
manufacturing wastewater[79], textile industry wastewater 
treatments[80], etc.

- Adsorption: chitosan has been extensively studied as a 
bio-adsorbent in various water treatments[81]. In addition, 
its derivatives can be used in a variety of ways[82]: powder, 
hydrogel spheres, films, fibers, etc. The functional 
groups present in its structure, and those introduced 
through chemical modification reactions, allow it to act 
as an adsorbent both for organics (dyes[83,84], drugs[85], 
oils[86], etc.) and inorganics (heavy metals[87], anions 
such as phosphates and nitrates[88], ammonium and other 
nitrogen-containing salts[81], etc.). Various biocomposites 
based on chitosan and other natural materials have also 
been prepared and tested as adsorbents[89].

- Filtration: chitosan-based membranes have also been 
extensively studied, with numerous reports on the 
removal of pollutants, e.g. pressure filtration of aqueous 
solutions for the removal of Cu(II)[90]; nanofiltration of 
effluents from the textile industry for the removal of 
dyes[91]; adsorptive filtration for the removal of anionic 
and cationic species[92], etc.

3.3 Food sector

Chitosan has been approved some years ago for use 
as a food additive in different countries, such as Japan in 
1983 and Korea in 1995[93]. Chitosan obtained from A. niger 
has been evaluated without objection by the Food and Drug 
Administration (FDA) of the United States in 2011 as a 
direct secondary ingredient in the production of alcoholic 
beverages[94] and approved by the Food Standards Agency 
of Australia and New Zealand in 2013 as a processing aid in 
the production of alcoholic beverages[95]. Also, chitosan from 
white button mushrooms (A. bisporus) was recently added 
by the FDA as a “generally recognized as safe” (GRAS) 
material for use in foods and beverages[96]. A summary of 
studies on its applications in this sector is presented below.

- Preserver agent: chitosan applications as a food 
preservation additive may take advantage of consumer 
preferences for natural products[97]. Proposals on 
this topic include its use in meat[98], fish[99], milk[100], 
cheeses[101], sauces[102], freshly cut fruit coatings[103,104], 
fruit juices[105], etc. Furthermore, numerous studies 
have also been carried out on its applications in wine 
production[106] and to prevent its spoilage[107].

- Clarifying agent: due to its cationic nature, chitosan can 
interact with anions through electrostatic interactions, as 
well as via hydrogen bonds and van der Waals forces, 

Table 2. Main natural sources already explored to obtain chitin 
and chitosan.

Source Specific examples
Arthropods
- Insects - Cockroaches[7], crickets[8], beetles[16], flies[17], bees[18].
- Arachnids - Spiders[19], scorpions[20].
- Crustaceans - Crabs[21], shrimps[22], lobsters[23], prawns[24], 

krill[25], spider crabs[26].
- Myriapods - Millipedes[27] and centipedes[28].
Mollusks - Squids[29], cuttlefish[30], clams[31].
Fishes - Tilapia[32], rohu[11], bocachico[33].
Fungi
- Basidiomycota - Lactarius vellereus (yeast)[34], Agaricus bisporus 

(common mushroom)[35].
- Zygomycota - Mucor rouxii[9], Rhizopus oryzae[13]

- Ascomycota - Aspergillus niger[36], Penicillium chrysogenum[37], 
Penicillium camembertii[38].

Algaes
- Diatoms Thalassiosira fluviatilis[39], Cyclotella sp[12].
- Green algae Pithophora oedogonia, Chlorella vulgaris[39].
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with other types of molecules, such as proline-rich 
proteins, polyphenols, polysaccharides, metals, etc[108]. 
Thus, chitosan has been studied as a clarifying agent 
for various beverages, such as fruit juices[109], beers[110], 
wines[111], tea green[112], etc.

- Emulsion stabilizing agent: chitosan has a stabilizing 
effect in classic emulsions[113], which seems to be 
related to the increase of the continuous phase viscosity, 
auguring its potential applications in the food industry[114]. 
Emulsion stabilization with chitosan can be adjusted by 
varying parameters such as its concentration, molecular 
weight, degree of deacetylation[115], etc. Additionally, 
chitosan-based systems have shown promising results 
for the stabilization of Pickering emulsions[116], i.e., a 
fish oil-enriched mayonnaise[117]. 

- Films and packaging: the use of chitosan films for food 
protection has expanded rapidly due to the ability of 
it to form blends with good antibacterial and barrier 
properties, which can be achieved by simple methods, 
i.e., evaporation of solvent from solutions, coating of 
products with biopolymer solutions by spraying or 
dipping, layer-by-layer assembly[118-120], etc. Table 3 
shows some agricultural commodities reported to be 
effectively protected by chitosan-containing films.

3.4 Environment

Due to its low cost, waste from seafood processing 
industries was the first chitinous materials to be evaluated 
as adsorbents[131]. These materials have been tested and 
commercialized as an alternative to chemical amendments 
to provide nitrogen and to control diseases associated 
with soil-borne pathogens[41] because their decomposition 
presumably generates a volatile fraction having fungistatic 
effects[51]. However, it is now possible to obtain chitosan-based 
materials with better control for specific applications such 
as the removal of nutrients[132] and soil contaminants such 

as dyes (gentian violet, naphthol green and yellow 6)[133], 
pesticides (Butachlor)[134], heavy metal cations (Pb2+, Cu2+, 
Cd2+, Fe2+, Cr6+)[135], etc. These materials can be also used 
as smart carriers, allowing a more rational dosage along 
with better environmental protection[136].

Other interesting applications of chitosan in this area 
involve the fabrication of electrochemical sensors[137], including 
nanometer-sized systems[138] and nano biosensors[139], which 
stand out for having great potential to determine organic[140] and 
inorganic[141] pollutants. Some applications for chitosan-based 
nanofibers have also been proposed in air pollution control, 
either for industrial processes or for personal protection[142,143], 
and in clean energy production, such as so-called microbial 
fuel cells, where chitosan can be used as a material for the 
fabrication of proton exchange membranes and bioelectrodes[135]. 
Some of the reported applications for chitosan, including those 
related to environmental protection, are shown in Figure 2.

3.5 Energy

The search for biodegradable materials to replace synthetic 
polymers has driven the testing of a variety of biopolymers, 
such as cellulose derivatives, dextran, starch, etc., including 
chitosan, which has been mainly proven in the preparation of 
electrochemical double-layer capacitors or supercapacitors[144], 
the fabrication of membranes and electrodes for fuel cells[61], 
the manufacture of lithium batteries[145] and solar cells[146], 
etc. The preparation of these materials takes advantage of the 
ability of chitosan to form films from its aqueous solutions, in 
which ionic compounds are also added to obtain the species 
responsible for the movement of electrical charges, such as 
MgCl2

[144]. Thus, the solvent evaporation technique yields 
chitosan films bearing the ionic elements.

3.6 Petroleum

Chitosan can potentially be used in the different phases 
of oil exploitation and research in this field has been growing 

Table 3. Some agricultural commodities whose postharvest protection with chitosan-containing formulations has been reported.

Products Assays
Avocado Biocomposites of chitosan and pepper essential oil were applied on avocado fruits infected with Colletotrichum gloeosporioides 

with successful infection control[121].
Apricot Coatings based on Alyssum homalocarpum gum seed and chitosan produce beneficial effects during fruit storage[122].
Banana Coatings with different concentrations of chitosan were assayed on postharvest losses and the shelf life of bananas. The 

1% chitosan showed the best performance[123].
Pumpkin (slices) A combined chitosan/vacuum packaging treatment maintained color, micro-biological load, and β-carotene content during 

storage at low temperatures[103].
Strawberry The coating using a 61 kDa chitosan showed significant preservation of fruit qualities during storage at 4 °C[124].

Guava The effect of chitosan coatings added with lemongrass oil on guava quality during storage at 12 °C maintained the postharvest 
fruit quality for up to 10 days[125].

Papaya Immersion of fruits in hot water followed by coating with chitosan solutions delayed ripening symptoms without negative 
effects on sensory traits during storage[126].

Mango (slices) Slices were immersed for 30 min in water at 50 °C and then coated with chitosan; fruit firmness and color were maintained 
during storage for 9 days at 6 °C[127].

Cucumber Postharvest application of salicylic acid-grafted chitosan coatings reduced chilling injury and preserved cucumber quality 
during cold storage[128].

Pineapple Coatings based on Aloe vera, chitosan, and ZnO nanoparticles succeeded in reducing weight loss, delayed ripening, and 
oxidative spoilage of freshly harvested fruits[129].

Tomato Active packaging using chitosan films loaded with TiO2 nanoparticles delayed the ripening process and quality changes 
of tomatoes[130].
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in recent years[147]. Some potential applications that have 
been initiated or could be initiated in the short term are 
mentioned below.

- Reservoir exploration and characterization: there is a lot 
of information on the fabrication of increasingly smaller 
and smarter sensors, such as the so-called nanorobots, 
which can allow the determination of the composition 
of the different strata and fluids of a reservoir, as well 
as monitoring its physicochemical conditions[148]. 
Many of the systems already investigated could be 
easily prepared using chitosan. Likewise, micro- and 
nano-motors prepared with chitosan and alginate have 
been proposed as active agents for environmental micro-
cleaning and as sensors[149], constituting interesting 
systems that could be modified for applications in 
crude oil reservoirs.

- Drilling fluids: selected chitosan derivatives have been 
proposed as additives in the preparation of aqueous 
drilling fluids[150], some of which can simultaneously 
play multiple functions, such as reactive clay inhibitors, 
rheology modifiers, and filtrate loss reducers, with the 
added advantage of using a single biodegradable product 
to replace several additives[151]. The use of chitosan as 
a removal agent for metal ions such as Cr(II), Zn(II), 
Pb(II), and Cd(II) in drilling fluid waste has also been 
addressed[152].

- Enhanced oil recovery (EOR): includes processes 
such as thermal and chemical injection[147], with 
partially hydrolyzed polyacrylamide being one of the 
most widely used synthetic polymers to modulate the 

properties of injected fluids, despite its problematic[153] 
and environmentally unfriendly nature. Some chitosan 
derivatives that have been synthesized for testing in EOR 
have shown good performances, i.e., chitosan copolymers 
grafted with comonomers such as acrylamide, acrylates, 
acryl-amide-dodecyl-sulphonate[147,154]. Similarly, the 
interest in nano-materials in EOR has increased, perhaps 
due to the better performances observed during studies 
with Fe3O4/chitosan nanocomposites[155].

- Other applications: viscosity modifiers (surfactants that 
facilitate the extraction and transportation of heavy and 
extra-heavy crudes) obtained from o-carboxy-methyl-
chitosan have been tested successfully[156]. Further 
applications to be developed include the preparation 
of biocorrosion inhibitors for steel pipes used in well 
acidizing, emulsifiers for bitumen, oil spill treatments, 
encapsulation of microorganisms for the degradation of 
hydrocarbons, treatment of wastewater contaminated 
with hydrocarbons, etc.

3.7 Health

Chitinous materials have recognized antitumor, antioxidant, 
and antimicrobial activities[157]. Some of its attractive 
properties, such as bioactivity, healing, and interaction with 
microorganisms, have recently been reviewed from the 
molecular structure point of view, considering the degree 
of deacetylation (GDA), molecular weight, and polymer 
chain configurations[158]. A few applications already tested 
or in the process of being developed for commercialization 
are listed below:

Figure 2. Several of the numerous applications of chitosan.
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- Pharmaceutical industry: the use of chitosan as an 
excipient[159] as well as in the preparation of controlled 
drug release systems[160] has been explored, including the 
preparation of nanocarriers[161]. Moreover, chitosan has 
been studied in the encapsulation of various bioactive 
species, including live cells and microorganisms[162], 
genes, vaccines, proteins, drugs, etc[163]. This strategy 
allows for the protection of the active agent during its 
transit through adverse environments and improves its 
residence time, thus increasing its performance[164]. In 
the case of COVID-19, for example, it could be inferred 
that the administration of chitosan-coated curcumin 
could favor the control of cytokine storm[165].

- Medicine: the use of chitosan acetate dressings for the 
treatment of uncontrolled external bleeding is among the 
most developed applications of chitosan in the medical 
area, obtaining materials with better performance than 
traditional gauze dressings[166]. Among the systems 
that have shown greater effectiveness is the one used 
by North American soldiers (HemConTM), whose high 
attributes were proven during military operations in 
Iraq and Afghanistan[167]. Likewise, a series of chitosan-
based materials have been developed, including powder 
preparations, solutions, aerosols, hydrogels, films, etc., 
for the treatment of burns and the healing of wounds 
and lacerations[168]. On the other hand, the preparation 
of chitosan-based nanosystems has focused on the 
development of smart drug delivery systems for the 
diagnosis and treatment of cancer[169]. Regarding the 
COVID-19 pandemic, chitosan has played a key role 
in clarifying some mechanisms of the infective action 
of SARS-CoV-2. Moreover, some specific chitosan 
derivatives have shown remarkable antiviral activity, 
standing out the ones generically called N-[(2-hydroxy-
3-trimethyl-ammonium)-propyl]-chitosan halides, which 

have demonstrated a high ability to block the SARS-
CoV-2 spike proteins and prevent their interactions with 
the angiotensin II converting enzyme (ACE2) and other 
cellular receptors[170]. Likewise, some chitosan/glucan 
complexes obtained from the cell walls of the fungus 
Gongronella butleri[171] could be interesting candidates 
against SARS-CoV-2 due to the determinant role that 
glycoproteins seem to play in this fight[172].

- Dentistry: the use of chitosan in this sector has been 
increasing in recent years, with applications in practically 
all its areas of action. Thus, it is possible to find 
applications in preventive and reconstructive dentistry, 
prosthesis manufacturing, endodontics, periodontics, 
etc.,[173] with many commercial products now available. 
Among the multiple studies reported, the following 
can be mentioned: the development of mouthwashes 
based entirely on biomaterials, i.e., combinations of 
bio-surfactants, chitosan, and peppermint essential oil 
to achieve products more environmentally friendly[174]; 
ionomeric dental adhesives with improved antibacterial 
properties for restorative dentistry[175]; improvement of 
root canal treatments, taking advantage of the bactericidal 
properties of chitosan, especially when its solutions in 
aqueous citric acid are used[176].

- Ophthalmology: chitosan has been commonly used 
as a drug carrier and as a dosing system to maintain a 
controlled release of administered drugs. Its advantages 
in these applications are closely related to its muco-
adhesivity and the different forms of application that 
can be used, i.e., films, hydrogels, solutions, etc. 
Additionally, chitosan has been employed to formulate 
artificial tears[177] and to prepare soft contact lenses[178] 
and intraocular grafts[179]. Figure 3 shows a few of 
the interesting biomedical applications of chitosan 
nanomaterials currently under study.

Figure 3. Some of the interesting biomedical applications of chitosan nanomaterials currently under study.
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4. Limitations Overcome by Chitosan

There are a few practical limitations to the more widespread 
use of chitin and chitosan. Regarding chitin, the main 
limitation has to do with its insolubility in the usual aqueous 
media and most organic solvents; however, its dissolution 
has been achieved in some aqueous systems (solutions of 
mineral acids, inorganic salts, and alkaline species) as well 
as in non-aqueous systems (the dimethylformamide-LiCl 
mixture, methanol saturated with CaCl2•2H2O, ionic liquids, 
deep eutectic solvents, protic organic solvents, etc.)[180] 
Furthermore, some salts of lithium halides acidified with 
HCl effectively convert chitin into N-acetylglucosamine 
and other water-soluble oligomeric species[181], opening new 
routes to produce water-soluble chitin oligomers.

On the other hand, chitosan shows a greater versatility 
due to its easy dissolution in acidic aqueous media, although 
it is unable to dissolve in alkaline aqueous solutions. 
However, chitosan solutions prepared in acidic aqueous 
media could cause certain toxic effects, for example in 
plants, which have been usually attributed to the acid 
component[182]; these negative effects could be avoided 
by using water-soluble oligo-chitosans. Besides, chitosan 
chemical modifications have become increasingly specific 
and routine, yielding derivatives that dissolve over a wide pH 
range, such as their classic quaternary ammonium salts[183] 
and carboxy-methyl-chitosans[184]. In addition to solubility, 
other interesting properties of chitosan may be favored 
by some derivatization processes, such as antimicrobial 
activity[185] and muco-adhesiveness[164]. Thus, in the current 
fight against coronaviruses, some of these derivatives have 
shown antiviral activities that can be optimized by varying 
the physicochemical properties of the starting chitosan[170].

It is important to note the need to eliminate, for 
pharmaceutical and biomedical applications, the allergens 
that may be present in chitosan obtained from marine sources, 
which could cause intoxication in sensitive individuals; 
this limitation has been overcome by obtaining fungal 
chitosans, with further benefits of avoiding dependence 
on the seasonality and variability of traditional sources[186].

5. Concluding Remarks

Chitin and chitosan may play a prominent role in 
the care of the planet due to the diversity of biochemical 
activities they possess and the variety of inexpensive 
sources from which can be sustainably obtained. As it can 
be inferred from this very summarized overview, some 
of the developments are in the initial studies phase, but 
many others are in advanced stages, especially those 
related to clinical studies for biomedical applications[187]. 
However, for some applications, urgent progress must be 
made in long-term studies of the resistance mechanisms 
of microorganisms to these biomolecules, i.e., as biocidal 
agents. Similarly, nanosystems could be considered as a 
coin with two very different sides: the good one for their 
beneficial effects, i.e., as antimicrobial treatment, and the 
bad one for the cytotoxic effects that could hypothetically 
be generated during its application[188].

Finally, and within the context of this work, it is important 
to appreciate that many of the products and applications that 
can be developed by using these biomaterials could lead to 
the satisfaction of a significant part of the basic needs of a 
population (see Table 4 for a few examples). Thus, the use of 
these materials could contribute to the development of own 
technologies for the generation of products and applications, 
both basic and advanced, in sensitive areas, as briefly 
discussed above. An additional benefit of the exploitation of 
these materials is that the necessary integration between the 
academic sector and other sectors such as industry, business, 
etc., could be effectively achieved, a situation that is not 
very usual in developing countries.
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Table 4. A few examples of feasible development using chitinous materials by application area.

Area Products
Agriculture Crustacean shells or chitin-based soil amendments; solutions for seed preservation and/or fungicide treatments; sprays for 

foliar antifungal treatments.
Water Filtration membranes; selective adsorbents, i.e., molecularly imprinted adsorbents; recovery of proteins during the 

manufacture of fishmeal.
Foods Clarifying agents for juices and wines; emulsion stabilizers (Pickering) used in sauces and mayonnaise; post-harvest fruit 

preservers.
Environment Hydrogels for the removal of pollutants; nano-biosensors for the determination of contaminants; air filtration systems for 

industrial and personal protection.
Energy Preparation of elements for solar cells; preparation of ionic polyelectrolytes for batteries; supercapacitors.

Petroleum Nanobots for crude well exploration; preparation of viscosity modifiers; bio-corrosion inhibitors for pipes used in crude 
well acidification.

Health Hydrogels for wound healing and burn treatment; formulation of mouthwashes using only biomaterials; films for the 
treatment of burns and wound healing.

Technology Solvent purification; microorganisms’ encapsulation for crude oil degradation; nanosystems for carrying active molecules 
in cancer treatment/diagnosis.
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