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Chlorogenic acid protects d-galactose-induced liver and kidney injury via
antioxidation and anti-inflammation effects in mice

Abstract
Context Oxidative stress and inflammation are implicated in the aging process and its related hepatic and renal
function decline. Chlorogenic acid (CGA) is one of the most abundant polyphenol compounds in the human
diet. Recently, CGA has shown in vivo and in vitro antioxidant properties. Objective The current study
investigates the effects of protective effects of chlorogenic acid (CGA) on d-galactose-induced liver and
kidney injury. Materials and methods Hepatic and renal injuries were induced in a mouse model by
subcutaneously injection of d-galactose (d-gal; 100 mg/kg) once a day for 8 consecutive weeks and orally
administered simultaneously with CGA included in the food (200 mg/kg of diet). The liver and renal
functions were examined. Histological analyses of liver and kidney were done by haematoxylin and eosin
staining. The oxidative stress markers and pro-inflammatory cytokines in the liver and the kidney were
measured. Results CGA significantly reduced the serum aminotransferase, serum creatinine (SCr) and blood
urea nitrogen (BUN) levels in d-gal mice (p <0.05). CGA also restored superoxide dismutase, catalase, and
malondialdehyde levels and decreased glutathione content in the liver and kidney in d-gal mice (p <0.05).
Improvements in liver and kidney were also noted in histopathological studies. CGA reduced tumour necrosis
factor-α (TNF-α) and interleukin-6 (IL-6) protein levels in the liver and kidney in d-gal mice (p <0.05).
Discussion and conclusion These findings suggest that CGA attenuates d-gal-induced chronic liver and kidney
injury and that this protection may be due to its antioxidative and anti-inflammatory activities.
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Abstract 

Context: Oxidative stress and inflammation are implicated in the aging process and its related 

hepatic and renal function decline. Chlorogenic acid (CGA) is one of the most abundant 

polyphenol compounds in the human diet. Recently, CGA has shown in vivo and in vitro 

antioxidant properties. 

Objective: The current study investigates the effects of protective effects of chlorogenic acid 

(CGA) on D-galactose-induced liver and kidney injury. 

Materials and methods: Hepatic and renal injuries were induced in a mouse model by 

subcutaneously injection of D-galactose (D-gal; 100 mg/kg) once a day for 8 consecutive weeks 

and orally administered simultaneously with CGA included in the food (200 mg/kg of diet). 

The liver and renal functions were examined. Histological analyses of liver and kidney were 

done by haematoxylin and eosin staining. The oxidative stress markers and pro-inflammatory 

cytokines in the liver and the kidney were measured. 

Results: CGA significantly reduced the serum aminotransferase, serum creatinine (SCr) and 

blood urea nitrogen (BUN) levels in D-gal mice (P < 0.05). CGA also restored superoxide 

dismutase, catalase, and malondialdehyde levels and decreased glutathione content in the liver 

and kidney in D-gal mice (P < 0.05). Improvements in liver and kidney were also noted in 

histopathological studies. CGA reduced tumor necrosis factor-α (TNF-α) and interleukin-6 

(IL-6) protein levels in the liver and kidney in D-gal mice (P < 0.05). 

Discussion and conclusion: These findings suggest that CGA attenuates D-gal-induced chronic 

liver and kidney injury and that this protection may be due to its antioxidative and 

anti-inflammatory activities. 

Keywords: CGA; D-gal; Oxidative stress 
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Introduction 

Chronic hepatic and renal diseases are major health concerns worldwide with dramatically 

increasing prevalence and incidence. Despite tremendous advances in modern medicine, the 

prevention and treatment of hepatic and renal diseases remain limited. The pathogenesis of 

hepatic and renal diseases, as well as the role of oxidative stress and inflammation, is well 

established (Malhi & Gores, 2008). Therefore, inhibiting or blocking oxidative stress and 

inflammatory response is a promising therapeutic strategy for hepatic and renal injuries. 

Mounting evidence suggest that D-gal-induced liver and kidney injury is a well-established 

experimental model that closely similar to morphological and functional features of human 

hepatitis and nephritis (Dong et al., 2013; Li et al., 2015). 

Research has shown that D-gal promotes oxidative damage in the liver and kidney of 

rodents (Li et al., 2005). Free radicals attack essential cell constituents and also induce lipid 

peroxidation, damage the membranes of cells and organelles in liver and kidney, cause the 

swelling and necrosis of hepatocytes and nephrocytes, and ultimately result in liver and kidney 

injury (Fan et al., 2009; Zhang et al., 2009b). D-Gal overload increases the production of free 

radicals, diminishes antioxidant enzyme activity, and attenuates immune responses. 

Inflammation is one of the leading causes of many pathological processes associated with 

oxidative stress (Theiss et al., 2009). Accumulated data strongly suggest that chronic 

inflammation is also a major cause of liver and kidney injury (Kozlov et al., 2010; Tolosano et 

al., 2002). Emerging evidence show a close link between oxidation and inflammation since 

excessive or uncontrolled free radicals production can induce an inflammatory response, while 

free radicals are inflammation effectors (Kulinsky, 2007).  

Chlorogenic acid (CGA) is one of the most abundant polyphenol compounds in coffee. It 
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is one of the important ingredients of green coffee beans (Bekedam et al., 2008) and also in 

many kinds of fruits and vegetables such as apples, cherries, plums, berries, apricots, tomatoes 

and potatoes (Heitman & Ingram, 2014). Several recent studies have demonstrated that CGA 

exerts a variety of pharmacological effects, including antioxidative and anti-inflammatory 

effects (Sato et al., 2011; Xu et al., 2010). Previous research found that CGA protected mice 

against lipopolysaccharide-induced inflammatory responses in acute lung injury (Zhang et al., 

2010). Furthermore, CGA protected against ischemia/reperfusion injury in rat liver through its 

antioxidative and anti-inflammatory properties (Yun et al., 2012). Little work has been done to 

clarify the protective effects of CGA on the D-gal-induced liver and kidney injury and its 

underlying mechanisms. Therefore, the aim of this study was to explore whether chronic CGA 

oral supplementation for 8 weeks could protect the mouse liver and kidney from D-gal-induced 

injury, and then to examine the underlying effects. The oxidative stress and inflammatory 

response were assessed in the liver and kidney for further clarification of the possible effects of 

CGA in the D-gal-induced liver and kidney injury process. 

Methods and materials 

Chemicals and reagents 

D-Gal was purchased from Beijing Chemical-Regent Company (Beijing, China) and 

dissolved in 0.9% saline at concentrations of 20 mg/ml. Chlorogenic acid (the purity grade was 

99.0%) was purchased from Shaanxi Sciphar Biotechnology Co., Ltd (Xi’an, China). SCr kit, 

BUN kit, MDA kit, GSH kit, SOD kit, CAT kit, ALT kit and AST kit were obtained from Sigma 

Chemicals (St. Louis, MO. USA). All other reagents used in the experiments were of analytical 

grade and purity. 

Animals and treatments 
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Adult male Kunming mice (18-22 g) were provided by the Laboratory Animal Center, 

Xuzhou Medical College, Xuzhou, Jiangsu, China. The mice were housed with ad libitum 

access to food and water under controlled temperature (22 ± 2°C) and humidity (50 ± 10%) 

conditions and maintained on a 12 h light/dark cycle for 1 week to acclimatize. The mice were 

randomly divided into four groups. (n = 10 each): Group 1 (control group), subcutaneously 

injected with an equal volume of saline instead of D-gal; Group 2 (D-gal group), subcutaneously 

injected with D-gal (100 mg/kg/day) (Wei et al., 2005); Group 3 (D-gal + CGA group), 

subcutaneously injected with D-gal (100 mg/kg/day) and received CGA (200 mg/kg of diet) 

(Cho et al., 2010; Tsuchiya et al., 1996); Groups 4 (CGA group), subcutaneously injected with 

an equal volume of normal saline instead of D-gal and received CGA (200 mg/kg of diet). The 

animals were sacrificed after treatment for 8 weeks. Blood samples were collected, from the 

orbital sinus, in 2 mL Eppendorf tubes and centrifugated for 10 min at 4000 rpm at 4°C. The 

liver and kidney of the mice were quickly removed and stored at -80°C for future biochemical 

and pathology analyses. Ten mice per group were used for the present study. The liver and 

kidney of four mice in each group were used for histomorphological examinations. Six mice in 

each group were used to measure the alanine aminotransferase (ALT), and aspartate 

aminotransferase (AST), SCr, BUN, oxidative stress markers, TNF-α and IL-6 levels. 

All procedures were approved by the Animal Ethics Committee, Xuzhou Medical College, 

China, and complied with the National Institutes of Health Guidelines for the Care and Use of 

Laboratory Animals. 

Estimation of liver and kidney function 

Liver function was assessed by the estimation of activities of ALT and AST in the serum 

using transaminases kit by the Reitman-Frankel method (Reitman & Frankel, 1957). Briefly, 
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ALT acts upon L-alanine and α-ketoglutaric acid to yield pyruvate that subsequently reacts with 

2,4-dinitrophenylhydrazine to form 2,4-dinitrophenyl hydrazone while AST acts upon 

L-aspartate and α-ketoglutaric acid to yield oxaloacetate that subsequently reacts with 

2,4-dinitrophenylhydrazine to form 2,4-dinitrophenylhydrazone. Color development was 

measured photometrically at 505 nm. 

The levels of SCr and BUN in plasma samples with kits, were measured as indicators of 

renal function by microplate spectrophotometry, according to the manufacturer’s protocol. 

Histological analyses of liver and kidney 

For histomorphological examinations, four mice in each group were immediately 

anesthetized by an injection of sodium pentobarbital (50 mg/g, i.p.) and perfused with ice-cold 

normal saline followed by 4% paraformaldehyde via the left ventricle of the heart. The liver 

and kidney tissues were removed and postfixed in a fresh solution of 4% paraformaldehyde (pH 

7.4) at 4°C for 24 h. This was followed by embedment in paraffin and longitudinal slicing, with 

5 μm thick sections obtained for haematoxylin-eosin (H&E) staining. The stained slides were 

examined under microscopy for histomorphological analyses. 

Assessment of oxidative stress in liver and kidney 

Tissue homogenates 

For biochemical studies, animals were deeply anesthetized and sacrificed. Liver and 

kidney were homogenized in 1/5 (w/v) 50 mM (pH 7.4) ice-cold phosphate buffered saline 

solution (PBS) containing a protease inhibitor cocktail (Sigma-Aldrich, MO, USA) with 10 

strokes at 1200 rev/min in a Potter homogenizer. Homogenates were directly centrifuged at 

4000 rpm for 10 min to obtain the supernatant. Supernatant aliquots were used to determine 

MDA and GSH levels, SOD and CAT activities and protein contents. Protein contents were 
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determined by using the BCA assay kit (Nanjing Jiancheng Biotechnology Co., Ltd). 

Measurement of malondialdehyde (MDA) level 

The levels of MDA in the liver and kidney tissue homogenates were determined using the 

method of Uchiyama and Mihara (Uchiyama & Mihara, 1978). Half a milliliter of homogenate 

was mixed with 3 ml of H3PO4 solution (1%, v/v) followed by addition of 1 ml of thiobarbituric 

acid solution (0.67%, w/v). Then the mixture was heated in a water bath at 95°C for 45 min. 

The colored complex was extracted into n-butanol, and the absorption at 532 nm was measured 

using tetramethoxypropane as standard. MDA levels were expressed as nmol per mg of protein. 

Measurement of glutathione (GSH) level 

The levels of GSH in the liver and kidney were determined as an index of antioxidant 

reserves in tissues. The homogenates were centrifuged at 10,000 g for 20 min, and an aliquot of 

the clear supernatant (20 μl) was combined with 0.3 M Na2HPO4 (160 μl) and 0.04% 

5,5-dithiobis-(2-nitrobenzoic acid) in 1% sodium citrate (20 μl). After 10 min of incubation at 

room temperature, A405 was read in a Spectramax microplate reader. Concentrations of GSH 

were calculated from a standard curve constructed with known concentrations of GSH and 

were expressed in mg per g of protein. 

Measurement of superoxide dismutase (SOD) activity 

SOD activities in the liver and kidney were measured according to the method described 

by Lu et al. (2007). Solution A was prepared by mixing 100 ml of 50 mM PBS (pH 7.4) 

containing 0.1 mM EDTA and 2 μmol of cytochrome c with 10 ml of 0.001 N NaOH solution 

containing 5 μmol of xanthine. Solution B contained 0.2 U xanthine oxidase/ml and 0.1 mM 

EDTA. 50 μl of a tissue supernatant was mixed with 2.9 ml of solution A and the reaction was 

started by adding 50 μl of solution B. Change in absorbance at 550 nm was monitored. A blank 
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was run by substituting 50 μl of ultrapure water for the supernatant. SOD levels were expressed 

as U/mg protein with reference to the activity of a standard curve of bovine Cu/Zn SOD under 

the same conditions. 

Measurement of catalase (CAT) activity 

CAT activities in the liver and kidney were measured according to the method of Aebi 

(1984). Briefly, to a quartz cuvette, 0.65 ml of the phosphate buffer (50 mmol/l; pH 7.0) and 50 

μl sample were added, and the reaction was initiated by the addition of 0.3 ml fresh 30 mmol/L 

hydrogen peroxide (H2O2). The decomposition rate of H2O2 was spectrophotometrically 

measured by changes in absorbance at 240 nm at 25°C. CAT activity was calculated as U/mg 

of tissue protein. 

Measurement of TNF-α and IL-6 levels in the liver and kidney by ELISA  

TNF-α and IL-6 levels in the liver and kidney were determined with a commercial 

enzyme-linked immunosorbent assay (ELISA) kits (Adlitteram Diagnostic Laboratories, USA) 

according to the manufacturer’s instructions. At the end of all reactions, the absorbance of 

chromophore at 420 nm was measured using a microplate reader. 

Statistical analysis 

The results were expressed as mean ± SD. The data were analyzed by one-way ANOVA, 

followed by Dunnett’s t-test. P < 0.05 was considered to be statistically significant. Statistical 

analysis was conducted using SPSS 16.0 (SPSS Inc, Chicago, IL, USA). 

 

Results 

Effects of CGA on liver and kidney functions in D-gal-induced mice 

The effects of CGA on liver function in D-gal-induced mice are examined by measuring 
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AST and ALT in the serum. The D-gal group mice exhibited a marked increase in the levels of 

AST and ALT (P < 0.05). However, the D-gal + CGA group significantly decreased the levels 

of AST and ALT (P < 0.05) in the serum when compared with D-gal group (Fig. 1A). 

The effects of CGA on kidney function in D-gal-induced mice are examined by 

measurement of SCr and BUN in the serum. As shown in Fig. 1, the concentrations of SCr and 

BUN (P < 0.05) were significantly higher in the D-gal group when compared with the control 

group, while there were no significant differences between the CGA group and the control 

group. The D-gal + CGA group significantly decreased the levels of SCr and BUN (P < 0.05) 

when compared with the D-gal group (Fig. 1B, 1C). 

Effects of CGA on liver and kidney histomorphology in D-gal-induced mice 

The histomorphological features of H&E stained liver and kidney sections showed that 

CGA exhibited protective effects against D-gal-induced liver and kidney damage (Fig. 2A, 2B). 

As shown in Fig. 2, compared with the control group, D-gal treatment caused visible 

histological changes including structure damage, degeneration, and necrosis of hepatocytes and 

nephrocytes. CGA significantly alleviated the liver and kidney damage in D-gal-treated mice. 

No visible histological changes in the liver could be observed between the control group and 

the CGA group. 

Effect of CGA on oxidative stress markers in liver and kidney of D-gal-induced mice 

The levels of MDA in the liver and kidney of D-gal mice are significantly elevated when 

compared with the control group (P < 0.05, Fig. 3A, 3B), while CGA chronic treatment 

significantly decreased the MDA levels in the liver and kidney. The D-gal group had lower 

levels of GSH (P < 0.05, Fig. 3C, 3D), SOD (P < 0.05, Fig. 3E, 3F) and CAT (P < 0.05, Fig. 

3G, 3H) in the liver and kidney compared to the control group. Furthermore, the D-gal + CGA 
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treatment group significantly increased GSH, SOD and CAT (all P < 0.05) levels in the liver 

and kidney of D-gal mice, respectively. CGA alone did not alter the parameters of oxidative 

stress compared to the control group. 

Effect of CGA on TNF-α and IL-6 levels in the liver and kidney of D-gal-induced mice 

To investigate the protective effects of CGA on the D-gal-treated mice, we further 

examined the levels of pro-inflammatory cytokines, TNF-α and IL-6 by ELISA. The D-gal 

group elevated TNF-α (P < 0.05) and IL-6 (P < 0.05) levels in the liver and kidney when 

compared with the control group (Fig. 4). The D-gal + CGA group produced a significant 

reduction in TNF-α and IL-6 in the liver (P < 0.05) and kidney (P < 0.05) of D-gal mice. 

Discussion 

The liver and kidney are two main organs involved in D-gal metabolism and D-gal 

treatment increased MDA levels and caused oxidative stress in liver and kidney (Zhang et al., 

2009a). The liver and kidney injury model, induced by D-gal treatment (100-500 mg/kg body 

weight, s.c.) for 8 weeks in mice or rats has been widely accepted (Fan et al., 2009; Ruan et al., 

2013). The chronic subcutaneous administration of D-gal for 8 weeks induced oxidative stress, 

hepatopathy and nephropathy in mice and significantly decreased the hepatic and renal SOD 

and CAT activities as well as GSH levels, increased the hepatic and renal MDA levels (Fan et 

al., 2009; Yu et al., 2015). However, there is no report about the protective effects of CGA and 

its underlying effects on D-gal-induced liver and kidney injury. 

Previous studies have shown that treatment with D-gal causes liver and kidney injury and 

dysfunction, followed by elevated activities or levels of serum enzymes and histopathological 

damage (Fan et al., 2009; Yu et al., 2015). In the present study, our results showed that the 
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activities or the levels of AST, ALT, SCr and BUN in the serum of D-gal mice were markedly 

increased. Moreover, we observed hepatic and renal histological changes, such as structure 

damage, degeneration, necrosis, and infiltration of inflammatory cells of hepatocytes and 

nephrocytes, which were dramatically improved in mice treated with CGA. Our results showed 

that CGA remarkably alleviated the severity of liver and kidney injury of D-gal mice. 

Furthermore, CGA attenuated lipid peroxidation, activated antioxidant enzymes, and 

suppressed the inflammatory response in the D-gal-induced mice. 

It is well known that the defense system of antioxidant enzymes containing SOD, CAT 

and GSH-Px may reduce oxidative stress and potentially benefit oxidative-related diseases (Sun, 

1990). CGA restored the antioxidant defense system by increasing the activity of antioxidant 

enzymes (SOD and CAT) and suppressing lipid peroxidation (MDA) in the liver and kidney of 

D-gal mice. CGA may improve the pro-oxidant–antioxidant disequilibrium, contributing to its 

prevention of liver and kidney injury. 

It has been reported that TNF-α and IL-6 are the key pro-inflammatory cytokines to 

trigger an inflammatory cascade involving massive apoptosis of hepatocytes and nephrocytes, 

and consequent damages of hepatic and renal functions (Mei & Zheng, 2009; Sarkar & Fisher, 

2006; Xu et al., 2010). TNF-α and IL-6 are critical players in liver and kidney damage (Nowak 

et al., 2000). Therefore, the liver and kidney injury caused by various toxicants can be 

effectively attenuated by inhibiting synthesis or activity of TNF-α and IL-6. Our findings 

showed that CGA had an anti-inflammatory action by suppressing pro-inflammatory cytokines, 

TNF-α and IL-6, which may contribute to protecting against liver and kidney injury of D-gal 

mice. 

Accumulating evidence suggests that there is a close link between oxidative stress and 
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inflammation (Kulinsky, 2007). In this study, we found that the activation of D-gal-induced 

oxidative stress and inflammation. Importantly, our results showed that CGA dietary 

supplementation improved liver and kidney injury with both reduction of oxidative stress and 

the inflammatory response in hepatic and renal tissues. Oxidative stress is thought to aggravate 

inflammation and cause destruction of the liver and kidney tissues by the over-production of 

reactive oxygen species (ROS) (Chen et al., 2008; Shi et al., 2004). Furthermore, inflammatory 

cells are recruited to the site of damage, which leads to an increased uptake of oxygen (a 

‘respiratory burst’), and thus, increases the accumulation of ROS at the site of damage and 

promotes oxidative stress (Reuter et al., 2010). Therefore, the antioxidative and 

anti-inflammatory effects of CGA supplementation might break the vicious cycle of oxidative 

stress/inflammation, and has the potential to protect against liver and kidney injury of D-gal 

mice. 

CGA is a phenolic phytochemical which has been found to possess anti-inflammatory and 

antioxidative properties in previous in vitro and animal models (Sato et al., 2011; Yun et al., 

2012). In the present study, the chronic subcutaneous administration with D-galactose for 8 

weeks D-gal induced activation of oxidative stress and inflammation, and thereafter two 

systems aggravate each other to cause destruction of the liver and kidney in mice. Importantly, 

CGA improved oxidative stress markers and decreased the levels of pro-inflammatory 

cytokines in the liver and kidney of D-gal mice, which means that the systems of oxidative 

stress and inflammation modulate each other to improve the function of liver and kidney in 

D-gal mice during chronic treatment of CGA. Therefore, CGA mitigates damage in liver and 

kidney from D-gal mice, and CGA might be used as a therapeutic agent. The exact mechanisms 

of CGA in suppressing inflammation and oxidative stress remain unclear. And thus, a further 
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study of CGA on these inflammatory and oxidative stress signaling pathways should be 

addressed in the liver and kidney injury. 
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Figure Legends 

 

Fig. 1. Effect of CGA on D-gal-induced changes in hepatic (A) and renal (B and C) functional 

markers. All data are represented as mean ± SD (n = 6). *P < 0.05as compared with the control 

group; #P < 0.05 as compared with the D-gal group. 

 

Fig. 2. Effect of CGA on histopathological changes of the D-gal-treated mouse liver (A) and 

kidney (B), (n = 4). Arrow indicated to the structure damage, degeneration, and necrosis of 

hepatocytes and nephrocytes. Original magnification, 10 × 40. 

 

Fig. 3. Effects of CGA on the levels of malondialdehyde (MDA) (A and B) and glutathione 

(GSH) (C and D) and the activities of superoxide dismutase (SOD) (E and F) and catalase 

(CAT) (G and H) in the liver and kidney of mice. All values are expressed as mean ± SD (n = 

6). 

Fig. 4. Effect of CGA on tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels in the 

liver (A) and kidney (B) of D-gal-induced mice. Values are expressed as mean ± SD (n = 6).  

 



Figure 1 



Figure 2 



Figure 3 



Figure 4 


	University of Wollongong
	Research Online
	2016

	Chlorogenic acid protects d-galactose-induced liver and kidney injury via antioxidation and anti-inflammation effects in mice
	Yan Feng
	Yinghua Yu
	Shu-Ting Wang
	Jing Ren
	Danielle Camer
	See next page for additional authors
	Publication Details

	Chlorogenic acid protects d-galactose-induced liver and kidney injury via antioxidation and anti-inflammation effects in mice
	Abstract
	Disciplines
	Publication Details
	Authors


	Microsoft Word - manuscript.docx

