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Abstract: A recent focus on the development of biobased polymer packaging films has come about in
response to the environmental hazards caused by petroleum-based, nonbiodegradable packaging
materials. Among biopolymers, chitosan is one of the most popular due to its biocompatibility,
biodegradability, antibacterial properties, and ease of use. Due to its ability to inhibit gram-negative
and gram-positive bacteria, yeast, and foodborne filamentous fungi, chitosan is a suitable biopolymer
for developing food packaging. However, more than the chitosan is required for active packaging.
In this review, we summarize chitosan composites which show active packaging and improves
food storage condition and extends its shelf life. Active compounds such as essential oils and
phenolic compounds with chitosan are reviewed. Moreover, composites with polysaccharides
and various nanoparticles are also summarized. This review provides valuable information for
selecting a composite that enhances shelf life and other functional qualities when embedding chitosan.
Furthermore, this report will provide directions for the development of novel biodegradable food
packaging materials.

Keywords: chitosan; composites; food packaging; biodegradable chitosan film; antimicrobial activity

1. Introduction

Products made from synthetic plastics, such as disposable grocery bags, are used
daily. However, negative consequences of the nonrenewable, petroleum-based synthetic
plastics have become increasingly known [1,2]. Synthetic plastics are nonbiodegradable
and can take thousands of years to decompose. Although these synthetic polymers can be
recycled, most end up in landfills or oceans where pollution can significantly damage the
local ecosystem.

The synthetic plastics used in food packaging are environmentally unfriendly and we
have begun to explore biodegradable packaging materials. Therefore, the food industry
is searching for the possibility of using biodegradable materials derived from natural
sources such as cellulose and its derivatives, chitosan, starch, alginate, pectin, pullulan,
gelatin, whey, soybean proteins, etc. Bacterial cellulose and other plant-derived celluloses
have been used as food packaging materials, but they do not have any functional or
mechanical properties. Alginate exhibits good tensile strength, good film-forming abilities,
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and flexibility, but it has the major drawback of a high water vapor transmission rate [3].
Gelatin is also well known for its film-forming ability but is limited to mechanical properties
and thermal stability [4]. Among these biopolymers, chitosan and its derivatives have
excellent film-forming properties, nontoxicity, biodegradability, antibacterial, antifungal,
and metal-chelating characteristics [5]. Thus, the demand for chitin and chitosan has
increased [6,7].

Chitosan is a polysaccharide found in crustacean shells that can be manufactured
via the deacetylation of chitin (Scheme 1) [8]. As an alternative material, chitosan shows
potential applications in many industries, such as food, agriculture, and medicine. Chitosan
films and coatings have been extensively studied because they are non-toxic, antimicrobial,
biodegradable, and produced from a renewable source [9,10]. The film is generally obtained
using the casting method, where chitosan dissolves in a suitable solvent and simultaneously
incorporates the plasticizer, the active compound, and the nanofiller of interest. Chitosan
possesses antibacterial properties due to positively charged amino groups (NH3

+) at the
C-2 positions in the glucose monomers.
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Recently, several approaches have been adopted to modify chitosan to achieve the
desired food-packaging qualities. Incorporating different additives such as essential oils
and plant extracts with chitosan significantly enhances the antibacterial and antioxidant
properties, the current trend in a coating that improves the shelf life [11–14]. Additional
modifications with starch, alginate, and pectin improve mechanical properties [15]. Further-
more, researchers improve the mechanical and physiochemical properties by incorporating
bioactive additives such as polyphenols, oils, and plasticizers [16,17]. Comprising nanoscale
reinforcements is another way to increase the food packaging quality [18,19].

Many attempts have been made to produce chitosan composites with nanoparticles,
phenols, plant extract, metal ions and tannic acid, citric acid, etc. to enhance the pharmaco-
logical properties of the products [20,21]. However, continuous progress in this area needs
more compilation. The present review focuses on different types of chitosan composites
that enhance physicochemical properties and increase food quality as a packaging. This
article aims to summarize the latest developments of chitosan modification as a modern
food packaging.

Antimicrobial Mechanism of Chitosan

Chitosan shows antimicrobial activity against various microorganisms, including
bacteria, fungi, and algae [22]. The antimicrobial activity of chitosan includes the degree of
polymerization, the host, the chitosan composition, and the substrate composition [22,23].
However, the antimicrobial activity of chitosan is still unknown and several mechanisms
have been hypothesized [22]. Research shows that chitosan exhibits higher bacteriostasis
than fungistasis at low temperatures (−20 ◦C) [24]. A hypothesized antimicrobial mech-
anism is that chitosan-based films form a cellophane-like structure to build a protective
layer on the food surface to block external microbes [25]. The protective layer of chitosan-
based films may also restrict oxygen permeability to inhibit the growth of bacteria within
the food [26]. Another antimicrobial mechanism includes the adsorption of the chitosan
polymers on the surface of the microbes to cause a blockage.
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Chitosan contains positively charged NH3
+ groups that can interact with the negatively

charged phosphoryl groups leading to intercellular electrolyte leakage and killing the
bacteria [27–29]. Chitosan can also inhibit microbes from replicating by penetrating the
nuclei, binding to the DNA, and preventing the synthesis of RNA [30]. Finally, chitosan
can chelate essential nutrients and metals, rendering them unavailable for microbes [20].

2. Chitosan Composites

Chitosan obtained from the deacetylation of chitin is a waste product of the seafood
industry. The film-forming ability allows chitosan to form an edible coating or films that
can improve the preservation of food products. Interactions between the cationic chitosan
film microorganisms’ negatively charged membrane prevent bacteria and fungi’s growth.
Pristine chitosan films have been studied for years as a potential food packaging material.
However, recent research on chitosan includes chitosan-based composite films, which
contain different functional components to improve the properties of films.

2.1. Chitosan/Essential Oil Composites

Natural essential oils extracted from plants have potential applications as environ-
mentally friendly food preservatives in edible films. Adding essential oil to polymers
increases the films’ antibacterial and antifungal activity [26,31]. Moreover, the essential oil
in chitosan-based films regulates the release rate of antimicrobial agents to maintain the
concentration of active compounds over an extended time. Essential oils include between
85 and 99% volatile substances, such as terpenes, terpenoids, and other alpha-aromatic and
aromatic substances, and between 1 and 15% non-volatile substances; these substances are
frequently utilized in the food sector [32].

On that basis, ginger essential oil (GEO) obtained from ginger enhanced the physio-
chemical properties of chitosan and fish sarcoplasmic protein (FSP) film. All the GEO/FSP/
chitosan composite films exhibited excellent UV-barrier properties from 200 to 280 nm,
decreased tensile strength, and higher elongation at break compared to pristine chitosan
film. The composite film prolonged the shelf life of fillets by two days and enhanced the
antimicrobial activity of chitosan films. Additionally, GEO was slowly released onto the
surface of the fish to improve preservation [33]. Another chitosan-based composite film
that contained essential oil of fennel (EOF), potato peel extract (PPE), and polyvinyl alcohol
(PVA) improved the antioxidant and antimicrobial properties of the film. The nano chitosan-
PPE-PVA-EOF composite film enhanced mechanical properties and extended the shelf life
of food. The composite film degraded entirely within two days by Pseudomonas putida while
the chitosan control film took about one week [34]. Furthermore, composite films based on
chitosan and honeysuckle flower extract (HFE) enhanced antioxidant activity, antimicrobial
activity, and reduced water vapor permeability (WVP). With the addition of HFE (30%),
the DPPH scavenging activity and E. coli inhibition zone increased. However, mechanical
tests showed that incorporating HFE reduced the tensile strength and elongation at break.
The composite films have great potential for antimicrobial packaging for highly perishable
foods [35].

The essential oil extracted from cinnamon has been getting attention due to its an-
timicrobial properties. Octenyl succinic anhydride (OSA) and gum arabic (GA) stabilized
with cinnamon essential (CEO) can be incorporated into chitosan-based films to increase
the emulsion capacity of OSA and GA. CEO emulsions into the chitosan films improved
antimicrobial activity against E. coli and S. aureus. However, it reduced the tensile strength
of the film. The OSA-GA stabilized CEO emulsions into CS films could be used to protect
edible films and increase durability (Figure 1) [36]. Similarly, chitosan film containing
thyme essential oil enhanced the film’s mechanical, thermal, and antibacterial properties.
Moreover, combing of calcium chloride, zinc oxide (ZnO), poly ethylene glycol (PEG),
and nano clay (NC) in chitosan-based films preserved the quality of sweet cherries by
conserving higher titratable acidity, total soluble solids, and reduced weight loss [37].
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b, b1—5% emulsion; c, c1—10% emulsion; d, d1—15% emulsion; e, e1—20% emulsion [36].

2.2. Polyphenolic/Chitosan Composite

Chitosan film without composite is hydrophilic and has weaker mechanical, thermal,
and water vapor barrier characteristics than synthetic composites. To increase the use of
chitosan films, nature extracts, which often contain a variety of functional activities, can be
added to the film as active components and fillers. Several phenolic compounds (ferulic
acid, gallic acid, tannic acid, quercetin, and curcumin) have recently been reported as
chitosan-based composite films [38–43]. These phenolic compounds could enhance various
properties, including the mechanical strength of chitosan films [39,43].

The phenolic compound (gallic acid, procyanidins, catechin, and epicatechin) from
grape seed extract (GSE) can have antioxidant and antimicrobial activity. GSE and car-
vacrol incorporated in chitosan films extended the shelf life of refrigerated salmon up to
one week [44]. A mathematical model study also proved that gallic acid release from chi-
tosan/carvacrol films improves food preservation and shelf-life extension of water-based
food products at different temperatures [45]. Similarly, in the study of Sogut et al., the
GSE/chitosan films exhibited higher elastic modulus and elongation at break compared to
chitosan films. The antioxidant activity, light barrier properties, and antibacterial activity
also increased as the GSE content increased in the chitosan film. Chitosan films incorpo-
rated with GSE exhibited superior antimicrobial activity against Listeria monocytogenes,
Escherichia coli, and Staphylococcus aureus. Moreover, composite chitosan films with 15%
GSE inhibited the total mesophilic aerobic bacteria and coliform foods [46]. The GSE with
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poly(ε-caprolactone) (PCL) and chitosan was reported as an antimicrobial packaging for
food by inhibiting the growth of E. coli and mold, respectively. The pit morphology of
chitosan films increased as the concentration of GFSE increased due to the incorporation of
glycerol in the GFSE. These pits facilitate the release of GFSE out of the composite films and
can suppress microbial growth. The GFSE chitosan composite films still exhibited adequate
tensile strength and flexibility but decreased the film’s resistance to breakage and elasticity.
Furthermore, no mold growth was observed on the bread packaged with films containing
GFSE (Figure 2) [47].
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Figure 2. Bread samples packaged by (a) PE, (b) PCL/chitosan, (c) GFSE content 0.5, (d) 1.0, (e) 1.5,
(f) 2.0, and (g) 2.5 films at 24 ◦C, for one week [47].

Another polyphenol group from kombucha tea (KT) embedded with chitosan films
improved antimicrobial and antioxidant activities, extending the shelf life and lowering
the minced beef’s lipid oxidation by three days. KT significantly enhanced the antioxi-
dant activity of chitosan-based films. Food packaging material should ideally exhibit low
light transmittance. UV–vis spectroscopy analysis between 300 nm and 800 nm deter-
mined KT significantly decreased UV and visible light’s transmittance. Adding KT also
considerably increased the water solubility and reduced the water vapor permeability of
chitosan films [1]. Karača et al. fabricated an edible film that contained coca (Theobroma
cacao L.) powder using chitosan, alginate, and pectin with whey protein. The resultant
plain alginate films exhibited the highest elongation at break. Adding proteins caused
the release of polyphenols to be prolonged and enhanced the functional properties. The
plain alginate and pectin films exhibited the highest total phenol content (TPC) compared
to chitosan-based films, alginate- and pectin-based films. Further, the sensory score was
reported to be highest in alginate-based edible films based on acceptability, appearance,
color, transparency, and elasticity [48].

Protocatechuic acid (PA), a natural phenolic antioxidant grafted with chitosan (PA-
g-CS), exhibited higher water solubility and lower moisture content than chitosan films.
The film exhibited greater tensile strength and elongation at break compared to chitosan
films. Furthermore, the PA-g-CS films showed lower transmittance of light around 300 nm,
and the decomposition of the film was lower between 30 ◦C and 167 ◦C. Finally, PA-G-CS
also exhibited higher antioxidant activity than chitosan films. The free radical scavenging
activity increased as the PA content increased [49]. The syringic acid/chitosan composite
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film effectively preserved quail egg coatings by inhibiting bacterial growth. The obtained
film exhibited increased density, water solubility, and opacity, and decreased water vapor
permeability and water content [50].

2.3. Polysaccharide/Chitosan Composite

Reports have shown that polysaccharides can be blended with chitosan to develop
chitosan-based functional films. The advantages of using starch include low cost, avail-
ability, biodegradability, and renewability. Additionally, starch and chitosan possess good
film-forming capacities, which enable the formation of a composite film [51]. The obtained
film enhanced antioxidant activity and water vapor barrier property, while lowering bacte-
rial adhesion on the packaging. These properties show that the composite has potential
applications as an active packing film for foods [52,53].

Bhardwaj et al. investigated the properties of food-grade cellulose-based papers
made from sugarcane bagasse and corn husk coated with chitosan and beeswax–chitosan
emulsion. The WC (beeswax–chitosan emulsion coated) and CC (chitosan coated) paper
reduced yeast and mold growth by 8 to 12 days, depending on the temperature. In addition,
the enhanced barrier properties against air and moisture are attributed to better bread
quality [54]. The chitosan/cellulose nanocrystals (CNC) exhibited antimicrobial activity
against the gram-negative, gram-positive bacterial, and fungicidal activity. The chitosan
films also reduced Pseudomonas and Enterobacteriaceae bacteria growth in meat. The
obtained chitosan films exhibited enhanced oxygen barrier and thermal stability properties;
however, the water permeability stayed the same. Additionally, chitosan/CNC films
exhibited increased tensile strength and Young’s modulus [55]. In another study, CNC
added to chitosan solution was observed to have improved the water resistance of the films
prepared by the solvent casting method. The nanochitosan (NCH)-CNC suspension was
cast into a petri-dish and dried at 50% relative humidity for two days. The resultant NCH-
CNC films exhibited a smooth and continuous surface. The film morphology was reported
to be smoother in nanoform and the film thickness was decreased by the incorporating of
nanocellulose [56].

In the continuous growth of biodegradable materials, starch shows the potential to
develop active food packaging material due to its low cost, availability, functionality, and,
most importantly, biodegradability. Starch-based films are often odorless, tasteless, color-
less, nontoxic, and biodegradable. However, compared to synthetic polymers, starch films
have poor mechanical and barrier qualities, restricting their use in food packaging. There-
fore, scientists have been investigating retaining starch characteristics by blending with
the other natural biopolymers. The intermolecular bonds between the amino functional
groups of chitosan improved many food packaging properties such as tensile strength,
thermal stability, hydrophobicity, water adsorption, and gas barrier properties [57]. Corn
starch and chitosan film prepared via the casting method exhibited excellent elongation
at break and tensile strength [58]. Thermoplastic corn starch (TPS) and chitosan oligomer
(CO) composite films extended food shelf life. The chitosan oligomers diffused through the
polymer towards the food surface acting as an antimicrobial agent. Results showed that the
film could preserve perishable foods for one week. The resultant TPS/CO composite film
exhibited good antimicrobial capability and suggested an efficient way to inhibit microbial
development [59].

Sugar palm starch (SPS) with chitosan and extra virgin olive oil (EVOO) composite
film exhibited the lowest second-stage degradation temperature (184.2 ◦C). In compari-
son, chitosan/SPS-EVOO (2%) showed the highest second-stage degradation temperature
(223.1 ◦C) and had the most optimal improvement in elongation at break and tensile
strength [60]. The chitosan–Dioscorea alata starch composite film developed by response
surface methodology (RSM) achieved desirable food packaging properties such as moisture
content, biodegradability, elastic modulus, and tensile strength. Further, adding essential
oil from garlic, aloevera, and lemon grass increased the antibacterial properties against E.
coli, Salmonella typhi, S. epidermidis, and S. aureus (Figure 3) [61]. Furthermore, the composite
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film of starch–chitosan and montmorillonite filler nanoparticles significantly increased
tensile strength and improved water vapor barrier properties [62].
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Incorporating chitosan nanoparticles (CNP) into starch films acted as a natural filler
and improved the film’s mechanical properties and water sorption [63]. The starch/CNP
nanocomposite films inhibited the growth of S. aureus, B. cereus, E. coli, and S. typhimurium
and extended the shelf life of perishable foods [64]. Similarly, Zhao et al. added chitosan and
gallic acid into cassava starch via subcritical water technology to produce a composite film.
Hydrogen bonds and crystallinity affected the mechanical properties of each respective
film. Results showed that chitosan–starch films exhibited the highest tensile strength
and elongation (100.1%). Additionally, cassava starch was found to be a capable carrier of
antioxidants and antimicrobials which can extend the shelf life of foods. The chitosan/gallic
acid/cassava starch composite film elongated the shelf life of cooked ham for 25 days and
may have a potential application as a food packaging material [65].

The other polysaccharides, such as pectin, can also be blended with chitosan to prepare
a composite film that is stable and uniform due to the intermolecular interactions between
the oppositely charged ions. A film that combined tea polyphenols (TP), pectin, and
chitosan (CPFT) increased the water vapor permeability and moisture content. Adding TP
improved antioxidant activity and reduced bacterial growth [66]. Similarly, Schnell et al.
prepared a film that contained colloidal suspensions of cationic polyelectrolyte complex
(CatPEC) of xylan (Xyl) and chitosan. The obtained film exhibited lower water vapor
transmission rates and oxygen permeability. Moreover, it inhibited E. coli and S. aureus
growth [67].

Konjac glucomannan (KGM) is a polysaccharide and water-soluble dietary fiber, de-
rived from Amorphophallus konjac. KGM combined with TEMPO-ChNCS (TEMPO-oxidized
chitin nanocrystal) increased tensile strength and reduced water vapor permeability [68].
Similarly, the composite of epigallocatechin gallate (EGCG) with KGM/carboxymethyl
chitosan (KGM/CMCS) demonstrated desirable characteristics of superior antioxidant
properties and antibacterial properties that are essential for food packaging. EGCG en-
hanced the water vapor barrier properties, increased thermal stability, increased tensile
strength, and increased UV-light barrier properties [69]. Further, a de-oiled crude green
algal ethanolic extract (CAEE) was incorporated into chitosan films to minimize posthar-
vest loss and prolong the shelf life of tomatoes (Figure 4) [70]. Chitosan composite with
polysaccharides improves their physical and mechanical properties, depicted in Table 1.
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Table 1. Starch incorporated chitosan film with different additives.

Composite
Functional Properties Physical Properties

References
Antimicrobial Capacity Antioxidant Activity Thickness Mechanical
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2.4. Gelatin/Chitosan Composite

Gelatin is a protein obtained from animal collagen that blends with chitosan used to
make composite films that exhibit improved mechanical properties, water barrier properties,
and light barrier properties [71–74].

Perishable foods treated with chitosan–gelatin edible films exhibited low microbial de-
cay and longer shelf life [75]. The shelf-life of a carrot piece can be increased upto ten days,
using a composite film of chitosan and gelatin [76]. Furthermore, the gelatin/chitosan com-
posite with phenolic antioxidants (gallic and trans-cinnamic acids) exhibited significantly
higher reducing power (RP) and iron chelating power (ICP) compared to the trans-cinnamic
acid/gelatin/chitosan films. The kinetic release of phenolic compound strongly influenced
the antioxidant activity, RP, ICP, and antimicrobial activity of the films [77].

A composite film of cinnamon essential oil (CEO), chitosan, and gelatin via the casting
method exhibited UV-light barrier properties. The composite film also showed greater
elongation at break but a decreased tensile strength compared to CS films. Additionally, the
results found that gelatin and CEO enhanced thermal stability while reducing wettability
and crystallinity. The composite film also exhibited excellent antibacterial activity against
E. coli and S. aureus [78]. Halim et al. showed that incorporating tannic acid into CS,
gelatin, and methylcellulose (MC) increased the antibacterial properties of the composite
film against E. coli and S. aureus. MC exhibited the lowest weight loss % while chitosan
exhibited the highest. Additionally, the incorporation of tannic acid significantly reduced
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light transmittance which is a better preservative [79]. Combining nano-cellulose into
chitosan, gelatin, and starch improved the anti-fungal, mechanical, and water barrier prop-
erties. With the chitosan amount, food preservation, Young’s modulus, and tensile strength
increased while the elongation at break decreased. However, Young’s modulus and ten-
sile strength decreased as the nanocellulose content increased. Additionally, composite
films that contained starch nanocellulose were more brittle due to the rigid behavior of
NCC compared to gelatin. Additionally, the nanocomposite film containing ~5% NCC
content of starch-based film exhibited high transmittance of UV light [80]. Furthermore,
the antibacterial performance of gelatin/chitosan film was enhanced by incorporating cap-
saicin (Cap) via FeIII doped hollow metal–organic framework (FeIII-HMOF-5) nanocarriers.
Incorporating Cap- FeIII-HMOF-5 increased tensile strength and reduced elongation at
break. Moreover, due to the hydrophilic properties of Cap- FeIII-HMOF-5, water vapor
permeability decreased as the content increased (Figure 5) [81]. The gelatin/chitosan film
improves the physical and mechanical properties, depicted in Table 2.
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2.5. Polyvinyl Alcohol/Chitosan Composite

Food packages containing chitosan kept the food fresh without a freezer for some time
while degrading and preventing future soil pollution. However, the fast dissolution in
acidic solution and lack of flexibility of chitosan films are its drawbacks. Therefore, creating
an affordable, biodegradable polymer film for food packaging is essential. Polyvinyl
alcohol (PVA) has numerous advantages for food packaging, including high hydrophilicity,
outstanding chemical stability, and exceptional film-forming abilities. Therefore, the current
research on the composite of PVA with chitosan is gaining attention.
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Table 2. Gelatin incorporated chitosan film with different additives.

Composite
Functional Properties Physical Properties

References
Antimicrobial Capacity Antioxidant Activity Physicochemical Properties Mechanical Properties

Chitosan/gelatin/methylcellulose/
tannic acid

Improved antimicrobial activity
against E. coli and S. aureus
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Hydrogen bonding can cause entanglements between PVA and quaternary ammonium
chitosan (QAC), forming a composite film with enhanced mechanical properties [83]. A
study by Hu et al. showed that the QAC/PVA composite film significantly increased water
vapor permeability, tensile strength, and elongation at break. The films reduced peroxide
levels and thiobarbituric acid levels in peanut oil and stored it for 28 days at 37 ◦C [84].
Similarly, the composite of PVA, chitosan, and various levels of D-Limonene (DL) film
exhibited the most optimal tensile strength and water vapor permeability. The composite
films also inhibited E. coli and S. aureus growth and increased the shelf life of mangoes. The
film significantly slowed the decay process (Figure 6) [85].
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A chitosan/polyvinylpyrrolidone (PVP) composite film enriched with nanoparticles
(NP) from plant extracts could detect fungi infection progress in strawberries. This phy-
topathogenic fungus was detected faster using NP added to a plastic package containing
inoculated strawberries as it changed their absorbance and transmittance during R. stolonifer
growth [86]. A biodegradable film made of PVA/chitosan can be improved with silica as
a safety candidate. By hydrogen bonding between silica and PVA or chitosan, Yu et al.
improved tensile strength of biodegradable PVA/chitosan films by as much as 45%. The
preservation time was also extended thrice by reducing oxygen permeability and moisture
by 25.58% and 10.2%, respectively [87].

Similarly, chitosan/PVA-based films with sulfosuccinic acid (SSA) fabricated by cast-
ing method and UV curing process exhibited significantly higher tensile strength while
reduced elongation at break. The obtained film improved mechanical, thermal, and wa-
ter barrier properties by adding glycerol and xylitol to 20–180%. Apple coated with the
film reduced the decomposition time by up to 70 days compared to uncoated apples.
The biodegradability of the film was found to have degraded by about 40–65% after
220 days [88]. Furthermore, sodium lactate loaded in chitosan–PVA/montmorillonite (NaL-
CS/PVA/MMT) showed increased water sorption activity with MMT content. However,
the incorporation of MMT decreased water vapor permeability, and significantly reduced
oxygen and carbon dioxide permeability. Additionally, it inhibited the growth of E. coli
and well-controlled NaL release, which was dependent on the pH value of the aqueous



Polymers 2023, 15, 2235 13 of 21

solution and ionic strength. The composite film exhibited barrier properties suitable for
food packaging [89].

2.6. Metal/Metal Oxide Nanoparticles/Chitosan Composite

Several attempts have been undertaken to modify the characteristics of chitosan for
packaging materials by mixing them with plasticizers or nanoparticle fillers. Compared
to the original polymers or traditional composites, the nanocomposites were reported to
have superior barrier, mechanical properties, and heat-resistant capabilities, and suggest
potential applications for food packaging.

Silver nanoparticles (AgNP) exhibit antimicrobial properties against various microor-
ganisms and can combine with chitosan for food packaging. Thus, AgNP was used to form
catechol-modified chitosan AgNP (CSCT AgNPs) and gelatin (CSCT/G/AgNP) composite
films. Results showed gelatin improved the mechanical and water barrier properties while
AgNP enhanced antibacterial properties against S. aureus and E. coli. The bactericidal
ratio increased significantly as the AgNP content increased. The improved mechanical
properties, physiochemical, and antibacterial properties indicated potential application as
active food packaging material [82]. In another study, chitosan-based films modified with
an azopolymer and AgNP also have the potential in food packaging applications. Further it
showed that composite film also exhibited lower hydrophilicity and more excellent thermal
stability than pristine chitosan films. Mechanical testing showed that the tensile strength
and elastic modulus increased for blend and nanocomposite films. The chitosan-based
modified azopolymer with AgNP exhibited enhanced light barrier properties, thermal
stability, and mechanical properties [90].

Zinc oxide (ZnO) can also be added to chitosan films to enhance physiochemical and
biological properties. ZnONP embedded into chitosan cellulose acetate phthalate (CAP)
films improved mechanical, barrier, and antimicrobial properties. The chitosan–CAP films
with 5% w/w nanoZnO (CCZ) were reported to have the most optimal strength and stiffness,
which significantly (9 days) extended the shelf life of black grapefruits. Additionally, the
oxygen and water vapor transmission rates of CCZ films were substantially lower with
larger inhibition zones (Figure 7) [91]. ZnONP/chitosan composite films exhibited greater
thermal stability at high temperatures due to the hydrogen bonds between the ZnO and
chitosan [92]. A study by Souze et al. showed the ZnONP synthesized by using apple
peel extracts incorporated into chitosan films also improved the antimicrobial activity of
composite films. Experiments with fresh poultry showed the shelf life was extended due to
the film decreasing the deterioration rate [93].

Adding melissa essential oil (MEO) into the ZnO/chitosan composite films enhanced
mechanical properties. MEO enhanced antibacterial activity while ZnO enhanced the
crystalline structure of chitosan films. As the composition of ZnO and MEO increased,
the transparency of the film also increased [94]. It was also reported that when chitosan
and ZnO nanoparticles were incorporated into gallic acid films (Ch-ZnO@gal) it improved
the mechanical, physiochemical, and antibacterial properties. Resultant Ch-ZnO@gal
composite films were reported to exhibit significantly greater tensile strength than chitosan
films. However, the elongation at break of Ch-ZnO@gal was lower than the chitosan
control group. The incorporation of ZnO@gal enhanced the light barrier properties, water
vapor permeability, and oxygen permeability. Further antioxidant activity showed that
the antioxidant activity increased as the concentration of ZnO@gal increased. Finally, with
the concentration of ZnO@gal, the antibacterial property increased. The results seem to
suggest that ZnO@gal has potential applications to improve biocomposite chitosan films for
food packaging applications [95]. Wang et al. studied a composite film of carboxymethyl
chitosan (CMCS), carboxymethyl cellulose sodium (CMC) polylactic acid (PLA), and ZnO
NP. Multilayers of the composite film showed that the oxygen barrier properties were
significantly (99%) greater than a layer of PLA coating. Additional results also showed that
films with ZnO nanoparticles exhibited water, oxygen, heptane vapor, oil barrier, and high
antibacterial properties [96].
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Sulfur nanoparticles (SNP) are known to be great as antimicrobial agents. Shankar et al.
developed a chitosan/SNP composite with greater tensile strength and elastic modulus.
The tensile strength of the chitosan/SNP films increased with the SNP content. Further
mechanical tests showed that SNP decreased the elongation at break of the chitosan films.
Thermogravimetric analysis showed that chitosan/SNP composite films exhibited greater
thermal stability than chitosan films. The results found that chitosan/SNP composite films
completely inhibited the growth of E. coli and L. monocytogenes within 6 h and 12 h, which
may have potential applications for active food-packaging material [97]. Another study
prepared chitosan and PVA coatings with ferulic acid as a cross-linking agent using layer-
by-layer assembly technology. Due to the homogenous spread of nanoparticles, the tensile
strength, water resistance, antioxidant, and antibacterial activities improved. Experiments
showed that the resultant films could extend the shelf life of cherry tomatoes [98].

2.7. Clay/Chitosan Composite

Montmorillonite (MMT), a potential adsorbent in food packaging films, was consid-
ered as a nanocarrier of essential oil [99]. Giannakas et al. adsorbed essential oil into
sodium montmorillonite (NaMt) or organomodified-montmorillonite (OrgMt) and pre-
pared a composite film with chitosan. The nanocomposite films exhibited lower water
adsorption values, the highest barrier properties, and great antimicrobial activity against
E. coli The nanocomposite films prepared from OrgMt via the modified clay exhibited better
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antioxidant activity than films prepared with NaMt. The Cs/OrgMt/TO nanocomposite
films were effective food packaging films that extended the shelf life of foods [100].

Souza et al. investigated the physical and morphological properties of chitosan/MMT
(CS/MMT) nanocomposite films activated with ginger essential oil (GEO). The chitosan
composite films began to degrade significantly at very high temperatures between 283.5 ◦C
and 290.8 ◦C due to degradation of chitosan. Experimental results found that incorpo-
rating of GEO and MMT enhanced the barrier properties against light, gases, and water
vapor [101]. Moreover, chitosan/Na-MMT increased the shelf life of cherry tomatoes. The
film significantly reduced the mass loss and nutrient loss of cherry tomatoes. As a result of
the incorporation of MMT into the composite films, the films showed improved swelling
resistance and elongation at break (68%). In contrast, the films without MMT exhibited
poorer structural and thermal properties [102]. CMC-MMT incorporated with TiO2 showed
antibacterial inhibition for both gram-negative and gram-positive bacteria. Also, the tensile
strength of the film containing TiO2 nanoparticles increased [103].

The hydrogen bond between chitosan and the Si-O bonds of nanoclay influenced
changes in the mechanical properties of the materials. The nanocomposite films with
chitosan/tween 80/rosehip seed oil (RSO) formed by dispersed MMT nano clay C30B via
casting film-forming emulsions exhibited significantly higher elasticity. The composite
film showed suitable CO2 barrier properties for food packaging material. The composite
films also demonstrated antimicrobial activity against E. coli, Salmonella typhymurium, and
Bacillus cereus that increased the shelf life of perishable foods. The RSO improved the
mechanical, gas, and water vapor barrier properties and antioxidant activity [104]. Addi-
tional studies also showed that MMT and tocopherol improved chitosan film’s mechanical
properties, thermal stability, and antioxidant activity [105].

Colorimetric oxygen indicator film made of chitosan/MMT grafted with cyclodextrin
(CD) with methylene blue/glucose system is used for packaging foods. When oxygen
is present, the MB–glucose redox system causes the film to change color. MMT and CD
grafting onto chitosan increased hydrophilicity and enhanced the film color change. The
films were promising for food packaging because of their high color sensitivity to high
relative humidity. PET films may also delay the color change to blue with a low oxygen
permeability. In addition, the film can elongate the storage time for three weeks in a refrig-
erator [106]. When MMT–copper oxide nanocomposites (MMT-CuO) were incorporated
into the chitosan matrix, it improved the optical, mechanical, and antibacterial properties.
In contrast, the water solubility, UV transition, water vapor, and oxygen permeability
decreased. The MMT-CuO nanocomposites had little effect on the transparency of the films
and increased the tensile strength and percent elongation. As a result, chitosan-MMT-CuO
nanocomposite films have potential applications in active food packaging (Figure 8) [107].

A study by Yan et al. showed that the α-tocopherol-chitosan nanoparticles/chitosan/
montmorillonite (TOC-CSNPs/CS/MMT) composite films can be used for food packaging
applications with improved physiochemical properties and antioxidant activity. The water
solubility of the TOC-CSNPs/CS/MMT composite films decreased with the TOC-CSNP
content. Films with 10% TOC-CSNP exhibited the lowest water solubility. Furthermore,
the swelling ratio decreased as the TOC-CSNP content increased. Antioxidant evaluation
of the composite films found that the composite films exhibited significantly higher radical
scavenging activity than CS/MMT and CS films [108].

2.8. Carbon/Chitosan Composite

Recently, graphene has been utilized in the food packaging industry due to its po-
tent antimicrobial properties. Graphene oxide (GO) has the unique property of being
homogenously dispersed into chitosan polymer nanocomposite films. The GO–chitosan
nanocomposite films significantly improved the thermal stability and mechanical proper-
ties. Crosslinking between chitosan and GO may have significant effects on mechanical
properties. The incorporation of GO increased the tensile strength and thermal properties of
the chitosan film. Moreover, the antimicrobial properties against E. coli and B. subtillis were
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also contributed to by the incorporation of GO [109]. A laser-induced micropore-based
modified atmosphere packaging and carbon-dot/chitosan coat exhibited good preservation
of food flavor components such as alcohol, ketones, and aldehydes [110].
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3. Conclusions and Future Prospects

The awareness of environmental problems caused by plastic packaging has increased
interest in environmentally friendly packaging materials. The seafood industry generates
large amounts of crustacean shell waste every year. In addition to chitin, this waste
produces chitosan using various methods. Chitosan is substantially less expensive than
other biopolymers since it is derived from a bio-waste product utilizing various energy-
efficient techniques. Chitosan, one of the polysaccharides, has undergone significant
research and has been used to create biodegradable food packaging. Due to its antibacterial
properties, chitosan is frequently utilized as antimicrobial films, edible protective coatings,
dipping, and spraying for food items. Antimicrobial packaging is crucial, and can kill
or inhibit food-contaminating pathogenic bacteria. Researchers have combined chitosan
with other biopolymers and nanocomposites to improve mechanical properties, optical
properties, barrier properties, and thermal stability. We have selected a few of the best
composites with improved essential properties for food packaging in Table 3. However,
more research is required to get this biopolymer to industrial levels for food packaging
applications. A few aspects should be considered for future developments as follows:
(i) degradation of the films in the real environment; (ii) the toxicity of chitosan-based film;
and (iii) active and intelligent packaging system. Over the past ten years, much work has
gone into creating and testing antimicrobial films to increase food safety and shelf life. This
review briefly overviews recent developments in creating chitosan composite films for
food packaging.

Table 3. A few of the best chitosan composites with improved essential properties for food packaging.

Composite References

Chitosan/ZnO/CaCl2/NC/PEG/thyme oil [37]

Chitosan/protocatechuic acid [49]

Chitosan/cornstarch [57]

Chitosan/sugar palm starch/olive oil [60]

Chitosan/discorea alata starch/glycerol/essential oil [61]
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Table 3. Cont.

Composite References

Chitosan/cassava starch/gallic acid [65]

Carboxymethyl chitosan/Konjac glucomannan/epigallocatechin gallate [69]

Quaternary ammonium chitosan/polyvinyl alcohol [84]

Chitosan/azopolymer/silver nanoparticle [90]

Chitosan/zinc oxide nanoparticles loaded gallic acid [95]

Chitosan/polyvinyl alcohol/ferulic acid [98]
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