
Technological University Dublin Technological University Dublin 

ARROW@TU Dublin ARROW@TU Dublin 

Articles School of Chemical and Pharmaceutical 
Sciences 

2006 

A Chloride Selective Calix[4]arene Optical Sensor Combining Urea A Chloride Selective Calix[4]arene Optical Sensor Combining Urea 

Functionality With Pyrene Excimer Transduction Functionality With Pyrene Excimer Transduction 

Benjamin Schazmann 
Technological University Dublin, benjamin.schazmann@tudublin.ie 

Dermot Diamond 
Dublin City University, dermot.diamond@dcu.ie 

Follow this and additional works at: https://arrow.tudublin.ie/scschcpsart 

 Part of the Analytical Chemistry Commons, Materials Chemistry Commons, Organic Chemistry 

Commons, and the Physical Chemistry Commons 

Recommended Citation Recommended Citation 
Schazmann, B., Alhashimy, N. & Diamond, D. (2006) Journal of the American Chemical Society, 2006, Jul 
5;128(26):8607-14. DOI: 10.1021/ja061917m 

This Article is brought to you for free and open access by 
the School of Chemical and Pharmaceutical Sciences at 
ARROW@TU Dublin. It has been accepted for inclusion in 
Articles by an authorized administrator of ARROW@TU 
Dublin. For more information, please contact 
arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie. 

This work is licensed under a Creative Commons 
Attribution-Noncommercial-Share Alike 4.0 License 
Funder: Enterprise Ireland, grant code SC/2002/161, 
Science Foundation Ireland for support under the 
Adaptive Information Cluster award (SFI03/IN3/1361) 
and the Environmental Protection Agency, Ireland, 
funding code EPA2004-RS-AIC-M4. 

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcpsart
https://arrow.tudublin.ie/scschcps
https://arrow.tudublin.ie/scschcps
https://arrow.tudublin.ie/scschcpsart?utm_source=arrow.tudublin.ie%2Fscschcpsart%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/132?utm_source=arrow.tudublin.ie%2Fscschcpsart%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/135?utm_source=arrow.tudublin.ie%2Fscschcpsart%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/138?utm_source=arrow.tudublin.ie%2Fscschcpsart%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/138?utm_source=arrow.tudublin.ie%2Fscschcpsart%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/139?utm_source=arrow.tudublin.ie%2Fscschcpsart%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/


 

1

A Chloride Selective Calix[4]arene Optical Sensor 

Combining Urea Functionality With Pyrene Excimer 

Transduction 

Benjamin Schazmann*, Nameer Alhashimy, and Dermot Diamond
* 

Adaptive Sensors Group, National Centre for Sensor Research, School of Chemical Sciences, Dublin 

City University, Dublin 9, Ireland 

Dermot.Diamond@dcu.ie and Benjamin.Schazmann2@mail.dcu.ie 

ABSTRACT A neutral 2-site chloride selective compound has been developed (3), based on a 1,3-

alternate tetrasubstituted calix[4]arene providing a preorganised supramolecular scaffold.  The resultant 

supramolecular cavity is amongst the first to combine urea functional groups bridged with single 

methylene spacers to pyrene moieties.  It combines a naturally and synthetically proven H-bonding 

system with the elegant ratiometric fluorescent signalling properties of an intramolecular pyrene excimer 

system, triggered by conformational changes upon anion coordination.  The excimer emission of 3 is 

quenched, with a simultaneous rise in the monomer emission solely by the chloride anion amongst a 

wide variety of anions tested.  3 has an association constant of 2.4×104M-1 with chloride.  The 

suitability and advantages of ratiometric optical sensor compounds like 3 for use in practical sensor 

devices is discussed.  3 has an LOD of 8×10
-6

M with chloride in acetonitrile-chloroform (95:5 v/v).  A 

dynamic fluorescence study revealed a response time of <3 seconds.  A recently developed and simple 

HPLC based purification method complimented conventional organic work up methods to yield pure 

product.   
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KEYWORDS calixarene, fluorescence sensing, ratiometric, molecular recognition, chloride, anion 

sensor. 

INTRODUCTION Compound 3 is part of a large and mature family of macrocyclic compounds called 

the calixarenes
1-5

.  These supramolecular systems contain a central annulus which is largely aromatic in 

nature, and are typically substituted on the upper or lower rim of the annulus, resulting in effective host 

compounds for a wide variety of guests
4,6-9

.  Calixarenes remain popular building blocks in host-guest 

chemistry due to the aesthetic and practical preorganised nature of the host cavity for target compounds.  

Host preorganisation is critical for successful host-guest chemistry, as it can provide a ‘lock and key’ 

basis for the sterric and electronic complimentarity between a host and guest manifested by 

thermodynamically favourable host-guest interactions
10

.  The majority of calixarene hosts reported in the 

literature to date are cation hosts.  Our own group have synthesized calixarene based hosts developing 

successful hosts for cations such as sodium11, calcium12 and lead13.  There are now robust and selective 

commercially available cation sensors based on this chemistry. 

Anion recognition is a growing field of research and there are good introductory texts and reviews 

available on the subject
14-21

.  Adding hydrogen bond donor groups to organic hosts has been a key tool 

in providing recognition for specific anion geometries
14,19

.  The urea and thiourea functional groups 

provide such effective and directional H-bonds for anion recognition.  There are many examples of hosts 

that incorporate one or more urea group for anion binding, offering diverse binding geometries.  

Examples include open chain chelators or acyclic tweezers, tripodal and tetrapodal hosts.  The structural 

design criteria for hosts in light of these geometries has been examined recently
19

.  The field of 

supramolecular chemistry contains examples of larger cyclic structures containing cavities adorned with 

urea functionality such as cyclophanes
22,23

 and calixarenes
24-35

. 

For urea based hosts, a major specific factor when considering anion-host interaction is the 

competition from the solvation of anion and host initially present.  Another competing factor is the 

phenomenon of inter and intramolecular H-bonding between urea groups.  These effects have been 

studied for calixarenes36-38.  These bonds can be in direct competition with the detection of anions.  For 
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example Reinhoudt reported a tetrasubstituted urea calix[4]arene showing lower association constants 

and poorer anion selectivity than an equivalent disubstituted calix[4]arene, despite the availability of 8 

and 4 hydrogen bonds respectively33.  What may initially be considered a hindrance or a competing 

factor to the functioning of an anion sensor can reward the chemist by discriminating against some 

anions, thus creating interesting selectivity patterns. 

The process of anion and cation recognition by calixarenes was typically monitored by NMR titrations 

or Ion Selective Electrode (ISE) studies.   NMR spectroscopy typically provides important fundamental 

information about ion binding selectivity, stoichiometry and which molecular sites are involved in 

bonding, which is critical in understanding the host-guest interplay.  In ISEs, the selectivity information 

generally mirrors that of NMR, although differences can occur, as NMR experiments are usually carried 

out in a particular solvent, whereas ISEs involve partition between a sample (aqueous) phase and the 

sensor membrane (PVC-organic) phase.  

The placing of molecular components, which absorb and/or emit electromagnetic radiation 

(chromophores) in the proximity of the guest recognition site to yield an optical sensing compound, is an 

interesting strategy for host design, opening the way for alternative means of determining selectivity of a 

host.  The binding of a guest causes an electronic or conformational change, which is signaled to the 

analyst optically.   

More specifically, sensors involving fluorescence changes can draw on several advantages.  This area 

has received much attention in the literature
39-47

.  Such sensors can be simple in design with an 

excitation source and emission recorder as core features.  They are mechanically relatively simple, with 

the advantages of not requiring reference elements and not requiring filling solutions as ISEs often do
40

.  

In analytical terms they can show very high sensitivity of detection often below micromolar levels down 

to a single molecule
47,48

.  Response times are typically extremely fast, they can be on-off switchable and 

where visible emission occurs the analyst has direct communication with the molecule by the naked eye. 

The combination of molecular platforms with (thio)urea functionality crowned with fluorescent signal 

transduction provides the basis for powerful optical sensors for anions and has received much interest 
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amongst researchers recently
39,49-56

.  Fluorescent moieties available to the scientist are typically 

aromatics such as substituted benzenes, anthracenes, naphthalenes and pyrenes.  Pyrenes are a 

particularly elegant basis for ratiometric based optical sensors, where the ratio of two emission 

wavelengths comprise the analytical signal57,58.  To date the pyrene Excimer/monomer system has been 

exploited mainly for cation sensing59-70 and increasingly for anion sensing71-74.  To the best of our 

knowledge there are few examples where pyrene and (thio)urea systems have been proximally combined 

in anion host compounds and none based on a calixarene platform
75,76

.   

RESULTS AND DISCUSSION Typically the synthesis of a urea based target compound, including 

calixarenes, is advanced to a stage where there are one or more amine appendages present.  The final 

stage is the addition of an appropriate isocyanate and under mild conditions (e.g. room temperature, 3 

hours) the (thio)urea forms in good yield.  The large number of isocyanates commercially available, 

mild reaction conditions and useful target properties make (thio)urea based hosts popular for anion 

detection.   

A typical synthesis of 3 would normally have been performed starting from a tetranitrile calix[4]arene 

precursor via reduction to tetraamine and subsequent reaction with an appropriate isocyanate in the final 

step.  As the necessary isocyanate was not readily available, the synthetic route depicted in Scheme 1 

was chosen.   
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Scheme 1.  Synthetic routes to precursors 1 and 2 and calix[4]arene 3. 
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The pyrenyl urea appendages 1 and 2 were synthesized in one pot synthesis by the reaction of 

deprotonated 1-pyrenemethylamine hydrochloride with 3-chloropropyl and 2-bromoethyl isocyanates 

respectively.  The obvious advantage is that precursors 1 and 2 represent 2 in 1 fluorophore-ionophore 

packages which can be fitted to other molecular scaffolds or precursors, besides calixarenes, yielding 

useful host compounds, possibly in a single reaction step.  Interestingly, 1 did not react with 

calix[4]arene under the same conditions as the reaction of 2.  Presumably as bromide is a better leaving 

group in substitution reactions, 2 is expected to be the more labile reagent.  2 was reacted with 

calix[4]arene by base induced SN2 substitution reaction to yield 3 in a further step.  An initial qualitative 

screening of the crude mixture from this reaction by TLC, revealed a blue/green spot when the plate was 

irradiated with a long λ (>300nm) UV light.  This spot was not present in the TLC of 2.  Furthermore, 

the appearance of an excimer emission at 452nm (λmax) was also seen only in the crude mixture of 3 by 

fluorescence screening.  This was the first evidence that a compound with intramolecular pyrene 

interaction was present.  Following initial workup of the reaction mix, a crude mixture containing 37% 3 

(of total peak areas) was present as shown by HPLC analysis.   
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The crude workup products from the synthesis of 1, 2 and 3 showed very poor solubility in most 

common solvents, marginally better solubility in MeOH and ACN and good solubility in DMSO or 

DMF.  The preference for highly polar solvents is probably dictated by the polar urea groups and salts 

present.  This affected the ease of purification of 2 and 3 in particular as chromatographic methods had 

to be used to achieve purity >95%.  For 3, an efficient semi-preparative HPLC method proved essential.  

This instrumental approach, previously developed in our group for supramolecule isolation, is of 

particular benefit when dealing with complex mixtures and low yielding reactions
77

.  The method used 

was a fast efficient means of purifying mg quantities of a product using a scaled up analytical HPLC 

method based on widely available analytical instrumentation.  A single pure peak remained as verified 

by HPLC, revealing an overall product purity of 98% (Figure S1).   

From the 
1
H NMR spectrum of 3, there is a single peak for the methylene groups of the calix[4]arene 

annulus.  This is indicative of a 1,3-alternate structure as depicted in Scheme 1
1
.  The attachment of 4 

sterrically bulky appendages like 2 to a calix[4]arene platform may result in a deviation from the more 

common cone conformation to a less hindered 1,3-alternate configuration.  This deviation from the cone 

conformations is particularly feasible as the calix[4]arene benzene groups are free to rotate through the 

central aromatic cavity, given the absence of the commonly present upper rim tertiary butyl groups.  The 

two urea protons of start material 2 appeared deshielded from 6.3 and 6.8 ppm into the aromatic region 

for 3.  This signals a large change in the chemical environment of the urea protons in 3.  This 

deshielding of urea protons may be due to proximal pyrene moieties and increased inter or 

intramolecular H-bonding of the urea groups of 3.   

A 
1
H NMR temperature degradation study of 1 and 2 revealed that degradation generally occurred at 

temperatures of 80oC and above.  Increased number of peaks and an increased integration numbers for 

aromatic protons suggested cleavage of the bulky pyrene moiety (Figure S2).  The consequences of these 

findings were that a maximum temperature of only 70
o
C for the subsequent synthesis of 3 could be used.  

This coupled with the solubility and purification issues discussed above led to a final yield of only 2%.   
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The excitation spectrum of 1, 2 and 3 revealed a λmax of 340nm as an ideal excitation wavelength.  

Figure 1 shows the emission spectrum of 2 and 3 in acetonitrile-chloroform (95:5 v/v).  2 reveals two 

monomer emission peaks at 376nm and 398nm (λmax).  There are no significant emission features 

>430nm, indicating the absence of excimer formation.  3 shows the monomer emissions as well as a 

much larger broad emission band at 452nm (λmax), characteristic of an intramolecular pyrene excimer 

emission. 

  

Figure 1.  Emission spectra of 2 and 3 (1×10
-6

M) in acetonitrile-chloroform (95:5 v/v) showing 

monomer maxima at 376nm and 398nm.  Only 3 shows an additional large band at 452nm due to 

excimer formation.  (The excitation wavelength was 340nm.) 

Only the pure fraction of 3, unlike the fluorescence spectra of 1, 2 and all the other fractions collected 

during the purification of 3 by semi-preparative HPLC, revealed the characteristically broad pyrene 

excimer emission. 

For 3, the ratio of excimer (452nm) to monomer (398nm) emission remained unchanged at 4.4 in the 

concentration range 1×10
-7 

to 1×10
-5

M 3.  This further confirmed the presence of pyrene units 

interacting by an intramolecular mechanism, not an intermolecular one.   

The ditopic chromoionophore 3 is built on a calix[4]arene platform, lending preorganisation to the 

overall host.  Four urea groups providing eight possible H-bonds for anion binding are in close 

proximity to pyrene moieties, whose orientation relative to each other is thought to change upon guest 
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inclusion. Such a binding event is thus monitored by ratiometric changes in the emission spectrum 

(Excimer:Monomer ratio) of 3.   

The changes in the emission spectrum of 3 were examined when screened with eleven common 

anions.  These spanned a comprehensive range of sizes and shapes.  100 equivalents of the tertiary butyl 

ammonium salt of each anion was added to 1×10
-6

M solutions of 3 in acetonitrile-chloroform (95:5 

v/v).  The change in excimer and monomer emission was monitored and the results tabulated in Table 1.  

Table 1.  Fluorescence changes (I-I0) for 3 upon addition of 100 equivalents of specified anion
a
.                                               

     

    Fluorescence change (I-I0) 

λem (nm) Cl
-
 F

-
 Br

-
 I

-
 NO3

-
 Cl04

- 
AcO

-
 SCN

- 
CN

-
 HSO4

-
 H2PO4

--
 H2O

b 

398 +270 -7 0 -6 -6 -1 +2 -8 +2 0 +6 -36 

452 -591 +2 +5 -1 -4 +6 -4 0 -8 -5 -3 +36 

a
Conditions:  3, 1.6×10

-6
M in acetonitrile-chloroform (95:5 v/v), excitation at 340nm.  Io: fluorescence 

emission intensity of free 3.  I: fluorescence emission intensity of 3 with 100 equivalents of specified 

anion in the form of tertiary butyl ammonium salts.  
b
1000 equivalents added. 

Remarkably, only chloride caused a dramatic change in the emission spectrum of 3.  There is a sharp 

decline in excimer emission with a corresponding increase in monomer emission.  These observations 

suggest that the chloride anion appears to selectively coordinate with the urea protons in the cavity of 3 

so as to ‘unstack’ or lever apart, the facing π-π stacked pyrenes.  This conformational change is depicted 

in Scheme 2
i
.  The ‘unstacking’ of the pyrene moieties is justified by the strong reduction of the excimer 

emission spectrum upon complexation of chloride. 
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Scheme 2.  The binding of chloride ions by 3.  Quenching of Excimer emission (452nm) caused by a 

perturbation of the pyrene π-π interaction by the conformational ‘unstacking’ of pyrene moieties. 

 

The excimer emission of 452nm (λmax) signifies a considerable blue shift compared to other 

intramolecular pyrene excimer systems, which typically show a λmax of 480nm
57

.  The comparison of the 

pyrene excimer emission of sandwich-like systems (full overlap) with partially overlapping systems is 

normally explained in this way
78,79

.  Sandwich-like systems are described as dynamic excimers, in that 

pyrene moieties are free to fully overlap.  Partially overlapping pyrenes are described as static because 

some force is inducing a partial overlap.  In the case of free 3, there is a strong likelihood of H-bonding 

between urea groups in addition to sterric factors, thereby offering a plausible explanation for the 

observed partially overlapped static excimer.   

To further support the mode of binding proposed, selected tetrabutylammonium anions were added in 

excess to 3 in deuterated acetone (Figure S3).  Only the chloride salt caused a downfield shift of urea 

protons, indicative of an H-bonding interaction.  Upon addition of 300 equivalents of Cl
-
, the two triplet 

signals for the urea protons appear shifted downfield, clear of the main aromatic region at 8.69ppm and 

8.71ppm.  This shows clearly that chloride ions form an inclusion complex within the cavities of 3 

involving urea protons.  No such discernible change was observed for the smaller fluoride and the larger 
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bromide anions, confirming chloride selectivity.  These results mirror the findings of the fluorescence 

study, where a response appeared exclusive to Cl
-
. 

Furthermore, the aromatic protons of 3 appear considerably deconvoluted by the addition of Cl-, 

suggesting a more symmetrical complex structure compared to the free Host.  The separation of 

previously π-stacked pyrene moieties appears to reduce the influence of the π-electron clouds from the 

planes of the pyrene moieties on 
1
H NMR peak splitting and chemical shifts.  It appears that a specific 

cavity effect controls the anion binding characteristics of 3.  A ‘lock and key’ or ‘best fit’ model appears 

to yield an energetically favorable host-guest interaction for chloride in this case.  This is in contrast to a 

scenario where an anion host offers little preorganisation, where selectivity is typically dictated by anion 

basicity
15

. 

When 0-500 equivalents of chloride are added to 3, the change in emission can be followed and is 

shown in Figure 2.   

 

Figure 2.  Changes of the fluorescence spectrum of a 1 ×  10
-6

M molar solution of 3 in acetonitrile-

chloroform (95:5 v/v) upon addition of the specified number of equivalents of chloride ([Cl
-
]/[3]).  R0: 

Ratio of excimer (λem=452nm) to monomer (λem=398nm) of free 3.  R: Ratio of excimer to monomer 

with varying [Cl
-
].  (The excitation wavelength was 340nm.) 

At 412nm there is an isoemissive point which indicates that only one type of complexing mechanism 

(equivalent in both cavities of 3) is at play perturbing the excimer emission of 372.  From the change in 
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excimer to monomer ratios observed with chloride added, an association constant of 2.4 ×  10
4
M

-1
 was 

obtained
ii
.   

The association constants of well known crown and cryptand alkali metal hosts are typically about 

106M-1 and 1010M-1 respectively10.  It appears that selective anion hosts seldom reach association 

constants of this magnitude and are in fact lower by several orders of magnitude, due to factors 

competing with anion complexation as discussed in the introduction.  Additional factors competing with 

anion coordination specific to 3 may include the cost in energy to separate the overlapping pyrene π-π 

bonding systems.  The sterrically bulky nature of pyrene moieties also aids in the discrimination between 

anions.  In addition, as each equivalent di-urea cavity of 3 binds a chloride anion, the resultant repulsion 

between these two ions of same charge within 3 may further lower the overall association constant.  

However, in general, the net effect of the competing factors responsible for low association constants 

may also be contributing factors for good selectivity.  The selectivity of 3 towards chloride can also be 

explained classically by a ‘best fit’ or ‘lock and key’ model.  It is most likely several cumulative factors 

that contribute to what is ultimately the most important parameter of a sensor design:  Selectivity. 

Few works discussing the combination of urea anion binding sites with pyrenes were found in the 

literature.  Sasaki synthesized a tripodal anion host with pyrenes directly adjacent to 3 thiourea groups
75

.  

In terms of selectivity, Sasaki did not observe a unique selectivity but some deviation from a typical 

selectivity order, following anion basicity.  Werner describes nucleotide anion hosts which have 

relatively long propyl spacers between pyrene moieties and ureas
76

.  The separation of π-stacked pyrenes 

and simultaneous anion binding could not be observed.   

A developer of practical fluorescent probes or sensors can choose from three broad fluorescence signal 

types
80

.  Intensity based probes rely on the change of intensity of single wavelengths.  The biggest 

disadvantage here is that for accurate sensing, the exact probe host concentration must be known.  

Typically factors like host degradation or leaching into the sample result in ever changing host 

concentration.  Other factors like sample turbidity, intensity of incident light, scattering, inner-filter 

effects and photo bleaching strongly affect the signal reliability.  These disadvantages are largely absent 
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for the other two categories, life-time based and wavelength-ratiometric fluorescent sensing methods.  3 

belongs to the latter class. 

It is apparent from the literature that there are quite a number of fully characterized fluorescent sensor 

compounds available with elegant spectroscopic properties.  The operating wavelengths of many of 

these compounds, including 3 (excitation 340nm), fall within the UV region of the spectrum.  A major 

challenge for developing fluorescent sensor devices from these compounds are optically compatible 

sensor materials
40,81-83

.  Many currently available materials can contribute to interferences and auto 

fluorescence of a sensor, particularly in the UV region (<400nm).  The search is on then to continue to 

lower the UV transparency cutoff point of components.  One such component, central to any fluorescent 

optical sensor is an excitation source and an emission detector.  Laser diodes and Light Emitting Diodes 

(LEDs) lead the field when it comes to developing miniaturized, cheap and effective sensor devices
84

.  

As material scientists work to increase the UV-transparency of device components, organic chemists 

strive to raise the ‘useful’ wavelengths of a sensor compound towards the visible region.  In future it is 

hoped that these efforts will converge.  Both monomer and excimer emission intensities of 3 at a 

concentration of 1×10-6M were found to be about 75% and 10% at excitation wavelengths of 350nm 

and 360nm respectively, compared to an excitation wavelength of 340nm.  Despite decreased intensities, 

analytically useful signals were still obtained.  With an effective wavelength range of 360-460nm, a host 

like 3 may soon have analytical potential.  Indeed, there are LEDs available commercially at the time of 

writing that operate at predefined wavelengths from the visible down into the UV range as low as 

350nm and lower all the time
iii

.    

A system where a bulk 1:1 Host to Guest concentration results in a plateau of the measured signal 

upon further addition of guest is best described as a switch.  Conversely, 3 displayed a range of response 

of about 5 ×  10
-5

M to 1.5 ×  10
-4

M chloride (50-150 equivalents of chloride added to 1 ×  10
-6

M of 3) as 

seen in Figure 2.  The larger the response range of a sensor, the easier it is to tune a device to yield both 

qualitative and quantitative data on a guest and the more it lends itself to continuous sensing40.   
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Chloride (usually from sodium chloride) is essential for human health with typical levels at 0.1M in 

blood serum.  In soil typical levels are 100ppm
85

.  The typical chloride levels in the oceans are about 

0.5M86.  For these applications a particularly low LOD is not required.  For the many other analytes 

however, ever lower LODs are essential, several orders of magnitude below the above examples. 

The upper and lower LODs and linear response ranges of systems like 3 can be tuned to a certain 

degree.  At the minimum instrument sensitivity settings signal saturation was observed above 10
-5

M 3.  

Down to concentrations of 1 ×  10
-8

M 3, analytically useful excimer/monomer bands are still observed 

(Figure S4), using the maximum sensitivity threshold of the instrumentation used.  Based on this 

concentration an LOD of 8×10
-6

M chloride was observed.  This amounts to a chloride concentration 

that is only 6-fold lower than the LOD for a starting concentration of 1 ×  10
-6

M 3.   A reduced 

excimer:monomer ratio of around 3.0 was observed for 3, leaving less scope for signal change on 

complexation.  Furthermore at concentrations of 1 ×  10-8M 3, the monomer-excimer signals are likely to 

be more prone to baseline interference and errors.  Indeed 800 equivalents of chloride were needed to 

get a reproducible signal change at the lower concentration of 3.   

Where upper or lower LOD changes are required for ratiometric fluorescence sensors incorporating 

hosts like 3, it is perhaps also useful to carefully adjust other sensor parameters.  Such a strategy may 

involve starting with a constant concentration of 3 in the range 1×10
-7 

to 1×10
-5

M, where an optimal 

high excimer:monomer ratio of 4.4 was observed.  By carefully tuning the sensor sample pathlength, 

characteristics of source and detector (LEDs, photodiodes etc.) or excitation/emission bandwidths for 

example, the sensitivity towards the analyte could be modulated.  If the host is incorporated into a liquid 

polymer membrane, the polarity of this environment via choice of polymer or plasticizer for example 

can also have a profound effect on analyte sensitivity. 

In a dynamic analyte environment, response time is important.  A dynamic experiment involving 3 

was carried out.  A sample of 1×10
6
M 3 was spiked with 100 equivalents of chloride and the response 

measured over time.  No mechanical stirring was provided.  Once again a strong chloride response was 

observed, with a stable final emission signal after about 3 seconds as seen in Figure 3.   
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Figure 3.  The dynamic response of a 1×10
6
M solution of 3 when spiked with 100 equivalents of 

chloride.  Excitation 350nm and bandwidth 5nm.  Fluorescence was monitored at 452nm.  With no 

mechanical stirring, a stable signal was obtained in about 3 seconds.   

Most useful sensors must be able to operate in an aqueous environment.  This is immediately clear 

when considering environmental and medical applications.  When 1000 equivalents of water were added 

to 3 as seen in Table 1, there was no reduction in the excimer emission and so it is not in direct 

competition with chloride complexation.  On the contrary, the excimer:monomer ratio increased to 4.8.  

Water may enhance the pyrene π-π interactions possibly due to an increase in aggregation of organic 

moieties in an environment of increasing polarity.  We are currently conducting experiments in solvent 

systems with increasing proportions of water. 

When considering incorporating a host compound into a chemical sensor, this typically involves either 

the mixing of the compound into a hydrophobic polymeric membrane cocktail (e.g. PVC membrane of 

an Ion Selective Electrode) or covalent attachment to a polymer backbone or other substrate.  The latter 

approach has the main advantage that it can prevent leaching of the compound into the sample matrix 

during analysis.  Neutral calixarenes based hosts are ideal for both strategies.  As calixarenes present 

numerous substitution opportunities at the upper and lower rim, calixarenes can for example be co-

polymerised into polymer backbones with the aid of passive linkers.  In tandem, active complexing 

substituents can operate independently.  One sample strategy is via the upper rim which may be 

converted to p-allyl groups prior to functionalising the lower rim
87-89

.  Labile p-allyl groups are then co-

polymerised onto a polymer and thereby securely ‘fastened’ to the sensor substrate. 
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In time, it is envisaged that with the current pace of progress, ratiometric receptors like 3 and similar 

systems in the literature may soon see applications in real life devices.   

EXPERIMENTAL SECTION  1-(3-chloropropyl)-3-(pyren-1-yl methyl)urea (1).  Under argon, 1-

pyrenemethylamine hydrochloride (3.00g, 11.20mmol) and sodium ethoxide (0.84g, 12.32mmol) was 

stirred in 200ml dry DMSO for 1 hour at room temperature.  3-Chloropropyl isocyanate (1.26ml, 

12.32mmol) was added to the vessel and stirring continued for a further 12 hours at room temperature.  

A bulky white solid was obtained by filtering the mixture.  The solution was cooled on ice and 200ml 

water at 0
o
C was added slowly yielding a white ppt.  After filtering, the filtrate was washed 3 times with 

20ml aliquots of 0 
o
C de-ionised water and 3 times with 10ml aliquots of MeOH at 0 

o
C.  Upon drying, 

3.01g (77%) of 1 was obtained as a white solid.  mp:  195-200 
o
C.  IR (KBr):  3320, 1619, 655 cm

-1
.  1H 

NMR (400MHz, CD3C0CD3):  8.00-8.50 (m, 9 H, ArH), 6.56 (t, 1 H, ArCH2NH, J = 5.6), 6.12 (t, 1 H, 

CH2CH2NHCO, J = 5.6), 4.96 (d, 2 H, ArCH2NH, J = 5.6), 3.65 (t, 2 H, CH2CH2Cl, J = 6.4), 3.18 (m, 2 

H, NHCH2CH2, J = 6.4), 1.85 (m, 2 H, CH2CH2CH2, J = 6.4).  
13

C NMR (50MHz, CD3C0CD3):  158.4, 

134.7, 131.2, 130.7, 130.3, 128.3, 127.8, 127.2, 126.6, 125.5, 125.1, 124.4, 124.3, 123.6, 43.4, 41.5, 

40.7, 37.2, 33.3 ppm.  ESI MS +m/e 373.2 ([M + Na+], calcd 373.1).  Anal. Calcd for C21H19ClN2O:  C, 

71.89; H, 5.46; N, 7.98.  Found:  C, 71.94; H, 5.14; N, 7.77.  HPLC purity: 96.0%. 

1-(2-bromoethyl)-3-(pyren-1-yl methyl)urea (2).  Under argon, 1-pyrenemethylamine hydrochloride 

(10.00g, 37.35mmol) and sodium ethoxide (2.80g, 41.10mmol) were stirred in 700ml dry DMSO for 1 

hour at room temperature.  2-Bromoethyl isocyanate (3.71ml, 41.10mmol) was added to the vessel and 

stirring continued for a further 12 hours at room temperature.  The solution was cooled on ice and 700ml 

water at 0
o
C was added slowly yielding a white ppt.  After filtering, the filtrate was washed 3 times with 

50ml aliquots of 0 
o
C de-ionised water and 3 times with 20ml aliquots of MeOH at 0 

o
C.  

Chromatography on silica gel with EtOAc-hexane (1/3) as eluent gave 3.29g (23%) of 2 as a white solid.  

mp:  155-160 
o
C.  IR (KBr):  3322, 1622, 626cm

-1
.  1H NMR (400MHz, CD3C0CD3):  8.00-8.50 (m, 9 

H, ArH), 6.84 (t, 1 H, ArCH2NH, J = 5.6), 6.35 (t, 1 H, CH2CH2NHCO, J = 5.6), 5.00 (d, 2 H, 

ArCH2NH, J = 6.0), 3.66 (t, 2 H, CH2CH2Br, J = 6.2), 3.43 (m, 2 H, NHCH2CH2, J = 6.2).  13C NMR 
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(50MHz, CD3C0CD3):  157.9, 134.1, 130.9, 130.2, 129.8, 127.7, 127.3, 126.9, 126.2, 125.1, 124.5, 

123.9, 123.0, 44.5, 41.2, 41.0 ppm.  ESI MS +m/e 383.1 ([M + H
+
], calcd 383.1).  HPLC purity: 95.4%. 

25,26,27,28-tetrakis[[N-(1-pyrenylmethylureido)ethyl]oxy]calix[4]arene (3).  Under argon, p-tert-

butylcalix[4]arene (1.00g, 1.54mmol) and K2CO3 (0.85g, 6.16mmol) were heated in 100ml DMF for 3 

hours at 70 
o
C.  2 (2.36g, 6.16mmol) was added and the reaction progress monitored by HPLC.  No 

further reaction occurred after 2 days.  The solution was cooled on ice and 100 ml de-ionised water at 0 

o
C was added to yield a beige ppt.  The product was extracted from the solid with 3 10ml aliquots of 

chloroform.  The combined chloroform aliquots were washed with 3 10ml aliquots of de-ionised water.  

The resultant chloroform layers were combined, dried with Na2SO4 and reduced to 2ml by evaporation.  

This solution was shown to contain 37% 3 by HPLC.  Purification by semi-preparative HPLC gave 

0.04g (2.03%) 3 as a white solid (supporting information).  mp:  190-191 
o
C.  IR (KBr):  3320, 1690cm

-

1
.  1H NMR (400MHz, CD3C0CD3):  δ 8.30-7.91 (m, 36 H, ArH, pyrene), 8.30-7.91 (t, 4 H, urea), 8.30-

7.91 (t, 4 H, urea), 7.84 (d, 4 H, ArH), 7.55 (d, 4 H, ArH), 7.68 (m, 4 H, ArH)), 5.11 (d, 8 H, 

ArCH2NHCO, J = 5.6), 5.02 (s, 8 H, ArCH2Ar), 4.54 (t, 8 H, NHCH2CH2, J = 6.8), 4.07 (t, 8 H, 

NHCH2CH2O, J = 6.8).  13C NMR (50MHz, CD3C0CD3):  153.8, 152.2, 135.8, 133.9, 132.6, 132.07, 

131.4, 129.9, 128.9, 128.7, 128.4, 128.0, 127.3, 126.5, 126.2, 126.0, 125.8, 124.5, 124.2, 66.1, 49.3, 

44.7, 42.8 ppm.  Anal. Calcd for C108H88N8O8:  C, 79.78; H, 5.46; N, 6.89.  Found:  C, 80.10; H, 5.11; 

N, 6.86.  HPLC purity: 97.8%. 

Method for analytical and semi-preparative HPLC.  HPLC was carried out using a HP1050 

instrument with UV detection.  Mobile phase used was HPLC grade methanol in isocratic mode.  

Chloroform served as the sample solvent.  Detection wavelengths were 210nm and 340nm.  For 

analytical HPLC, a Synergy 150.0 ×  2.0mm, 4µm Fusion-RP column was used.  Flowrate was 

0.2ml/min.  Injection volume was 10µl.  For semi-preparative HPLC, a Synergy 250.0 ×  10.0mm, 10µm 

Fusion-RP column was used.  Flowrate was 5.0ml/min.  Injections volume was 100µl filtered sample.  

Fraction collection was carried out manually or with a Gilson 204 fraction collector in automation mode.  
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For LC-MS and direct injection MS work, a Bruker/Hewlard-Packard Esquire system, using a positive 

ESI source and the software’s default ‘smart’ settings.  For direct injection MS work the solvent used 

was MS grade acetonitrile with a 0.25% formic acid content. 

General details for absorption and fluorescence studies.  UV/Vis absorption spectra were recorded 

using a Perkin Elmer model Lambda 900 UV-Vis spectrophotometer.  Fluorescence spectra were 

recorded with a Perkin Elmer luminescence spectrometer model LS50B.  In all cases, 1cm quartz 

cuvettes were used.  1×10
5
M stock solutions of 1, 2 and 3 were prepared in acetonitrile-chloroform 

(95:5 v/v).  For ratiometric complexation studies, 0.01M stock solutions of the tetrabutylammonium salt 

of each anion were prepared in acetonitrile-chloroform (95:5 v/v).  For all fluorescence work, an 

excitation wavelength of 340nm was chosen with excitation and emission slits at 3nm unless stated 

otherwise.  For fluorescence titrations and dynamic response time measurements, 1×10
6
M solutions of 3 

were used, adding the appropriate volume of the 0.01M chloride stock solution.  From the change in 

excimer (452nm) to monomer (398nm) ration with chloride added, the association constant was 

calculated by non-linear regression analysis and the fitting of experimental data with a standard 

fluorescence equation by minimizing the sum of square residuals.  The standard Microsoft Excel add-in 

SOLVER was used.  The LOD of chloride for 3 was calculated by observing the decrease in excimer 

and increase in monomer emissions of decreasing concentrations of 3, upon addition of chloride.  The 

LOD was considered the lowest concentration of chloride that caused a change in both the monomer and 

excimer intensities, greater than three times the standard deviation of the baseline noise intensities of 

free 3.  Excitation and emission slits were 15nm for LOD work, the maximum permissible by the 

instrument used. 

Procedure for binding site investigation by 
1
H NMR.  A 1.6mM solution of 3 in deuterated acetone 

was prepared.  To 1ml of this solution, 300 equivalents of tetrabutylammonium anion were added and 

the main chemical shifts noted. 

Temperature degradation study of 1, 2 and 3 by 
1
H NMR.  A 1.6mM solution of each compound in 

the relevant NMR solvent was placed in a temperature control oven in anhydrous conditions and left for 
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12 hours at incremental temperatures between 30
o
C and 100

o
C.  Following a return to room temperature, 

the spectra were examined for changes.  

Generation of molecular models.  The structures of free and chloride complexed 3 were created using 

MM2 force field energy minimization.  The energy was reduced to a minimum RMS gradient of 0.100.  

The software used was Chem3D Ultra 8.0 supplied by Cambridge Scientific Computing, Inc. 
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i
 The structures of free and chloride complexed 3 were created using MM2 force field energy 

minimization.  The energy was reduced to a minimum RMS gradient of 0.100.  The software used was 

Chem 3D Ultra 8.0 supplied by Cambridge Scientific Computing, Inc. 

ii
 The association constant was calculated by non-linear regression analysis and the fitting of 

experimental data with a standard fluorescence equation by minimizing the sum of square residuals.  

The standard Microsoft Excel add-in SOLVER was used. 

iii
 Roithner Laser Technik, Vienne, Austria, www.roithner-laser.com 
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