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Abstract 

Background 

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder in which infection 

with Chlamydia pneumoniae (Cpn) has been associated. Cpn is an obligate intracellular 

respiratory pathogen that may enter the central nervous system (CNS) following infection and 

trafficking of monocytes through the blood-brain barrier. Following this entry, these cells 

may secrete pro-inflammatory cytokines and chemokines that have been identified in the AD 

brain, which have been thought to contribute to AD neurodegeneration. The objectives of this 

work were: (i) to determine if Cpn infection influences monocyte gene transcript expression 

at 48 hours post-infection and (ii) to analyze whether pro-inflammatory cytokines are 

produced and secreted from these cells over 24 to 120 hours post-infection. 

Methods 

Gene transcription was analyzed by RT-PCR using an innate and adaptive immunity 

microarray with 84 genes organized into 5 functional categories: inflammatory response, host 

defense against bacteria, antibacterial humoral response, septic shock, and cytokines, 

chemokines and their receptors. Statistical analysis of the results was performed using the 

Student's t-test. P-values ≤ 0.05 were considered to be significant. ELISA was performed on 

supernatants from uninfected and Cpn-infected THP1 monocytes followed by statistical 

analysis with ANOVA. 



Results 

When Cpn-infected THP1 human monocytes were compared to control uninfected monocytes 

at 48 hours post-infection, 17 genes were found to have a significant 4-fold or greater 

expression, and no gene expression was found to be down-regulated. Furthermore, cytokine 

secretion (IL-1β, IL-6, IL-8) appears to be maintained for an extended period of infection. 

Conclusions 

Utilizing RT-PCR and ELISA techniques, our data demonstrate that Cpn infection of THP1 

human monocytes promotes an innate immune response and suggests a potential role in the 

initiation of inflammation in sporadic/late-onset Alzheimer’s disease. 

Keywords 

Chlamydia pneumoniae, Inflammation, Innate immunity, Alzheimer’s disease, Gene 

expression 

Background 

Studies from our laboratory have implicated infection with Chlamydia pneumoniae (Cpn) in 

the pathogenesis of sporadic late-onset Alzheimer’s disease (LOAD) [1-3]. We have 

previously identified infection within monocytes, macrophages, microglia, astroglia, and 

neurons in the Alzheimer's disease (AD) brain. One mechanism by which the organism may 

gain access into the brain is following peripheral infection of monocytes [4,5]. We are 

investigating Cpn infection of monocytes in vitro to determine how infection may promote 

changes in inflammatory gene and protein expression because monocytes have been 

demonstrated to be altered with regards to expression of cytokines, Aβ amyloid clearance, 

and apoptosis in Alzheimer's disease patients [6-9]. 

Although the specific etiology of LOAD has remained elusive, what has emerged is strong 

evidence that inflammation is a focal point in the neuropathogenesis process [10-13]. 

Associations between AD and many inflammatory biomarkers, including IL-1β, IL-2, IL-4, 

IL-6, IL-8, IL-10, IL-12, IL-18, IFN-γ, TNF-α, tumor growth factor beta (TGF-β), and C-

reactive protein (CRP) have all been well documented [14] (for reviews see [12,14]). 

Activated microglia and astroglia have been identified near and around neuritic senile plaques 

in the AD brain along with pro-inflammatory cytokines IL-1β, IL-6, and TNF-α 

[11,13,15,16], suggesting that a pro-inflammatory state could be responsible for neurotoxicity 

associated with AD [17]. 

As the primary immune cells within the human brain, microglia act as the functional 

equivalent of macrophages inside the central nervous system (CNS) [18]. Microglia are 

activated in response to an infection or injury within the brain and are speculated to be 

responsible for neurotoxicity in diseases such as multiple sclerosis and Parkinson’s disease 

[18,19]. Experiments in rats have shown that microglia phagocytize and internalize amyloid, 

apparently in an effort to clear amyloid from the CNS [20]. Related data also indicate that 

following phagocytosis, Aβ amyloid may remain stored and un-degraded within the activated 

microglia [21]. 



Microglial activation as a consequence of internalization of Aβ may activate neighboring 

microglia and astrocytes through a 'bystander effect'. These activated glia, in turn, may 

promote further Aβ 1-40 and 1-42 production [22]. This cycle appears to perpetuate 

inflammation, as well as Aβ production and deposition [10,23]. Activated microglia release a 

pool of pro-inflammatory factors including IL-1β, IL-6, TNF-α, nitric oxide, IL-8, and 

macrophage inflammatory protein-1 [24,25]. As IL-1β and IL-6 are major pro-inflammatory 

cytokines involved with neuronal dysfunction, glia producing these cytokines may start a 

self-activating cascade referred to as a lethal 'cytokine cycle' [10,11,25]. According to the 

cytokine cycle, IL-1 is released from activated glia across AD brain regions independent of 

the initial stimulus. This primary event drives the cascade of cytokine release which promotes 

the neuropathological changes associated with AD. 

A correlation between activated astroglia and amyloid plaques appears to exist, as astroglia, 

which greatly outnumber microglia in the brain, often aggregate at the site of Aβ deposits 

[26,27]. Substantial evidence indicates that astroglia are directly involved in the degradation 

and clearance of Aβ [26], and when activated, they also promote inflammation by secreting 

IL-1β and IL-6 [28]. These pro-inflammatory mediators also have been shown to activate 

astroglia resulting in an increased production of Aβ 1-40/1-42 peptides, thus demonstrating a 

positive feedback loop for the generation of amyloid [23,29]. Chronic glial activation may 

perpetuate a chain reaction where successive axonal target regions fall victim to additional 

neuronal damage, thereby continuing the cycle [11]. 

Furthermore, astroglia have been shown to generate other pro-inflammatory mediators such 

as monocyte chemoattractant peptide-1 (MCP1/CCL2), RANTES, and TNF-α in reaction to 

the presence of Aβ [30]. CCL2 is a potent chemoattractant molecule for monocytes, and thus, 

monocytes may be both initiators and perpetuators of the cycle, suggesting that monocytes 

could be significant contributors to the pro-inflammatory cascade. 

The current study addresses infection of human THP1 monocytes in vitro with the laboratory 

strain of Cpn, AR39, to determine how infection can affect the regulation of gene transcripts 

for innate and adaptive immunity. In this regard, infection may be a stimulus for pro-

inflammatory cytokine expression which may start the cascade that results in initial amyloid 

processing and deposition observed in Alzheimer's disease [1,31,32]. Analysis of this 

cytokine expression will demonstrate how infection of monocytes could set the stage for 

initiating inflammation in this disease. 

Materials and methods 

THP1 human monocytes 

THP1 human monocytes obtained from the American Type Culture Collection (ATCC, 

Manassas, VA, USA), were propagated at a concentration of 1 x 10
6
 cells/ml RPMI 1640 

(ATCC) + 10% FBS (Cellgro Thermo Fisher Scientific, Pittsburgh, PA, USA) growth media 

(GM) in a 37?C incubator with 5% CO 2. 

  



Infection with Chlamydia pneumoniae (Cpn) 

A human respiratory isolate of Cpn, laboratory strain AR39 obtained from the ATCC, was 

used to infect THP1 monocytes in vitro. Prior to inoculation of monocytes, each vial of Cpn 

was thawed and sonicated for 2 minutes. THP1 cells were spun down, washed with Hank’s 

Balanced Salt Solution (HBSS), and resuspended in 1 ml of GM at a concentration of 1 x 10
6
 

cells/ml. To this volume, 400 μl of Cpn at a multiplicity of infection (MOI) of 1 (1 x 10
6
 

infectious units IFU) were added. The cells were allowed to incubate for 1 hour at 37?C with 

5% CO2 in a T-25 flask, after which 3.6 ml of GM was added for a final volume of 5 ml. 

Cells were then incubated for the allotted times (24 to 120 hours). For 96- and 120-hour 

infections, another 5 ml of GM was added at the 48-hour time point. 

To validate and determine percent of infection of our monocytes at each time point, 2 x 10
5
 

cells at 1 x 10
5
 cells per slide were cytospun and analyzed by immunocytochemistry. In brief, 

cytospun cells were fixed using Cytofix/Cytoperm (BD Cytofix/Cytoperm 554722; BD 

Biosciences, San Jose, CA, USA) for 30 minutes, washed 2 x 5 minutes with HBSS, labeled 

with a fluorescein isothiocynanate (FITC)-directly conjugated anti-chlamydial antibody, 

Fitzgerald 61C75 (Fitzgerald Industries International, Acton, MA, USA) for 1 hour at 37?C, 

and counterstained using bisbenzimide (Sigma bisbenzimide B2883, Sigma-Aldrich, St 

Louis, MO, USA) and coverslipped. The slides were imaged on a Nikon E80i microscope 

using the NIS-Elements AR 3.0 software (Nikon Inc., Melville, NY, USA). Five random 

fields per slide per time point for each experiment at 40X magnification were analyzed and 

counted (total infected cells/total cells x 100 = percent infected). Average percent infection 

for 24 to 120 hours was 81, 85, 92, 92, and 90, respectively. 

Infection time for the real time-polymerase chain reaction (RT-PCR) experiments was 48 

hours and the infection times for the ELISA cytokine analyses were 24 to 120 hours. 

Although gene changes were analyzed only at 48 hours post-infection, the time at which an 

acute infection is established, we wanted to obtain specific data for cytokine changes over 

longer time points as the inflammation in AD appears to become more chronic in nature 

following its initiation. In a comparable manner, parallel control uninfected flasks at the same 

cellular concentration received only media for the specified incubation times. 

At the specified times for analysis, both uninfected and infected cells were removed from the 

incubator and transferred to individual 15-ml tubes. To ensure complete cell recovery, 

another 5 ml of fresh GM was added to the 24-, 48- and 72-hour flasks, followed by cell 

scraping to release any remaining cells prior to transfer to the 15-ml tubes. The final volume 

for all time points was 10 ml. The cells were pelleted at 1,000 x g for 5 minutes. The 

supernatants were collected for ELISA analysis into new 15-ml tubes and frozen at −80°C. 

The pellet was resuspended in 5 ml of HBSS and counted. Cells were again pelleted and 

either kept on ice or snap frozen in liquid nitrogen prior to preparation for RT-PCR. 

  



RNA isolation 

Using the RNeasy Mini kit (Qiagen Inc., Valencia, CA, USA), RNA was extracted from cell 

pellets according to manufacturer’s directions. In brief, cells were mixed with RLT buffer, 

pipetted onto a QIAshredder™ spin column and centrifuged for 2 minutes at 15,000 x g to 

lyse and homogenize the cells. Ethanol was mixed with this sample, transferred to an RNeasy 

spin column, centrifuged for 15 seconds at 8,000 x g and the flow-through discarded. RW1 

Buffer (700 μl) was added, centrifuged for 15 seconds at 8,000 x g and flow-through 

discarded. RPE Buffer (500 μl) was added to the RNeasy spin column, centrifuged for 15 

seconds at 8,000 x g, flow-through discarded, another 500 μl of RPE Buffer was added and 

centrifuged for 2 minutes at 8,000 x g. Finally, the RNA was eluted from the spin column in 

RNase-free water (30 μl). 

First strand synthesis 

Using the RT
2
 First Strand Kit (SABiosciences, Qiagen, Valencia, CA, USA), cDNA was 

produced from 1 μg of RNA following the First Strand Kit protocol according to 

manufacturer’s directions. To eliminate any contaminating genomic DNA carryover, a 

Genomic DNA Elimination step preceded the reverse transcription reaction. Following 

reverse transcription, 91 μl of RNase, DNase-free water was added to each 20 μl of cDNA. 

This cDNA was either used immediately for RT-PCR or frozen at −20°C until use. 

Real time-polymerase chain reaction (RT-PCR) 

RT-PCR was used to determine the level of gene transcription using the Human Innate and 

Adaptive Immune Responses RT
2
 Profiler™ PCR Array (PAHS-052) from SABiosciences 

(Qiagen, Valencia, CA, USA). The cDNA samples were spun briefly to remove any 

particulate material. The master mix cocktail was prepared according to the specifications for 

the 96-well plate. 

Twenty-five microliters of the experimental cocktail was added to each well of the 96-well 

RT-PCR array plate. The plate was run on the Applied Biosciences 7000 Sequence Detection 

System (Life Technologies Corporation, Carlsbad, CA, USA) utilizing ABI Prism 7000 SDS 

Software and then analyzed using software on the SABiosciences website [33]. The data are 

normalized to the control housekeeping genes RPL13A, GAPDH and ACTB. The website 

calculates fold change (fold difference) by the 2
-ΔΔ

CT method with the control being the 

uninfected THP1 cells. Statistical analysis of the results was done using Student’s t-test. P-

values below 0.05 were considered to be significant. RT-PCR experiments were performed 

using cDNA from 4 separate experiments comparing 48 hour Cpn-infected THP1 monocytes 

to parallel uninfected monocytes grown for 48 hours. 

Multi-analyte ELISA array 

Using the Multi-Analyte ELISArray Kit protocol version 1.4 from SABiosciences (Qiagen, 

Valencia, CA, USA), a multi-array ELISA was performed using the supernatants collected 

during the harvest of uninfected and Cpn-infected THP1 monocytes according to 

manufacturer’s directions. In brief, the supernatants were thawed and centrifuged for 10 

minutes at 1,000 x g to remove any particulate material. Fifty microliters of each 

experimental sample, in triplicate, was added to the array that included specific cytokine 



capture antibodies: IL-1α IL-1β, IL-2, IL-4, IL-6, IL-8, IL-12, IL-17α, IFN-γ, TNF-α and GM 

CSF (colony stimulating factor) and allowed to incubate at room temperature (RT) for 2 

hours. 

After numerous buffer washes, 100 μl of the diluted biotinylated detection antibodies were 

added to the appropriate wells of the ELISA plate and incubated in the dark for 1 hour at 

room temperature (RT). Following this incubation, the plate was washed and 100 μl of dilute 

Avidin-horseradish peroxidase (HRP) were added into all wells and incubated in the dark for 

30 minutes at RT. After this incubation, development and stop solutions were added followed 

by detection of absorbance changes at 450 and 570 nm on a UV/VIS spectrophotometer 

(Nicolet Evolution 100, Thermo Fisher Scientific, Pittsburgh, PA, USA). 

The raw data obtained from the absorbance readings were normalized to the cell counts of 

each sample. Averages of all triplicates were determined along with standard deviations and 

an analysis of variance (ANOVA) statistical test was performed. Time points of 24, 48 and 

72 hours were tested in triplicate in 5 separate experiments, while the 96- and 120-hour time 

points were tested in triplicate in 4 separate experiments. 

Single-analyte ELISA array 

Using the Single-Analyte ELISArray Kit protocol version 1.4 from SABiosciences (Qiagen, 

Valencia, CA, USA), a single-analyte ELISA was performed for IL-1β, IL-6, and IL-8 

according to manufacturer’s directions using the supernatants collected during the harvest. In 

brief, the supernatants were thawed and centrifuged for 10 minutes at 1,000 x g to remove 

any particulate material. Preparation of the antigen standard dilution was prepared by serial 

dilution. As with the multi-analyte array, the array was prepared using 50 μl of each 

experimental sample in triplicate and allowed to incubate at RT for 2 hours, followed by 

incubation with the detection antibodies. Similar to the previous multi-analyte arrays, Avidin-

HRP was used to determine binding of the detection antibodies to the cytokines of interest. 

After color development as described above, absorbance readings were taken at 450 and 570 

nm and the raw data were normalized. Averages of all triplicates were found along with 

standard deviations and an ANOVA statistical test was performed. As with the multi-analyte 

array, times of 24, 48 and 72 hours were tested in 5 separate experiments and those of 96 and 

120 hours were tested from 4 separate experiments. 

Results 

Real time-polymerase chain reaction 

Gene transcription was analyzed by RT-PCR using an innate and adaptive immunity 

microarray with 84 genes organized into 5 functional categories: inflammatory response, 

septic shock, cytokines, chemokines and their receptors, host defense against bacteria, and 

antibacterial humoral response. When Cpn-infected THP1 human monocytes were compared 

to control uninfected monocytes at 48 hours post-infection, 17 gene transcripts (Table 1) had 

significant increases (P-values ≤ 0.05). 

  



Table 1 Innate and adaptive immunity gene transcripts increased at 48 hours in 

Chlamydia pneumoniae (Cpn)-infected THP1 cells 

 Gene symbol Gene name 

Inflammatory response IL1F5 Interleukin 1 family, member 5 (delta) 

IL1F8 Interleukin 1 family, member 8 (eta) 

IL1RN Interleukin 1 receptor antagonist 

IRAK2 Interleukin 1 receptor associated kinase 2 

NLRC4 NLR family, CARD domain containing 4 

TLR8 Toll-like receptor 8 

TNF Tumor necrosis factor (TNF superfamily, member 2) 

Host defense against bacteria DEFB4 Defensin, beta 4 

DMBT1 Deleted in malignant brain tumors 1 

NFKBIA Nuclear factor of kappa light polypeptide gene enhancer in 

B-cells inhibitor, alpha 

PTAFR Platelet-activating factor receptor 

Antibacterial response COLEC12 Collection sub-family member 12 

CYBB Cytochrome B-245, beta polypeptide 

Cytokines, chemokines, and their 

receptors 

CCL2 Chemokine (C-C motif) ligand 2 

IFNB1 Interferon, beta 1, fibroblast 

IL6 Interleukin 6 (Interferon, beta 2) 

Septic shock SERPINA1 Serpin peptidase inhibitor, clade A  

(alpha-1 antiproteinase, antitrypsin), member 1 

Transcripts analyzed included those associated with the host response to pathogens, including 

inflammatory response genes, antibacterial humoral response genes, cytokines, chemokines 

and their receptors, genes involved in bacterial host defense mechanisms and septic shock. 

Seven gene transcripts from the inflammatory response category (see Table 1 and Figure 1) 

had at least a four-fold increase in expression. Toll-like receptor (TLR)8 transcripts had the 

most dramatic significant fold increase of 33.73, whereas lesser increases were observed for 

TNF (4.26), NLRC4 (4.34), IL1F5 (8.79), IL1F8 (11.29), and the IL-1 receptor genes IL1RN 

(10.83) and IRAK2 (6.66). 

Figure 1 Inflammatory response, cytokines, chemokines and their receptors, and septic 

shock gene transcripts. Transcript increases of THP1 human monocytes at 48 hours post 

Cpn infection. Only significant gene transcripts with a 4-fold or greater increase compared to 

uninfected THP1 cells are included (P-values ≤ 0.05). 

Gene transcripts for 3 cytokines, chemokines and their receptors demonstrated significant > 

4-fold increases (Figure 1). CCL2 transcripts had the most dramatic significant fold increase 

of 1,136.10 within this category. Expression of IFNB1 and IL-6 both had significant increases 

of 11.02 and 6.69, respectively. Under septic shock (Figure 1), only 1 gene (SERPINA1, 

16.50) was found to have a significant increase in expression. 

Transcript changes with regard to the host defense against bacteria revealed four gene 

transcripts to be significantly up-regulated with > four-fold increases (Figure 2). PTAFR had 

the most dramatic significant increase in expression with 22.47 fold change. Under 

antibacterial humoral response (Figure 2), CYBB gene expression had the most significant 

increase of 17.15, while COLEC12 had a significant increase of 5.64. 

  



Figure 2 Host defense against bacteria and antibacterial humoral response gene 

transcripts. Gene transcript increases of THP1 human monocytes at 48 hours post Cpn 

infection. Only significant gene transcripts with a 4-fold or greater increase compared to 

uninfected THP1 cells are included; data are plotted on a log scale, (P-values ≤ 0.05). 

In summary, of all the 84 genes in the Innate and Adaptive Immunity pathway microarray, 

expression of CCL2 showed the most dramatic significant increase. Other cytokine gene 

transcripts of note such as IL-6 and TNF showed smaller, but significant fold increases in 

expression. 

ELISA 

ELISA techniques were performed using the supernatants of uninfected and Cpn-infected 

THP1 human monocytes. A multi-analyte ELISArray provided a general overview for 

secretion per 1 x 10
6
 cells of 12 cytokines. This ELISArray showed that the cytokines IL-1β, 

IL-6, and IL-8 have increased secretion when the cells are Cpn-infected, thus single-analyte 

ELISArrays were performed to further evaluate these 3 cytokines. 

IL-1β 

A single-analyte ELISArray for IL-1β (Figure 3) demonstrated a significant increase (P-value 

≤ 0.05) in cytokine secretion in the Cpn-infected THP1 human monocytes compared to 

uninfected THP1 cells for all the time points. In Cpn-infected THP-1 cells, a significant 

decrease in levels of secreted IL-1β at the 96-hour and 120-hour time points relative to the 

24-hour time point was observed. Decreased secretion of IL-1β also was significant for the 

Cpn-infected THP1 cells at the 72-, 96- and 120-hour time points compared to the levels at 

48 hours. At 120 hours, there was significantly lower secretion of IL-1β compared to 72 

hours. 

Figure 3 Average secretion of IL-1β. Average secretion of IL-1β by 10
6
 cells at the 24-, 48- 

and 72-hour time points repeated in 5 individual experiments, and the 96 hours and 120 hours 

repeated in 4 individual experiments. The (*) symbol indicates significance (P-value ≤ 0.05) 

within time points (uninfected to infected), while the (#) symbol indicates significance (P-

value ≤ 0.05) between time points (infected to infected). 

IL-6 

Analysis of the IL-6 single-analyte ELISArray plate revealed that more IL-6 is secreted from 

Cpn-infected THP1 cells than uninfected THP1 cells at all times (Figure 4); this difference 

was significant. Moreover, there was an overall significant decrease in IL-6 secretion from 

Cpn-infected THP1 cells over the entire time course of infection. 

Figure 4 Average secretion of IL-6. Average secretion of IL-6 by 10
6
 cells at the 24-, 48- 

and 72-hour time points repeated in 5 individual experiments and the 96 hours and 120 hours 

repeated in 4 individual experiments. The (*) symbol indicates significance (P-value ≤ 0.05) 

within time points (uninfected to infected), while the (#) symbol indicates significance (P-

value ≤ 0.05) between time points (infected to infected). 



IL-8 

Results of the IL-8 single-analyte ELISArray plate revealed an initial significant increase (P-

value ≤ 0.05) in the 24-, 48-, 72-, 96- and 120-hour time points between Cpn-infected cells 

compared to uninfected THP1 (Figure 5). Similar to what was observed with IL-1β, at 96 and 

120 hours, there was a marked decrease in secretion of IL-8 from the Cpn-infected THP1 

cells compared to the Cpn-infected cells at earlier time points. Furthermore, the decreases 

seen at 96 and 120 hours as compared to 24 and 48 hours were significant (P-value ≤ 0.05), 

as was the decrease seen from the 48-hour time to the 72-hour time point, and the decrease 

seen from 72 hours to the 96- and 120-hour time points. 

Figure 5 Average secretion of IL-8. Average secretion of IL-8 by 10
6
 cells at the 24-, 48- 

and 72-hour time points repeated in 5 individual experiments and the 96 hours and 120 hours 

repeated in 4 individual experiments. The (*) symbol indicates significance (P-value ≤ 0.05) 

within time points (uninfected to infected), while the (#) symbol indicates significance (P-

value ≤ 0.05) between time points (infected to infected). 

Discussion 

Chlamydial species have been associated with a spectrum of diseases of clinical significance 

shown to be a result of immunopathogenesis. Although the immune response is central for 

disease manifestations, there is still much to learn about the mechanisms that initiate and 

sustain the inflammatory response to Cpn infection [34,35]. Secretion of pro-inflammatory 

cytokines occurs when host cells, including monocytes and microglia, are infected with Cpn 

[35,36]. The current study evaluates changes in THP1 monocyte gene expression at 48 hours 

post-infection (acute) and in specific cytokine production/secretion over a 5-day (chronic) 

course of infection. Our data indicate that infection of monocytes with Cpn results in 

significant changes in host gene transcription and secretion of pro-inflammatory cytokines. 

Furthermore, cytokine secretion (IL-1β, IL-6, IL-8) appears to be maintained for an extended 

period of infection, suggesting that a more chronic or persistent infection can maintain the 

pro-inflammatory condition. Work by others has suggested that similar cytokines were 

secreted after Cpn infection of THP1 monocytes, although shorter periods of infection with a 

higher multiplicity of infection (ie, MOI = 5) were evaluated [37]. Thus, our data suggest that 

Cpn-infected monocytes at a modest level of infection (ie, MOI = 1) can promote an acute 

and sustained pro-inflammatory state. 

Previous work has shown that Cpn can infect multiple cell types including endothelial cells, 

epithelial cells, smooth muscle cells, and peripheral blood mononuclear cells [1,38,39]. Cpn-

infected macrophages have been found in sites such as the peritoneum and spleen following 

respiratory inoculation of New Zealand white rabbits [40]. These findings suggest that the 

migratory capabilities of peripheral blood monocytes may help to facilitate systemic infection 

[41]. Moreover, infection of human monocytes with Cpn appears to enhance their migration 

across an in vitro model of the blood-brain barrier (BBB) comprised of a human brain 

microvascular endothelial cell layer [4]. Previous studies have shown that infection in the 

lung is the main stimulus for monocytic and lymphocytic infiltration leading to potential 

dissemination of infection into the circulation [40,42]. Blood vessels and monocytes in AD 

brain tissue have been shown to be infected with Cpn, thus we postulate that Cpn entering the 

circulation upon infection of monocytes could result in access to the CNS through the BBB 

[4,5,43]. With regards to LOAD, Cpn has been studied as a possible etiologic agent [1,2] and 



supporting evidence for Cpn in the etiopathogenesis of AD was provided by a study by Little 

et al. 2004 which revealed amyloid deposits resembling plaques found in AD brains in the 

brains of non-transgenic BALB/c mice following intranasal infection with Cpn [42]. 

As discussed previously, numerous cytokines have been shown to be involved in 

neuroinflammation in AD, and previous work by others has implicated high levels of IL-1 

directly in neuronal degeneration [44,45]. IL-1β is a member of the interleukin 1 cytokine 

family and is produced by endothelial cells, some epithelial cells, and also by activated 

macrophages as a pro-protein, which is proteolytically processed to its active form by IL-1β 

convertase. This cytokine is an important mediator of the inflammatory response, and is 

involved in a variety of cellular activities, including cell proliferation, differentiation, and 

apoptosis [46]. Also, IL-1β activates nitric oxide synthase (NOS), which is implicated in 

neuronal damage, ultimately leading to cell death in hippocampal neurons [47]. Furthermore, 

IL-1β has been shown to play a part in the promotion of neuronal synthesis of β amyloid 

precursor protein (APP) and may enhance the transition from diffuse to fibrillar neuritic 

plaques [48]. Our data suggest that infection may play an early role in the etiology of AD, 

even before amyloid is produced. This contrasts with others who have focused previously on 

amyloid as being the principal stimulus for the activation of this cytokine [28]. 

The key debate, therefore, lies not in what this cytokine can activate and/or damage in the 

brain, but rather what initiates its production. Levels of IL-1β have been shown to be higher 

in the cerebrospinal fluid (CSF) of AD patients than in patients with vascular dementia or 

control patients [49,50]. Our data show that IL-1β is significantly up-regulated at all times 

through 120 hours post-infection of monocytes and thus is consistent with the cytokine 

profile in AD, suggesting that infection can be an initiating stimulus for this cytokine. 

Evidence suggests that IL-1β and IL-6 up-regulate the cdk5/p35 complex [51], a protein 

kinase involved in tau hyperphosphorylation, a major pathological process observed in AD. 

IL-6 also may be involved in neuronal degradation. IL-6 is an inflammatory cytokine that is 

secreted by leukocytes and other various cell types during infection [52]. As a pro-

inflammatory cytokine, IL-6 is secreted by T-cells, endothelial cells, and macrophages, which 

stimulate an immune response to tissue damage leading to inflammation in the surrounding 

area. IL-6 is an important mediator of fever and of the acute phase response. IL-6 can be 

secreted by macrophages in response to specific microbial molecules, referred to as pathogen 

associated molecular patterns (PAMPs), and can induce intracellular signaling cascades that 

can further give rise to inflammatory cytokine production [53]. Infection with Cpn, as we 

have determined in this study, influences significant secretion of this cytokine from infected 

monocytes. 

Not surprisingly, in our study, several gene transcripts were found to have significant fold 

increases in the group consisting of the host defense against bacteria. These included: 

DEFB4, DMBT1, PTAFR, and NFKBIA. DEFB4 is the transcript that codes for a defensin 

protein with antimicrobial activity that has been shown to act as a cytokine linking innate and 

adaptive immune responses [54]. Along these lines, Aβ amyloid 1-42 has been demonstrated 

to have antibacterial properties and has been speculated to act as an anionic defensin [55]. 

However, whether Aβ 1-42 production and processing in LOAD results, in part, as an 

antibacterial response is still debatable. Therefore, defensin transcript increases are intriguing 

and warrant further study. 



Up-regulation of DMBT1 takes place in response to activation of the intracellular pattern 

recognition molecule NOD2 and consecutive NFkB-activation; this hinders bacterial invasion 

and lipopolysaccharide (LPS)-induced TLR4 activation [56]. PTAFR is the gene for the 

platelet activating factor receptor, which plays a role in the inflammatory response [57]. 

NFKBIA could lead to inhibition of the NFκB protein complex by trapping this transcription 

factor in the cytoplasm, effectively leading to its inactivation. However, as NFκB activation 

is upstream of gene transcription for IL-1β mentioned above, its complete inactivation by 

NFKBIA up-regulation appears unlikely in our infected cells. 

Another interesting entity found to be activated in infected cells is the inflammasome 

complex. This is a cytoplasmic multi-protein complex that activates caspase-1, leading to the 

processing and secretion of pro-inflammatory cytokines. These complexes are associated 

with TLRs to mediate the response to extracellular and intracellular pathogens [58]. NLRC4 

(NLR family, CARD domain containing 4) is involved in the regulation of caspase-1, which 

upon activation results in processing and secretion of IL-1β. In this study, the NLRC4 gene 

transcript showed significant fold increases. Previously, others have shown that NLRC4 is 

required for the activation of caspase-1 and IL-1β secretion in response to bacterial flagellin 

[59]. Interestingly, inflammasome activation also may arise as an outcome of amyloid 

deposition and aggregation [60]. By orchestrating the activation of precursors of pro-

inflammatory caspases, which in turn activate IL-1β, IL-18 and IL-33 secretion, the 

inflammasome promotes a potent inflammatory response that influences the release of toxins 

from glial and endothelial cells [61]. Although the NLRC4 inflammasome has been shown to 

be activated by flagellated Gram-negative bacteria, recent studies have shown evidence for a 

flagellin-independent pathway that activates the NLRC4 inflammasome after infection with 

certain aflagellated bacteria [62]. As Cpn is an intracellular bacterium and aflagellated, our 

data would support that of a flagellin-independent pathway. Another important response to 

infection is one in which acute phase reactants are produced and secreted into blood. Of 

these, serpins are included and constitute the largest superfamily of protease inhibitors in 

humans [63,64]. In the microarray used in this study, SerpinA1 (Serpin peptidase inhibitor 

clade A member 1) transcript was shown to increase significantly following infection. This 

serpin is also known as α1-antitrypsin (AAT), a highly effective inhibitor of neutrophil 

elastase and one that plays an important role in coagulation, inflammation, and turnover of 

extracellular matrix. SerpinA1 also inhibits the activity of plasmin, thrombin, trypsin, 

chymotrypsin, and plasminogen activator. 

MCP1/CCL2 gene transcript in the family of cytokines and chemokines was significantly 

increased following Cpn infection. This transcript was the most dramatically altered 

following infection and has been recognized as a very important contributor to the 

inflammatory response observed in AD [65]. The MCP1/CCL2 protein has been shown to be 

increased in both CSF and plasma from individuals with mild cognitive impairment (MCI) 

and AD [66]. While the exact effects of MCP1/CCL2 in the MCI/AD brain are not fully 

understood, some experiments have shown that CCL2 may alter the properties of the BBB to 

allow for increased monocyte migration into brain tissues [67]. Furthermore, this chemokine 

may affect the production and clearance of Aβ amyloid from the brain [68]. Hence, although 

we did not measure the protein directly, the dramatic increase in this transcript would suggest 

that infection induction leading to such a large change is worthy of further evaluation. 



Conclusion 

Utilizing RT-PCR and ELISA techniques, our data demonstrate that Cpn infection of THP1 

human monocytes promotes an innate immune response, as pro-inflammatory gene 

transcripts and proteins showed significant fold increases. Furthermore, since research 

suggests that a chronic inflammatory state is present within the AD brain [10] and prior 

evidence has shown monocytes infected with Cpn in AD brains [1,3], we suggest that the 

pro- and chronic inflammatory states involved in AD pathogenesis may arise in part by Cpn 

infection of monocytes. These data are consistent with that of previous work suggesting that 

amyloid could be both a response to and an initiator of inflammation in the AD brain [22]. In 

effect, infection in the AD brain could initiate the inflammatory cascade that results in CNS 

damage reflected by amyloid production/processing and deposition. Inflammation generated 

by amyloid accumulation would then 'secondarily' result in extended damage via an 

inflammatory response generating ever increasing AD neuropathology. Further research to 

define the early events occurring in AD pathogenesis may help to clarify how infection with 

Cpn, and possibly other pathogens, may be an initiator of inflammation in sporadic LOAD. 
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